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Abstract

Ce mémoire synthétise et développe les approches existantes de modélisation
des réseaux de régulation génétique avec le formalisme des automates tem-
porels. Les réseaux de régulation génétique sont des réseaux dédiés à la
régulation du niveau d’expression des gènes au sein des cellules. Le formal-
isme des automates temporels est un formalisme adapté à la modélisation de
systèmes où la concurrence joue un rôle important. De plus, ce formalisme
possède d’intéressantes propriétés pour le model checking. La modélisation
des réseaux de régulation génétique avec les automates temporels est un
domaine qui est encore peu exploré. Ce mémoire synthétise les deux ap-
proches existantes dans ce domaines, à savoir une approche booléenne basée
sur le formalisme de R. Thomas auquel est ajouté un aspect temporel, et
l’approche suivie par le logiciel IKNAT. Pour cette dernière approche, ce
mémoire présente certaines extensions ainsi qu’une formalisation de son
principe de fonctionnement. Le formalisme obtenu est alors utilisé dans une
nouvelle approche développée pour éviter certains problèmes de l’approche
d’IKNAT. Enfin, l’approche booléenne temporalisée, l’approche d’IKNAT
et la nouvelle approche sont comparées à partir d’études de cas.

The present Master thesis summarizes and extends the existing approaches
which model gene regulatory networks with timed automata formalism.
Gene regulatory networks are networks dedicated to the regulation of the
gene expressions in the cell. Timed automata formalism is a formalism
adapted to the modelling of systems where concurrency plays an important
role. Moreover, the formalism has interesting properties for model check-
ing. The modelling of gene regulatory networks with timed automata is a
domain which has been little explored so far. This thesis summarizes the
two existing approaches in this domain, the timed-boolean approach based
on R. Thomas’s formalism, and the approach followed by the software IK-
NAT. For the latter approach, the thesis presents some extensions and a
formalization of its principles. The obtained formalism is then used to cre-
ate a new approach developed to avoid some problems raised by the IKNAT
approach. Finally, the timed-boolean approach, the IKNAT approach, and
the new approach are compared in case studies.
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1

Introduction

The understanding of biological life is one of the most promising and complex tasks

for the current sciences. Promising because it is an incontrovertible step to fight and

solve efficiently the multiple pathologies and lesions affecting organisms. And complex

because an organism like the human body can be made up to 1014 cells, each being the

result of an expressed genome subset which can total up to 35.000 genes. Arising from

this complexity, biological networks turn out to be important life driving mechanisms.

Among them, we can cite for example the neuronal networks for the organism behaviors,

the interacting signalling networks for the interactions between cells, and the gene

regulatory networks for the expression of the genome. These networks share several

properties and aspects, including their complexity which reflects the importance of

their role: the regulation of thousands of elements. In this domain, bioinformatics is an

emerging and promising way to model these networks and deal with their complexity.

In the bioinformatics domain, this thesis is about the modelling of gene regulatory

networks (GRNs) with timed automata formalism. GRNs are networks dedicated to

the control of gene expressions inside cells. They drive, by the concentration of tran-

scription factors, the expression of genes whose the products can themselves result in

transcription factors regulating the expression of other genes.

Timed automata is a formalism stemming from the extension of automata formalism

with the notion of time. The formalism is thus strongly focused on the time aspect

and is ideal to model systems where concurrency plays an important role. Moreover,

timed automata can have a very interesting property desirable for model checking: the

decidability of the assertions about theirs states. For these reasons, timed automata

formalism is often used to model critic systems with concurrency.
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Thesis

Modelling GRNs with the timed automata formalism is a domain which has not been

much explored yet. The aim of this master thesis is to summarize, to compare and to

extend the work already done in this domain. In order to do this, the model checker

for discrete timed automata called Uppaal has been employed, and a software called

model-builder has been developed to generate the Uppaal timed automata for a given

GRN and a given modelling approach.

Related work

The first related piece of work concerns the approach mostly followed to model GRNs

with timed automata. This approach, called timed-boolean approach, is studied in

[1, 6, 19] and leans on a biological background established by René Thomas and al

[22, 23]. The idea is to model GRNs with a boolean abstraction and to define delays

before changes in the activity level of the gene products.

The second work on timed automata comes from a master thesis [10] and models

interacting signalling networks (ISNs) which are, for some aspects, similar to GRNs.

The approach, referred to as IKNAT (the name of the software which employs it) in

this thesis, drives the concentration level of signalling molecules by a mechanism of

up events and down events. The events are produced by processes representing the

reactions regulating the concentrations of signalling molecules. The balance between

the up events and the down events received for a signalling molecule determines the

trend to increase or decrease its concentration level.

Outline

This thesis is divided into three parts. The first part provides the introductory materials

necessary to understand the thesis. This part comprises Chapter 2 which introduces

the GRNs and Chapter 3 which introduces the formalism of timed automata and the

model checker UPPAAL. In the second part, some modelling approaches of GRNs with

timed automata are introduced. These approaches are, for Chapter 4, the existing

timed-boolean approach, for Chapter 5, the existing IKNAT approach that we have

diverted and extended to model GRNs, and for Chapter 6, a new approach that we

have developed from a formalization of the IKNAT approach to avoid some of its

problems. Finally, in the last part, composed of Chapter 7, the three approaches are

compared through case studies.
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2

Introduction to gene regulatory
networks

In this chapter the subject of Gene Regulatory Networks (GRNs) is introduced first

with a presentation of the GRNs and of their role in Section 2.1. Section 2.2 discusses

the GRNs reconstruction challenge and presents the ODE models. In Section 2.3 a

problem with the ODE models is presented, followed by two abstract models of GRNs

which will be useful later in this thesis. Finally, the last two sections present some

observations about the GRN models and a graphical notation used in this thesis to

chart GRNs.

2.1 Introduction

Gene regulatory Networks (GRNs) form an important mechanism in biological life

which allows the driving of intra-cellular metabolisms. A GRN is a set of genes (or

DNA sequences) which tune the production rate of some biological substances by inter-

regulations and in reaction to some incoming signals (sugar starvation, morphogenic

signal, chemical substance, ...). The expression of a gene, through its associated RNA

sequence, produces a certain type of proteins which can have a given goal in the cell

metabolism or which can be used to regulate the expression of other genes. In this

latter case, the proteins are transcription factors. A transcription factor can promote

or inhibit the expression of a gene by changing the attracting force between the binding

site of its RNA sequence and between the Ribosomes, whose aim is to translate RNA

sequences into proteins. The bigger the concentration of a transcription factor is, the

bigger its effect on the regulated gene expression is. Indeed, the more molecules of
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2.2 GRN reconstruction challenge

Figure 2.1: An example of simple GRN where a gene X activates a gene Y which itself
inhibits the gene X.

the transcription factor there are, the more chances there are to get a molecule of the

transcription factor on the right binding site of the adequate RNA segments. Note that

a transcription factor can be in an ineffective form once produced, needing then the

presence of a signal to become able (by changing slightly its chemical constitution) to

regulate the expression of its target genes. However, in this thesis we make abstrac-

tion of this aspect by considering that a transcription factor is directly effective once

produced.

A gene whose the product (i.e., the proteins produced by its expression) activates

(inhibits) the expression of another gene is an activator or a promoter (inhibitor or

repressor) for this other gene. We sometimes also use the terms positive regulation

(negative regulation) to mean promoter regulation (inhibitor regulation). For conve-

nience, we will refer to the product of a gene by the name of this gene. So, for a

gene A, if we say that the concentration of A is high, we must understand that the

concentration of the product of the gene A is high.

The usual representation of the topology of a GRN is a directed graph where the nodes

of the graph represent the regulator and regulated genes and where the edges represent

the regulations between genes (Figure 2.1).

Finally, note that the degradation of a protein by another (different from the inhibition

of the expression of the protein gene) is also often included in the GRN models since

it takes part directly in the regulation of the protein concentration.

2.2 GRN reconstruction challenge

The reconstruction (or mapping) of the GRN topologies is a very important challenge

since it is required to explain and fight some diseases and to grasp the life rules. Indeed,

understanding the influence network among genes is primordial to design and master

the effects of a proper medicament and to understand the cause-effect mechanisms

which drive the life. This reconstruction work can be separated into two main tasks:

the inference of GRNs from data coming from biological experiments and the validation

of these GRNs.

4



2.2 GRN reconstruction challenge

The first task, the inference of GRNs from experimental data can be done manually,

by performing several experiments where a parameter (a mutation, the presence of a

chemical substance, ...) is modified in each experiment. From the resulting modifica-

tion in the biological system, the observer can deduce a possible set of genes directly

dependent of the parameter. After several occurrences of such a cycle, a GRN can be

designed. Another possibility is to use algorithms to browse a set of raw biological

data (generated automatically from measurements) and to produce the set of all GRNs

compatible with the data [20]. As the data become more complete, the algorithms can

converge toward a smaller set by precluding some network configurations.

Note that it is possible to look for some well-known GRN structures to improve the

comprehension of GRNs. These structures, called motifs, are recurrent in GRNs since

they bring advantages to the robustness aspect (keep a GRN functional despite muta-

tions) and to the reactivity aspect (quickly react to a change in the environment) of

GRNs. One of the simplest motif is just a gene regulating itself. Another motif is a cas-

cade of genes where a gene promotes another gene, which itself promotes another one,

and so on ... These motifs and famous others are described in detail in Appendix A.

The second task, the GRNs validation, can be done by developing a model of a GRN, by

making with it predictions over the behavior of the biological system under some con-

ditions, and by confronting these predictions with the real biological behavior observed

under the same conditions. According to the adequacy of the predictions with the re-

ality, the GNR model can be said representative or not. If a GRN model is reliable, it

can be used to make itself predictions over biological systems, avoiding experiments to

be performed. A formalism commonly used to model GRNs is the Ordinary Differential

Equation (ODE) formalism. A model using ODEs is introduced hereunder.

2.2.1 ODE modelling framework

The Ordinary Differential Equations (ODE) constitute a common formalism to model

the average behavior of a GRN. By an average behavior, we mean the behavior observed

on average among a large number of cells. This approach has to be set in opposition with

stochastic approaches where the focus is put on the behavior of one cell (for a review of

the different GRN modelling approaches, see [18]). Since there are several methods to

extract such kinds of average information from cells, ODEs are often used with them.

The ODE approach leans on several rates working over the average concentrations of

transcription factors (a.k.a. Mass-Action Kinetics). These rates describe the global

evolution of a given protein concentration following the different reactions modifying

it. We can class these reactions into two main groups. In one group there are reactions

5



2.2 GRN reconstruction challenge

which are responsible for the decrease of the protein concentration, they are:

- Mitose: when a mother cell splits itself to produce two daughter cells (i.e., cell

replication), the initial concentration of the protein in the mother cell is diluted

on the volume of the two daughter cells.

- Degradation: there are in cells some enzymes whose purpose is the degradation

of the protein in order to limit its concentration. The concentration of these

enzymes can be function of a given transcription factor concentration (sometimes

the degraded protein itself).

- Inhibition: if some inhibitor transcription factors of the gene of a protein are

active in a cell, the synthesis of the protein will drop.

In the other group, there are reactions which are responsible for the increase of the

protein concentration. The principal factor of such an increase is the presence of tran-

scription factors which activate the synthesis of the protein.

The resulting dynamic of this set of chemical reactions is well described on average

by ODEs. Following the Uri Alon’s book [2], we give in the rest of this section a

quick introduction to some important basic formulas used to model these reactions

with ODEs.

Modelling concentration dynamics with ODEs

If Y is a protein, the variation of the Y concentration (denoted [Y ]) is due to the

difference between the production rate of Y (denoted βY ) and the degradation/dilution

rate of Y (denoted αY ). We have thus

dY/dt = βY − αY [Y ] (2.1)

where αY is multiplied by the Y concentration since the dilution/degradation of Y is

proportional to its concentration.

The steady state concentration of Y (denoted [Y ]st) is the concentration reached by Y

when dY/dt = 0. We can obtain the steady state value with [Y ]st = βY /αY .

The solution of the system 2.1 - for Y starting from the steady state concentration and

with a stopped production (βY = 0) - is

Y (t) = Yst e
−αt (2.2)

6



2.2 GRN reconstruction challenge

If the protein starts from the concentration zero and is submitted to a strong activation,

the solution is

Y (t) = Yst (1− e−αt) (2.3)

An important concept associated with the steady state concentration is the response

time. The response time (denoted T1/2) is the time needed to reach the halfway steady

state concentration from a given concentration level (often 0). For Equations 2.2 and

2.3, we can find T1/2 = log(2)/αY and thus, in these situations, the response time is

independent of the βY rate and conversely dependent of the αY rate.

Note that a degradation of Y depending of the varying concentration of an enzyme Z

can be modeled by adding to Equation 2.1 a subtraction factor multiplied by [Y ][Z].

For convenience, we will no more use the brackets [ ] to denote the concentration. We

will just note Y for the Y concentration (instead of [Y ]).

Modelling of simple regulation dynamic with ODEs

If X is a transcription factor which regulates Y, then the production rate of Y (βY ) is a

function of the concentration of X: f(X). A set of proper differential equations which

give good result to model the reactions on the binding site are Hill functions.

A Hill function is a monotonic and S-shaped function (Figure 2.2). If X is an activator

we have the Hill function

h(X) =
Xn

Kn +Xn

where K is the activation coefficient which specifies the concentration of X required to

have a significant effect. Then f(X) = β×h(X) with β being the maximal production

rate dedicated to the binding site of X. In the reverse situation, when X is an inhibitor,

we have the Hill function

h(X) =
1

1 + (XK )n

where K is the repression coefficient. Then f(X) = β × h(X) with β being the basal

production rate of Y, i.e., the Y production rate in absence of its regulator. In both

cases, n is the Hill coefficient and governs the steepness of the function (with generally

moderate value between 1 and 4). As can be seen on Figure 2.2, the bigger the Hill

coefficient is, the more stepwise like the curves are. On the extreme, with limn→∞, we

have step functions (or boolean functions: h(X) = Θ(X ≥ K) and h(X) = Θ(X < K))

which are used as approximation in boolean models of GRNs where each regulation

can be only active or inactive (example Figure 2.3).

7



2.2 GRN reconstruction challenge

The concentration reached by a gene product with only its basal production rate (in

absence of its regulators) is called the basal concentration.
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Figure 2.2: The hill functions for an activator regulation (a) and an inhibitor regulation
(b), for the values n 1, 2, and 4. The step functions are Hill functions with n→∞.

(a) GRN topology
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Figure 2.3: An example of GRN topology (a) and its ODE simulation in (b). The gene X
activates the gene Y. For the simplicity, in the simulation, the presence of the transcription
factor X is simulated with a boolean abstraction (as regulation where n → ∞), passing
directly from a concentration null to a maximal concentration and vice versa. The ODE
rates are the followings: the degradation rate of Y is 1, the basal production rate of Y is 0.2,
and the production rate of Y induced by X is 2. When the regulator X is present (X = 1),
the steady state concentration of Y is (0.2+2)/1 = 2.2, which is the maximal concentration
than Y can reach. When the regulator X is absent, the steady state concentration of Y is
0.2/1 = 0.2. The chart shows the relative concentrations which are for each protein, the
protein concentration divided by the maximal concentration reachable by the protein (for
Y: 2.2).
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2.2 GRN reconstruction challenge

Modelling complex regulation dynamic with ODE

When a gene is the target of several regulators, the corresponding influences of the

regulations can take several forms according to the kind of “cooperation” between their

transcription factors. We do not state here any example of ODEs for cooperations since

they are not easy to develop and are out of range for the work of this thesis. Instead, we

mention some useful approximations of cooperation for a bi-regulation with regulators

X and Y (generalizable to more regulators). We call the approximation of a functional

cooperation for several regulations a gate.

One possibility, called a SUM gate, is the simple superposition of the regulation effects.

The production rate of such a gate is:

f(X,Y ) = βX + βY

where each β is the production rate regulated by the associated transcription factor.

A related possibility is the multiplicative (MULT) gate where the operator is a multi-

plication instead of an addition:

f(X,Y ) = βX × βY

Finally, there are the boolean gates AND and OR:

f(X,Y ) = βΘ(X ≥ KX AND Y ≥ KY )

f(X,Y ) = βΘ(X ≥ KX OR Y ≥ KY )

where the function Θ() returns 1 if the condition inside is fulfilled, 0 otherwise, where

the values K are thresholds over the concentration of their associated transcription

factor, and where the β value is the production rate associated to the gate. Note that

the use of the ≥ comparative operator is for promoters. In the case of an inhibition,

the comparative operator commonly used is < (e.g., if X is an inhibitor: X < KX).

There are several other gates, but the ones presented here are often used to easily

approximate the result of ODE cooperations.

Some examples of concentration trajectories regulated with boolean gates and with Hill

functions are charted in the Appendix A dedicated to the GRN motifs.

Remarks

The ODE models are numerical models which are focused on quantitative parameters

that are the rates. Since rates are specified in unit of time, there are in them inherent

time information about the modeled GRNs.
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2.3 Analysis and complexity challenge

2.3 Analysis and complexity challenge

The second challenge presented here is about the analysis and the complexity of GRNs.

The ODE models are numerical models wit often no analytical solution to their dif-

ferential equations. The only way to get analytical information from them is to run

several numerical simulations with different values for the equation parameters and then

observe the results. The huge number of possible combinations of these parameter vari-

ations (which take their values from a continuous range) induces the impossibility to

do it exhaustively. Moreover, the GRNs are often large, increasing the number of genes

and interactions, and therefore increasing the number of differential equations. More

abstract models than ODE models can then be used in order to efficiently process anal-

yses. In the remainder of this chapter, two of these abstract models (used further) are

presented.

Figure 2.4: From the book of Uri Alon [2], a GRN which displays, with 420 nodes and
520 edges, 20 percents of the global GRN of the E. coli bacterium.
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2.3 Analysis and complexity challenge

2.3.1 Piecewise linear ODE modelling

A piecewise linear ODE model for a GRN is a model which uses only linear functions.

The one stated here comes from [9], is derived directly from the ODE model and is a

generalization of the model presented in [21] where, for this latter, only one threshold

by regulator is specified.

As we have seen in the ODE model, the evolution of a gene product Y is driven by the

differential equation

dY/dt = fct(R1, ..., Rn)− αY (2.4)

where α is the dilution/degradation rate of Y and where fct(...) is the Y production

rate under the influence of the cooperations between the Y regulators R1, ..., Rn. By

using the Θ(...) function returning 1 if the condition inside is true, 0 otherwise, we can

approximate the cooperation fct(...) by a sum

n∑
k=1

∑
i

βkiΘ(Rk ≥ tki)

where each tki is a threshold over the Rk concentration (with ∀i ∈ N>1 : tki > tk(i−1) >

0), and each βki is the assigned contribution of the Rk concentration tki− tk(i−1) to the

Y production rate. Note that for certain cooperation functions, it is possible to get a

really precise approximation by using the adequate βki and tki values with the proper

granularities (the range of i for each Rk of the cooperation).

Now, by approximating in the same way the dilution/degradation term αY , we obtain

dY/dt =
n∑
k=1

∑
i

βkiΘ(Rk ≥ tki)−
∑
j

αjΘ(Y ≥ tj)

which is Equation 2.4 with the cooperation fct(...) and the dilution/degradation term

αY replaced by their linear approximation, and where the relevant information about

the concentration of the regulators is in terms of concentration levels delineated by

their threshold values.

Note that in this model, the basal production rate of Y is included in the first β values of

its inhibitors. If we extract the basal production rates of these values in an aggregated

basal production rate (denoted B) we obtain the following result:

dY/dt = B +
n∑
k=1

∑
i

βkiΘ(Rk ≥ tki)−
∑
j

αjΘ(Y ≥ tj) (2.5)

where all the β parameters associated with a inhibitor have a negative value.

11



2.3 Analysis and complexity challenge

2.3.2 Boolean modelling

A boolean model of a GRN is an abstract model where the regulations can only be

active or inactive (without effect), and where the cooperations between the regulations

are boolean gates. In a boolean model, the concentration of a gene product is given in

term of activity levels. For each gene product, its number of activity levels is minimal,

i.e., the product has no useless activity level from the point of view of its outgoing

regulations. So, if a product is a regulator for two genes, its maximal number of activity

levels is three (its product concentration can be ineffective, sufficient to activate only

the gene requiring the less concentration, or sufficient to activate both genes). Note

that boolean models which can have more than one activity level for a product are

sometimes qualified of models with multi-valued logic.

The boolean modelling approach stated here is the one of René Thomas presented

on the original article Boolean formalization of genetic control circuits [22]. This ap-

proach requires the specification of two aspects for a GRN model: the topology and the

logicals parameters of the GRN. These aspects - which are specified in what we call

the Thomas’s formalism - are used to build the model dynamics given with the state

transition graph.

Note that to simplify the definition of the formalism which is heavy, we will speak

here about activity levels of genes and not of their product. So, when we say that the

activity level of a gene is 2, we must understand that the activity level of the gene

product is 2.

Topology

In Thomas’s formalism, the topology of a GRN is specified by a tuple Γ = (G, sgn, tsd, r)

where

- G = (V, E) is a directed graph with vertices set V = {α1, ..., αn} and edges set

E ⊂ V × V .

- sgn is a function E → {+,−}.

- tsd is a function E → N≥1.

- r is a function V → N≥1 such that, if succ(αi) = Sαi ⊂ E with ∀(αa, αb) ∈ Sαi :

a = i, r(αi) = max(max(T (succ(αi))), 1), where T ({v1, ..., vm}) = {tsd(v1), ...,

tsd(vm)} with all vj ∈ E. In other words, r(αi) returns the maximal threshold

of the regulation where the gene αi is the regulator, or 1 if αi is not a regulator.
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2.3 Analysis and complexity challenge

The n vertices of the directed graph are the genes, the edges are the regulations. Each

edge has a threshold given by tsd and a sign (+ for an activation, - for an inhibition)

given by sgn. We call the set {k ∈ N0 | k ≤ r(αi)} the range of the gene αi (denoted

rangei), and r(αi) is its maximal activity level. Since we require a minimal number of

activity levels, if (rangei > 1) we have ∀k ∈ rangei : (k 6= 0) ⇒ (∃(a, b) ∈ V : (a =

αi) ∧ t((a, b)) = k)).

We denote by eij the edge (αi, αj). The current activity level of a gene αi is given by

l(αi), with l(αi) ∈ rangei.

Logical parameters

In a GRN, a gene αi is a resource for a gene αj if eij ∈ E and if

- l(αi) ≥ tsd(eij) with sgn(eij) = + or

- l(αi) < tsd(eij) with sgn(eij) = −.

In other words, a gene αi which regulates another is a resource for this one if it is an

active promoter (over the threshold of the regulation) or if it is an inactive inhibitor

(under the threshold of the regulation).

The set of all possible resources of a gene αi is denoted by Resi. For each subset p of

Resi, we define a logical parameter Ki,p which states the activity level targeted by the

gene αi. So, for each gene αi we have 0 ≤ Ki,p ≤ r(αi) for any p ∈ Resi. It is with

these logical parameters that the boolean gates of a gene is specified. The set of all

logical parameters for a GRN topology Γ is denoted by K(Γ).

State transition graph

Now we can define the main feature of this formalism, which is the state transition

graph SN for a GRN N = (Γ,K(Γ)). A state transition graph for N is a directed

graph where the nodes are all the possible states of the GRN and where the arrows are

all the possible transitions of the GRN from one state to another. A given state of the

GRN is defined by a tuple of gene activity levels: (l1, ..., ln) where 0 ≤ li ≤ r(αi) for

any i ∈ N[0,n].

All the possible states of the GRN are denoted as stateΨ = {state1, ..., statem}, a

transition from a statee to another statef is denoted by statee −→ statef (with

statee, statef ∈ stateΨ) and exists iff it is one of the following types of transition:
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- Increasing transition: (l1, ..., lt, ..., ln)e −→ (l1, ..., lt + 1, ..., ln)f if

Kt,Re(statee,αt) > lt.

- Decreasing transition: (l1, ..., lt, ..., ln)e −→ (l1, ..., lt − 1, ..., ln)f if

Kt,Re(statee,αt) < lt.

where Re is a function statesΨ×V → Ω with Ω being the set of all possible subsets of V

and such that Re(states, αj) = ω ⇔ (∀αi ∈ ω : eij ∈ E ∧ ((l(αi) ≥ tsd(eij)∧ sgn(eij) =

+)∨ (l(αi) < tsd(eij)∧ sgn(eij) = −))). In other words, Re returns the set of resources

for a given gene and for a given state of the GRN.

According to this definition, a gene is allowed to change its activity level in a state

e only if its level is lower or bigger than the level corresponding to its active logical

parameters in the state e.

With this definition of the transitions, it appears that, in the Thomas’s formalism, the

change of activity level are asynchronous (only one gene changes its activity level per

transition) and a gene can change its activity level of only one level in a step.

Figure 2.5 gives an example of GRN with its state transition graph.

(a) Topology

K A,{ } =  0

K A,{A} = 2

K B,{ } = 0

K B,{A} = 1

(b) Logical
parameters

(c) State transition graph

Figure 2.5: An example of GRN topology (a), logical parameters (b), and the associated
state transition graph (b) in Thomas’s formalism. In this example, the gene A promotes
the gene B when its activity level is equal to or bigger than 1, and the gene A is self-
regulated in a negative manner when its activity level is equal to 2. The range of A is
{0, 1, 2} and the range of B is {0, 1}. A state tuple is (A, B). As we can see on the state
transition graph, the system loops infinitely between the state (1, 1) and (2, 1).

Remarks

The Thomas’s formalism provides a way to simulate GRNs in a boolean manner. The

result of these models is interesting by the qualitative information they provide. With

the state transition graph, a model gives qualitative information about the possible
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evolutions of a GRN. Moreover, there are several feasible static analyses on the state

transition graph which can provide very useful information about the cycles, the sta-

bility and the instability of the GRN. Some of them are described in [24]. There is also

a software called GINsim [15] which allows the graphical creation of boolean networks

and the generation of their state transition graph. However, GINsim deals with a slight

variant of this formalism since it allows the specification of regulations with more than

one threshold.

