
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Game theory based web services collaborative mechanism

Clacens, Kathleen; Goffart, Christophe

Award date:
2011

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 18. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/71537235-ded0-42ff-80ba-43cc8d86a20e

Facultés Universitaires Notre-Dame de la Paix
Faculté d’Informatique

Année académique 2010 - 2011

Game theory based web services
collaborative mechanism

Clacens Kathleen - Goffart Christophe

Master thesis submitted in partial fulfillment of the requirements for the degree of
Master in Computer Sciences.

II

III

Acknowledgement
At first, we would like to thank all teachers and colleagues that allowed us to ac-
quire the knowledge and abilities required for this work that we gathered during
our five-year cursus at the University of Namur.

We would like to thank our supervisors Philippe Thiran (Facultés Universi-
taires Notre Dame De la Paix - Namur) and Jamal Bentahar (Concordia Uni-
versity - Montreal), as well as Babak Khosravifar for their precious advice and
support while writing this thesis.

We would also like to thank Magali Piette for the proofreading of our work,
although we take full responsibility for potential subsisting spelling mistakes.

Then, we would like to thank our family and friends for the support they gave
us.

To conclude, we would like to thank our readers and thesis jury for the interest
they manifest.

IV

V

Abstract
The reputation of communities of web services mainly depends on their web ser-
vices’ reputation. Masters of these communities have responsibility to choose
which web services will join them, they consequently have to check their reputa-
tion. They cannot ask for this information directly to web services but they can
request it from third parties called information services.
Communities pay information services to get information, but web services with
a bad reputation can also pay them to lie about their reputation in order to be
accepted in communities. In such cases, information services have two choices :
on one hand they can tell the truth and not receive reward from web services, on
the other hand they can lie and loose the trust communities had placed in them.
By means of a decision analysis using game theory and a simulation tool, we look
for a mechanism ensuring information services honesty.

Key words: web services, web services communities, reputation, trust, in-
formation services, game theory

Résumé
La réputation des communautés de services web dépend entre autres de la réputation
des services web qui les composent. Les mâıtres de ces communautés ayant la
responsabilité de choisir quels services web vont en faire partie, ils se doivent de
connâıtre leur réputation. Ils ne peuvent directement demander cette information
aux services web mais peuvent se renseigner auprès d’organismes tiers nommés
services d’information.
Les communautés de services web paient les services d’information pour obtenir
ces données. De leur côté, les services web ayant une mauvaise réputation peu-
vent les payer pour qu’ils mentent sur cette dernière dans le but d’être acceptés
par les communautés. Les services d’information ont dans de tels cas deux choix
: dire la vérité et ne pas recevoir de rémunération de la part des services web, ou
mentir et perdre la confiance des communautés.
Au moyen d’une analyse de décision utilisant la théorie des jeux et d’un outil de
simulation, nous recherchons un mécanisme permettant d’assurer l’honnêteté des
services d’information.

Mots-clés : services web communautés de services web, réputation, confi-
ance, services d’informations, théorie des jeux

VI

VII

Contents

1 Introduction 1
1.1 Problem and motivation . 4
1.2 Methodology . 9

2 Preliminaries 11
2.1 Web services and communities . 12

2.1.1 Web service . 12
2.1.2 Community of web services 14

2.2 Reputation and trust . 15
2.2.1 Reputation of web services 15
2.2.2 Reputation of communities of web services 16
2.2.3 Reputation-based architecture 17
2.2.4 Trust . 17

3 Resolution technique : game theory 21
3.1 Theory presentation . 23

3.1.1 Examples . 23
3.2 Basic concepts . 24

3.2.1 Payoff function . 24
3.2.2 Game analogy . 25
3.2.3 Strategic game with ordinal preferences 25
3.2.4 Best response function . 26

3.3 Nash Equilibrium . 27
3.3.1 Introducing new examples 27
3.3.2 Domination . 29
3.3.3 Nash equilibrium . 29
3.3.4 Examples’ Nash equilibria 30