It is important to note that there is no time information in this formalism except the

state sequences given by the paths in the state transition graph. But these sequences

show only the possible state orders and nothing about the duration of the states or

the time required by a gene product to change its activity level. In consequence, some

evolutions in the state transition space of a GRN can be revealed as unrealistic by a

model with a temporal aspect more developed.

2.4 Observations

From the previously introduced GRN models it is possible to isolate several aspects

and characteristics which are useful to classify and to compare the GRN models with

timed automata presented in this thesis.

Time aspects

Since the formalism used for the modelings in this thesis (i.e., timed automata formal-

ism) leans preeminently on a time aspect, the role and importance of the time in the

GRN modellings is a central point in the explored approaches. Indeed, several charac-

teristics as for example the specification easiness and the modelling precision depend on

the time aspect. These characteristics, except the one stated hereunder, are developed

according to each approach in their dedicated chapter.

The characteristic that we introduce here is the ability to model noise effect in the

timing of a model. For this, the model is specified with time intervals instead of precise

time values. The idea is no more to say that an event has to be realized after a delay

X but to let the possibility for the event to occur between a delay X and a delay Y.

This ability, which is not present in ODE models, introduces a certain non-determinism

which can be used when we have no precise idea over the delays or when the occurrence

delays of the biological events seem to be confronted to a lot of biological noise.
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Concentration levels

In the GRN models which are explore in this thesis, the concentration of the gene

products are defined as discrete levels. These levels can be directly linear to the con-

centration of the gene products (i.e., the level 2 correspond to a concentration two times

bigger than the level 1) or can be an abstraction of this concentration as it is the case

for the Thomas’s formalism (the levels correspond to the thresholds of the regulations).

In this latter formalism, since the concentration level is linked to the activity of the

regulation, we speak of activity levels instead of concentration levels.

Note that with asynchronous models where the events are not processed in parallel,

there is a non-determinism related to the processing order of the level changes (the

events). Indeed, when two genes have to change their product level simultaneously,

the processing of one gene before the other can entail a different evolution of the GRN

from the converse situation.

Two concentration levels are noticeable for a gene product. The first is the basal con-

centration level which represents the level reached by the gene product with only its

basal production rate. The ability for a model to allow non-zero basal concentration

levels is important for the modelling of GRNs. Note that if we speak of basal con-

centration level, it can in fact correspond to a situation with oscillation between two

neighboring concentration levels.

The second noticeable concentration level is the maximal concentration level that a

gene product can attain. This value can be either non-limited or, more often, limited.

For this last case and following the kind of model (boolean, ...), the freedom let to the

designer for the maximal concentration levels of gene products is not the same and

influences the expressiveness of the model.

Gates

The possibility for a model to represent the principal gates that are the boolean gates

(AND and OR) and the non-boolean gates (SUM and MULT) is an important aspect

to simulate the cooperation between regulations. As well, we can consider the ability

of a model to allow modelling of more complex gates.
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Multi-effects regulations

Another aspect related to the regulations is the possibility to specify regulations which

are not only active or inactive (like in boolean models), but which can have several

levels in the intensity of their effects following the concentration of their regulator.

Degradation regulations

As stated before, beside the normal regulations which are the inhibitions and the pro-

motions of a protein by transcription factors, a protein can be degraded by an enzyme

which is itself a protein whose the effect depends on its concentration. This degradation

can be considered as a regulation acting in a different way and thus can require to be

modeled in a different way. For example, in the ODE models, an inhibition is a divi-

sion of a basal production rate by a factor depending on the regulator concentration,

whereas a degradation is a subtraction of a factor which is multiplied by the regulator

concentration and by the regulated protein concentration.

The ability for a model to allow this difference is an interesting aspect.

2.5 Graphical notation

To end this chapter, we present here the graphical notation used to express the GRNs.

This notation has already been used in this chapter for simple GRNs and it has only a

few elements since we do not need to state several details about the chemical reactions,

but only the basic topology of the GRNs.

In this notation, each gene is represented by a circle with its name inside. The regu-

lations between the genes are represented by an arrow for an activation, a “T arrow”

for an inhibition and a “bullet arrow” when both are possible or when the kind of

regulation is undetermined. We also sometimes add the sign - (+) or use a blue (red)

color for an inhibition (activation) to emphasize the type of the regulation.

If we want to make explicit the existence of a gate as the one presented in Section 2.2.1,

we use a rounded rectangle with inside a
∑

, ×, & ,or || for respectively a SUM, MULT,

AND, and OR gate.

A number over the edge of a regulation is the threshold value of the concentration level

of the regulator above which the regulation is active.
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2.6 Conclusion

(a) Or gate (b) Auto activation (c) Inhibition

Figure 2.6: Several examples of notations. In (a) an OR gate with threshold and range
5, [0, 8] for X and 3, [0, 6] for Y. In (b) a positive auto-regulation and in (c) an inhibition
where A has a range [0, 4] and go spontaneously to the concentration level 3 and where B
has a range [0, 1] and go spontaneously to the concentration level 1.

Finally, if we want to indicate on the graph the range of concentration levels and the

basal concentration level of a gene product, we use respectively the notation [x, y] and

the notation −→ z.

2.6 Conclusion

In this chapter, the necessary materials required to understand the GRN topic were

introduced. In these materials, we explore the topology of GRNs which states a GRN

as a graph where the genes are the nodes and where the regulations are the edges, we

examine the challenges associated to the GRNs, and we briefly introduce the notion of

ODE models working with rates

Moreover, in response to the problem raided by ODE models, two abstract models were

presented: the piecewise linear ODE model directly related to the ODE model, and

the boolean model using boolean expressions and abstract activity levels. These two

models have not been chosen at random since they are used in timed automata models

presented and analyzed in the sequel of this thesis.

Finally, with these materials and abstract models, we have delineated several concepts

and aspects which are useful to compare the capabilities of different GRN models.
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3

Introduction to timed automata

This chapter provides a short introduction to the formalism of timed automata and its

implementation in Uppaal [7], a model checker for discrete timed automata. In Section

3.1, a short informal explanation about timed automata is given. In Section 3.2, the

relevant part of the formalism of timed automata to our thesis is defined. The last

section gives some informal explanations about the discrete timed automata used in

Uppaal, their extensions, and what the latter implies with respect to the aspects of

timed automata.

3.1 Introduction

A timed automaton is a finite state automaton extended with the notion of time and

used to simulate and validate system where the time aspect and the concurrency aspect

are crucial. For this reason, when timed automata are used, it is often with critical

systems in engineering domains. Such systems can be for example the dispatching

system of trains in a station, or the control system of a rocket.

3.1.1 Finite state automata

A finite state automaton (or finite state machine, but we will restrict ourself to the

name finite automaton) is basically a theoretical machine dedicated to the validation

of input words of the alphabet and the grammar of a regular language. In order to do

this, an automaton is composed of a finite set of locations (or states) linked to each

other with switches (or transitions). The locations are graphically represented each by

a circle and the switches each by an arrow from the source location to the destination
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Figure 3.1: An automaton which accepts only words respecting the regular expression
(ab)+ (e.g. “ab”, “abab”, ...). The locations are the circles. The switches are the arrows.
The final location is represented with a nested circle. The initial location has an orphaned
arrow.

location. Moreover, the set of locations is devised in three parts: the initial location

(represented with an input arrow without source location), the set of final locations

(represented with a nested circle), and the set of normal locations. At a given moment,

only one location can be active. Naturally, the first active location of the automaton

is the initial location of the automaton.

Each switch has a guard indicating the input symbol required (from the alphabet of

the language) to fire the switch if the source location of the switch is active. When a

location is active, an output switch of a location can be fired if the current input symbol

is allowed by the guard of the switch. If the switch is fired, the target location of the

switch becomes active instead of the source location of the switch, and the current input

symbol of the automaton is switched to the next symbol of the word. A switch can also

be guarded with an empty symbol, allowing the fire of the switch irrespectively of the

input symbol, since the validation of this one is delayed to the next switch. When an

active location has many switches which can be fired, one of them is fired randomly.

The input word is validated (recognized as respecting the grammar of the regular

language for which the automaton is dedicated) when a final location of the automaton

is active and when the whole word is processed. If the automaton is stuck on a not

final location without switch to fire, there is a deadlock and the word is not validated.

3.1.2 Timed automata

A timed automaton is an automaton with one or several associated clocks and with

some constraints over these clocks in the guards of the switches. A constraint over a

clock C can be for example [C = 10] or [9 ≤ C ≤ 10]. Moreover, when a switch is

fired, a defined subset of the clocks can be reset to the value 0. The grammar validated

by such automaton is said to be a timed-regular grammar and is employed to specify

a timed-regular language. A timed-regular language contains timed-regular words. A

timed-regular word is a regular word where each symbol is associated with a timed

value. Timed words can be represented by a sequence of couple (a, t) where a is a

symbol and t is the time associated with the symbol (see Figure 3.2 for an example).
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3.2 Timed automata formalism

Figure 3.2: A timed automaton with a clock c which accepts only timed words respecting
the regular grammar (ab)+ and where each symbol follows the previous in a delay of
maximum 5 time units (e.g. “(a, 3)(b, 8)(a, 9)(b, 13)”). The formula before “/” is the
guard and the set after are the reset clocks.

Finally, a discrete timed automaton is an automaton where the time takes only discrete

values (or natural numbers).

3.1.3 High level automata

From the previous automata dedicated to the language validation, it is possible to

specify high level automata which allow the use of variables, invariants for the locations,

guards with elaborate conditions, and complex operations in the switches. All these

high level specifications are just translated (by preprocessing or on-the-fly) in new

locations and switches to come back to the original automata formalism (see Figure 3.3).

Therefore, the use of automata (timed or not) is not restricted to the only domain of

language validation, but can be extended to the validation of various aspects in diverse

domains provided with a representation (or modelling) in an automaton.

(a) High level automaton (b) Equivalent classic automaton

Figure 3.3: An automaton which computes the XOR result over two boolean variables x
and y. In (a) the high level automaton, in (b) an equivalent classic automaton which reads
the word constituted of x and y concatenated.

3.2 Timed automata formalism

After the previous informal presentation of the timed automata formalism through

simple automata, this section gives more formal definitions about timed automata.

These definitions are given following the original article A theory of timed automata [4]

and the article Decision Problems for Timed Automata: A Survey [5].
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3.2.1 Definition of a timed automaton

A timed automaton is a finite automaton augmented with a set of clocks. The language

of a timed automaton is a timed-regular language. A timed language over an alphabet Σ

is a language composed of timed words. A timed word over an alphabet Σ is a sequence

of (a0, t0), (a1, t1), ..., (ak, tk) where each ai ∈ Σ ,each ti ∈ R≥0 and t0 ≤ t1 ≤ ... ≤ tk.

A timed automaton T over an alphabet Σ is a tuple 〈L, l0, LF , X,E〉, where

- L is a finite set of locations,

- l0 ∈ L is the initial location,

- LF ⊆ L is a set of final locations,

- X is a finite set of clocks,

- E ⊆ L×Σe×Φ(X)×2X ×L is a set of switches where Φ(X) is the set of possible

constraints over the clocks X. A switch 〈l, a, g, λ, l′〉 represents an edge from the

location l to the location l′ for the symbol a. The guard g is a clock constraint

over X which specifies when the switch is enabled. The update λ ⊆ X gives the

clocks to be reset to 0 with this switch. Σe = Σ∪{ε} where ε is the empty symbol.

The set of all possible clock constraints on a set X of clocks (Φ(X)) is defined by the

grammar

g := x ≤ c | c ≤ x | x < c | c < x | g ∧ g

where x ∈ X and c ∈ Q.

A clock valuation v for a set X of clocks assigns a real value to each clock of the set, in

other words v is a mapping from X to R≥0. For δ ∈ R≥0, v + δ is the clock valuation

which maps every clock x to the value v(x) + δ. In a timed automaton, the time

elapses only on the locations (the switches are instantaneous), and all the clocks are

synchronous (i.e. (v(x) + δ)⇔ (v + δ) for the elapsed time δ ∈ R≥0 in a same location

(without reset of clocks) and for any clock x ∈ X).

Subsequently we will subscript the elements of the tuple with the identifier of a timed

automaton to denote the elements of the automaton (e.g., LTF denotes the set LF of

the automaton T).
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Semantics

The semantics of a timed automaton T is defined by a related infinite automaton S(T )

over the alphabet Σ∪R≥0. A state of S(T ) is a pair (l, v) such that l is a location of T

(l ∈ LT ) and v is a clock valuation for XT . A state (l, v) of S(T ) is an initial state if l

is the initial state of T (l = lT0 ) and if v(x) = 0 for all clocks x of XT . A state (l, v) is a

final state of ST if l is a final location of T (l ∈ VF ). There are two types of transitions

in S(T ):

- Elapsing time: for a state (l, v) and a time increment δ ∈ R≥0, (l, v)
δ→ (l, v+δ).

- Location switch: for a state (l, v) and a switch 〈l, a, g, λ, l′〉 such that v satisfies

the guard g, (l, v)
a→ (l′, v [λ := 0]). Where v [λ := 0] denotes the clock valuations

v where the clock of λ ⊆ XT are reset to the value 0.

For a timed word w = (a0, t0), (a1, t1)...(ak, tk) over Σe, a run of S(T ) over w is a

sequence

q0
t0→ q′0

a0→ q1
t1−t0→ q′1

a1→ q2
t2−t1→ q′2

a2→ q3
t3−t2→ ...

ak→ qk+1

where q0 is the initial state of S(T ). The word is accepted if qk+1 is a final state of

S(T ).

For example, if we reuse the timed automaton of Figure 3.2, a run over the timed word

“(a, 3)(b, 8)(a, 9)(b, 13)” of the automaton - representing the semantic of the timed

automaton - is the sequence

(l0, 0)
3→ (l0, 3)

a→ (l1, 3)
5→ (l1, 8)

b→ (l2, 8)
e→ (l0, 0)

1→ (l0, 1)
a→ (l1, 1)

4→ (l1, 5)
b→

(l2, 5)

where l0 denotes the initial location of the timed automaton, l2 the final location, and

l1 the central location.

Note that we have take care to use here the words state and transition instead of the

synonyms location and switch to speak of the automata defined for the semantics (as

we will also do for the state space).

3.2.2 Discrete timed automata

From the formalism of timed automata, a discrete timed automaton is an automaton

with switches occurring only at an integral valuation time (v ∈ N|X|). This entails
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that each constant c used in the guard (according to the grammar g) is an natural

number (c ∈ N). More generally, we speak about timed automata with sampled rate

f for timed automata where the clock valuation of switches has to be a multiple of

f . A timed automaton T with sampled rate f is denoted T f . Note that every timed

automaton with a rational sampled rate f can be transformed into a discrete timed

automaton by an upscaling of the time values by 1/f .

State space

The state space S(T ) of a time automaton T f is an infinite automaton where the state

are the possible configurations of T f . A state of S(T ) is a couple (l, v) where l ∈ LT

and v is a valuation of XT . Each switch of S(T ) has a guard e and represents a possible

change in the configuration of T f (an elapsing time of f or a change of active location).

The initial state of S(T ) is the state (lT0 , v) with v(x) = 0 for all clocks x of XT .

A path in a state space is a sequence of state which are linked by transitions.

The state space S(T ) is a concept similar to the automaton S(T ) described for the

semantics of T . The difference here is that there is an elapsing-time transition fired for

every elapsed time f . Note that such a state space is not possible with a real timed

automaton (without sample rate f).

3.2.3 Decidability of the reachability problem

There are several properties and facts known about timed automata. Here we present

an important property associated to timed automata with sample rate. This property

is the decidability of the reachability problem.

The reachability problem consists simply to know whether a given state of an automaton

can be reached or not. Formally, for an automaton T and a state s of T , the matter is

to know if s is included or not in the state space S(T ). For such a problem, we have

the following theorem:

Theorem 1 For a timed automaton, the reachability problem is decidable [3].

This decidability of the reachability problem is an important property for an timed

automaton since the matter is the possibility, for a model checker, to verify every

assertion about the state space of the automaton. Indeed, the veracity of an assertion

about the state space of the automaton is definitely decidable if the model checker
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can know if the states which infirm (for safeness assertions) or confirm (for liveness

assertions) the assertion are reachable. For this reason, timed automata are often used

for the modelling of critic systems.

3.2.4 Timed automata extensions

There are several extensions to the timed automata formalism which were proposed in

order to extend its expressiveness or simply for the convenience of writing. Sometimes

they affect the automata properties. Some of them are relevant for our work since they

are used in Uppaal. We review them here.

Invariant: An invariant allows one the possibility to specify constraints over clocks

in each location of an automaton. The constraints specified for a given location have

to be respected while the location is active. This extension does not improve the

expressiveness nor change the property of an automaton. Indeed, an invariant of a

location can be easily replaced by adding (with a conjunction) the invariant into the

guards of the outgoing or ingoing switches.

Stopwatch: A stopwatch is a clock which can be frozen in a location. When a clock is

frozen in a location, and when the location is active, the valuation of the clock does not

evolve while the time elapses. This extension improves the automata expressiveness

[13] but also impacts the reachability property (i.e., the decidability of the reacha-

bility problem) since the reachability problem is no more decidable with the use of

stopwatches [3].

Additional clock constraints: Additional clock constraints allow one to use in guards

(and invariants) constraints of the form c1 − c2 # k, c1 + c2 # k, where c1 and c2 are

clocks, k is a constant, and # stands for a binary operator in {≤,≥,=, 6=, <,>}. This

extension improves the expressiveness of timed automata and preserves the reachability

property [12].

3.3 The Uppaal discrete timed automata

There are several tools which can process model checking on timed automata. We can

cite Kronos [14], Hytech [17], IF [11], and Uppaal [7]. Kronos is a old model checker for

real timed automata. Hytech is a tool for the model checking and for the development

of linear hybrid systems, which are automata where “clocks” can evolve with different

real rates. IF is a tool based on some algorithms of Kronos for the model checking of

real timed automata. Finally, Uppaal is a tool dedicated to the conception and to the
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3.3 The Uppaal discrete timed automata

model checking of discrete timed automata.

Since Uppaal provides a very efficient model checker, and since there is a strong com-

munity and an up-to-date documentation about it, we have chosen it to deal with

timed automata in this research. Subsequently, after the previous introduction to the

concepts and formalism of timed automata relevant for our work, we end this chapter

by the relevant specificities for us of the discrete timed automata of Uppaal. These

specificities concern the allowed high level specifications, the timed automata graphical

notations, and the Uppaal model checking capabilities.

3.3.1 Timed automata extensions

Uppaal supports all the previously stated extensions of the timed automata formal-

ism. Thus, it is possible with Uppaal to specify an invariant in each location, to use

stopwatches (only in the currently under-development version 4.1), and to define clock

constraints with differences and sums over two clocks. In Uppaal, a clock c in a given

location is frozen or not according to an invariant over the derivation of the clock:

c’==# where # stands for the value 0 (to freeze) or 1.

In addition to these extensions, Uppaal allows the specification of urgent locations and

some other important features which are presented herein. An urgent location is a

location where the time is frozen for all clocks of the automaton. It is equivalent to the

addition of an extra clock X with the association of an invariant X ≤ 0 to the location.

3.3.2 High level specifications

Uppaal provides a set of discrete high level expressions which can be used with timed

automata. These allow the use of variables and constants with boolean and integer types

and with the usual discrete operations on them. It is also possible to specify arrays,

functions, if-then-else statements, and loop statements. However, since all types are

explicitly bound in Uppaal, the specification of a function over an array is only possible

for a given size of array. For example, it is not possible to specify a function over arrays

of size 2 or 3, we have to specify two different functions, one for the size 2 and another

for the size 3. The situation is the same with loop-statements over arrays.

Expressions over constants and variables can be used in guards, invariants, and in

update fields associated with each switch. An update field is processed when the

associated switch is fired.
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3.3.3 Processes

The structure of a timed automaton in Uppaal is composed of processes. A process is

an instantiation of a template. A template is the structure of a single timed automaton

(like the one described previously) which can be instantiated for several processes.

Each template provides a signature which is used to launch and to parametrize the

instantiation of the template, in the same sense as the signature of a function. A

parameter for a template can be a variable, a clock, an array, ..., or a synchronization

channel (see below). A parameter can be passed by value or by reference (by preceding

the name of the parameter with the symbol “&”). Each template has its own private

declaration space to define clocks, variables, ...

The ability to define several processes for a time automaton is very useful since it allows

to run several automata side by side with synchronizations between them. Indeed,

without the system of processes, it would be necessary to do manually a concurrent

composition of the automata in a unique automaton. But with the system of processes,

each automaton is defined as a single process and their composition is done on-the-fly

by the model-checker.

Process synchronization

In Uppaal, we can specify on the switches two kinds of process synchronization: the

channel and broadcast channel synchronizations. With a channel Z, a switch emitter

of a synchronization on Z can be fired only if there is another switch receiver of the

synchronization on Z and which can be fired simultaneously. For a broadcast channel,

the principle is the same, but several receiver switches can be fired for one emitter

switch fired on the broadcast channel. Moreover, unlike for a synchronization channel,

a broadcast channel is not blocking (if there is no receiver switch which can be fired,

the emitter switch can still be fired). There are several constraints and rules over

synchronizations, including:

- Only one synchronization per switch.

- No clock constraint on a switch which receives a broadcast synchronization.

- The update operations of the switches are made after the synchronization, starting

with the operations associated to the switch emitting the synchronization.

In Uppaal, the emission of a synchronization over a channel Z is defined by Z!, and the

reception of a synchronization is defined by Z?.
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Committed locations

With the processes, Uppaal allows the specification of committed location. A committed

location is a location which has to be quited immediately, even before urgent locations.

When several processes are each in a committed location, the next switch fired in the

automaton is chosen among these processes. The committed locations are useful in the

sense that they create restrictions on the automaton execution and thus reduce the size

of the state space.

3.3.4 Graphical notation

Since all the timed automata employed in the thesis are made for Uppaal, we will use

henceforth the Uppaal graphical notation to represent them. This one differs from the

standard notations in a few aspects.

Initial locations and final locations: Unlike the normal representation which dis-

tinguishes initial locations and final locations with an orphaned input arrow and with a

nested circle, Uppaal uses the nested circle for initial locations. For the final locations,

there is no graphical distinction since these locations are not necessary. We extend the

notation of initial locations by setting their color to green.

Urgent locations and committed locations are annotated with a nested ’U’ and

with a nested ’C’. We extend this distinction by setting a yellow color to the urgent

locations and a white color to the committed locations.

Labeling: each location and switch are labeled with visual constructs as follows

- For a location: the name (light purple) and the invariant (dark purple).

switch_off!

switch_on!
c >= 5

c >= 5 c = 0

c = 0

c <= 5

(a) Template controller

switch_on?

switch_off?

Off

On

(b) Template light

Figure 3.4: An Uppaal timed automaton with two instantiated templates, the controller
and the light. The controller switches the light on/off every five time units. The signature
of the two templates are: light(chan &switch on, chan &switch off) and controller(chan
&switch on, chan &switch off).
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3.3 The Uppaal discrete timed automata

- For a switch: the guard (green), the synchronization (light blue) and the update

(dark blue).

3.3.5 Model checking

Finally, we briefly introduce the model checking here and the Uppaal capabilities in

this domain. A model checker is a software which makes some verifications about a

model in order to confirm or contradict an assertion (or request) about it. In the case

of a timed automaton, an assertion can be “The location L can be active when the

clock Y is bigger than C ” or “The variable V is always lower than 10 ”. To validate

such assertions, the model checker must explore the state space of the automaton to

find a situation which infirms or confirms the assertion. Sometimes, this entails the

exploration of all the state space (like for the second assertion).

In Uppaal, the state space is handled in a symbolic form to minimize its size. In a

symbolic state space, a symbolic state has a valuation of the clocks in a symbolic form

and stands for several concrete states (i.e., normal states). Which such a system, an

infinite state space can be sometime reduced in a finite symbolic state space.

As already said, the decidability of the reachability problem is very important to ensure

the decidability of the assertions. For example, the specification of stopwatches in

an automaton reduces the ability of the model checker to give a response since the

reachability problem is undecidable with them.

To specify an assertion, the language provided by the Uppaal model checker uses the

quantifiers of the classical temporal logic [8]. An example of assertion with such a

quantifier is [E<> P.L && C > 10] which states that a location L (of the process P) is

active at least one time with the clock C over the value 10. The temporal quantifiers

of the Uppaal model checker are:

- E<> p possible assertion stating that there is a state with the property p in the

state space.

- A[] p invariant assertion stating that for all states in the state space we have the

property p.

- E[] p potentially always assertion stating that it is possible that the property p is

always true. i.e., there is a path in the state space where each state of the path

has the property p.

- A<> p eventually assertion stating that for each possible path in the state space
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there is a state inside with the property p.

- p−− > q lead to assertion stating that in each possible path in the state space,

if there is a state with the property p, then follows (not necessary directly) in the

path a state with the property q.

It is also possible to invoke the deadlock state property (no more switches can be fired)

for a location L of the process P by invoking P.L.deadlock.

The result of Uppaal to an assertion can be “maybe” (if undecidability), “yes”, or “no”,

with for the latter two an example or counter example trace representing a path in the

state space (in a concrete or symbolic form).

3.4 Conclusion

In this chapter, the timed automata formalism was presented with, in addition, its use

in Uppaal, an efficient and well-supported model checker for discrete timed automata.

Basically, timed automata are theoretical machines dedicated to the validation of timed

words according to a timed regular grammar. But timed automata, with their model

checking possibilities (e.g., the reachability property), are also often used for the mod-

elling and the verification of critic systems where the time and concurrency aspects

play an important role. For these reasons, the modelling of GRNs with timed au-

tomata can be an interesting alternative to the precise but heavy modelling with the

ODE formalism.

Now that we have the necessary materials to understand GRNs and to handle mod-

ellings with timed automata, we can explore this alternative in the next chapters with,

in each one, a different modelling approach of GRNs with timed automata.
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The timed-boolean approach

This chapter present a first approach stemming from Thomas’s formalism (see Section

2.3.2) to model GRNs with the discrete time automata formalism. The theoretical

background of this approach is developed in [23] by René Thomas and Richard D’Ari,

and is implemented with timed automata in [1, 6, 19], with, for each of these implemen-

tations, only slight differences. This chapter is then mainly a descriptive one depicting

an existing approach with however, at the end, a section with several observations

about it.