VIII

3.3.5 Strict and non-strict Nash equilibrium 31
3.3.6 Nash equilibrium and best response function 31
3.3.7 Nash equilibrium and domination 32

3.4 Pareto efficiency . 32

4 Sound web services collaborative mechanism 35
4.1 Problem definition . 37

4.1.1 Modeling . 39
4.2 Solution modeling . 41
4.3 Environment entities . 41

4.3.1 Communities of web services 41
4.3.2 Web services . 42
4.3.3 Information services . 42

4.4 Payments . 43
4.4.1 Community payments . 43
4.4.2 Web services payment . 46

4.5 Trust evolution . 46
4.6 Game theory study . 48

4.6.1 Types of games . 48
4.7 Cases overview . 48

4.7.1 Honest single web services 49
4.7.2 Dishonest single web services 52

4.8 Introduction of the trust value into the choice process 55

5 Simulation tools 59
5.1 Context and existing tools . 60
5.2 Tool presentation . 61

5.2.1 Environment and entities 61
5.2.2 Rewards and incentives . 62
5.2.3 User interface . 62
5.2.4 Results . 63

6 Simulation results 65
6.1 Test environments . 67
6.2 Test environments synthesis . 89
6.3 Results analysis . 90
6.4 Conclusion . 112

6.4.1 Results comparison . 112
6.4.2 Final observations . 117

7 Conclusion 119

8 Limitations and future works 123

IX

A Simulation tool - technical presentation 125
A.1 Simulation choices . 127

A.1.1 modeling . 127
A.1.2 Implementation choices . 129

A.2 Entities overview . 129
A.2.1 Web service . 129
A.2.2 Community of web services 131
A.2.3 Information service . 132

A.3 Architecture . 133
A.4 Simulation dynamic . 137

A.4.1 Web service . 137
A.4.2 Community of web services 137
A.4.3 Information service . 138

A.5 Screens overview . 139
A.5.1 Configuration - Entities 139
A.5.2 Configuration - Rewards 141
A.5.3 Results - QoS repartition 143
A.5.4 Results - Truth/Lie ratio 145
A.5.5 Results - Trust average . 147
A.5.6 Results - Evolution of the trust average 149
A.5.7 Results - Community repartition 151

X

LIST OF FIGURES XI

List of Figures

2.1 Web services’ usage actors . 12
2.2 Web services’ usage protocols . 13
2.3 Architecture of reputation-based Web services communities 18

4.1 Model architecture . 39
4.2 β function . 45
4.3 γ function . 46
4.4 τ function . 48

5.1 User interface - Entities configuration 63
5.2 User interface - Rewards and incentive configuration 64
5.3 User interface - Results . 64

6.1 Environment 1 - β function . 69
6.2 Environment 1 - γ function . 69
6.3 Environment 1 - Trust update function 70
6.4 Environment 2 - β function . 72
6.5 Environment 2 - γ function . 72
6.6 Environment 2 - Trust update function 73
6.7 Environment 3 - β function . 75
6.8 Environment 3 - γ function . 75
6.9 Environment 3 - Trust update function 76
6.10 Environment 4 - β function . 78
6.11 Environment 4 - γ function . 78
6.12 Environment 4 - Trust update function 79
6.13 Environment 5 - β function . 81
6.14 Environment 5 - γ function . 81
6.15 Environment 5 - Trust update function 82