4.1 Principles

A timed-boolean model is a boolean model leaning on an extension of Thomas’s for-

malism with a timed aspect. This timed aspect imposes a delay to wait before each

change of activity level for a gene product. So, in the GRN dynamics, the transition

from one activity level to another is now conditioned by these delays, preventing some

evolution of the GRN which are allowed by the untimed Thomas’s formalism.

More precisely, the extension is the following. In each gene of a boolean network, for

each activity level of the gene product, two delays are defined. One delay that the gene

product has to wait before decreasing the activity level of one unit, and another delay

that the gene product has to wait before increasing the activity level of one unit. To

determine when the delays are elapsed, a clock is associated to each gene. The clock

of a gene is reset when the gene product changes its activity level or when it begins to

wait the defined delay before a change of activity level.

With this extension, a gene product is considered to be in an intermediate activity level
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if it is waiting for an increase or a decrease of its activity level. A gene product which

waits for nothing is considered to be in a regular activity level. A GRN is considered

as being in an intermediate state if it has at least one gene product in an intermediate

level, otherwise, it is considered as being in a regular state. The intermediate states

are new states which extend the transition state space. This last, with the temporal

constraints on the new transitions and on the new intermediate states, can be defined

as a timed automata.

This extension of the Thomas’s formalism is stated formally hereunder. The parts

of the formalism unchanged are not restated and remain the same as in Section 2.3.2.

Note that as in this latter Section, we simplify the formalism by associating the activity

level of a product to its gene.

4.1.1 Delay extension

The topology Γ = ((V,E), sgn, tsd, r) of a GRN is extended with

• for each gene αi ∈ V , the set Interi of intermediate activity levels, where Interi =

Inter−i ∪ Inter
+
i and

– Inter+
i = {l+ | l ∈ N0 ∧ 0 < l < r(αi)} ∪ {0+}.

– Inter−i = {l− | l ∈ N0 ∧ 0 < l < r(αi)} ∪ {r(αi)−}.

• a function ∆: V × Ω → N0 × N0 where Ω =
⋃
i Interi for all αi ∈ V and such

that ∆(αi, l) = (a, b) with a ≤ b for each gene αi ∈ V and for each intermediate

activity level l ∈ Interi, .

We denote a gene αi with the activity level l, l+ or l− by αil, α
+
il and α−il . We denote

the value a and b from ∆(αi, l) = (a, b) by respectively δmini,l and δmaxi,l (with l ∈ Interi),
δmini,l and δmaxi,l being the bounds of the delay interval required by the gene αi to achieve

its transition of activity level (see below).

The set of all activity levels for a gene αi is denoted ALi. The set Regi of regular

activity levels for a gene αi is ALi \ Interi. A state e (denoted statee) of the GRN

(with n genes) is a tuple of gene levels (k1, ..., kn) where each kj ∈ ALj . The statee
is called intermediate if there is at least one intermediate activity level inside (∃i ∈
N[0,n] : ki ∈ Interi), otherwise it is called regular. The set of all the possible states is

denoted as statesψ = {state1, ..., statem}.

Since we have l(αil) = l(α+
il ) = l(α−il ), the definition of a resource for a gene remains

unchanged.
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4.1.2 Delay-extended transition state space

Timed automata

Since the topology of a GRN N is extended with a timed aspect in term of delay values,

we can refine and express the transition state graph SN by means of a timed automaton

where

- The set V of locations is the set of states {state1, ..., statem} where each location

corresponding to an intermediate statee has an invariant ∀i : 1 ≤ i ≤ n : (ki ∈
Interi)⇒ (ci ≤ δmaxi,ki

), with ki being the activity level of the gene αi in the statee.

- The set X of clocks is {c1, ..., cn}, where each clock ci is associated with a gene

αi.

- The set of switches E is composed of two subsets: the delay switches and the

condition switches as defined below.

The use of discrete values for the delays results in a discrete timed automaton.

Note that the words location and switch - that we use preferably with automata than

state and transition - are also synonym here for the words state and transition in the

context of the extended transition state space.

Delay switches

The delay switches are switches which update an intermediate activity level of a single

gene into the adequate regular activity level when the delay is elapsed. There are two

types of delay switches:

- Increasing: (k1, ..., kt, ..., kn)
(ct≥δmin

tk )\{ct}
−−−−−−−−→ (k1, ..., l(kt) + 1, ..., kn) where kt ∈

Inter+
t .

- Decreasing: (k1, ..., kt, ..., kn)
(ct≥δmin

tk )\{ct}
−−−−−−−−→ (k1, ..., l(kt)− 1, ..., kn) where kt ∈

Inter−t .

where
G\C−→ is a switch with a guard G and which resets the clock of C.

As we can see, each delay switch changes the activity level of only one gene, what is an

asynchronous mode for the point of view of the temporal aspect.
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Condition switches

Condition switches are switches which change the activity level of some genes according

to the activity level of other genes. They are defined as switches of the form

(k1, ..., kn)
\C−→ (q1, ..., qn)

where ∀i ∈ N[0,n] :

qi =


l+i if Kαi,Re(statee,αi) > l and ki = li
l−i if Kαi,Re(statee,αi) < l and ki = li
li if Kαi,Re(statee,αi) ≤ l and ki = l+i
li if Kαi,Re(statee,αi) ≥ l and ki = l−i

with all ki, qi ∈ ALi, and with ∀i : (qi ∈ Regi ∧ qi 6= ki)⇔ (ci ∈ C).

As several genes can have their activity level changed in a single condition switch,

the condition switches execute in a synchronous mode. Note that it is necessary to

set urgent each location with outgoing condition switches and without outgoing delay

switch. This setting prevents the time automaton to stay in locations without clock

invariant for infinite time despite the fact that a change of activity level is required.

4.1.3 Example

Figure 4.1 gives an example of GRN with its topology and its logical parameters. This

example is a simplified version of the one of Figure 4.1a where the threshold of the

self-inhibition of A is set to 1. This modification induces a maximum activity level for

A of one instead of two. The extended state transition graph of this example is the

timed automata of Figure 4.2.

4.1.4 Modes

The collapsed transition state space is the one obtained by merging the intermediate

states to their corresponding regular state. Formally, the corresponding regular state

of an intermediate state (k1, ..., kn) is the one obtained from (l(k1), ..., l(kn)).

In Figure 4.3, we can see in (a) the extended transition state space of the example

of Figure 4.1 without the time constraints. In (b), we can see the corresponding col-

lapsed transition state space, and in (c), the normal transition state space according

to the Thomas’s formalism. If we compare the normal transition state space of the

Thomas’s formalism (4.3c) with the collapsed one (4.3b), we can remark that several
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(a) Topology

K A,{ } =  0

K A,{A} = 1

K B,{ } = 0

K B,{A} = 1

(b) Logical parameters

Figure 4.1: Example of a GRN with its topology (a) and its logical parameters (b). The
delays associated with this GRN are δmin

A,0+ = 4, δmax
A,0+ = 5, δmin

A,1− = 6, δmax
A,1− = 8, δmin

B,0+ =

3, δmax
B,0+ = 4, δmin

B,1− = 2, δmax
B,1− = 3. Over each regulation, the sign and the threshold of

the regulation are indicated.

ck_A >= 6

ck_A >= 4

ck_B >= 3

ck_A >= 6

ck_A >= 4

ck_B >= 2

ck_B >= 2
ck_B >= 4

ck_A = 0

ck_A = 0, ck_B = 0

ck_A = 0

ck_A = 0,
ck_B = 0

ck_A = 0

ck_A = 0

A_0_B_0_

A_0_UP_B_0_

A_1_B_0_

A_1_DOWN_B_0_UP_

A_0_B_0_UP_A_0_B_1_

A_0_UP_B_1_DOWN_

A_1_B_1_DOWN_

A_1_DOWN_B_1_

A_1_B_1_

ck_A <= 8
ck_A <= 5 and ck_B <= 4

ck_B <= 4

ck_A <= 8 and ck_B <= 3

ck_B <= 3

ck_A <= 5

Figure 4.2: The timed automaton of the state transition graph for the GRN of Figure
4.1. ck A and ck B are respectively the clocks of A and B. The name of a state is the
level of A followed by the level of B. The levels l+ and l− are represented by l UP and
l DOWN. The condition switches are in red, the delay switches are in black. This timed
automaton is not a functional version since the part with the initial location is not showed.
Moreover, in the implemented version, the delays are saved in constant and a variable for
each gene is present to save its activity level. These variables can be used in the model
checker assertions.
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(a) Extended transition state space (b) Collapsed tran-
sition state space

(c) Normal tran-
sition state space

Figure 4.3: Different representations of the transition state space of the example of Figure
4.1. In (a), the extended state space without the delay constraints. The condition switches
are in red, the delay switches are in black. In (b) the extended transition state space which
is collapsed. In (c) the normal state space. The dotted transitions in (b) are the new ones.
The dotted transitions in (a) are the responsible transitions for the new ones in (b). The
states with the same kind of color correspond to the same regular state.

new transitions are possible (the dotted). These artifact transitions are the result of

delay switches (the dotted ones in the extended transition state space) which lead to

some improper changes of level from improper intermediate states. To solve these im-

proper changes of level, it is necessary to leave each improper intermediate state by

firing a condition switch before the firing of a dotted delay switch. To deal with this

problem three variants or modes for the automaton are proposed in [19].

Normal mode

In this mode, the improper changes of activity level are tolerated without any restric-

tion. The corresponding timed automaton (Figure 4.2) is left unchanged.

Urgent mode

The urgent mode allows an improper change of activity level only if it can be done

immediately once in the improper intermediate state. This involves to set urgent the

improper intermediate states in the timed automaton. In the example, these urgent

states would be the state (0, 0+) and the state (1, 1−). With this, improper changes

of activity level are prevented when the minimal delay of their corresponding switch is

too long to allow the firing of the switch immediately.

This mode is maybe the most natural one regarding the real behavior of GRNs.
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Overridden mode

Finally, the overridden mode deals with the problem by forbidding the firing of switches

resulting in an improper change of activity level. The easiest way to embody this mode

in the timed automaton is simply to delete the switches responsible for the improper

changes of level (the dotted ones in Figure 4.3a).

4.2 Observations

In this section are presented some aspects and characteristics that we have observed on

the timed-boolean approach. These aspects and characteristics follow those delineated

in Section 2.4. As it can be expected, some of these characteristics and aspects come

from the very nature of the Thomas’s formalism.

Time aspects

In the timed-boolean model, the time is specified directly in the form of delays tempo-

rizing each change of product activity level in both directions (increase and decrease).

This timed approach, proposed and discussed in [23], relies originally on three abstrac-

tions:

a) The delays are independent of the regulators.

b) The delays are independent of the history.

c) The delays remain constant.

Allowing very simple modellings, these abstractions are declared as naive for the fol-

lowing reasons:

With the abstraction a), the delay for a product to switch from one activity level x to

the activity level x+1 is always constant, whatever the steady state activity level of the

product is (i.e., the target activity level: x+2, x+5, ...), steady state activity level which

is determined by the regulators through the logical parameters. But in the reality, a high

(low) difference between the steady state concentration and the current concentration

of a product comes with a high (low) rate of change in this concentration, entailing a

fast (low) reactivity for the product to switch its concentration in a point toward this

steady state concentration. In the modelling proceeded in the timed-boolean approach,

this reactivity to switch the concentration is embodied in the delays which are constant,

entailing an unrealistic constant reactivity for the products.
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For the abstraction b), the non-consideration of the history, consider a case where a gene

switches from a situation where it increases its product concentration, to a situation

where its product concentration is stable. In the reality, the effect of the concentration

increase depends on the times during which the gene stays in this situation, whatever

that time. But in the timed-boolean approach, if the concentration increase does not

last enough time to entail a change of activity level, the situation has no effect on

the product activity level. This example underlines the problem of intermediate levels

whose effect is lost if they do not last enough time. However, this problem can be

smoothed by using more activity levels than allowed by the Thomas’s formalism. In-

deed, with more activity levels, an intermediate level with a long delay would be split

into several intermediate levels with shorter delays and separated by regular levels.

For the abstraction c), the specification of constant delays ignores the biological noise.

However, this last abstraction does no more apply for this approach since its imple-

mentation allows the specification of interval for the delays.

Finally, we can underline that with these abstractions on the delays coupled to the

boolean abstraction (which imposes a limited number of activity levels), the size of the

automata state space remains tractable. This fact allows the efficient use of algorithms

on the automata to automatically determine which constraints the delays must respect

to produce a given evolution of a GRN. This process, called the parameters synthesis,

is followed in [1].

Activity levels

Since the approach relies on Thomas’s formalism, we have activity levels for the gene

products which are not linear to their concentration but which are linked to their effects

as regulator. Since the modelling is boolean for the regulation, the maximal activity

level of each product is constrained by its number of regulations provided with a distinct

threshold.

The non-zero basal activity levels are - in the same way according to Thomas’s formal-

ism - defined with the specification of the logical parameters. For example, the logical

parameter KA, {B} = 1 indicates a basal activity level of 1 for the product A if B is its

only inhibitor.
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Gates

The only gates allowed in this approach are boolean gates. Their specifications are

made with logical parameters. For example, if two regulators A and B promote a gene

C (range [0 − 1]), an AND gate in C for these regulation is specified by KC, {} = 0,

KC, {A} = 0, KC, {B} = 0 and KC, {A,B} = 1. With this system of logical parameters,

there is no limitation on the boolean formula definable for a boolean gate.

Multi-effects regulations

According to the Thomas’s formalism, the regulations cannot have several effects. Each

regulation can be only active or inactive following its regulator activity levels and its

associated threshold. However, Thomas’s formalism can be extended to support the

specification of several thresholds for a regulation. In such a case it is necessary to

identify a threshold for each resource included in the definition of logical parameters.

This extension is implemented in the software GINsim [15].

Degradation regulations

Since the effect of a regulation is only translated in the steady state level reached, there

is no distinct way to handle the inhibition regulations and the degradation regulations.

Timed automata

The timed automata considered in this approach are very simple and do not require

sophisticate constructions like many processes or functions. The only part of them

which is outside of the original timed automata formalism is the use of invariants

and urgent locations (which have no incidence on the decidability of the reachability

property).

However, the simplicity of the implemented automata trades off the complexity of the

construction. Indeed, the number of locations grows exponentially with the number of

genes and activity levels. In the worst case, the addition of a single activity level to a

gene product multiplies the number of locations by 3. The combinational computation

- which can be done by Uppaal with the use of templates for each gene - is thus done

before by the model-builder and entails very large automata. Therefore, the usage of

the current implementation should be restrained to GRNs with a limited size.
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A_1

A_1?

A_1_DOWN

A_0

A_0_UP

A_0?

c <= 5c <= 8

c = 0
c >= 6

c = 0 c >= 4

(a) Template of gene A

c >= 3

c >= 3

c <= 2

A_1?

B_1!A_0?
c = 0

c <= 4

c = 0

B_0_UP

B_1

B_0

B_1_DOWN

B_0!

A_1?

A_0?

(b) Template of gene B

Figure 4.4: An implementation of the GRN in Figure 4.1 with the use of many processes.
For each process template, a local clock c is declared. The element A 0, A 1, B 0, and B 1
are broadcast channels embodying the conditions switches. In each template, the location
declared initial (here A 0 and B 0 ) determines the start activity level of the gene product.
The urgent locations of the template of A are required by the self-inhibition of A.

For large GRNs, a different implementation of the extended Thomas’s formalism can

be found in [6, 19]. This implementation constructs automata where each gene has

its own process. In that case, the regulation logic is no more translated into switches

(the condition switches) between locations of the same process. Instead, they are em-

bodied by synchronizations between the gene processes. Although entailing more work

for the model checker, this choice can be fruitful since it prevents the generation of

locations which can never be explored by the model checker. Figure 4.4 shows such an

implementation for the GRN of Figure 4.1.

4.3 Conclusion

The timed-boolean approach described in this chapter finds its theoretical background

in [23] of René Thomas and Richard D’Ari, and is implemented in timed automata

in [1, 6, 19]. This approach relies on a simple timed extension of the logical model

provided by the Thomas’s formalism and described in Section 2.3.2. The abstraction

of the approach allows, in its models, an easy definition of the time aspect and of

complicated boolean cooperations between regulations. However, since the non-boolean

aspects are ignored and since strong compromises on the time aspect are made, such an

abstraction cannot be achieved without limiting the expressiveness of the approach in

some situations. In such situations, as situation leaning strongly on SUM gates or on

delays driven by regulations, the timed-boolean models can be inadequate and another

approach can be required to deal with them. We describe such an approach in the next

chapter.
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The extended IKNAT approach

The second approach explored in this thesis comes from IKNAT. IKNAT (for Interactive

Signalling Network Analysis Tool) is a prototype software developed by W.J Bos for his

Master thesis at the university of Twente, in 2009 [10]. The purpose of the software is

to allow biologists to model Interacting Signalling Networks (ISN) in Uppaal. ISN are

biological networks which describe the dynamics of the interacting chemical substances.

Inside a cell, these networks can find their roots in receptors ligands, and the resulting

effect of an activation pathway can be, for example, the activation of transcription

factors (the signal with respect to our point of view). IKNAT provides a graphical

layer which easily allows the design of ISN. Once an ISN is designed, IKNAT generates

a timed automata model of the ISN and submits it to Uppaal.

Since ISNs are, with their regulation networks, similar to GRNs in several aspects, we

divert the IKNAT model from its original goal and we extend it to fit more to GRNs

modelling.

In this chapter, we present this approach with first a mathematical timed model de-

fined by ourselves for GRNs. This timed model can be used to explain and underline

the mechanism of the IKNAT model. Then, the original IKNAT timed automata are

described directly in the context of GRNs. Finally, we extend the IKNAT timed au-

tomata to enhance their abilities to model GRNs, and we underline some problems and

observations related to the approach.
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5.1 Principles

The idea behind IKNAT to drive the concentration level of a gene product can be

formally exposed with what we call the timed model. The timed model is a model

that we have defined from the piecewise linear ODE model introduced in Section 2.3.1.

Therefore, the timed model sets up explicitly a link between the ODE model and the

IKNAT approach.

5.1.1 Timed model

From the linear model stated in Section 2.3.1 where the time is implicit in the rates

values, it is possible to easily obtain a model focused on the time aspect of a GRN.

Remember Formula 2.5 where the dynamics of a gene product Y regulated by n regu-

lators is driven by a summation of linear rates delineated by threshold values:

dY/dt = B +
n∑
k=1

∑
i

βkiΘ(Rk ≥ tki)−
∑
j

αjΘ(Y ≥ tj)

where

- Rk denotes the concentration of the kth regulator of Y.

- βki are the contribution rates of the Rk concentration tki− tk(i−1) to the influence

of Rk (with ∀i ∈ N>1 : tki > tk(i−1) > 0).

- αj are the dilution/degradation rates contributing for the Y concentration tj−tj−1

(with ∀j ∈ N>1 : tY j > tj−1 > 0).

- B is the basal production rate of Y.

This model is closely related to the ODE models from which it is derived. However, it

is possible to get easily from it a more abstract and useful result for IKNAT. For this,

we can leave out the B value (for IKNAT) and we can specify that the β and α values

are not rates anymore but are in fact the reciprocal of the delay (1/delay) expected

before a change of the Y concentration level (i.e., discretized concentration in N), with

an use of negative β values for inhibiting regulations. The summation result of the

activated β and α values (i.e., those with Θ(...) = 1), if positive, is the reciprocal of

the delay to wait before a Y increase of one concentration level, and likewise for a Y

decrease if negative. This evolution, which changes the semantics and the role of the

parameters in the piecewise linear ODE model, results in the timed model.
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Timed model definitions

For a product Y with a range of concentration level from 0 to mY and regulated by n

regulators {R1, ..., Rn} with for each regulator Rk of the set, a maximal concentration

level mk, the delay before a change of concentration level for Y is computed by

δY =
n∑
k=1

lk∑
i=0

β′ki −
lY∑
j=0

α′j (5.1)

where

- |δY | is the reciprocal of the computed delay before the increase (if δY > 0) or

decrease (if δY < 0) of the Y concentration level by one level if the history of Y

is not taken into account.

- lX denotes the current concentration levels of the regulator X (with lX ∈ N[0−mX ]).

- α′j is the reciprocal of the time contributing for the jth concentration level of Y

to the decrease of Y.

- |β′ki| is the reciprocal of the regulation time contributing for the ith concentration

levels of Rk. If Rk is an inhibitor, its βki values are set negative.

Note that in this formula, the B parameters is not conserved because IKNAT, in its

original version, does not support the specification of a basal production rate.

To manage the evolution of the product Y according to the δY computed and with

respect to the history of Y, we use two clocks associated with Y. We denote these

clocks by cupY and cdownY . These clocks are constrained by the following rules:

- The clock cupY is frozen iff δY ≤ 0.

- The clock cdownY is frozen iff δY ≥ 0.

At any time, two situations require an evolution of the Y concentration level as soon

as they occur:

a) cupY − cdownY ≥ 1/δY ≥ 0

b) −(cdownY − cupY ) ≤ 1/δY ≤ 0

In the situation a), the concentration level of Y is increased immediately by one level if

lY < mY . In the situation b), the concentration level of Y is decreased immediately by

43



5.1 Principles

one level if lk > 0. Finally, in both situations, the two clocks are reset to the value 0 and

the updated δY value is computed with Formula 5.1 according to the new concentration

level of Y.

Whenever a Y regulator changes its concentration level, the δY is recomputed according

to the new concentration level of the regulator.

Note that since it is not the values of the clocks which are important but their difference,

whenever δY is equal (or diverge) to 0, it is also possible to leave both the clocks

unfrozen. Indeed, in such a case the difference between the clocks stays unchanged,

and since 1/δY diverges to infinity, neither situations a) nor b) can occur. Note also

that by convention, we will use the notation ∞ to denote the reciprocal of parameters

(α, β) without effect (= 0), although this notation is mathematically improper.

Finally, to set up the vocabulary used henceforth, we mean the α′ and β′ parameters

when we speak about the dilution/degradation parameters and the regulation param-

eters. We mean the values 1/α′ and 1/β′ when we speak about the positive/negative

time/delay of these parameters. And we will use no more the prime symbol to refer to

the α and β parameters of the timed model.

Example

Figure 5.1: Example GRN

Figure 5.1 shows an example of GRN where a gene X

activates a gene Y and where both gene products have

a maximum concentration level of 2. Table 5.1 gives the

timed parameters concerning Y. Table 5.2 gives the re-

sulting delays for Y computed with the timed model Formula 5.1 which results for our

example in:

1

βX1Θ(lX ≥ 1) + βX2Θ(lX ≥ 2)− α1Θ(lY ≥ 1)− α2Θ(lY ≥ 2)

CL 1/αj 1/βXi

0 ∞ ∞
1 15 13
2 6 4

Table 5.1: Time values specified for the
gene Y and its promotion in the example
Figure 5.1. CL stands for Concentration
Level.

X\Y 0 1 2

0 ± ∞ -15 -6
1 13 97.5 -6.39
2 4 3.84 10.68

Table 5.2: Time values (1/δY ) computed
for Y according to the concentration level
of Y (horizontally) and X (vertically) and
following the values of Table 5.1.
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According to Table 5.2, when the concentration level of X is 1, there is a cycle of 103.89

time units for Y between the concentration level 1 and 2. But when the concentration

level of X is 2, Y has only positive delays and thus ends to be stuck to its maximal

concentration level 2 (with loops of 10.68 time units).

IKNAT and the timed model

As said before, the timed model described and exemplified hereinbefore is the subja-

cent principle of the IKNAT modelling approach. Subjacent because IKNAT does not

follow this model directly, but instead employs a mechanism of events that we describe

hereunder.

5.1.2 IKNAT implementation

The way followed by IKNAT to implement the timed model with discrete timed au-

tomata uses on the one hand a mechanism of events and on the other hand a specifi-

cation requirement.

Up and down events

In IKNAT, part of the time model is implicitly embodied in the use of a mechanism pro-

ducing up and down events on genes. An up (down) event is an event which augments

(diminishes) by one level the product concentration level of the targeted gene. For

each gene, a process for the dilution/degradation of its product is created, and for each

regulation of this gene, a regulation process is created. The up events for a gene are

generated from the processes associated with the positive regulations of the gene. The

down events are generated by the processes associated with the negative regulations of

the gene and by the dilution/degradation process of the gene. Each process has its own

clock and produces the events according to specific delays. At a given moment, if a

gene receives one down event from its degradation/dilution process and two up events

from two positive regulation processes, the resulting behavior of the gene product is an

increasing of its concentration level by one level (see Figure 5.2 for an example).

For a gene, the equilibrium between the up and down events drives the dynamics of

its product and corresponds in the timed model Formula 5.1 to the summation of the

aggregated effect of each regulations Rk and of the aggregated effect of the degrada-

tion/dilution. But with this mechanism of event, each process need its corresponding

parameters aggregated and stored as delays.
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Figure 5.2: Consider the example Figure 5.1, but with a maximal concentration level for
Y of 5. This chart gives the evolution of the Y concentration level (in abscissa) following the
up and down events generated by the Y dilution/degradation process and by the promotion
process of the regulator X. The start activity level of Y is 2.

Time specifications

For this last issue, IKNAT lets just the designer of the GRN make the aggregation

himself and define directly the resulting values as α′ and β′ values, with α′t =
∑t

j=0 αj
and β′kt =

∑t
i=0 βki. Since no more summation are necessary with this requirement, the

aggregated values are directly inversed and stored as delay parameters in the processes.

Note that this implementation of the timed model is convenient to use with the discrete

timed automata of Uppaal. Indeed, the only problems with the discrete aspect are left

to the designer of the model when he specifies the aggregated delays (1/α′ and 1/β′)

as discrete values.

5.2 Discrete timed automata

In IKNAT, the mechanism of up and down events is implemented in a structure of

processes instantiating three kinds of template:

- The species template is instantiated by each process which represents the concen-

tration level of a gene product and which receives the up and down events driving

the concentration level of the product.

- The dilution/degradation template is instantiated by each process which generates

down events for a gene according to the concentration level of the gene product

and the delays specified for the dilution/degradation of the gene product.

- The regulation template is instantiated by each process which generates up or

down events for a regulated gene according to the type of regulation, the concen-

tration level of the regulator, and the delays specified for the regulation effect.
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Figure 5.3: A chart with the templates instantiated (the boxes) for the example of GRN
X → Y (Figure 5.1). In this example the regulation is a promotion and the maximum
concentration level is 2 for both gene products. The blue box are processes producing down
events. The red one produces up events. The dotted lines are channels and the dashed
lines are broadcast channels.

In each template, a ladder of locations represents the different concentration levels

of the related gene product. Following the current active location in the ladder of a

regulation or dilution/degradation process, there is an associated delay to wait before

the emission of a new event. In IKNAT, the number of concentration levels is the same

for each product, allowing the instantiation of the same templates for the genes.

The event are conveyed through synchronization on channels between the processes

(instantiation of the templates). In addition, broadcast channels are employed to com-

municate each change of activity level of one gene to the processes related to this

gene (regulations and dilution/degradation processes). Figure 5.3 shows an example of

templates instantiated for the GRN of Figure 5.1.

5.2.1 Species template

A species template is shown in Figure 5.4. This template is dedicated to genes with a

maximum concentration level 2 for their product. The ladder structure linked to the

concentration level is here evident. The signature to instantiate this species template

in a process for a gene is

Species(const int startState, chan &down, chan &up, broadcast chan &br[3], chan &ch[3])

where

- startState is the initial concentration level of the gene product,

- down is the channel conveying the down events for the gene,

- up is the channel conveying the up events for the gene,
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begin
up0

level_0

startState==0

level_2

startState==1 down0
up1

up2

level_1

down1startState==2

br[1]!

ch[0]?

up?

ch[1]?

up?

up?

down?

br[0]!

br[1]!

down?

br[2]!

br[0]!

down?

ch[2]?

Figure 5.4: The template species for a maximum concentration level 2.

- br[] is the array of broadcast channels used to communicate a change of the con-

centration level to the depending processes. Each concentration level (0 included)

has its own broadcast channel,

- ch[] is the array of channels employed to communicate on demand the current

concentration level to the depending processes. Each concentration level (0 in-

cluded) has its own channel.

In this process, each location level i is active when the gene product has the concentra-

tion level i. With each change of concentration level, the process produces a broadcast

synchronization on the channel dedicated to the new concentration level (br[new level]).

The committed location up i and down i are required since, in Uppaal, we cannot have

two synchronizations on a same switch (here, the up/down synchronization channels

and the broadcast synchronization channels br[]). Note that, at the initialization,

the process passes by the location up i to produce a first broadcast synchronization.

Thanks to this broadcast synchronization, the other processes depending on the gene

are informed of the start concentration level of the gene product. Finally, the synchro-

nization channels ch[i] - on the loop switches in each level i location - are employed to

communicate on demand the concentration level.
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5.2.2 Dilution/degradation template

Figure 5.5 shows a dilution/degradation template for genes with a product concentra-

tion level of maximum 2.

c=0

c <= time[1]

c>=time[1]

c>=time[0]

c=0

c<time[1]

c=0 c>=time[1]

up1

level_2

br[0]?

level_1

begin

c <= time[0]

br[2]?

down!

br[1]?

br[1]?

br[2]?

Figure 5.5: The template dilution/degradation for a maximum concentration level 2.

The element c in the template is a local clock. The signature to instantiate the tem-

plates in a process for a gene is

DilutionDegradation(chan &down, broadcast chan &br[3], const int time[2])

where

- down is the channel conveying the down events to the gene species process,

- br[] is the array of broadcast channels used to inform the process of a concentra-

tion level change in the gene product. Each concentration level (0 include) has

its own broadcast channel,

- time[] is the array of delays waited before each generation of down event, accord-

ing to the concentration level of the product. The values in the array has to be

increasing or monotonic to avoid deadlock during a change of concentration level.

The ladder of locations following the number of concentration levels is here constituted

by the level i and up i locations. Each level i location is the location active when the

concentration level of the gene product is i (except for the level 0). In these locations,

the process waits the corresponding delay before producing a down event. The locations

up i are employed to prevent the invariant violation when the concentration level has
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to increase. Indeed, in such a case, the new delay associated can be shorter than the

former delay, and thus, it can violate the invariant of the new location if the clock c has

a bigger time than the new delay. With the up i locations, if such a situation occurs,

the down event is fired immediately and the clock is reset. The location begin is the

location used when the concentration level is 0. With such concentration level, the

dilution/degradation process is “inactive” (it produces no event).

Note that the process relies only on the broadcast synchronizations (br[]) to be dis-

patched on the adequate level i location, even if the change of concentration level is

created by an down event coming from this process. Indeed, when the process pro-

duces a down event, the active location becomes the location begin. If the down event

produces a change of concentration level, the species process will produce a broadcast

synchronization for the new level, synchronization which will be received by the location

begin to set active the adequate level i location.

Finally, in order to improve the reality of the model, we have added on the original

design the transition from the location level 1 to the location begin. Indeed, the original

template does not leave the location level 1 if the concentration level of the gene product

decreases to 0. Though a down event generated when the level is 0 produces no effect,

if before the production of the event the product comes back to a concentration level

1, the clock c is not reset and the first down event occurs prematurely.

5.2.3 Regulation template

Finally, Figure 5.6 shows a regulation template for regulators with a maximum con-

centration level 2. The element c in the template is a local clock. The signature to

instantiate the template in a process for a regulator and a regulated gene is

Regulation(chan &action, broadcast chan &br[3], const int time[2], chan &ch[3])

where

- action is the channel conveying (when fired) up or down events according to the

type of regulation,

- br[] is the array of broadcast channels used to inform the process with a change

of concentration level of the regulator. Each concentration level (0 included) has

its own broadcast channel,

- time[] is the array of delays to wait before each generation of event and according

to the regulator concentration level. The values in the array has to be increasing
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c <= time[0]

c <= time[1]

ch[0]!

c>=time[1]

c<time[1]

c>=time[0]

c=0

c=0

c=0

c>=time[1]

up1

level_2

br[1]?

begin

level_1

end

br[0]?

ch[2]!br[2]?
br[1]?

ch[1]!

action!

br[0]?

br[2]?

Figure 5.6: The template regulation for a maximum concentration level 2.

or monotonic to avoid deadlock during a change of concentration level of the

regulator,

- chan[] is the array of channels used to dispatch the process in the right location

according to the regulator concentration level.

This template is similar to the dilution/degradation template with however one differ-

ence. Here the target gene of the regulation, and thus of the generated events, is not

the gene on which the delays of the template depend. For this reason, the production

of a broadcasts synchronization on the channel br[] is not guaranteed after the produc-

tion of an event. Therefore, after each fired event, the process needs to ask explicitly

its regulator concentration level to its species process. This task is done through the

location end and the synchronization channels chan[].

Finally, note that this design and the one of the dilution/degradation template, which

follow the original IKNAT design, can be simplified by not using the location end and

begin after each fired event, and by dispatching directly the processes on the right loca-

tion. This simplification is permitted by the committed property of the upi and downi

locations of the species template which imposes to fire a broadcast synchronization

(br[]) between each reception of a down/up event. This broadcast synchronization is

then sufficient to dispatch the processes on the right location if a change has occured.

The ch[] channels are also, with this, no more necessary. But unfortunately, this pos-

sible simplification was discovered to late and is not employed in the continuation of

this thesis.
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5.3 Extensions

In the current version of IKNAT designed originally to model ISNs, we can underline

four features which can be added. The first two features are features which are desirable

for GRNs and also for ISNs. They are the possibility to use a different maximum

concentration level for each gene product and the possibility to specify intervals of time

for the delays instead single time values. The last two features are important features

lacking to model GRNs and, again, ISNs. They are the ability to get non-zero basal

concentration levels and the possibility to use boolean gates. Note that for the latter

feature, it is currently possible to specify different delays to obtain as a resulting effect

a behavior similar to boolean gates. However, in practice this it is not so simple and it

requires a complicated delay tuning in cases where several regulations are attached to

a gate.

We have developed an extension of the IKNAT automata for each of these features.

These extensions are described hereunder.

5.3.1 Different maximum concentration levels

The ability to use a different number of concentration levels for each gene product is

simply resolved by allowing the creation and instantiation of each kind of templates for

each maximal number of concentration levels.

5.3.2 Delays with interval

As for the previous extension, the possibility to define interval delays can also be easily

and quickly implemented. The only required modification is the use of maximal delays

in the bounds of the location invariants and the use of minimal delays in the bounds

of the transition guards. With this, a location representing a given concentration level

can stay active as long as the associated clock is under the maximal bound. And the

location can be leaved as soon as the clock is over the minimal bound.

The modifications on the signatures required by this extension affects only the time

array. This latter become a bi-dimensional array where the first dimension has the size

of the original array and where the second dimension has a size 2 to store the interval

bounds.

An example of a template with such intervals is presented in Figure 5.7 of the extension

described below.
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5.3.3 Non-zero basal concentration levels

The extension allowing the use of non-zero basal concentration levels (or non-zero basal

production rate) remodels the dilution/degradation template in a species-activity tem-

plate. A process of this template produces up events when the basal concentration

level is smaller than the current concentration level. When the current concentration

level is the basal level, the process stays inactive. Finally, when the current concen-

tration level exceeds the basal concentration level, the process produces down events.

The species-activity template, as shown in Figure 5.7, is a concatenation of two dilu-

tion/degradation templates. The first produces the down events and the second, which

is a horizontal symmetry, produces the up events.

The only difference for the signature except the name, is the necessity to provide the

template with the channel for the up events. As for the different maximal concentration

levels, for each different basal concentration level, a dedicated template must be created.

c>=time[0][0]

c>=time[1][0]

c>=time[0][0]

c>=time[3][0]

c<time[0][1]

c=0

c=0

c=0

c=0

c=0

begin

level_0

level_1

down1

level_3

up!

down!

br[0]?

br[1]?

br[1]?
br[0]?

br[3]?

br[2]?

br[2]?

c <= time[0][1]

c <= time[1][1]

c <= time[3][1]

Figure 5.7: A template species-activity for genes whose the product has a maximum
concentration level 3 and a basal concentration level 2. This template has also the extension
which allows interval delays.

5.3.4 Boolean gates

Finally, the last extension allows the explicit creation of boolean gates in term of dedi-

cated processes. A process for a boolean gate is a process which surveys the concentra-
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tion levels of the input regulators. When the boolean formula over their concentration

level is true, the process produces up or down events according to the sign of the gate

and according to the delays specified. A template for such a process is presented in

Figure 5.8 for an AND gate on two genes Y (threshold 8) and Z (threshold 5) which

regulate the gene X. The gate produces down events with delay inside the range [5, 8].

Such a template is not reusable for the process of another gate. We do not have then

to worry about any signature.

Z_br[5]?

Z_br[4]?

Y_br[7]?

Y_br[8]?
(Y >= 8 && Z >= 5) && c <= 8

!(Y >= 8 && Z >= 5)

dispatch

(Y >= 8 && Z >= 5)

FALSE

TRUE

X_down!
c = 0

!(Y >= 8 && Z >= 5)

c >= 5

c = 0

Figure 5.8: The template of an AND gate which promotes a gene X with two regulators,
Y (threshold 8) and Z (threshold 5), and with a delay in the range [5, 8].

The template of this boolean gate has two main locations, a location TRUE when the

result of the gate is true and a location FALSE otherwise. The location dispatch is

used to verify the logical result when one of the regulators change its concentration

level around the threshold. Since it is an AND gate, the verification has only to be

done from the FALSE location. The variables used are the following:

- The integer variables Z and Y are global variable which store the current con-

centration level of the corresponding regulators. This requires that when Z or Y

change their concentration level, the process species updates its variable.

- br Z[] and br Y[] are arrays of broadcast channels employed to notify a change

in the concentration level of the corresponding regulators. The process has to

survey only the changes of concentration level near the thresholds value.

- The channel X down communicates the down events to the species process of X.

In addition, the template has a local clock c used in the loop-switch of the TRUE

location to produce the down events.

For boolean gate with a different configuration, the principle is the same. The difference
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concerns the boolean formula, the location linked to the dispatch location, and the

localization of the self-loop which produces events.

5.4 Stability problems

IKNAT, by its mechanism of up and down events and under certain conditions, suffers

of an instability in the concentration levels which can prevent its use in some cases

where the result can be affected. This instability, which is not addressed in the thesis

of W.J Bos and that we underline here, has two distinct causes coming from the regu-

lation processes and from the extreme level with the dilution/degradation process (or

the species-activity process). Additionally, when oscillations between two concentra-

tion levels are expected for a gene product in a simple configuration of regulation, an

unwanted stabilization can occur.

All these problems related to the stability are described in this section.

5.4.1 Extreme level instability

The first cause of instability is declared on the extreme levels with the species-activity

process. Indeed, when the concentration level of a gene product is maximal and the

gene is supposed to keep it maximal with the current regulations, the species-activity

process still produces periodically a down event. These down events are quickly com-

pensated by the up events of the regulations sustaining the gene product at its maximal

concentration level. But by this game of infrequent down events followed quickly by up

events, the gene product makes periodically short stay on the penultimate concentra-

tion level. These short stays can be seen as innocuous at first sight, but in fact they are

sufficient to change the dynamics of a GRN if a threshold (of a regulation or a boolean

gate) is set to the maximal concentration level.

Figure 5.9 shows a GRN which suffers of such an instability. In Figure 5.9a, a GRN

where a gene X sustains its product concentration level with a self-promotion. In

Figure 5.9b, a simulation of the GRN with IKNAT and with a start level 2. The delays

parameters employed for the regulation process are five time smaller than the delays

of the species-activity process. As we can see, the gene product supports short come

back from the concentration level 2 to the concentration level 1. If, as it is required by

boolean GRN, the maximum concentration level were 1, then the self-regulation would

be deactivated at the first decrease of the concentration level.

Note that there is no a decrease of the concentration level at each down event of
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Figure 5.9: In (a) a GRN and in (b) a simulation showing the instability associated to
the extreme concentration levels.

the species-activity process in Figure 5.9b. This is a result of the non-determinism

associated with the order of processing simultaneously received events. In the example,

the regulation produces an up event at each time unit. When a down event occurs

before the up event, the change in the concentration level introduced by the down

event is canceled immediately by the up event. If the event order is inverted, the up

event has no effect since the gene product cannot reach a concentration level higher

than the maximal level.

Extension

By modifying slightly the species-activity template, it is possible to avoid this insta-

bility on the maximal concentration level. The trick is, when a gene product is on its

maximal concentration level, to reset the clock of its species-activity process for each

up event received by its species process. This reset can be done by using a new channel

synchronized for each up event received in the species template by the level i location

associated to the maximum concentration level. These synchronizations can be received

on the location begin and on each of the locations level i in the species-activity tem-

plate. In these locations, the synchronizations are received with a loop-switch which

resets the clock c of the species-activity template.

Evidently, where a non-zero basal concentration level is specified, the same kind of

instability occurs at the concentration level zero. A symmetric solution can be used

then.

5.4.2 Regulation instability

The second cause of instability finds its source in regulations. Indeed, when a gene

is regulated, the concentration level of its product can make oscillations around the
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Figure 5.10: An artificial GRN tuned to produce exaggerated oscillations. x is a gene
promoted by u1, u2, and u3 and inhibited by d1, d2, and d3. The range of concentration
level for x is [0, 6], the delays for the dilution/degradation are ∞. As we can see, the
oscillations occur between the levels 3 and 6, since the delays are set up to produce bunches
of 3 ups followed by 3 downs.

expected steady state concentration level. These oscillations can have an amplitude of

one if there is only one regulation. However, they can also have a larger amplitude with

several regulations and following the order of the event arrival. For example, if a gene

X is regulated by several promoters and several inhibitors, following the delays of the

regulators, it can happen that the gene X receives the event by bunches of same type

(e.g., 3 ups, 5 downs, 2 ups, ...) and therefore its product oscillates strongly around

its theoretical steady state level. Such a situation is displayed in Figure 5.10 with an

artificial example tuned to produce such a behavior in an exaggerated manner. In real

models with realistic parameters, such strong oscillations will probably not occur, or

only for a short time since the arrival frequencies of the events have little chance to

stay the same for a long time.

Since the source of this instability comes from the mechanism events, which is the

base principle of IKNAT, there is no easy solution to prevent it. At least the use of

many concentration levels with no dense thresholds is advisable to damp the oscillation

effects and to avoid as much as possible the cross of several thresholds during their

occurrences.

5.4.3 Unexpected stabilization

With respect to the same subject, it is interesting to note that with a simple regula-

tor configuration, in IKNAT, a gene product can tend to a stable concentration level

whereas we expect from it oscillations between two concentration levels. Figure 5.11a

shows such a configuration where X promotes continuously Y with a Y range of levels

[0, 5]. The time for the species-activity process of Y is set such that, in the concentra-
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Figure 5.11: An simple GRN (a) which produces an unexpected stabilization for Y.

tion level 3, Y increases and, in the concentration level 4, Y decreases, according to

the regulation delays and the timed model. Despite the fact that there is no level in Y

which equilibrates the regulation delay (i.e., δY = 0), Y is unexpectedly stabilized in

the concentration level 3 and, moreover, never arrives to reach the concentration level

4 (Figure 5.11b).

This phenomenon stems from the way followed to handle the clocks. In the example,

the regulation produces an up event after 10 time units. When Y reached for the first

time the concentration level 4, the clock of its species-activity process has at least a

value of 10. Since the delay associated with the level 4 in this process is 8, a down event

is produced immediately and Y comes back to the concentration level 3. Subsequently,

this sequence is repeated each time Y reaches the concentration level 4. The only way

for Y to stay on the concentration level 4 is to begin the simulation with a concentration

level bigger than 4. Then the situation is symmetrically inversed and Y ended to be

stuck on the concentration level 4.

This unexpected stabilization is however presented only in very simple regulator con-

figurations like the example of Figure 5.11a. With more regulations, the regulation

instability is stronger and overwhelms this unexpected stabilization.

5.5 Observations

Similarly to the timed-boolean approach, we have made several observations about the

IKNAT approach. Note that these observations are often linked to the timed model.
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Time aspects

With the timed model which underlies the principle of IKNAT, the timed aspect drives

the reactivity and the steady state concentration level of the gene products. It is

more than in the timed-boolean approach where the logical parameters determine the

steady state level and where the reactivity is constant. In the timed model, for each

gene, these logical parameters are substituted by a concurrence between the active

delay parameters. The equilibrium of this concurrency defines for the gene product its

steady state concentration level and drives the reactivity to reach this one. Note that

for the aspect of the reactivity, we can remind the link between the timed model and

the ODE model with, between them, the step made with the piecewise linear ODE

model (Section 2.3.1).

For the history of the gene evolution inside a same concentration level, the timed model

(and thus IKNAT) does not suffer from the problem present in the timed-boolean

approach. This problem was for example in the case of a situation where a gene waits

to increase its product concentration level and then switches to a situation where it

waits to decrease its. The time spent by the gene in the former situation is not taken

into account in the required delay before a decrease of the concentration level in the

latter situation. With the mechanism of two clocks by gene and their difference, the

timed model does not suffer from this aspect. In IKNAT, the implementation of the

timed model with the event mechanism avoids also this problem.

Finally, with the extensions of the IKNAT model, the delays can be expressed as

intervals, giving here the ability to model the biological noise.

Concentration levels

In IKNAT, as in the timed model, we express the concentration of the gene products

with concentration levels instead of activity levels as in the timed-boolean approach.

These concentration levels can have an abstract meaning or can be linear to the concen-

tration of their product (the concentration level 2 correspond to a product concentration

two times bigger than the concentration level 1). And since they are not limited to

the thresholds of the regulations as in the timed-boolean approach, their number can

be arbitrarily large. It is even advisable to use large number of concentration levels to

refine the result and more, to improve the robustness against the IKNAT instability

problem. Note that for each gene, the scale associated to the concentration level of its

product can be different to the one of the other gene products.

With the extensions proposed for IKNAT, it is possible to specify a non-zero basal
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concentration level and a different maximal concentration level for each gene product.

For each maximal concentration level used, a corresponding regulation and species tem-

plates are created, while for each different couple of maximal and basal concentration

levels, there is a dedicated species-activity template.

Note that by leaving a location in the species-activity template where the process does

not produce events, we impose for the gene products a stable concentration level. This

seems natural for the implementation, but as stated before, we can envisage situa-

tions where the basal “concentration level” is in fact defined between two neighboring

concentration levels, producing oscillation of the product concentration level between

them where no regulator are active. This last situation could have been implemented

by an independent template whose the process produces up events following the rate

of the basal production rate. This implementation is theoretically more precise but in

practice increases the number of events and thus the instability.

Gate

With its mechanism of up and down event implementing the timed model, the SUM gate

is the implicit default gate of IKNAT. If it is possible by tuning properly the parameters

to get a result somehow equivalent to the one obtained by the use of boolean gates,

the extension for boolean gates allows the explicit and easy specification of such gates

whatever is the complexity of their boolean formula.

For the MULT gate, if the production of the events were done probabilistically at each

unit of time and not at the end of the delays, it would be somehow possible to define

such a gate for x regulations. The gate would be implemented by a process requiring

x events of the same kind and at the same time unit to produce another event. For

example, consider that we have a situation where a gene A is regulated by two promoters

B and C which produce each a new event after respectively the delay DB and DC . If

the events were not produced at the end of the delays but at each unit of time with

a probability of 1/DB and 1/DC , the average amount of events produced by the two

regulations would be preserved. In such a case, it would be then possible to create a

process for the two regulations which, when it receives simultaneously an event of each

regulation, produces another event for the gene A. The probability of producing an

event for the process is then 1/DB ∗ 1/DC , which is equivalent to the rate computed

in a MULT gate. However, since the events are not produced probabilistically but at

the end of their delay, this solution is not applicable.
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Multi-effects regulations

In the timed model, the number of intensity levels for a regulation is equivalent to the

number of concentration levels of its regulator. By setting a regulator with several

concentration levels, we get a regulation with as many intensity levels. Note that with

this system, it is possible to emulate a boolean regulations from a regulator with more

than one concentration level, whereas the reverse is not possible. The trick is to define

infinite delays for the regulation levels below a given threshold level, and then set the

same finite delays for the other levels.

Degradation regulations

In IKNAT, there is no difference in the modelling of degradation regulations and in-

hibitor regulations. Both have to be modeled by the production of events according

only to the concentration level of their regulator. This non-distinction which is also

present in the timed model, does not really fit to the ODE modelling where, unlike

the inhibition regulations, the effects of the degradation regulations depend also on the

concentration of the regulated gene products.

Timed automata

The timed automata generated in the IKNAT approach used abundantly the processes

and synchronization channels provided by Uppaal. If these constructions keep the

reachability problem decidable, they have a negative effect on the performance of the

model checker by entailing a very big state space. However, these apart, the automata

remain rather simple since they do not use the other high level specifications provided

by Uppaal (functions, variables, ...).

5.6 Conclusion

Originally dedicated to ISNs, the IKNAT model of W.J Bos [10], that we have diverted

and extended to model GRNs, provides an approach completely different from the one

developed in the timed-boolean approach. Indeed, IKNAT can be related to the ODE

model through our timed model developed at the beginning of this chapter. This link

with the ODE allows the regulators to drive the reactivity without preventing the def-

inition of logical gates indirectly (by tuning the delays) or directly (with the dedicated

processes). This approach is thus less abstract than the timed-boolean approach where
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this reactivity is fixed and where the definition of non-logical gate is not possible. How-

ever, beside these advantages, we have underlined the instability generated by the event

mechanism and which can be the cause of artifacts in the simulations. The next chapter

tackles this instability in a new approach developed directly from the timed model.
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A new approach

The approach pursued with IKNAT in the previous chapter is very interesting since

it allows the modelling of GRNs with logical gates, time intervals, and with reactivity

driven by regulations. However, as we have underlined, the instability produced by

the mechanism employed to deal with the timed model can be a problem in certain

situations, especially situations where the thresholds play a prominent role. In a new

approach that we have developed and that we present in this chapter, we try to show

to what extent it is possible to implement the timed model more directly without using

the IKNAT mechanism, and thus without getting into stability problems.

6.1 Principles

6.1.1 Timed model extensions

The IKNAT approach - with only slightly modifications of its templates - allows the

specification of non-zero basal concentration level and time intervals. In this section,

the timed model, created according to the original version of IKNAT, is extended to

formally allow these possibilities.

Non-zero basal concentration level

To allow the specification of non-zero basal concentration level, we just need to use the

basal production rate B of Formula 2.5. The Formula 5.1 computing δ is thus now for
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the Y product extended in:

δY =
n∑
k=1

lk∑
i=0

βki −
lY∑
j=0

αj + B (6.1)

where the only difference with Formula 5.1 is B, the reciprocal of the time contributing

for the basal production rate of Y.

Time intervals

For this extension, each of the β and α parameters is defined with an interval delineated

by βmin, βmax and αmin, αmax, with βmin ≤ βmax and αmin ≤ αmax. The same for the

B parameter with Bmin ≤ Bmax. Note that with the constrains between the min and

max values of the parameters, the β values associated with a negative value, to speak

in terms of delays, are labeled for the longest bound with “min” and for the shortest

bound with “max”.

In the continuity of this distinction, the δY value of the gene Y is now an interval

delineated with δminY and δmaxY . This interval is computed simply by Formula 6.1 using

the labeled “max” parameters for δmaxY and the labeled “min” parameters for the δminY .

Therefore we have δminY ≤ δmaxY and four situations are possible:

1. Both bounds are positive: (δmaxY > δminY ≥ 0) ∨ (δmaxY ≥ δminY > 0).

2. Both bounds are negative: (δminY < δmaxY ≤ 0) ∨ (δminY ≤ δmaxY < 0).

3. One bound is negative and the other is positive: δminY < 0 < δmaxY .

4. Both bounds are equal to 0: δminY = δmaxY = 0.

With these results, the clock cupY is frozen in the cases 2 and 4 and the clock cdownY is

frozen in the cases 1 and 4. In the case 3, both clocks can be active but not at the

same time. Thus, randomly, one is frozen while the other is activated.