XII LIST OF FIGURES

6.16 Environment 6 - β function . 84
6.17 Environment 6 - γ function . 84
6.18 Environment 6 - Trust update function 85
6.19 Environment 7 - β function . 87
6.20 Environment 7 - γ function . 87
6.21 Environment 7 - Trust update function 88
6.22 Environment 1 - Community repartition 91
6.23 Environment 1 - Trust evolution 92
6.24 Environment 1 - Trust . 93
6.25 Environment 1 - Truth/Lie ratio 93
6.26 Environment 2 - Community repartition 94
6.27 Environment 2 - Trust evolution 95
6.28 Environment 2 - Trust . 95
6.29 Environment 2- Truth/Lie ratio 96
6.30 Environment 3 - Community repartition 97
6.31 Environment 3 - Trust evolution 98
6.32 Environment 3 - Trust . 99
6.33 Environment 3 - Truth/Lie ratio 99
6.34 Environment 4 - Community repartition 100
6.35 Environment 4 - Trust evolution 101
6.36 Environment 4 - Trust . 102
6.37 Environment 4 - Truth/Lie ratio 102
6.38 Environment 5 - Community repartition 103
6.39 Environment 5 - Trust evolution 104
6.40 Environment 5 - Trust . 105
6.41 Environment 5 - Truth/Lie ratio 105
6.42 Environment 6- Community repartition 106
6.43 Environment 6 - Trust evolution 107
6.44 Environment 6 - Trust . 108
6.45 Environment 6 - Truth/Lie ratio 108
6.46 Environment 7 - Community repartition 109
6.47 Environment 7 - Trust evolution 110
6.48 Environment 7 - Trust . 110
6.49 Environment 7 - Truth/Lie ratio 111
6.50 Communities repartition . 113
6.51 Trust average . 114
6.52 Truth trend . 115
6.53 Truth/Lie ratio . 115
6.54 Truth/Lie ratio and community repartition comparison 116

A.1 Configuration screen - Entities . 139
A.2 Configuration screen - Rewards 141
A.3 Results screen - QoS repartition 143

LIST OF FIGURES XIII

A.4 Results screen - Evolution of the Truth/Lie ratio 145
A.5 Results screen - Trust average and truth trend 147
A.6 Results screen - Evolution of the trust average 149
A.7 Results screen - Community repartition 151

XIV LIST OF FIGURES

LIST OF TABLES XV

List of Tables

3.1 The prisoner dilemma - representation of possible sentences in
terms of years spent in jail . 24

3.2 The prisoner dilemma - representation of possible sentences in
terms of payoff values . 25

3.3 Bach or Stravinsky - game representation 28
3.4 Matching pennies - game representation 28
3.5 The prisoner dilemma - Nash equilibrium 30
3.6 Bach or Stravinsky - Nash equilibria 30
3.7 Matching pennies - no Nash equilibrium 31
3.8 The prisoner dilemma - Pareto improvement 33
3.9 Bach or Stravinsky - 2 Pareto improvements 33
3.10 Matching pennies - all the action profiles are Pareto optima . . . 33

4.1 Honest single web services - One shot game - S is good 49
4.2 Honest single web services - One shot game - S is bad 50
4.3 Dishonest single web services - One shot game - S is bad 52

6.1 Test environments parameters . 89
6.2 Probability of information service “first round” choice per environ-

ment . 113

XVI LIST OF TABLES

1

1
Introduction

As time goes on, information technology becomes more and more present in ev-
eryday life. As a matter of fact, the trend has been for developers to create always
more autonomous systems. The goal of this vision is for users and developers to
create, use and share programs and applications in an easy and open way. Types
of modeling or implementation are no more obstacles for the use of independent
systems.

As most of computer users and developers use the Internet on a daily basis, it
becomes an important medium to share this kind of systems. The development of
services available on the Internet has therefore been massively studied in the past
years. Such services, called web services, as defined by the W3C, are “software
system designed to support interoperable machine-to-machine interaction over a
network” [Gro04].

A web service is developed with a particular functionality. For example, a web
service functionality could be the search of a currency conversion rate, as well as
the booking of a flight ticket. Users address requests to web services that provide
the functionality that fulfil their needs. The purpose of web services is thus to
answer those requests. The nature of this answer corresponds to the functional
aspects of the web service (What service does the web service deliver ?). Besides,
the way this answer is delivered corresponds to the non-functional aspects of the
web service (How does the web service deliver the service ?).