We can now redefine the evolution of the Y concentration level for each situation as

follows:

For the first situation, the Y concentration level is allowed to increase by one unit when

cupY − cdownY ≥ 1/δmaxY , and it has to increase by one unit if cupY − cdownY ≥ 1/δminY . Note

that with the multiplicative inverse of the δY bounds, we have to interchange their use

since 1/δminY ≥ 1/δmaxY . Note equivalently that when a bound converge (or is equal) to

the value zero, the associated delay diverges (is considered as diverging) to the infinity

and then is unreachable.
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For the second situation, the Y concentration level is allowed to decrease by one unit

when cdownY −cupY ≥ |1/δminY |, and it has to decrease by one unit if cdownY −cupY ≥ |1/δmaxY |.

The third situation, is slightly more complicated. Indeed, since the interval includes

zero (not on a bound), the Y concentration level can increase or decrease by one unit.

This one is allowed to increase by one unit when 1/δmaxY ≤ cupY − cdownY < ∞ and is

allowed to decrease by one unit when 1/δminY ≥ −(cdownY − cupY ) > −∞. According to

the way the clocks are managed, the bound with the lower delay is the most likely to

be reachable first.

For the fourth situation, nothing is required. Both clocks are frozen and the product

is not expected to change its concentration level.

Other aspects related to these situations remain the same: a change of concentration

level for Y is processed only if the concentration level stays inside the bound [0,mY ].

The clock are reset after each of the three first situations. And whenever a Y regulator

changes its concentration level or whenever Y changes its concentration level, the δY
value is recomputed.

6.1.2 Implementation principles

The principles of the new approach are closely related to the extended timed model

presented hereinbefore. Therefore they can be directly and quickly presented:

- Each gene y with a range of concentration level [0,my] for its product is repre-

sented by a template with a ladder of my locations representing each a concen-

tration level.

- Each gene y has two clocks declared locally in the template of y. One of the

clocks is called cUp and represents the clock cupy , the other is called cDown and

represents the clock cdowny .

- The location changes for each gene y are driven by the delay 1/δy according to

the situations described in the timed model extended with intervals.

- The genes are notified of a change in their regulators concentration level with a

broadcast synchronization.

- When a gene y is notified by a change of concentration level of one of its regulator

or when it changes its product concentration level, the associated δy value is

recalculated.

- The product concentration level of each gene is stored in a global variable used

to communicate this one to the regulated genes.
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From these simple principles, two difficulties emerge. The first one is about the calcu-

lation of the 1/δ values in the discrete automata environment and can be avoided by

using a model checker for real automata instead of Uppaal. The second one concerns

the management of the clocks under the limitations of the time automata formalism.

For each of these difficulties, two versions or variants for the templates of the genes

are proposed. These variants are for the calculation difficulties the pre-calculation

variant and the on-the-fly calculation variant. For the clock management difficulties,

they are the variant with stopwatches and the variant without stopwatch. Note that

the variant addressing one difficulty can be combined with any variant addressing the

other difficulty.

The variants are described in Section 6.2 with further explanations in due course about

the two difficulties. Section 6.3 is dedicated to the implementation of the gates.

6.2 Discrete timed automata

In the new approach, each gene of a GRN has its own dedicated template conceived

following its regulators and its number of concentration levels for its product. Since a

template for a gene is not convenient to show, we present first an abstract template,

and then, for each variant of this one, we give the complementary part related to this

variant. The template presented is for a gene Z with a maximal concentration level 2

and regulated by the genes X and Y.

6.2.1 Abstract automaton

The abstract template of the gene Z according to the example described hereinbefore

is shown in Figure 6.1. Several transitions are colored to ease the explanations. The

guards of these transitions and the invariants of the locations level j (i.e., level 0, level 1

and level 2 ) are not in the figure since they depend of the followed variant.

The ladder of location level j represent the concentration level of Z. Besides these

locations, there is an associated ladder of location update j. The goal of these locations

is to prevent the infringement of the level j invariants when the configuration of the

regulator changes and thus entails the recalculation of the delay (1/δZ). Between each

location level j and its associated location update j, and for each regulator of Z, there

is a switch fired when the regulator notifies a change of its concentration level through

its broadcast channel (here X br and Y br). These switches are in grey in the figure.
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Figure 6.1: The common part of the variants for the Z template. Z is regulated by X
and by Y. The maximal concentration level of Z is 2.

The blue switches are those which reply to a situation where the concentration level can

or has to decrease. Similarly, the red ones are those for an increase of the concentration

level. Finally, the orange ones are switches employed when, following a notification of a

change in the concentration level of a regulator, no change of the Z concentration level

is required.

When a switch changes the Z concentration level, the switch emit a synchronization

on the broadcast channel Z br to notify the change to the potential gene regulated by

Z (if ever). The potential regulated genes access to the Z concentration level with the

variable Z. This variable is also used to dispatch the template on the right location at

the beginning, according to the start concentration level of Z.

The function r() and rA() are used to manage the clocks (reset, ...), the Z variable and

the operations related to the δZ value according to the variant of the automaton.

Now that the common part of the template for all the variants is presented, we can

introduce these variants with their particularities according to the difficulty addressed

by them.
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6.2.2 Calculation variants

These section is dedicated to the computational methods used to solve the problem

of the δZ calculation in the discrete timed automata formalism. The first part of the

solution displaces the −B value of Z to the parameters α0 which is normally unused

(α0 = 0).

The second part of the solutions let the designer make himself the the aggregation of the

parameters of each regulations Rk and of the parameters of the degradation/dilution.

Already used in IKNAT, this requirement avoids the computing of the sum
∑

on i

and j in the formula 6.1. From this trick and the previous, each α′t is redefined as∑t
j=0 αj −B and each β′kt is redefined as

∑t
i=0 βki.

The work of the automaton to compute the current delay 1/δZ is then to make the

summation of the active (i.e., where i = lk) β
′
ki values and the active α′j value, and to

multiplicatively inverse the result. To do this, two variants are proposed.

Pre-calculation in the model-builder

The first variant for the parameters calculation is called the pre-calculation variant

because it simply pre-computes in the model-builder all the possible δZ values according

to the possible configurations of the regulator concentration levels. The pre-computed

values are then multiplicatively inversed (to get the reciprocal), discretized and stored

in a multi-dimensional array directly as delays. A gene with n regulators has then a

n+2 dimensional array of 1/δ values where the n first dimensions are scaled each one on

the corresponding concentration level range of its regulator. The last two dimensions

are for the concentration levels of the gene product (for the dilution/degradation) and

for the bounds of the interval computed.

To simplify the guards and invariants in the timed automaton, the negative δZ values

are converted into positive values. To keep the distinction between the delays leading

to an increase of concentration level and the delays leading to a decrease, we split the

delay array in two arrays time up and time down. These arrays are declared locally in

the gene template with unchanged dimensions and the value left empty by the splitting

are replaced by an arbitrary large integer (denoted i∞) which outlives the simulation

duration. All values larger than i∞ (especially when δmin or δmax = 0) are set to this

value.

For the example, in this variant, the current 1/δminZ value is directly accessible with

time up[X][Y][Z][0] and time down[X][Y][Z][0], where each [...] is the indice of a di-
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mension in the array. The 1/δmaxZ value is accessible with time up[X][Y][Z][1] and

time down[X][Y][Z][1].

Note that in this approach, a self-regulated gene accounts for two dimensions in its

arrays. We can merge these two dimensions in a single one since their indices (the

concentration level of the gene product) have always the same value.

On-the-fly calculation in Uppaal

The second variant dedicated to the calculation of the delays is called the on-the-fly

variant because it uses the mathematic expressions allowed in Uppaal to make the

computation. Indeed, the 1/δZ values are computed on-the-fly by the automaton when

needed. To do this, the aggregated parameters (α′, β′) are saved in the automaton in an

upscaled form depending on a constant factor. The bigger is this upscaling factor, the

less is the loss of precision in the discretization of the parameters. From these upscaled

parameters, Uppaal computes the δZ value by summing the activate ones afterwards,

to get the resulting delay, the upscaling factor is divided (with an entire division) by

the result.

For each gene, this calculation is done in a function computeDelay() called by the

function rA() and by the switches level j −→ update j. Since a change in the regulators

configurations can occur when the gene is in a location update j, we need to add to

these locations loop-switches which react to the notification of the regulators and call

the function computeDelay() (Figure 6.2). The result of the function computeDelay()

is stored in four local variables: minUp, maxUp, minDown, maxDown. The two former

store the delay bounds before an increase, the two latter the delay bounds before a

decrease. As for the first variant, an arbitrary large value i∞ is used to represent the

infinite values.

Since the function computeDelay() for a gene is fit to the number of regulations of the

gene, it is declared locally in the gene template.

level_ j update_ j

X_br? X_br?

Y_br? Y_br?

r()

computeDelay()

computeDelay()

computeDelay()

Figure 6.2: A location level j and its associated update location with the function com-
puteDelay() added to the switches level j −→ update j. On the left are depicted the added
loop-switches in the update j locations to recompute the delay when a regulator notifies a
change of its concentration level.
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Comparison

Both variants have advantages and disadvantages and each one seems to be more

adapted to specific situations than the other. The precision of the pre-calculation

variant is better since numbers can be treated as real numbers in the model-builder

with a discretization only for the final results. However the generated arrays can be very

large and hardly computable since their size growth exponentially with the numbers of

regulators and concentration levels (add to a gene one regulator with 10 concentration

levels multiplies the size of its delay arrays by 11). Moreover, a significant part of the

pre-computed values can be never used since they are associated with concentration

levels of gene products non-reachable by these ones.

When the configuration of regulators is too complex, the variant computing the delays

on-the-fly seems to be more advisable. In this variant, the loss of precision can be

limited by using a strong upscaling factor. However, the computation of the delays

in the model checker increases the workload of this last. An interesting question is

to determine to what extend the model checker is slowed down by this computation.

Besides, an inefficient aspect of the on-the-fly variant is that a same delay has to be

computed again and again each time the corresponding concentration levels of the

regulators are met. Indeed, there is no efficient way to save the delays once computed.

Note that with a model checker for real timed automata, the on-the-fly calculation

variant without the upscaling mechanism seems to be naturally the best way to compute

the delays since the precision is no more a problem.

6.2.3 Clock variants

In this section, two different solutions to manage the clocks cUp and cDown are pre-

sented. The first one makes use of the stopwatches to get the proper behavior of

the clocks. The second, to keep the reachability problem decidable, avoids the use of

stopwatches by an approximation of the clock behavior.

Clock with stopwatches

The first variant, called the variant with stopwatches, gives the proper behavior for

the clocks by using simply the timed automata stopwatches to freeze the clocks. The

variant is described for the template of the gene Z in the context of the on-the-fly

calculation variant. But the only difference with the pre-calculation variant is the use

of the variables minUp, maxUp, minDown, maxDown in the invariants and guards
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6.2 Discrete timed automata

instead of references to the array time up and time down.

To control the activation of the stopwatches, we need two boolean variables down and

up which are defined as follows in the r() and rA(x) functions:

up = (i∞ > 1/δmaxZ ) ∧ (1/δmaxZ ≥ 0)
down = (−i∞ < 1/δminZ ) ∧ (1/δmaxZ ≤ 0)

These variables up and down are computed in the function r and rA() and are true

respectively when the gene Z is in a situation where the δZ value allowed it to increase

its product concentration level and to decrease it in future (situation three). With

these variables, the invariant in each level j location is

((cUp - cDown) <= maxUp) &&

((cDown - cUp) <= maxDown) &&

(cDown’ == down) &&

(cUp’ == up)

where a clock is frozen in the two last lines when its derivative equal zero (or false).

The guards are in the orange switches:

((cUp - cDown)<= maxUp) && ((cDown - cUp) <= maxDown) ,

for the red switches: ((cUp - cDown)>= minUp), and for the blue switches: (cDown -

cUp) >= minDown.

The clocks are reset in the function rA() which is called whenever a change of concen-

tration level is required.

Finally, to end the implementation of this variant, we need to add some loop-switches

in all level i locations (Figure 6.3). These loop-switches change the evolution of the

gene product when the delay is in the situation three (Z, with the current δZ value,

is allowed in future to increase or decrease its concentration level). These switches

randomly freeze one clock or the other by setting the up or down variable to false. To

accomplish this, a third boolean variable both (defined in the r() and rA(x) functions

by both = up ∧ down) is employed to store the fact that both variables are true.

Such a mechanism starts with both clocks unfrozen, and then oscillates randomly be-

tween the situations where only one of the clocks is frozen or where both are frozen.

According to the timed model, the clock with the lower delay reaches it before the other
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6.2 Discrete timed automata

down = !(up || down) both

both
level_ j

up = !(up || down)

Figure 6.3: The random mechanism for each location level j which drives the clock
freezing when, according to the current δZ value, the concentration level of Z is allowed to
increase or decrease by one level in future.

clock with a greater probability. Note that the start situation where both clocks are

unfrozen is useless since a difference over their values is always done. Such situation

can be avoided by using a slightly more complex mechanism.

Clock without stopwatch

The previous variant using the stopwatches provides a complete and direct implemen-

tation of the timed model clocks. However, the stopwatches use affects the decidability

of the reachability problem. Moreover, when these lines are written, their use is only

possible with a version of Uppaal 4.1 under development, version which is yet unstable

and produces several bugs letting the variant with stopwatches unusable for the mo-

ment. These problems have led us to explore to what extent it is possible to get rid of

the stopwatches. This result in a second variant, called the variant without stopwatch,

which provides an imperfect solution.

Since we cannot freeze the clocks, and since there is no way to store the values of the

clocks or to initialize a clock with another one in Uppaal, the only solution is to no

more use the difference between the clocks and to reset a clock which is switched from

a situation where the clock should be frozen to a situation where the clock is active

(i.e., not frozen). This solution is imperfect but is the only one available. Figure 6.4

shows the evolution of the clock difference with this solution in comparison with the

solution of the previous variant.

An issue related to this solution is where to do the reset in the template. Again here,

there is no ideal solution. Indeed, the reset cannot be done when leaving a location

update j since the choice of the switch to fire requires the proper value for the clocks.

The only solution is then to reset preventively the clock when we enter in a location

update j (Figure 6.5 with the function resetClock()) with an inversion of the updated

δ sign. Moreover, since the inversion for a clock can occur when the active location is

an update j location, we need to add in these locations a loop-switch per regulator to

make the preventive reset if necessary. The problem witch such a system is that when

two changes of situation as described before occur instantaneously one after the other,
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Figure 6.4: A graph which represents for a gene the normal evolution of the difference
cupZ − cdown

Z simulated with the stopwatch variant (on the left) and simulated in the variant
without stopwatches (on the right). The abscissa is red when, in the timed model, only
the cupZ clock is unfrozen, blue when only the clock cdown

Z is unfrozen, and black when both
clocks are unfrozen. In the version without the stopwatch, we can see the imperfections
resulting from the clock resets.

Y_br?Y_br?

X_br?

update_ jlevel_ j

both

cDown = 0

r()

cUp = 0 X_br?

resetClock()

resetClock()

resetClock()

Figure 6.5: On the left, the two loop-switches added on each location level j to randomly
reset the clocks when Z can increase of decrease its concentration level at the same time.
On the right, the loop-switches added for each regulator to the update j location. On these
switches and on the switches level j −→ update j, the resetClock() function preventively
resets the unused clocks.

both the clocks are reset needlessly.

Finally, we need to add a mechanism in the location level j which resets randomly one or

the other clock when the gene is in situation three. As shown in Figure 6.5, this is done

with two loop-switches guarded with a boolean variable both as used in the previous

variant. If the purpose of the model is to get the trajectory of the concentration levels,

this mechanism is not ideal since it can favor a situation where the gene product is

considered as only stable (δ = 0) if the model checker fires too promptly the switches.

For the guards and invariants, this variant is similar to the previous variant without the

stopwatches and clock difference. Following the pre-calculation variant, the invariant

for the level j locations are:

(cUp <= time up[Z][X][Y][1]) && (cDown <= time down[Z][X][Y][1])

The guard for the orange switches are:
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6.2 Discrete timed automata

(cDown <= time down[Z][X][Y][1]) && (cUp<= time up[Z][X][Y][1]),

for the blue switches they are: cDown >= time down[Z][X][Y][0], and for the red switches:

cUp >= time up[Z][X][Y][0].

Remember that when a gene product is not allowed to increase (decrease) its concentra-

tion level, the array time up (respectively time down) has the value i∞, which outlives

the duration of the simulation. Note that, in the current implementation, this aspect

can appear as a problem for some state space analyses. Indeed, in assertions which

require to explore exhaustively the state space, the model checker can reach states

where the time of a clock is bigger than i∞ and therefore where an improper changes of

concentration level is allowed. However, such a case can be easily avoided or detected

by using in the invariant two boolean variables up and down as previously defined,

by bounding the exploration to a maximal time (see Section 7.5), or by analyzing the

returned trace to check whether a trace is associated with a clock indicating a time

equal to i∞.

Finally, to conclude this variant, we can underline that the use of two clocks is not

necessary since we can get the same result with only one clock, but then the invariants

and guards would be more complicated. However, note that the use of two clocks here

does not change the size of the state space for the automaton.

Comparison

As already described, the first variant with stopwatches provides the right behavior

to simulate the clock system of the timed model. Unfortunately, it requires the use

of stopwatches which affect the decidability of the reachability problem and which are

only available (when these lines are written) on an unstable development version of

Uppaal. If the latter point is only a question of time to be resolved, the first point

is more worrying since it entails the undecidability of several assertion for the model

checker .

The second variant which does not use the stopwatches and therefore does not suffer

from such problems is however not able to implement correctly the behavior of the timed

model clocks. But since, with the limitation of the timed automata formalism, there is

no way to get a better result without stopwatches, and since the stopwatches version is

currently unusable, we are forced to consider the second variant for the evaluation of

the new approach.
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6.3 Gates

This section discusses briefly for each kind of gate, its definition in the timed model

and its implementation in the new approach.

Boolean gates

A boolean gates G regulating a gene Y and associated with a βG parameter (or more

precisely a βminG parameter and a βmaxG parameter) can be represented in the Formula

6.1 of the timed model directly with a new member +βG ×ΘG where ΘG returns 1 if

the condition over the concentration levels of the input gene products (the regulators)

in the boolean gate is respected, 0 otherwise.

For instance, if we have a boolean gate regulating Y with the condition (A < tA ∧B ≥
tB), where tA and tB are the thresholds for the corresponding regulators, then the

formula computing the δY values is extended with the new member +βGY
× Θ(A <

tA ∧B ≥ tB), where βGY
is defined as the effect of the gate on Y.

The implementation of boolean gates of any complexity can be done without difficul-

ties in both computation variants. In the on-the-fly calculation variant, the effect of a

boolean gate is computed in the computeDelay() function. In the pre-calculation vari-

ant, the effect is integrated directly in the delay arrays computed by the model-builder.

Discrete gates

Since the new approach compute the δ values with a summation, the default gate is a

SUM gate. It is possible to extend the timed model for MULT gates by allowing the

definition of clusters of regulations where the resulting effect is not the summation of

the effect (the β′ parameters) of all regulations in the cluster, but their multiplication.

Nevertheless, it is then necessary to reintegrating the basal production rate of the

inhibitions into their β parameters. Indeed, for a gene, the timed model, which is

defined to formalize the IKNAT principle, reassemble in the parameters B the basal

production rates of the gene product. In consequence of this, the semantics of the β

parameters associated to the inhibition is changed and their value is negative. A MULT

gate of a cooperation comporting inhibition would thus result in an improper result if

it was done according to the current timed model.

From these semantic issues with the current form of the timed model for the MULT

gate, we have not proceeded to the implementation of this one.
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6.4 Observations

Since the new approach implements directly the subjacent principle of the IKNAT ap-

proach, several observations made for IKNAT can be kept unchanged here. Therefore,

the aspects which differ are only discussed.

Stability

The main motivation to develop this approach was to get an implementation of the

timed model without the IKNAT stability problems. By following in a direct way the

delays computed in the timed model, this goal is achieved and the new approach does

not produce any unexpected behavior like instability or unwanted stabilization.
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(b) IKNAT simulation

Figure 6.6: The example of Section 5.4.3 simulated with the new approach (on-the-fly
variant without stopwatch). The red line is the result of the new simulation, the dashed
green is the simulation performed with the IKNAT approach. The behavior under the new
approach is more stable and produces the expected oscillation for Y.

Note that such oscillation between two levels are frequent since the computed δ values

are rarely equal to zero, unless one uses expressly appropriate α and β parameters.

Such oscillations can be a drawback for a boolean oriented modelling, but there is no

proper way to get rid of them when we used the timed model. The IKNAT stabilization

is not adequate since it concerns only simple regulations and since the level where the

stabilization occurs depends on the gene antecedents. These oscillations have to be

interpreted like an intermediate concentration level.

Time aspects

We can remark that the variant of the automata without stopwatch corresponds in

fact in a model where the history aspect of the gene products inside a concentration
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level is not handled. This non-history management is the same as in the timed-boolean

approach (see Section 4.2, abstraction b).

Concentration levels

The only difference here with IKNAT is the possibility to get for a gene product a basal

“concentration level” oscillating between two neighboring concentration levels. To get

a stable basal concentration level for the product of a gene Y with a non-zero basal

production rate, we just need to get an equilibrium between the B value and an α′

value of the gene: ∃k : (1 ≤ k ≤ lY ) ∧ (
∑k

i=0 αi −B = 0).

Gates

The possibility allowed by the boolean gates in this model is the same as in the IKNAT

approach. However, with the better stability of the concentration levels, the use of

these gates is safer and it is no more required to avoid a dense set of thresholds among

the range of concentration levels.

Another difference in this approach is the technical possibility to define easily MULT

gates. However, the difficulties of these constructions is to get a proper semantics and

they require to refine the timed model.

Timed automata

Although simple in their conception, the automata created in this approach are the

most complex comparatively to those used in the timed-boolean approach and in the

IKNAT approach. Indeed, according to the variant followed, the automata use high

level constructions like the stopwatches or the functions. Such constructions are not

without influences on the performance and the ability of the model checking. While

the stopwatches impact the decidability of the reachability problems, the functions

used to compute delays in the on-the-fly calculation variant are a workload for the

model checker and could slow down its exploration of the state space. These aspects

incontrovertible for a direct implementation of the timed model can be nevertheless

alleviated by tolerating compromises on the accuracy of the clock simulation and by

delegating the delay calculations to the model-builder.
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6.5 Conclusion

In new approach that we propose, we avoid the main problem of IKNAT concerning

instability by implementing our timed model in a more direct way, and we obtain

a more flexible model for the specification of gates. However, limitations related to

the implementation of the clocks and to the calculation of the delays in the discrete

timed automata formalism were raised. For each of these limitations, two solutions

have been proposed (summarized in Appendix C, Table C.1), with, for each of these

solutions, some advantages and disadvantages which have to be considered when using

one solution over another.
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7

Case studies

This chapter compares the different modelling approaches - depicted previously and

summarized in Table C.2 of Appendix C - in some case studies and from the point of

view of expressiveness, easiness, and performance. The selected case studies are the self-

regulation motifs, the incoherent Feed Forward Loop motif, and an oscillatory pattern.

The first two come from the Uri Alon book [2], and, although described briefly here,

have a more complete description in Appendix A. The last one comes from [16] and is

described in this chapter in due time. These case studies are small GRNs. However it

makes sense to use them since in biological networks, simple structures are often used

as modules linked together to build larger structures. The ability of the approaches

to simulate these modules is thus a requirement before considering the simulation of

bigger structures.

In addition to these case studies, some artificial GRNs with a complex dynamics

are tested to compare the model checking performance in the different modelling ap-

proaches. It is necessary to use such dedicated GRNs since the dynamics of the previous

case studies is too simple, entailing a processing time too short and no significant for

performance results.

But first, we present briefly the model-builder, a tool developed to support the work of

this chapter.

7.1 Model-builder

The model-builder is a command line tool which, from a description of a GRN, generates

the timed automaton according to a given approach and parses the result returned by
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the Uppaal model checker on this automaton. The model-builder is described in detail

for the use and implementation aspects in Appendix B, however some of its aspects are

introduced here.

Model-builder inputs

The inputs of the model-builder are of three types. First, there is an XML file depicting

the GRN for which the model-builder has to generate the Uppaal timed automaton.

Secondly, there is some arguments which specify the approach to follow, the variant of

the approach to apply, and some other aspects related to the parsing operated by the

model-builder on the trace returned by the Uppaal model checker. Finally, there is an

assertion on the timed automaton for this model checker.

For the XML input, and for each of the approach depicted in the previous chapter,

a DTD file has been created to specify the structure of the XML description. Such

a describing XML file is basically constituted of various elements as gene, regulation,

gate, ... specifying each a particular aspect (a gene, a regulation, ...) of the GRN to

process. Evidently, following the target approach of the depicted GRN, there is some

variations in the elements included in the XML file (see Appendix B.2).

Note that to allow a direct comparison of the new approach and the IKNAT approach,

the β and α parameters are specified in the XML file with a form compatible with both

approaches, as follows: 1/α′t = 1/(
∑t

j=0 αj − B) and 1/β′kt = 1/(
∑t

i=0 βki), with a B

value compatible with the implementation made in IKNAT (i.e., entailing a stable basal

activity level). In consequence, the presentation of these parameters in this chapter are

under the form 1/α′t and 1/β′kt for both approaches.

The inputs parameters of the model-builder are necessary to specify the approach to

follow, its variant, and some other aspects. For the case studies of this chapter, and

unless otherwise specified, we use the stability extension on the extreme levels with

the IKNAT approach, the urgent mode with the timed-boolean approach, and unless

otherwise specified, for the new approach, the on-the-fly calculation variant (upscaling

of 1000) without stopwatch (which produce crashes in the Uppaal development version).

The other relevant parameters of the model-builder are let to their default value (see

Appendix B.4).

Finally, for the model checker assertion, each element of the timed automata presented

before can be employed within the assertion. However, for the easiness, the level of

each gene product is stored in an integer variable which the same name of the gene.

These variables can be referred in the assertion. In addition, to get an absolute time
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reference, a never reset clock named globalTime can be defined in each automaton by

the model-builder. A such clock can be employed, for example, with assertions of the

form [E<> globalTime > X] to get the trajectories of the GRN until the time value

X. Several other examples of assertions are presented in Appendix B.3.

Output of the model-builder

The outputs of the model-builder are of two types. Firstly, there is evidently the Uppaal

timed automaton corresponding to the GRN of the input XML file and corresponding

to the approach and its variant specified by arguments. Secondly, once this timed

automaton and the input assertion are processed by the model checker of Uppaal, and

if this last returns a trace, the model-builder can parse this trace to return the relevant

information about the trajectories of the gene products. This information about the

trajectories is returned in a file with a convenient format to chart easily the trajectories

(see Section B.5).

Note that since Uppaal returns the shortest trace and then used the lower bounds where

time intervals are specified, we use only deterministic time values for the case studies

with charted trajectories.

7.2 Self-regulation motif

Figure 7.1: The
self-regulation

The self-regulation is a very simple motif where a gene regulate

himself in a positive or a negative manner. But despite this sim-

plicity, the effects of such a motif are important. They can be

described according to two aspects relevant for our work. The

first one is the influence of the self-regulation on the gene re-

sponse time. The self-inhibition decreases the response time and

the self-activation increases this one. The second aspect is related to the concentra-

tion level and concerns the self-activation which allows a gene to stay expressed by its

product.

7.2.1 The timed-boolean approach

Following the standpoint on the time aspect, this approach is paradoxically more or

less capable of properly representing the effect of a self-regulation. Less able because

the regulations cannot modify the time needed for a gene to change its product activity
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(a) GRN
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Figure 7.2: An example of self-activation (a) modeled with the timed-boolean approach
(b). X, which has been just activated (start activity level of one), promotes Y and Z. When
X stops its activity, only Y can sustain itself. The relevant parameters are δY,0+ = 15,
δZ,0+ = 10, δZ,1− = 15, KY,{} = 0, KZ,{} = 0, KY,{X} = 1, KY,{Y } = 1, KY,{X,Y } = 1,
and KZ,{X} = 1. The delay required by Y to increase its activity level is set to a longer
value than Z to simulate the effect of the self-activation.

level, inducing then only as direct result for the study case the ability for the gene to

sustain itself the activity level with the self-activation. Therefore, the influence of a self-

regulation on the time aspect must be directly specified by the designer on the delays,

letting the model not really involved in this important aspect for the self-regulation.

However, more capable, because these regulations are the ones whose time aspect is the

best modeled in this approach. Indeed, since a change in the activity level of a gene

product is always followed by a change of the self-regulation effects on the gene itself,

the effects specified for the times can never be inadequate for the self-regulation. In

other words, the self-regulation does not suffer from the constant reactivity imposed

by the constant delays.

An example of self-activation is shown in Figure 7.2, where two genes are regulated by

another. One of the two gene has a self-activation, while the other not.

Finally, as for the other approaches, note that the self-inhibition can be used to generate

regular oscillations with an amplitude of one level (Figure 7.3). Such oscillations, which
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Figure 7.3: A self-inhibition producing oscillations with the timed-boolean approach.
The relevant parameters are δX,0+ = 15, δX,1− = 10, KX,{} = 0, and KX,{X} = 1.
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7.2 Self-regulation motif

are only possible with discrete model for such a configuration, must be interpreted as

a stable intermediate level.

7.2.2 The IKNAT and new approaches

On both approaches which follow the timed model, the situation is different. Indeed,

a self-regulated gene cannot influence its time required to reach a concentration level

under two, since its self-regulation is effective only above the concentration level 1. In

consequence, we experiment here a self-inhibition with 6 concentration levels, and, as

in the previous example, in comparison with a gene not self-regulated (Figure 7.4).

Figure 7.4: An example of self-inhibition with Y, whereas Z has only a normal regulation.

The delays for the simulation are given in Table 7.1. According to the timed model,

these delays are set to stabilize the gene Z and Y on the concentration level 5 (relative

concentration level 0.83) without any oscillation. Since Z is self-inhibited (with the same

effect than the dilution/degradation parameters), we can set a stronger activation (*2)

from X for a same steady state.

As we can see on the result of the simulation (Figure 7.5), the new approach gives the

expected result. For the IKNAT approach, the situation is different. If, as expected,

the Y concentration level increases quicker than the Z concentration level, both gene

products do not succeed to reach the expected concentration level 5 and are stuck on

the levels 3 and 4. Such results for Y are related to the same cause than the unexpected

stabilization (as Z), but from the more complex configuration, the stabilization does

not occur.

Z Y X

CL 1/α′j 1/β′Xi 1/α′j 1/β′Y i 1/β′Xi 1/α′j

0 ∞ ∞ ∞ ∞ ∞ -5
1 100 40 100 -100 20 ∞
2 96 / 96 -96 / /
3 82 / 82 -82 / /
4 66 / 66 -66 / /
5 40 / 40 -40 / /
6 10 / 10 -20 / /

Table 7.1: Delays specified for the GRN in Figure 7.4. As for the following time tables
of this chapter, the delays are without interval and CL stands for Concentration Level.
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(a) IKNAT approach
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(b) New approach

Figure 7.5: Simulation of the GRN in Figure 7.4 with the delays of Table 7.1. All the
genes start with the activity level 0.

Note that if the wanted steady state is the maximum concentration level, the self-

activation can be used to speed up the concentration growth. But such a use of the

self-activation is not realistic and relies precisely on the fact that there is a limited

number of concentration level to stop the growth in these approaches.

7.2.3 Remarks

All the modelling approaches are able to simulate the self-regulation motifs on their

own way. For the IKNAT approach, the stability problems influence the expected

result, but with enough concentration levels, it does not prevent the use of the IKNAT

approach to model these motifs.

7.3 Incoherent feed forward loop motif

Figure 7.6: IFFL

The second case study of this chapter is the Incoherent Feed

Forward Loop motif (IFFL). The effect of such a motif is

the generation of a brief pulse in the concentration of a gene

product (the product Z for Figure 7.6). The predominant

aspects of this motif is the amplitude of the pulse in level

and the duration of this pulse.
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(b) Timed-boolean simulation

Figure 7.7: An example of IFFL with in (a) the GRN and in (b) the simulation with
the timed-boolean model. In this simulation, X has just been activated. The relevant
parameters are δY,0+ = 15, δY,1− = 5, δZ,0+ = 10, δZ,1− = 3, KY,{X} = 1, KY,{} = 0,
KZ,{Y } = 0, KZ,{X} = 0, and KZ,{X,Y } = 1.

7.3.1 The timed-boolean approach

The simulation of a IFFL in the timed-boolean model is very easy and direct. An

example of a GRN for a IFFL is represented in Figure 7.7. In this approach, the

amplitude of the pulse in Z is limited to a single activity level. The duration of the

pulse is the summation of the timed needed for the product Y to reach the activity

level 1 and the timed needed for the product Z to fall to the activity level 0 from the

level 1.

7.3.2 The IKNAT and new approaches

The modelling of a IFFL can be done in several manners in the IKNAT and new

approaches. As for the next case study, we experiment two methods here: a minimal

modelling with a minimal number of concentration levels for the gene product (as a

sort of boolean modelling) and a modelling with more concentration levels.

Minimal modelling

Figure 7.8: Minimal
IFFL

The minimal modelling considered here is similar to the

one of the timed-boolean approach, except that here the

regulations influence the temporal aspect. The GRN used

is represented in Figure 7.8. This GRN is equivalent to the

GRN of Figure 7.7a but with an explicit AND gate. The

delays used for the GRN are presented in Table 7.2. Figure

7.9 shows the result of the simulation on both approaches.
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Z Y X

CL 1/α′j 1/βAND
X≥1&Y <1 1/α′j 1/β′Xi 1/α′j

0 ∞
5

∞ ∞ ∞
1 15 20 15 27

Table 7.2: Delays specified for the GRN in Figure 7.8.
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Figure 7.9: Simulation of the GRN Figure 7.8 with the delays of Table 7.2. X starts with
a concentration level 1.

As can be seen, the situation can be simulated by both approaches in a boolean sense

with a minimal number of concentration levels. Note that between both approaches,

several variations occur on the time required by the products to decrease their concen-

tration level. These variations are imputable to the different implementations of the

timed model.

Non-minimal modelling

Figure 7.10: Non-
minimal IFFL

For the non-minimal IFFL, the gene Y and Z have 6 con-

centration levels (Figure 7.10) and the boolean gate is im-

plicitly defined with the delays (Table 7.3). As we can see

in Figure 7.11, both approaches give a result rather similar

if we compare them with the minimal minimal. This can

be explained by the fact that the little variations in the

timing of each change of concentration level in one sense

are counteracted by variations in the other sense, resulting

globally in an evolution similar between both approaches.

Finally, note that it is also possible to use an AND gate for this IFFL experiment.

Since the effect of Y on Z changes radically passed the activity level 3, the result of

a gate with such a threshold would be quite similar to the current result. The strong
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7.3 Incoherent feed forward loop motif

Z Y X

CL 1/α′j 1/β′Y i 1/β′Xi 1/α′j 1/β′Xi 1/α′j

0 ∞ ∞ ∞ ∞ ∞ ∞
1 150 -150 15 100 30 500
2 130 -130 / 96 / /
3 105 -105 / 75 / /
4 80 -30 / 60 / /
5 50 -16 / 42 / /
6 20 -15 / 30 / /

Table 7.3: Delays specified for the GRN of Figure 7.10.
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Figure 7.11: Simulation of the GRN of Figure 7.10 with the delays of Table 7.3. X starts
with a concentration level 1.

variation in the effect of a regulation can be found in ODE models with regulations

driven by Hill functions with high exponents n.

7.3.3 Remarks

As for the self-regulation motifs, the IFFL motif does not create any difficulty with

the three modelling approaches. It is nevertheless good to keep in mind that with

the timed-boolean approach, the delay specified for the IFFL motifs are not necessary

viable if the genes can be regulated by some other genes outside the motifs.

For the IKNAT and new approaches, we can emphasize the fact that the bigger is

the number of concentration level, the more similar are both approaches. Note that

the minimal modelling for the IKNAT approach is possible here because the extension

which stabilizes the extreme concentration levels is used.
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7.4 Oscillatory pattern

7.4 Oscillatory pattern

Figure 7.12: The GRN
of the oscillatory pattern.

The oscillatory pattern is a couple of genes inter-regulated

and generating oscillations in their product concentration.

This pattern, described in [16], is involved in several bio-

logical systems like the cell cycle, the circadian rhythms,

or the response of several signaling pathways. Figure 7.12

shows the GRN entailing the oscillations.

The originality and difficulty of such a pattern is that the elimination of the self-

activation of X ensues the suppression of the oscillations. The behavior of such an

oscillatory GRN can be described by the followings ODE formulas:

dX

dt
=

0.6 ·X10

4.610 +X10
+

8

1 + Y 10

5.510

− 0.1 ·X (7.1)

dY

dt
=

2 ∗X4

54 +X4
− 0.1 · Y (7.2)

Equation 7.1 drives the X concentration with first, the Hill function of the self-activation,

then a spontaneous production rate moderated by the Hill function of the Y inhibition,

and finally the X degradation rate. Equation 7.2 drives the Y concentration with the

Hill function of the X activation and the Y degradation rate.

In Figure 7.13 the result of the ODE formulas is charted with and without the Hill func-

tion responsible of the self-activation of X. It is interesting to note that the amplitude

and the frequency of the oscillations are very sensitive to the value of the parameters
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Figure 7.13: Simulation of the GRN in Figure 7.12 with the ODE formulas 7.1 and 7.2.
In the second case, the Hill function for the X activation is removed. For both cases, the
initial concentration of the two gene products is zero.
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7.4 Oscillatory pattern

in the equation 7.1 and 7.2. Indeed, some subtle modifications of them can result in a

modification of the oscillations or, more often, in their suppression.

7.4.1 The timed-boolean approach

The modelling of such a pattern with the timed-boolean approach is possible (Figure

7.14) but however with a concession on the Y activity levels. Indeed, since Y is the

regulator of only one gene and since only one threshold is allowed by regulation, the

maximum activity level of Y is limited to one, making Y oscillates obligatory between

zero and one. This situation underlines the strong abstraction of the activity levels in

the timed-boolean approach which does not model the distinct concentration of Y in

the oscillation dimples.

Note that a distinct activity level for the Y oscillation dimples is possible by extending

the timed-boolean model with the capability to specify several thresholds for each

regulation. From this extension refining the regulations, it would be then possible to

spread the regulation of Y in two activity levels, augmenting the Y maximal activity

level in the same time (with, therefore, an abstraction a little bit less boolean).

Finally, notice that the self-activation is not required to get these oscillations (set the

basal activity of X to 2 is sufficient), but its presence is required to get the same

behavior than the pattern (i.e. when we remove it, the oscillations disappear, which is

charted by the activation of X with then, nothing else).
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(b) Timed-boolean simulation

Figure 7.14: A timed-boolean GRN (a) of the oscillator pattern and its simulation (b).
The relevant parameters are δX,0+ = 5, δX,1+ = 10, δX,2− = 20, δY,0+ = 5, δY,1− = 5,
KX,{Y } = 1, KX,{X,Y } = 2, KX,{X} = 1, KX,{} = 1, KY,{} = 0 and KY,{X} = 1.
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7.4.2 The IKNAT and new approaches

As for the previous case study, we will try to see to which extend it is possible to

model such a pattern in a minimal sense and in a non-minimal sense with the IKNAT

approach and the new approach.

Minimal modelling

The minimal modelling considered here uses a minimal number of concentration levels

for the gene products (no more than required), but however no boolean gate for the

cooperation of the regulations in the gene X. This choice, resulting on the GRN of Figure

7.15, stemmed from the fact that a boolean gate is neither necessary nor evident to

find for X.

According to the timed model, we have isolated the time values of Table 7.4 to produce

the expected behavior, i.e., the oscillations with the self-activation of X and a stabi-

lization without. Note that the times specified for the concentration level one of the

two gene products, irrespective of the self-activation of X, are tuned to not produce os-

cillation between two levels (the products are perfectly stabilized on the concentration

level one).

The result of the simulations on both approaches are charted in Figure 7.16.

For the new approach, the result is good since we have the expected evolution and

more, contrary to the timed-boolean model, we have an intermediate concentration

concentration level for Y and the begin of the simulation without the self-activation of

X undergoes some brief oscillations before the stabilization (like in the ODE model).

For the IKNAT approach, the result is quite bad. With its natural instability inherent

to the implementation of the timed model, the gene products suffer from several unex-

pected oscillations from one level to another. Since the number of concentration levels

for both products is only of two, these oscillations really spoils the expected results.

Non-minimal modelling

We have tried here a modelling with 10 concentration levels for each product (Figure

7.17). For so many concentration levels, the tuning (by manual trials and errors) of the

time values has revealed itself an hard and time consuming task. Indeed, as in the ODE

model, a little change in one time value can removed the oscillations. It is thus very
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7.4 Oscillatory pattern

Figure 7.15: Minimal GRN for the oscillatory pattern.

X Y

CL 1/α′j 1/β′Y i 1/β′Xi 1/α′j 1/β′Xi

0 -5 ∞ ∞ ∞ ∞
1 -20 -20 20 21 21
2 ∞ -10 15 11 10

Table 7.4: Delays specified for the GRN of Figure 7.15.
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(a) IKNAT approach with the self-
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Figure 7.16: Simulation of the GRN of Figure 7.15 with the delays of Table 7.4. On (a)
and (c) the results for the IKNAT approach with the self-activation of X and without. On
(b) and (d) the results for the new approach with the self-activation of X and without.
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Figure 7.17: Non-
minimal GRN for the
oscillatory pattern.

difficult to converge to a result which induces oscillations

with the self-regulation of X and a stabilization without.

But despite this difficulty, once a good set of values is de-

lineated (Table 7.5), we can show that such a pattern can

be simulated with at least the new approach (Figure 7.18

(b) and (d)). At least only for the new approach because

the results with IKNAT are very bad (Figure 7.18 (a) and

(c)). It is probable that since the oscillations are very sensi-

tive, the IKNAT instability disrupts their occurrences and

prevents the simulation of such patterns which the IKNAT approach.

Note that the maximal number of concentration levels is chosen here to get a graph-

ical result rather similar to the ODE model, with a stabilization of X and Y on the

concentration levels two and three to follow anew the ODE model graphics. How-

ever, normally, such choices must not be driven by graphical consideration but by the

requirements over the precision, the role of each gene and the relevant maximal con-

centration of each gene product in the modeled situation. For example, here, a lower

concentration level for Y than for X could be in fact related to a higher concentration

of Y than X, depending of the scales of the concentration levels defined for each gene

product.

Non-minimal modelling inspired by the ODE models

Face to the extreme difficulties to delineate by hand a proper set of time values for

the previous non-minimal modelling, we have experimented the same modelling with

a structuring more inspired by the ODE formulae for the oscillatory pattern. For this,

with have first change the disposition of the basal production rate in the timed model.

Indeed, in the ODE model 7.1 of X, the basal production rate (8) is directly moderated

by the Y concentration, as it is the case for the inhibition in the ODE model. In

the current timed model, which is a formalization of the IKNAT mechanism, the basal

production rate B is integrated to the α′ parameters and the X inhibition in its negative

β′ parameters, in consequence the link between them have to be think by the model

designer. The idea here is to followed the structure of the ODE 7.1 by displacing the X

basal production rate from the α′ parameters to the β′ parameters of the X inhibition.

In such a case, the β′ parameters of the X inhibition are positive and decrease with the

augmentation of the Y concentration level. Secondly, if the concentration level of each

gene is considered as following the same scale for the concentration and if we want to

stay close to the ODE model, we have to specify the same dilution/degradation delays

for both gene products since they have the same rates in the formulae 7.1 and 7.2.
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7.4 Oscillatory pattern

X Y

CL 1/α′j 1/β′Y i 1/β′Xi 1/α′j 1/β′Xi

0 -2 ∞ ∞ ∞ ∞
1 -4 ∞ ∞ 500 500
2 -7 ∞ 15 350 250
3 -8 -7 14 250 50
4 -10 -6 13 100 40
5 -14 -5 12 80 30
6 -19 -4 11 40 25
7 -25 -3 10 25 22
8 -35 -2 9 10 20
9 -48 -2 8 5 18
10 ∞ -2 7 1 17

Table 7.5: Delays specified for the GRN of Figure 7.17.
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Figure 7.18: Simulation of the GRN Figure 7.17 with the delays of Table 7.5. On (a)
and (c) the results for the IKNAT approach with the self-activation of X and without. On
(b) and (d) the results for the new approach with the self-activation of X and without.
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Such a modelling inspired by the ODE is experimented hereafter for the new approach

only since the IKNAT approach requires increasing delays in the templates (templates

which can be however easily adapted to removed this limitation). Note that since we

use a wider range of time values for the parameters, the upscaling done here to maintain

the precision is 10.000 instead of 1000.

The results charted in Figures 7.19 are better than the ones of the previous simulation

for a shorter time spent in the configuration of the delays (Table 7.6). This encourages

a deeper exploration of the timed model and of its link with the ODE models.
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Figure 7.19: Simulation of the GRN of Figure 7.17 with the new approach and with the
delays specified in Table 7.6. On (a) the result with the self-activation of X, on (b) the
result without.

X X & Y Y

CL 1/β′Y i 1/β′Xi 1/α′j 1/β′Xi

0 5 ∞ ∞ ∞
1 10 300 -500 350
2 75 200 -250 150
3 250 200 -150 125
4 ∞ 200 -125 63
5 ∞ 200 -100 50
6 ∞ 200 -75 38
7 ∞ 200 -38 25
8 ∞ 200 -25 14
9 ∞ 200 -19 11
10 ∞ 200 -10 9

Table 7.6: Delays used for the simulation of the figures 7.19. The dilution/degradation
rate (α′) are the same for both genes as in the ODEs 7.1 and 7.2. Note that the basal
production rate of X is displaced from the parameters α′j to the β′Y i parameters.
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7.4.3 Remarks

The oscillatory pattern underlines the limitation of the timed-boolean approach with

its limited number of activity levels inducing a high abstraction.

But more important, the sensibility of the oscillatory pattern underlines the inability of

the IKNAT approach to model sensitive GRNs. Note that the difficulties and the time

needed for the configuration of the time values can be balanced by the fact that the ODE

model of the oscillatory pattern was certainly not easy to define. Such difficulties have

the merit to underline the inefficiency of the manually trials/errors delay tuning and

to show that it is possible to refine the timed model by following the ODE structure

for the role of the parameters. The idea is, besides the definition of guidelines and

other automatic delay generation processes, to replace the basal production rate in the

β parameters of the gene inhibitions. This parameters refinement - which improves the

tractability of the timed model but can produce complication with cooperation between

regulations - is technically usable on the new approach without modification and can

be easily introduced in IKNAT by some slight adaptations of the templates.

7.5 Performance

The previous cases studies have underlined the limitation of the IKNAT approach in

comparison to the new approach which allows the modelling of very sensitive situations

with more precision. This precision itself makes the new approach more tractable to

manipulate. But beside theses advantages, we could argue that the performances of

IKNAT are better than the performances of the new approach. It is true that the

IKNAT approach uses only automata without operations on the transitions whereas

the new approach leans heavily on the calculations allowed by Uppaal. Moreover, it is

interesting to know to which extend the pre-calculation of the time values alleviates the

work of the model checker in the new approach. To answer to these questions, several

performance benchmarks are reported in this section.

Note that we do not test here the performance of the timed-boolean approach since

the state spaces of its automata, with the boolean abstraction, are not commensurable

with the state spaces of the automata provided by the IKNAT and new approaches.

Moreover, since the current implementation of the timed-boolean approach uses only

one process for a GRN, building of the automata required an exponential complexity

and thus the performance is more a matter of the model-builder than a matter of the

model checker.

95



7.5 Performance

(a) Oscillatory module (b) A GRN with two modules

Figure 7.20: In (a), the structure of the oscillatory module with ten concentration levels.
The bulled arrow is the outgoing regulation of the module. In (b), an example of GRN
with two modules.

7.5.1 Process

GRN benchmarks

In order to conduct the benchmarks, we have created what we can call an artificial

oscillatory module. Oscillatory because the goal is to get GRNs which are always in

movement to avoid tractable situations where the dynamics of the GRNs is easy to

browse. Artificial because we did it very insensitive to be simulated properly with

IKNAT (when the oscillations are hampered, the state space is by far smaller). And

module because we need the ability to construct from them scalable GRNs to test the

performance as the number of modules in a GRN increases.

The module is a couple of gene inter-regulated to produce oscillations. One of the two

gene has only one concentration level for its product whereas the other can have several

ones. Such a structure, shown in Figure 7.20a, although unrealistic, allows easily the

creation of oscillations in an insensitive way.

By regulating one gene with several of these modules (e.g., Figure 7.20b) configured

with different delays (and thus with different frequencies for the oscillations), we obtain

a complex evolution for the regulated gene.

We test here GRNs as the one described in Figure 7.20b with one, two and three

modules, with 5 and 10 concentration levels and with delays or not. The delays of

the module regulations are set, as much as possible, to induce changes in the prod-

uct concentration levels of the regulated gene, with for this latter gene a number of

concentration levels equal to the number of concentration levels in the modules.

For the version with intervals, the bounds for each delay are set to the value of the

delay ±10%, with a minimum interval size of one or two for the little delays.

Note, to simplify, that for a module, the delays specified for the dilution/degradation of

X and for its regulations are the same at each concentration level (whence the constant

slopes in Figure 7.21).
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Figure 7.21: A simulation of a module stated in Figure 7.20a with the IKNAT approach
and the new approach.

Model checker assertions

Two assertions are submitted to the model checker. The first, [E<> globalTime >

10000], is a reachability assertion which asks whether there is a state where the time

is bigger than 10,000. The second assertion, [A[] true], is a safety assertion which

imposes the browsing of all the state space by the model checker to verify the property

true. For this last assertion, a breadth first search is used whereas for the first one a

random depth first is conducted.

These two simple assertions represent two extreme requests (one very easy and one very

difficult) whose performance results encapsulate most of the intermediate assertions.

Their results can be thus considered as representative of the performances we can expect

from the assertions submitted to the model checker.

Noted that for the first one, the property true can be replaced by the property no

deadlock which also imposes browsing all the state space with a result however slightly

longer (but in the same scale of time).

Environment

The version of Uppaal used is 4.0.13 which is the most recent version available outside

the development snapshot (which seems to improve the performance). The computer

used for the performance tests has a processor Intel T7200 (dual-core) at 2 GHz, with

2 GB of Ram and Windows XP SP3 32 bits. A minimal set of programs was running

during the benchmarks to avoid as much as possible the perturbations coming from

them.
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7.5.2 Benchmarks and results

General benchmarks

The first benchmarks are done with the stability extension on the extreme levels for

IKNAT and with the on-the-fly calculation variant for the new approach. For this lat-

ter, an upscaling of 10,000 is used. The other parameters for both approaches are left

to their default value. The GRNs of the benchmarks are denoted by “GM” followed

by the number of their modules. The subscripted number indicates the number of con-

centration levels used. The subscripted star (*) denotes the benchmarks with intervals

of time.

The results are given in duration (in second and including the loading time of the model

checker) for the first line and in number of states explored by the model checker for the

second line. Note that it is also possible to get results about the memory consumption

with the number of stored states. But this information is not really relevant for us

since the tests never reach exceptional values with the experimented models (the time

is by far a more preoccupying aspect).

Table 7.7 shows the results for the reachability assertion. Since these results can depend

on the path followed in a random mode, five occurrences of each test were used and

the average results are provided. We can however mention that in our experience the

standard deviation is small.

GM110 GM1∗10 GM25 GM2∗5 GM210 GM2∗10 GM35 GM310

IKNAT
0.21 7 1.35 24.7 1.08 14.5 1.44 1.33
5,990 30,338 14,318 94,902 15,043 74,171 19,924 18,839

New
0.14 0.37 0.73 5.3 0.42 2.28 0.66 0.62
2,491 2,681 6,059 6,442 5,985 6,685 8,050 8,022

Table 7.7: Performance results for the reachability assertion (globalT ime > 10, 000). The
first line is the time (s) required by the model checker to process the assertion. The second
line is the number of states explored.

From this table of results, three main observations can be done. Firstly the IKNAT

approach has bigger numbers of states explored, which comes from its event mechanism.

This difference led the new approach to be quicker.

Secondly, in both approaches, the models with intervals are longer with a bigger number

of states explored (above all in IKNAT). This can be explained by the fact that with the

intervals, there is more possibility to change or not the concentration levels, creating

therefore a larger state space to manage. A complementary explanation is that Uppaal

can favor little delays and thus needs to fire more transitions to reach the time 10,000.
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Thirdly, using 5 concentration levels instead of 10 gives worst results. The reason for

such a phenomenon could be explained by the fact that with less concentration levels,

the products X of the modules reach quicker their extreme activity levels. Therefore,

the oscillation frequency of the GRNs is higher and entails a bigger state space for their

automaton in 10,000 units of time.

The next table (7.8) presents the results for the safety assertion browsing the whole

state space. Here, the tests are performed only one time since the results are very

stable from one occurrence to another (even for the shortest). Several tests implying

time intervals are not given because they require a too long processing time (by far

more than one hour). These tests are replaced by the GM5 and GM∗5 .

GM15 GM1∗5 GM110 GM1∗10 GM25 GM210 GM35

IKNAT
0.06 5.88 0.1 18.6 2.7 4.39 3,633
407 34,778 736 113,684 42,526 71,425 6,190,335

New
0.06 0.24 0.08 76.4 3.4 3.85 1,330
121 2,126 252 107,098 23,488 49,485 1,458,014

Table 7.8: Performance results for the safety assertion browsing the whole state space.
The first line is the time (s) required by the model checker to proceed the assertion. The
second line is the number of states explored.

As we can see, the assertion entails exponential increases of the times and of the state

spaces relatively to the complexity of the GRNs and above all relatively to the use of

intervals. The increasing complexity between the models with 5 and 10 concentration

levels seems more “normal” here. And in the majority of the tests, the new approach

is quicker with a lower state space. The only major exception is the GRN GM1∗10,

where we do not know why there is a so long time for the new approach. With the

development version of Uppaal 4.1, this exception is still present but with only a time

of 30 seconds.

Sometimes, the number of states explored is lower than with the existential assertion.

This is because the globalTime clock is not used. Indeed, two visited states, differing

with only the value of that clock in the reachability tests, are the same without and

therefore are counted as only one explored state in the tests here.

Variants of the new approach

We have made several tests with the other main variant of the new approach which is

the pre-calculation variant and with different parameters for the on-the-fly calculation.

The results is that, with equal state space, the performances do not change significantly.
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On-the-fly calculation Pre-calculation

GM210
3.85 3.98

49,485 50,899

GM1∗5
0.24 0.25
2,126 2,142

GM1∗10
76.4 77.32

107,098 111,660

Table 7.9: Performance results for the test GM210, GM1∗5, and GM1∗10 with the on-the-
fly calculation variant and the pre-calculation variant of the new approach, and with the
safety assertion. The first line is the time (s) required by the model checker to process the
assertion. The second line is the number of states explored.

Table 7.9 presents the results for the comparison between the on-the-fly calculation

variant (upscaling of 10,000) and the pre-calculation variant. As it can be seen, there

is no significant difference between both variants. At most, there are a number of

state explored a few percents bigger in the pre-calculation variant, with a time in

correspondence with this. From that, and if we assume that the number of states

explored can be representative of the precision of the approach, we can consider that

an upscaling of 10,000 with the on-the-fly calculation variant is sufficient to almost reach

the precision of the pre-calculation variant. In order to confirm this, we have tested the

on-the-fly calculation variant with an upscaling of 10,000,000, and, effectively, there is

not significant change compared to the upscaling of 10,000.

From these results, it seems that the power consumed by the time calculations in the

model checker is derisory and does not legitimate the use of the pre-calculations in

the model-builder, and this especially when the configuration of large upscaling is not

a problem and allows a precision almost equivalent to the precision reached by the

pre-calculation variant. Therefore, this last variant seems very useless.

Note that in the continuity of this questioning, it would be interesting to see in what

extend the incontrovertible rounding operated in both variants affects the trajectory

precision of the timed model. Such an analyses can be done by a comparison with a

real automaton or with the Uppaal discrete automata where the time is slowed down

for all the delays (i.e., increase the delays proportionally) and for the bounds in the

assertions of the model checker.

7.5.3 Clock reduction

In Uppaal, an optimization called clock reduction is used to avoid to discriminate

uselessly the states with an unused clock. For example, a clock is considered unused
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7.5 Performance

in a state when the active locations reset the clock on each of its outgoing switches

(without guard expression over the clock). In such a case, the state signature does not

contain the clock value. This optimization leans on static analysis. It is interesting to

consider this optimization in order to explain some performance results.

In the IKNAT approach, the locations begin of the species-activity template and of the

reaction template lead to such a situation where the clock c is considered as unused.

Any attempt to bound the evolution of the clock in these locations - in order to limit

the state space - will only result in a reduction of the performance. Indeed, unless to use

stopwatches, the only way to limit the value of the clock is to put a self-switch on these

locations which resets the clock periodically. But actually this supposed optimization

discards the clock reduction on c since the clock need to be tested before being reset.

This result in a worse performance caused by an expansion of the state space and by

more transitions being fired.

More generally, for the three approaches, the safety assertions which do not involve

the globalTime clock, allows also the inactivation of the clock by the clock reduction

optimization. Therefore, the size of the state space is the same with or without the

globalTime clock. The only difference is an overhead in the processing time of about

20 % produced by the management of the clock by the optimization.

Finally, this optimization provides the ability to bound efficiently the size of the state

space browsed for an assertion. Indeed, by creating a process with only one location

where the invariant is “globalT ime < K”, the state space of the automaton is limited

by the time value K. If the globalTime clock is not mentioned on the assertion, the

clock reduction still considers that the globalTime clock is unused. From this, the state

space explored is the same than without the process but cropped by the time limit K.

Normal Reset every 5 units Deadlock at 10,000

GM210
4.39 32.4 2.3

71,425 116,845 48,882

Table 7.10: Performance results for the test GM210 with the IKNAT approach and the
safety assertion. The first line is the time (s) required by the model checker to process the
assertion. The second line is the number of states explored. The first column of results is
the normal situation. The second column are the results when the clocks c are reset every
five units of time in the locations begin. The last column are the results where a deadlock
is created after 10,000 units of time. The limit of time before deadlock which allows the
model to express all the 71,425 states of the normal result seems to be just below 15,000.
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7.5.4 Remarks

The second series of benchmarks with the safety assertion underlines very well the

difficulties associated to the explosion of the state space. But it is important to keep

in mind that the assertion used is the worst possible and that the GRNs experimented,

by their oscillations, are themselves not easy to manage.

For the comparison between the new approach and IKNAT, the former is often (al-

though not always) quicker with a lower state space.

Finally, it is worth to note that Uppaal does not make use of any parallelism which can

reduce the exploration time on many-core processors. This ability which can strongly

accelerate the exploration of the state space is currently considered by the Uppaal

developers.

7.6 Conclusion

The examples developed in this chapter show to what extent we can use one approach

or another, i.e. on the one hand the convenient boolean approach enabling easy and

quick modelling, and on the other the more expressive IKNAT and new approach, both

based on the timed model. Compared to IKNAT approaches, the new approach stands

out with its ability to model more sensitive situations and with better performances on

average.

For the timed-boolean approach, neither the incapacity of the regulations to influence

the reactivity nor to handle the history of a gene evolution in an activity level were

a problem to model the three modellings case studies. But our case studies do not

prove that it will be always like this. A situation with more regulators for a gene can

be a problem to the extent that it is not possible to determine proper delays for each

configuration of the regulators.

For the new approach, the pre-calculation variant for the delay computing seems to be

useless.

Finally, with these case studies, it was also demonstrated that it is possible to model

more complex GRNs by being more inspired by their ODE model for the specification

of the delays in the IKNAT and new approaches. This opens the door for new possible

refinements of these approaches and more generally of the timed model.
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Conclusion and future work

In this research two methods to model GRNs on timed automata were exposed. The

first one, the timed-boolean approach, is well known and relies on a boolean abstraction

(i.e., the Thomas’s formalism) where the time aspect is introduced in the form of

constant delays between the changes of activity levels. This approach, by its high

abstraction, suffers from several limitations to express some situations and aspects of

the GRNs. However, by this abstraction, the approach is easy to parametrize and

produces automata with a limited state space. This limited state space is a strong

advantage for the efficient application of parameter synthesis, a process which, from a

described situation, delineates a set of parameters which can induce the situation in a

given model. The result of such a process in a timed-boolean model can be used as a

starting point for further researches on less abstract model like ODE models.

The second method, initiated by the IKNAT approach to model ISNs, was extended

in this thesis to the modelling of GRNs and was formalized in the timed model. The

principle of the IKNAT approach leans on the delays to drive the dynamics of the

GRNs. This aspect induces a better expressiveness than the timed-boolean approach,

but also a bigger state space for the automata and a more complicated parametrization

of the delays. Moreover, the implementation followed by IKNAT raises some stability

problems for the concentration levels of the gene products. To solve these stability

problems, we have developed and experimented with success the new approach which

implements more directly the timed model. In addition, the new approach produces

automata with smaller state spaces and is more flexible for prospective evolutions.
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Future work

Although the new approach seems to be promising, it really needs to be further explored

before claiming that it can be useful to model GRNs. A first practical task to be

achieved in the continuity of this thesis and when Uppaal allow it, is the exploration of

the variant with stopwatches. The point is to determine to what extend the use of the

stopwatches for the history accuracy is important with regard to the decidability of the

reachability problem. Another interesting practical task is to test the new approach on

real timed automata, which are more adapted since - with real timed automata - we

do not need the apparatus to manage the discrete aspect.

More importantly, the specification of the delays is off-putting and time consuming.

To tackle this aspect, the first task is to achieve the exploration of the possible timed

model refinements. As it was introduced in the case study of the oscillatory pattern,

it is possible to facilitate the specification of the delays by reintegrating the basal

production rate to the β parameters of the inhibitors. Another improvement would

be to create guide-lines for the specification of timed models. These guide-lines could,

from well-known formalism used to model GRNs as ODEs, facilitate or drive the choice

of the number of concentration levels, the use of gates, and the specification of delays.

We can even think of an automatic generation of delays from simple ODE formulas.

With this automatism we can imagine for example that the new approach could be used

to quickly assess the relevance of an ODE model with noise, before going deeper with

more complicated and accurate models, or it could be used to verify some properties

thanks to the decidability of the reachability problem.

Finally, in the other direction, it could be very interesting to apply the parameters

synthesis to the new approach. The idea, as already explained, is not to use the model

of a GRN anymore to verify the GRN dynamics induced by some parameters, but to

find the parameters compatible with a description of the GRN dynamics. This process,

which is already applied to the timed-boolean approach in [1], can however be (really)

less efficient with the new approach since the state space of its automata is by far bigger

than the state space of the automata in the timed-boolean approach.
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Appendix A

GRN motifs

A motif is a pattern of regulations which is often encountered in various GRNs because

of the advantages it brinks. These advantages can be, for example, a better resistance

of the GRN function against mutations or a better reactivity of the GRN in reaction

to changes in the environment, allowing the cells to be more fitted to the surrounding

conditions. From these advantages, the corresponding motifs are selected by the evo-

lution and are therefore more present in GRNs than random structures. Three basic

and well-known motifs are presented here with trajectories created from ODE models

(see 2.2.1). For these motifs, a more complete presentation is available in the book of

Uri Alon [2].

A.1 Self-regulation motifs

A self-regulation (or auto-regulation) motif is a motif where a gene regulates itself

directly in a positive manner (self-activation) or in a negative manner (self-inhibition).

Self-inhibition

The self-inhibition for a gene improves the reactivity of its product by diminishing its

response time. As stated before for ODE models, the response time can be modeled

for a product by the logarithm of 2 divided by the degradation rate of the product

(T1/2 = log(2)/α). By setting a self-inhibition, the resulting effect looks like if the gene

product was increasing itself its degradation rate, and therefore decrease its response

time. This situation which appears ludicrous at first time can be easily grasp by

the fact than, if the gene product “actively increases” its degradation rate when it
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A.2 Feed forward loop motifs

increases its concentration, then it can have a bigger rate of production for the same

steady state concentration. More precisely, this can be described as follows: the product

concentration begins to grow quicker, and then slows down more strongly its production

rate when it reaches the steady state concentration.

Another related advantage is that a self-inhibition brings a better robustness to the

steady state concentration of a gene product against the fluctuations of its production

rate. Indeed, if the gene is less expressed, it is less repressed by its production and then

more expressed, this closing the full circle.

Self-activation

The self-activation for a gene augments the response time of its product (for the re-

verse reasons than for the self-inhibition) and allows the gene to stay expressed by

itself independently of its promoters. This motifs is very common in cell involved in

a differentiation or specialization process. Indeed, once the cell begins a process of

differentiation, several genes with a self-activation are expressed to prevent a reversion

to the initial situation and then kept the cell stuck in the new configuration.
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Figure A.1: Graph with the dynamics of the self-regulation motifs. The gene is promoted
in a normal way in the green line. In the red line, a self-activation is added with tuned
parameters to slow-down the speed of the increase. In the blue line, a self-inhibition is
added with tuned parameters to accelerate the speed of the increase. For both cases,
K = 0.5 and n = 1.

A.2 Feed forward loop motifs

A Feed Forward Loop (FFL) is a motif which involves three genes in a triangular

structure. In this kind of structure, there is a gene X which regulates another gene
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Figure A.2: Graph with the dynamics of a C-FFL AND. The activity of X is a boolean
abstraction. The threshold of Y for the AND gate is set to 0.5. In the first pulse of X, Y
does not have the time to reach a concentration of 0.5 and then the production of Z is not
started. The second activation of X is sufficiently long to start the production of Z.

Y. And both gene regulate a third gene Z. According to the kind of regulation, the

behavior of the motif can be different. We present here two useful kinds of FFL often

present in GRNs by the advantages they bring. The first kind is the coherent FFL

(C-FFL) and the second is the incoherent FFL (I-FFL).

Coherent FFL

In coherent FFL motifs, all the regulations are positive (X promotes Y and Z, Y pro-

motes Z). There are two C-FFL which differ by the cooperation used in Z to deal with

the two incoming regulations. In the first case, it is an AND gate. This means that Z

needs to be promoted by X and Y simultaneously to be synthesized. The purpose of

such a structure is to prevent the expression of Z when X is only expressed for a period

lower than a given delay δ. This period is determined with the time required by the

regulator Y to switch from an inactive state (the Y product is under the threshold of

the gate) to an active state (the product is over the threshold) when its promoter (X)

is active. So, when X is active, the concentration of the Y product increases, after a

delay δ without accident, Y becomes in turn active and the production of Z can begin.

But if before this point, X became no more active, Y stops its production and there

is not a “false start” in the production of Z. This motif can be used if for example

the Z product launches a very important and heavy process in reaction to the signal

activating X, therefore the delay ensures that the situation of the signal is durable and

thus that it is worthy to launch the process.

The C-FFL with OR gate produces the same kind of delay but for stopping the promo-

tion of Z. So, if X is no more active for a moment, this moment has to be sufficiently

long to stop the expression of Z.
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Figure A.3: Graph with the dynamics of an I-FFL. The activity of X is a boolean
abstraction. The threshold of Z for the AND gate is set to 0.5. Once X is activated, Z
increase quickly its concentration. When Y reaches the threshold 0.5, Y inhibits Z which
then falls.

Incoherent FFL

For the second kind of FFL, the Incoherent FFL, we retrieve the same regulations as in

the C-FFL with an AND gate but with one difference: here the regulation between Y

and Z is an inhibition instead of an activation, and thus the gate X AND Y becomes

a gate X AND NOT Y. The dynamics allowed by such a structure is the generation of

brief activity pulses for Z. Indeed, when X is active and not yet Y, Z is only promoted.

But after a given delay δ, Y which is promoted by X becomes active and thus inhibits

Z by turning off the result of the gate. During the delay δ, Z was promoted without

inhibition, reaching therefore a high concentration during a brief period.

A.3 Cascade motif

The cascade motif is a very simple pattern where there is a succession of promotions

from one gene to another. For example, if we have a cascade with the genes g1, g2,

g3, and g4, with gi promoting gi+1, once g1 is active (in a sufficient concentration), it

actively promotes g2, and the activation is propagated on the cascade with a delay since

it takes time for a gene to switch from an inactive state to an active state. When the

promotion of g1 ceases, the concentration of the g1 product decreases and all the genes

in the cascade, one after another, stop their activity. We can find this kind of structure,

for example, in the creation process of the flagella in some cells. The genes at the begin

of the cascade promote the synthesis of proteins for the root of the flagella, and the

genes at the end of the cascade promote the synthesis of proteins for the end of the

flagella. With the temporal delay and the order induced by the cascade, the different

pieces of the flagella are ready in time and in the good order to be put together.
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Appendix B

Model-builder

The model-builder is the software developed to essentially generate, from a GRN, the

Uppaal timed automaton. In addition to this main function, the model-builder can

submit the automata created to the Uppaal model checker and can parse the returned

traces. This appendix documents the use of the model-builder and gives some expla-

nations about its implementations.

B.1 General process

The general process of the use of the model-builder is as follows. First, an XML file

describing a GRN is created according to the syntax of the modeling approach selected

(see Section B.2). Beside this XML file, an assertion for Uppaal is specified (see B.3).

Then, the XML file is given to the model-builder (for the parametrization see B.4)

which generates an Uppaal file with the corresponding timed automaton.

Once the automaton file is created, the model checker of Uppaal is launched on it and

with the specified assertion. The model checker of Uppaal is embodied in the process

Verifyta provided with Uppaal.

When the model checker has finished its job, the result is printed in the console and,

if a trace is returned, a file is generated with the trace. This trace file is parsed by

the model-builder to generate a trajectory file (.fin) containing only the information

relative to the concentration level of the gene products (see B.5). Once the parsing is

finished, and if specified, the model-builder can call MATLAB to chart the trajectories.
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B.2 XML formats

Figure B.1: The general process of the model-builder

B.2 XML formats

Each GRN submitted to the model-builder is described in an XML file. For each

approach, there is a DTD file which specifies what is required for the approach. These

DTD files are described subsequently.

B.2.1 Timed-boolean approach

A GRN for a timed-boolean model is defined by a network element constituted of at

least one gene element. The defaultMaxLevel attribute of the network is the default

maximum activity level used for each gene product.

A gene is identified by a name constituted with numbers and letters (the underscore

and the hyphen are not allowed). Moreover, a name cannot contain the word “DOWN”

and “UP”. The targetLevel of a gene product is the default value assigned to the logical

parameters of the gene. The maximum activity level of a gene product can be specified

in maxLevel to override the value of the default maximum activity level assigned to

the network. The attributes dUp and dDown specify the default time value used to

increase or decrease the product activity level of the gene by one unit. To specify an

interval of time, one can use dUpMin, dUpMax, dDownMin, and dDownMax. With the

element time, it is also possible to specify some particular time values depending on an
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timedBoolean.dtd
< !ELEMENT network ( gene+, s t a r tL ev e l ∗) >
< !ATTLIST network defaultMaxLevel CDATA ”1”>

< !ELEMENT gene ( s e t | r e gu l a t i on | and | or | time )∗>
< !ATTLIST gene name ID #REQUIRED>
< !ATTLIST gene ta rg e tLeve l CDATA ”0”>
< !ATTLIST gene maxLevel CDATA #IMPLIED>
< !ATTLIST gene dUp CDATA ”1”>
< !ATTLIST gene dDown CDATA ”1”>
< !ATTLIST gene dUpMin CDATA #IMPLIED>
< !ATTLIST gene dUpMax CDATA #IMPLIED>
< !ATTLIST gene dDownMin CDATA #IMPLIED>
< !ATTLIST gene dDownMax CDATA #IMPLIED>

< !ELEMENT s e t ( r e sou r c e )∗ >
< !ATTLIST s e t t a rg e tLeve l CDATA #REQUIRED>

< !ELEMENT r e sou r c e EMPTY>
< !ATTLIST r e sou r c e name IDREF #REQUIRED>
< !ATTLIST r e sou r c e inv CDATA ”0”>

< !ELEMENT time EMPTY>
< !ATTLIST time l e v e l CDATA #REQUIRED>
< !ATTLIST time up CDATA ”1”>
< !ATTLIST time down CDATA ”1”>
< !ATTLIST time upMin CDATA #IMPLIED>
< !ATTLIST time upMax CDATA #IMPLIED>
< !ATTLIST time downMin CDATA #IMPLIED>
< !ATTLIST time downMax CDATA #IMPLIED>

< !ELEMENT r e gu l a t i on EMPTY>
< !ATTLIST r e gu l a t i on from IDREF #REQUIRED>
< !ATTLIST r e gu l a t i on s i gn CDATA ”+”>
< !ATTLIST r e gu l a t i on thre sho ld CDATA #REQUIRED>
< !ATTLIST r e gu l a t i on ta rg e tLeve l CDATA #IMPLIED>

< !ELEMENT and ( r e sour c e | and | or)+>
< !ATTLIST and ta rg e tLeve l CDATA ”1”>
< !ATTLIST and inv CDATA ”0”>

< !ELEMENT or ( r e sou r c e | and | or)+>
< !ATTLIST or ta rg e tLeve l CDATA ”1”>
< !ATTLIST or inv CDATA ”0”>

< !ELEMENT s t a r tL ev e l EMPTY>
< !ATTLIST s t a r tL ev e l name IDREF #REQUIRED>
< !ATTLIST s t a r tL ev e l l e v e l CDATA #REQUIRED>

activity level of the gene product. The attribute level of this element time specifies the

activity level of the gene product for which the specified value is used. For example,

an up time of 5 for the level 1 specifies that the delay to switch the gene product from

the level 5 to the level 6 is of 5 time units.

A gene can have several regulation elements, where the from attribute is the regulator

name, the sign attribute (“+” or “-”) specifies whether the regulation is an activation

or an inhibition, and where the threshold of the regulation is specified in the threshold

attribute.

Note that the value specified for the maximum activity level of a product is arbitrary,

but the Thomas’s formalism requires normally minimal numbers of activity level.

Each logical parameter for a gene is specified in the gene by an element set and is

constituted of resource elements where the attribute name is a name of a gene regulator.
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The attribute inv of a resource inverse the resource and is used only with the boolean

elements (see after). The attribute targetLevel of a set specifies the target level of the

gene product when the resources of the set are present.

The logical parameters can also be generated by specifying the attribute targetLevel in

the regulations or by using the boolean elements (and and or elements). In the former

case, a logical parameter is created only for the resource of the regulation. In the latter

case, it is possible to construct a logical formula over the resource identified by the

name of the element resource. The target level of the logical parameters created from

this formula is the value of the targetLevel attribute of the first boolean element (the

one which contains the others). The inv attribute of a boolean element, if set to 1, act

as a NOT over the boolean result of the element, as the normal rules of the logic. For

example ¬(R1 ∧ (R2 ∨ ¬R3)) = (¬R1 ∨ (¬R2 ∧ R3)), where Rx is a resource and ¬Rx
denotes the absence of the resource. To specify the absence of a resource, the attribute

inv of the element resource can be set to the value 1.

To specify for a gene product a start activity level different from 0, one can use the

element startLevel with the name of the gene and the desired start level.

At last, two tricks: to specify a target level which is the maximum of the gene product,

use “max”, and to specify an infinite time value, use “oo”.

B.2.2 IKNAT approach and new approach

The IKNAT and new approaches share the same DTD. This DTD is similar in several

points in its syntax and in its semantic to the DTD of the timed-boolean approach. So,

only the parts which differ are described here.

The first difference is that the time is specified in the gene element only for values

resulting from the summation of its degradation and its basal activity level (the 1/α′

values). The time values specifying the effect of the regulations (the 1/β′ values) are

specified in the same time element as for the gene but in the regulation elements. Note

that as all the values are positive, the model-builder changes itself their sign according

to the type of their regulation (for the 1/β′ values) and their position relative to the

target concentration level (for the 1/α′ values).

The second difference is related to the threshold attribute in regulations. This one

is used only if the regulation is in a boolean element (or element or and element).

However, it is also used to configure the default value of the regulation times to the

infinity value if the level of the regulator is under the threshold.
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IKNAT.dtd and new.dtd
< !ELEMENT network ( gene+, s t a r tL ev e l ∗) >
< !ATTLIST network defaultMaxLevel CDATA ”1”>

< !ELEMENT gene ( time | r e gu l a t i on | and | or )∗>
< !ATTLIST gene name ID #REQUIRED>

< !ATTLIST gene ta rg e tLeve l CDATA ”0”>
< !ATTLIST gene maxLevel CDATA #IMPLIED>
< !ATTLIST gene dTime CDATA ”1”>
< !ATTLIST gene dMinTime CDATA #IMPLIED>
< !ATTLIST gene dMaxTime CDATA #IMPLIED>

< !ELEMENT time EMPTY>
< !ATTLIST time l e v e l CDATA #REQUIRED>
< !ATTLIST time value CDATA ”1”>
< !ATTLIST time minValue CDATA #IMPLIED>
< !ATTLIST time maxValue CDATA #IMPLIED>

< !ELEMENT r e gu l a t i on ( time ∗)>
< !ATTLIST r e gu l a t i on from IDREF #REQUIRED >
< !ATTLIST r e gu l a t i on s i gn CDATA ”+”>
< !ATTLIST r e gu l a t i on thre sho ld CDATA ”1”>
< !ATTLIST r e gu l a t i on dTime CDATA ”1”>
< !ATTLIST r e gu l a t i on dMinTime CDATA #IMPLIED>
< !ATTLIST r e gu l a t i on dMaxTime CDATA #IMPLIED>

< !ELEMENT and ( r e gu l a t i on | and | or)+>
< !ATTLIST and s ign CDATA ”+”>
< !ATTLIST and inv CDATA ”0”>
< !ATTLIST and time CDATA ”1”>
< !ATTLIST and minTime CDATA #IMPLIED>
< !ATTLIST and maxTime CDATA #IMPLIED>

< !ELEMENT or ( r e gu l a t i on | and | or)+>
< !ATTLIST or s i gn CDATA ”+”>
< !ATTLIST or inv CDATA ”0”>
< !ATTLIST or time CDATA ”1”>
< !ATTLIST or minTime CDATA #IMPLIED>
< !ATTLIST or maxTime CDATA #IMPLIED>

< !ELEMENT s t a r tL ev e l EMPTY>
< !ATTLIST s t a r tL ev e l name IDREF #REQUIRED>
< !ATTLIST s t a r tL ev e l l e v e l CDATA #REQUIRED>

The last difference is that here the and and or elements are not used to configure

logical parameters with a corresponding formula but they are used to specify boolean

gates. Each boolean element directly nested in a gene element represent a boolean

gate. The effect of a boolean gate (1/β) is specified by the attributes time, maxTime

and minTime, the last two being for an interval. The attribute sign of a gate is used

to define the kind of effect associated with the gate. To refine the boolean formula of

a gate, some additional boolean elements can be defined inside a gate element in an

imbricated structure. Note that for these imbricated boolean elements, the attribute

time and sign have not to be specified. Finally, the attribute inv of a boolean element

can be used to inverse the boolean result of the element.

The only word not allowed in the names of the genes is here the word “level”. Note

that here the target level of a gene means the basal concentration level of its product.
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B.3 Uppaal assertions

There are currently two kinds of properties easily specifiable in the assertions (or re-

quests) for the Uppaal model checker: properties over the concentration (activity) level

of gene products and properties over the absolute time.

Concentration level properties

The concentration level of each gene product is accessible in each approach by an

integer variable whose name is the same as the gene name. With the IKNAT and new

approaches, it is also possible to use the locations dedicated to the concentration levels

of each gene product. Such locations are accessible by “species NAME.level i” where

NAME is the name of a gene and i is a number of concentration level. But there is no

advantage to use these locations since there are not the only activated in their process

and since we cannot specify binary comparisons (≤,≥,=, ...) over them.

Absolute time properties

The properties on the absolute time are only available by launching the model-builder

with the option ref which creates automatically a never reset clock as a reference point.

The name of this clock is “globalTime”. Because the clock is never reset, it increases

the size of the state space since two states need to have the same value for the clock to

be considered equal. The reduction clock optimization of Uppaal can prevent this, but

not with certain assertions referring the clock. With such assertions, it is inadvisable

to refer the clock in them if they require the exploration of a big part of the state space,

the risk being to get an endless exploration of an infinite state space.

Examples

- [E<> X > 5 && globalTime > 1000] states that it is possible that the concen-

tration level of X is bigger than 5 after the time 1000.

- [A[] X > 5 && Y = 0 ] states that the concentration level of X is always over

5 and Y is always absent.

- [A[] (X > 0 && Y = 0) || (X = 0 && Y > 0)] states that both X and Y are

never present simultaneously.
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- [(X > 0 && Y = 0) --> (X = 0 && Y > 0) && (X = 0 && Y > 0) -- >

(X > 0 && Y = 0)] states that there is an infinite cycle between the situation

where X is present and not Y, and the situation where it is the reverse.

From these examples, we can see that it is possible to inquire a GRN with assertions

about several properties like the presence of cycles, the bi-stability, ...

B.4 Model-builder arguments

In this section are described the arguments specified to launch the model-builder, with

first the arguments which are the same for the three approaches, and after the particular

arguments of each approach. The italic value after the name of an argument is the

default value of the argument. An argument with a default value is not mandatory.

Arguments for all approaches

source The path of the GRN XML file.

query query.q The path of the file where the assertion for Uppaal is saved.

verifyta verifyta.exe The path of the Verifyta executable. If the frozen option is
used, Verifyta has to be the version for Uppaal 4.1.

model Specifies the model to create. Set 0 for the timed-boolean
model, 1 for the IKNAT model, 2 for the new model, or any
combination of these numbers (e.g., “12” launch the model-
builder for the IKNAT model and the new model).

todo 0 Specifies what to do. Set 1 to generate the Uppaal automa-
ton, 2 to proceed the automaton in Verifyta, 0 to do both.

ref 1 If set to 1, a never reset clock globalTime is created to be
used as a reference in the assertion.

block 0 If set to a value x bigger than 0 and if ref is set to 1, creates
a deadlock on the automata when the globalTime clock is
equal to x.

nb 1 Specifies the number of runs of the model checker on the
model (to test the performance or to get more than one
trace).

keep 231-1 Specifies the maximum time value of the events retained
from the trace returned by Verifyta.
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comp 0 If set to 1, the time gaps in the trajectories are filled (for
each time unit, there is a tuple for it in the trajectory file).

until 1 If the time of the last point in the trajectories (see Section
Result) is lower than this value, an extrapolated point is
created to reach this value. The value specified has to be
used consistently with the assertion to avoid an incorrect
extrapolation. If the globalTime is not used (ref = 0), this
option is inadvisable.

trace 1 If set to 1, a trace is asked to Verifyta and, if Verifyta returns
a trace, a trajectory file is generated from this one.

show 0 If set to 1, and if trace is set to 1, MATLAB is launched
automatically to show the trajectories generated from the
traces. The libraries of MATLAB has to be installed for
this option.

print 0 If set to 1, a textual summary of the loaded GRN is printed
in the console.

o 2 Indicates the search order followed by Verifyta. 0 for breadth
first, 1 for depth first, or 2 for random depth first.

Argument for the timed-boolean approach

mode 1 Specifies the mode used to deal with the improper change of
activity levels : 0 for normal, 1 for urgent, 2 for overriding.

Arguments for the IKNAT approach

stability 1 Set to 1 to improve the stability of the gene products in the
extreme concentration levels.

limClock 0 When set to a value x bigger than 0, the clocks are con-
stantly reset after x units of time when they are not used in
the species activity processes and in the reaction processes
(inefficient option).

Arguments for the new approach

noTab 1 Set to 1 to do not compute the delays in the model-builder
but to compute the delays on-the-fly in Verifyta.
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slow 1 If set to a value bigger than 1, slows down the time to keep
a better accuracy when the delays are computed and dis-
cretized.

scaleUp 1000 If noTab is 1, sets the value of the upscaling factor used for
the calculation of the delays in Verifyta. Has to be set to a
value equal or bigger than 1.

bestRound 0 If set to 1, and if noTab is set to 0, makes the best round
in the model-builder when it rounds real values in integer
values. This option uses the floor or ceiling rounding ac-
cording to the type of rounded bound (min or max). Since
a minimum bound is rounded to x while the upper bound is
rounded to x+1, it can entail the creation of small intervals
where none are expected .

zeno 0 Set to 0 to prevent Zeno-behavior in the automaton. If set
to 0, all the lower bounds of delays equal to 0 are set to 1
(with a shift of the upper bounds to the value 1 if necessary).
If set to 1, only the upper bounds of delays equal to 0 are
set to 1.

frozen 0 Set to 1 to use the variant with stopwatches.

B.5 Results

The result coming from Uppaal for a model and a given assertion is, yes, no or maybe

(only with the argument frozen for the new approach). Besides this result, some infor-

mation about the time and number of explored and stored states are displayed in the

console (for each occurrence and the average when several runs are done, see argument

nb).

When a trace is returned by Verifyta, it can be parsed (option trace) and the trajectories

of the gene products are saved in a file with a .fin as extension. This file consists of a

header line with the word “Time” followed by the name of the genes. After this, each

line contains a tuple with a time value followed by the relative concentration levels of

the products.

Time X Y Z
0 0 .0 0 .0 0 .0
10 1 .0 0 .0 0 .0
13 1 .0 0 .0 0.16666667
14 1 .0 0.16666667 0.16666667
16 1 .0 0.16666667 0.33333334
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18 1 .0 0.33333334 0.33333334
19 1 .0 0.33333334 0 .5
22 1 .0 0 .5 0.6666667
25 1 .0 0 .5 0.6666667
26 1 .0 0 .5 0.6666667
29 1 .0 0 .5 0.8333333
30 1 .0 0.6666667 0.8333333

Listing B.1: The beginning of a results file for a GRN with three genes: X, Y, and Z.

Note that such trajectories cannot be generated with liveness assertions including the

lead to operator (−− >). Indeed, Verifyta on such assertions can only provide symbolic

traces. A symbolic trace is a trace which stands for several concrete traces. In symbolic

traces, the values of the clocks are represented with inequality formulae. The parsing

of these inequalities to retrieve the evolution of the clocks is very complicated and was

not implemented. Note also that the presence of traces is conditioned by the temporal

quantifier used. For example, A[] entails only a trace if a counter example to the checked

assertion is found.

From such listings of trajectories, with the option show it is possible to generate directly

a graph with MATLAB if this last is available.

B.6 Implementation

In this section, some aspects of the implementation are briefly described. These aspects

are the class structure and the interactions between the model-builder and Verifyta.

B.6.1 Inheritance and implementation class diagrams

The implementation of the model checker is done in Java 1.6. Since all models manip-

ulate a common structure of genes and relations, there is an strong usage of abstract

classes and interfaces with, from them, many implementation and inheritance links.

The common part of the three approaches is implemented in a package Model. The

content of this package is, for the important part, the following:

- The abstract class Model to define the primitive operation that all approaches

have to provide (create the time automaton, print a summary of a loaded GRN

in the console, parse the result of a trace, ...).

- The abstract classes Gene and Regulation to store and to handle the correspond-

ing element of a GRN.
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- The abstract classes Genes and Regulations, extending the class ArrayList, to

store and handle all the objects Gene and Regulation of the GRN.

- The abstract class Gate to store and handle a GRN gate.

- The interface Node and Link which are implemented by, respectively, the Gene

and Gate classes and by the Gate and Link classes. These interfaces are imple-

mented by classes employed in some algorithms which need to store and browse

objects of the different types.

For each approach, a dedicated package is created for its classes. These packages inherit

and implements massively the classes and interfaces of the Model package. Figure B.2

shows the inheritance and implementation links for the NEW and IKNAT packages.

Figure B.3 shows the inheritance and implementation links for the timed-boolean ap-

proach (boolMod package). In these packages, several intermediate classes refining and

implementing the Gate class can be used depending on the needs of the approaches.

Note that to avoid the casting of the objects in these inheriting classes, we massively

make use of the class parametrization allowed since Java 1.5.

Note that the previous class diagrams give the most important part of the class structure

for the three approaches, although there are other classes unmentioned and dedicated

to the algorithms creating the automata.

B.6.2 Interactions between the model-builder and Verifyta

This section details the interactions between the model-builder and the model checker

of Uppaal which is Verifyta.

Creation of the Uppaal file

Each automaton submitted to Verifyta has to be stored in an XML file respecting a

specific DTD. Therefore, the first step of the interaction begins with the creation of the

XML file describing the timed automaton to be processed. To generate the automaton

and then its XML file, a package uppaal is used (Figure B.4). This package contains

classes to represent, each, an important elements in the DTD. For each of these classes,

some operations are provided to handle them and to handle their contents. Once a

timed automaton is defined, a simple operation can save it in an XML file with respect

to the DTD.
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Figure B.2: A class diagram for the implementation and inheritance links of the IKNAT
and NEW packages with the Model package.
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Figure B.3: A class diagram for the implementation and inheritance links of the boolMod
package with the Model and uppaal packages.
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Figure B.4: The main part of the uppaal package.

Verifyta command line

Once the file of an automaton is created, the model-builder can call Verifyta. The

command line used in Windows is the following:

v e r i f y t a . exe −oX −t0 −u timedAutomatonFile queryF i l e

Listing B.2: Verifyta command line

where

- oX specifies, with the number X, the order of the search in the state space of the

automaton (see Section B.4, argument o).

- t0 requests the generation of a trace (not the shortest (t1) or the fastest (t2)).

- u induces the printing in the console of some information about the number of

explored and stored states.

- timedAutomatonFile is the address of the file containing a description of the

timed automaton to be processed.

- queryFile is the address of the file with the assertion for Verifyta.

Note that since nothing about the trace format is specified, Verifyta provides by default

a concrete trace (and not a symbolic trace).

Verifyta traces

There are two ways to get back a trace from Verifyta. The first way uses the argument

-f to make Verifyta store the trace in a file. However, the trace stored in the file is
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in an unusable numerical format. This format is dedicated to be loaded in the GUI

of Uppaal. To convert the numerical trace into a textual trace, it is necessary to use

a software called Tracer (provided with Uppaal). But to make the conversion, the

Tracer requires a compiled version of the automaton associated with the trace. This

compiled version of the automaton can be generated by Verifyta if the environment

variable UPPAAL COMPILE ONLY is initialized before. Once this step is done, it

is finally possible to convert the numerical trace into a textual trace with the Tracer.

This method to get the trace has however a disadvantage: the only traces available

at the end of the process are symbolic traces which are very difficult to parse when

time intervals are specified in the approach. This difficulty come from the fact that the

temporal information are saved symbolically as a result of inequalities with the clocks.

The second way to get back the trace is the only available to get a concrete trace. This

method does not use the argument -f. In such a case, a textual trace is printed directly

on the error stream of Verifyta with in preamble the sentence “Showing example trace.”.

This sentence is used to detect the beginning of the trace and to redirect then the error

stream in a file. Afterwards, this file can be parsed following the specificity of each

approach.

S t a t e : spec i e s X . begin s p e c i e s x . begin spec i e s Y . begin s p e c i e s y . begin spec i e s A . l e v e l 0 X =
0 x = 0 Y = 0 y = 0 A = 0 spec i e s X . up = 0 spec i e s X . down = 0 spec i e s X . both = 0
spec i e s X .minUp = 0 spec i e s X .maxUp = 0 spec i e s X .minDown = 0 spec i e s X .maxDown = 0
sp e c i e s x . up = 0 sp e c i e s x . down = 0 sp e c i e s x . both = 0 sp e c i e s x .minUp = 0 sp e c i e s x .
maxUp = 0 sp e c i e s x .minDown = 0 sp e c i e s x .maxDown = 0 spec i e s Y . up = 0 spec i e s Y . down = 0
spec i e s Y . both = 0 spec i e s Y .minUp = 0 spec i e s Y .maxUp = 0 spec i e s Y .minDown = 0

spec i e s Y .maxDown = 0 sp e c i e s y . up = 0 sp e c i e s y . down = 0 sp e c i e s y . both = 1 sp e c i e s y .
minUp = 0 sp e c i e s y .maxUp = 0 sp e c i e s y .minDown = 22 s p e c i e s y .maxDown = 28 spec i e s A . up
= 50000000 spec i e s A . down = 50000000 spec i e s A . both = 0 spec i e s A .minUp = 0 spec i e s A .
maxUp = 0 spec i e s A .minDown = 0 spec i e s A .maxDown = 0 t (0)−globalTime<=0 t (0)−spec i e s X .
cUp<=0 t (0)−spec i e s X . cDown<=0 t (0)−s p e c i e s x . cUp<=0 t (0)−s p e c i e s x . cDown<=0 t (0)−
spec i e s Y . cUp<=0 t (0)−spec i e s Y . cDown<=0 t (0)−s p e c i e s y . cUp<=0 t (0)−s p e c i e s y . cDown<=0 t
(0)−spec i e s A . cUp<=0 t (0)−spec i e s A . cDown<=0 globalTime−spec i e s X . cUp<=0 spec i e s X . cUp−
spec i e s X . cDown<=0 spec i e s X . cDown−s p e c i e s x . cUp<=0 sp e c i e s x . cUp−s p e c i e s x . cDown<=0
sp e c i e s x . cDown−spec i e s Y . cUp<=0 spec i e s Y . cUp−spec i e s Y . cDown<=0 spec i e s Y . cDown−
s p e c i e s y . cUp<=0 sp e c i e s y . cUp−s p e c i e s y . cDown<=0 sp e c i e s y . cDown−spec i e s A . cUp<=0
spec i e s A . cUp−spec i e s A . cDown<=0 spec i e s A . cDown−t (0 )<=0

Tran s i t i on : s p e c i e s x . begin −> s p e c i e s x . l e v e l 0 {x == 0 ; 0 ; r e s e tA l l (0 ) ;}

S t a t e : spec i e s X . begin s p e c i e s x . l e v e l 0 spec i e s Y . begin s p e c i e s y . begin spec i e s A . l e v e l 0 X
= 0 x = 0 Y = 0 y = 0 A = 0 spec i e s X . up = 0 spec i e s X . down = 0 spec i e s X . both = 1
spec i e s X .minUp = 0 spec i e s X .maxUp = 0 spec i e s X .minDown = 45 spec i e s X .maxDown = 55
sp e c i e s x . up = 50000000 s p e c i e s x . down = 50000000 s p e c i e s x . both = 0 sp e c i e s x .minUp = 0
sp e c i e s x .maxUp = 0 sp e c i e s x .minDown = 0 sp e c i e s x .maxDown = 0 spec i e s Y . up = 0
spec i e s Y . down = 0 spec i e s Y . both = 0 spec i e s Y .minUp = 0 spec i e s Y .maxUp = 0 spec i e s Y .
minDown = 0 spec i e s Y .maxDown = 0 sp e c i e s y . up = 0 sp e c i e s y . down = 0 sp e c i e s y . both = 1
sp e c i e s y .minUp = 0 sp e c i e s y .maxUp = 0 sp e c i e s y .minDown = 22 s p e c i e s y .maxDown = 28
spec i e s A . up = 50000000 spec i e s A . down = 50000000 spec i e s A . both = 0 spec i e s A .minUp = 0
spec i e s A .maxUp = 0 spec i e s A .minDown = 0 spec i e s A .maxDown = 0 t (0)−globalTime<=0 t (0)−
spec i e s X . cUp<=0 t (0)−spec i e s X . cDown<=0 t (0)−s p e c i e s x . cUp<=0 t (0)−s p e c i e s x . cDown<=0 t
(0)−spec i e s Y . cUp<=0 t (0)−spec i e s Y . cDown<=0 t (0)−s p e c i e s y . cUp<=0 t (0)−s p e c i e s y . cDown
<=0 t (0)−spec i e s A . cUp<=0 t (0)−spec i e s A . cDown<=0 globalTime−spec i e s X . cUp<=0 spec i e s X .
cUp−spec i e s X . cDown<=0 spec i e s X . cDown−s p e c i e s x . cUp<=0 sp e c i e s x . cUp−s p e c i e s x . cDown<=0
sp e c i e s x . cDown−spec i e s Y . cUp<=0 spec i e s Y . cUp−spec i e s Y . cDown<=0 spec i e s Y . cDown−
s p e c i e s y . cUp<=0 sp e c i e s y . cUp−s p e c i e s y . cDown<=0 sp e c i e s y . cDown−spec i e s A . cUp<=0
spec i e s A . cUp−spec i e s A . cDown<=0 spec i e s A . cDown−t (0 )<=0

Listing B.3: Part of a symbolic trace given by Verifyta. The trace is generated with the
new approach (on-the-fly variant without stopwatch) and with the GRN GM2∗10 of the
performance case study (Section 7.5).
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S t a t e :
( spec i e s X . l e v e l 0 s p e c i e s x . l e v e l 0 spec i e s Y . begin s p e c i e s y . l e v e l 0 spec i e s A . l e v e l 0 )
globalTime=0 spec i e s X . cUp=0 spec i e s X . cDown=0 sp e c i e s x . cUp=0 sp e c i e s x . cDown=0 spec i e s Y .

cUp=0 spec i e s Y . cDown=0 sp e c i e s y . cUp=0 sp e c i e s y . cDown=0 spec i e s A . cUp=0 spec i e s A . cDown
=0 spec i e s X . up=0 spec i e s X . down=0 spec i e s X . both=0 spec i e s X .minUp=50000000 spec i e s X .
maxUp=50000000 spec i e s X .minDown=50000000 spec i e s X .maxDown=50000000 s p e c i e s x . up=1
sp e c i e s x . down=0 sp e c i e s x . both=0 sp e c i e s x .minUp=45 sp e c i e s x .maxUp=55 sp e c i e s x .minDown
=50000000 s p e c i e s x .maxDown=50000000 spec i e s Y . up=0 spec i e s Y . down=0 spec i e s Y . both=0
spec i e s Y .minUp=0 spec i e s Y .maxUp=0 spec i e s Y .minDown=0 spec i e s Y .maxDown=0 sp e c i e s y . up
=1 sp e c i e s y . down=0 sp e c i e s y . both=0 sp e c i e s y .minUp=31 sp e c i e s y .maxUp=40 sp e c i e s y .
minDown=50000000 s p e c i e s y .maxDown=50000000 spec i e s A . up=1 spec i e s A . down=0 spec i e s A .
both=0 spec i e s A .minUp=22 spec i e s A .maxUp=28 spec i e s A .minDown=50000000 spec i e s A .maxDown
=50000000

Tran s i t i o n s :
spec i e s Y . begin−>spec i e s Y . l e v e l 0 { Y == 0 , tau , r e s e tA l l (0 ) }

S t a t e :
( spec i e s X . l e v e l 0 s p e c i e s x . l e v e l 0 spec i e s Y . l e v e l 0 s p e c i e s y . l e v e l 0 spec i e s A . l e v e l 0 )
globalTime=0 spec i e s X . cUp=0 spec i e s X . cDown=0 sp e c i e s x . cUp=0 sp e c i e s x . cDown=0 spec i e s Y .

cUp=0 spec i e s Y . cDown=0 sp e c i e s y . cUp=0 sp e c i e s y . cDown=0 spec i e s A . cUp=0 spec i e s A . cDown
=0 spec i e s X . up=0 spec i e s X . down=0 spec i e s X . both=0 spec i e s X .minUp=50000000 spec i e s X .
maxUp=50000000 spec i e s X .minDown=50000000 spec i e s X .maxDown=50000000 s p e c i e s x . up=1
sp e c i e s x . down=0 sp e c i e s x . both=0 sp e c i e s x .minUp=45 sp e c i e s x .maxUp=55 sp e c i e s x .minDown
=50000000 s p e c i e s x .maxDown=50000000 spec i e s Y . up=0 spec i e s Y . down=0 spec i e s Y . both=0
spec i e s Y .minUp=50000000 spec i e s Y .maxUp=50000000 spec i e s Y .minDown=50000000 spec i e s Y .
maxDown=50000000 s p e c i e s y . up=1 sp e c i e s y . down=0 sp e c i e s y . both=0 sp e c i e s y .minUp=31
sp e c i e s y .maxUp=40 sp e c i e s y .minDown=50000000 s p e c i e s y .maxDown=50000000 spec i e s A . up=1
spec i e s A . down=0 spec i e s A . both=0 spec i e s A .minUp=22 spec i e s A .maxUp=28 spec i e s A .minDown
=50000000 spec i e s A .maxDown=50000000

Delay: 22

Listing B.4: Part of a concrete trace given by Verifyta. The trace is generated with
the new approach (on-the-fly variant without stopwatch) and with the GRN GM2∗10 of the
performance case study (Section 7.5). Note here the line “Delay ...” which gives a concrete
information about the time evolution.

Note that the generation and parsing of large traces can require a certain time.
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Modeling approach summary

Delay calculation variants

Pre-
calculation

Principle - For each configuration of the regulators of each gene, the delays
are pre-computed in the model-builder and stored in arrays.

Advantage - Best precision with use of real number for the calculation.

Drawbacks -
-

Delays computed for configuration which are never reached.
Generate exponential arrays.

On-the-fly
calculation

Principle - The parameters are upscaled to allow the calculation of the
delays directly in Uppaal.

Advantage - Only the used delays are computed.

Drawbacks -
-
-

Less precise.
Computation could slow down the model checker.
A delay can be computed several times since it is not stored.

Clock variants

With
stopwatches

Principles - The clocks of the timed model are implemented directly in the
automata with stopwatches and clock differences.

Advantage - The timed model is simulated perfectly.

Drawbacks -

-

The stopwatches affect the decidability of the reachability
problem.
Only available with an unstable development version of Up-
paal.

Without
stopwatches

Principles - The clocks of the timed model are simulated without stopwatch
and difference. Instead, they are reset when there is a change
of direction in the evolution of the product concentration level.

Advantage - The decidability of the reachability problem is preserved.

Drawback - The product history inside a concentration level is not handled.

Table C.1: A summary of the different variants existing for the new approach.

124



Characteristic Timed-boolean approach Extended IKNAT approach New approach

Model implemented Thomas’s model extended with
time

Timed model Timed model

Constant reactivity Yes No No

Gene product concentration Activity level Concentration level Concentration level

History in one conc./act. level No managed Managed Managed with the stopwatch variant

Delay intervals Yes Yes Yes

Maximal conc./act. level Depending of the outgoing reg-
ulations for each gene

Arbitrary for each gene Arbitrary for each gene

Non-zero basal conc./act. level Yes Yes Yes

Boolean regulations Yes Yes Yes

Multi-effect regulations No (but possible by extension) Yes Yes

Boolean gates Yes Yes Yes

SUM gates No Yes (default gate) Yes (default gate)

MULT gates No No No (technically possible, semantically
to be adapted)

Hight level structures used in
the automata

Nothing (or, for another imple-
mentation: templates, broad-
cast channels)

Arrays, templates, channels
and broadcast channels, logical
statements.

Arrays, templates, broadcast channels,
logical statements, function. With the
stopwatch variant : stopwatches, clock
differences.

Number of processes One (one per gene) Two per gene, one per regula-
tion, one per boolean gate

One per gene.

Building complexity Exponential with the number of
genes and their number of activ-
ity levels (linear)

Linear Linear for the on-the-fly calculation
variant. Exponential for the pre-
calculation variant according to the
number of regulators for a gene.

Table C.2: A summary of the different approaches according to certain characteristics.
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Glossary

CFFL Coherent Feed Forward Loop; one of
the FFL motifs which can filter the
expression or the non-expression of
a gene following the duration of the
presence or absence of a regulator.

FFL Feed Forward Loop; a GRN motif
with several variants. Following the
variant, the motif can bring a resis-
tance against regulators whose the
presence or absence is only transient.

GRN Gene Regulatory Network; network
of interactions between genes to
achieve a given goal or a given
metabolism.

IFFL Incoherent Feed Forward Loop; one
of the FFL motifs which produces a
brief pulse of expression for a gene.

ISN Interacting Signaling Network; net-
work of chemical interactions in cells
used to collect and convey the infor-
mation about the environment of the
cells or about the other cells.

ODE Ordinary Differential Equation;
equation which described the evo-
lution of a variable according to the
current state of some variables. A
set of ordinary differential equations
can be used to describe the evolution
of a GRN according to its current
state.

XML A data format dedicated to the trans-
port and the storing of information.
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