Non-functional aspects of a web service are multiple. The speed at which the
web service provides an answer, as well as the maximum number of requests the
web service is able to handle simultaneously belongs to those non-functional as-
pects. Other characteristics such as scalability, robustness, accuracy, availability
or security can also be listed among those.
Several web services can have the same functional aspect and therefore are able

2 Introduction

to answer the same request. However, those web services can differ from each
other in terms of their quality of service. This quality of service is defined by the
non-functional aspects of the web services [Gro11].

When users send requests to a web service, they can send feedbacks about its
quality of service. These data are collected in order to measure user’s satisfaction.
A general opinion about the service is computed using the aggregation of those
feedbacks [MS02]. This general opinion is usually known as the reputation of the
web service.

If a user is satisfied with the results of the interaction with a web service, he
will provide a positive feedback. If a single web service receives many positive
feedbacks, its reputation is likely to be high. A web service with a high reputation
is thus more attractive to new users, as these are assured to get a good service.
Therefore, the web service that has a good reputation receives more requests.

As said previously, different web services can provide the same service, namely
have the same functional aspects. To regulate the amount of requests they receive,
web services offering the same service can want to form part of what is called
a community of web services [EMY+08]. By doing so, requests are dispatched
among the several web services members of the community, in order that each
web service handles requests without being overloaded.

The dispatch of requests is one of the reasons which explain why it is useful
to take part in a community. Indeed, a web service receiving not enough requests
can hope to get more, and a web service receiving too much requests can reallo-
cate them.
Communities can also take advantage of collaborating with web services. A heav-
ily requested community can for example attract new web services in order to be
sure to handle all the requests properly.

Having web services with good reputation as members can also be beneficial
for the community, and therefore be another reason for the latter to attract these
web services. Indeed, the reputation of a community of web services can rely on
its ability to assign a request to one of the web services of the community in a
short period a time and on the interest that users have towards this community
rather than an other. Nevertheless, the reputation of a community of web services
also depends on the reputation of web services which take part of the community.
Indeed, the feedbacks about the satisfaction of users has not an impact on the
web service alone but on the entire community. [YMB+08].

Because the reputation of a community relies not only on its own management
but also on the quality of the web services it contains, a community prefers to

3

add web services that have a good reputation, as they are more likely to satisfy
users. Therefore, when attracting new web services to the community, or when
a web service asks for joining, the community needs to check the reputation of
the potential future web service of the community in order to decide whether or
not the reputation of the web service is satisfactory, namely, whether it suits the
expectations of the community. After the checking of the reputation of the web
service, the community can decide whether or not the new web service will be
accepted.

To make a decision, the community has to find information about the repu-
tation of the web service. Asking directly the information to the web service can
put at stake the objectivity of the answer. This problem could be solved by asking
the reputation to a third entity. The problem that occurs is that these entities
can also be dishonest. An information entity is rewarded by a community to give
information but it can also be rewarded by web services to lie to communities.
A bad web service can indeed give rewards to an information service if it informs
communities that the web service has an higher reputation than it actually has.

The goal of communities is to attract web services with a good reputation
and reject web services whose reputations is not satisfactory by sorting out true
and false information. For this reason, they need to find a mechanism where
trustworthy information entities are used in priority and rewarded, and where
information entities giving fake information are avoided and punished. The goal
of this method is to ensure the truthfulness of information services and help the
communities to use only web services with satisfactory reputation.

The object of our thesis is to study this method and show the results of this
investigation.

4 Introduction

1.1 Problem and motivation
This thesis focuses on a main concept : web services. A web service is an appli-
cation that can be found and runs on the Internet and which offers a particular
service to users. The main purpose of a web service is to collect requests sent
by some users, treat those requests and return adequate responses to the users.
They can be used alone or within a composition of web services. Web services
can therefore be used to manage “simple” requests but also more “complex” ones
if they are in a composition where a heavy task is divided in several “simple”
ones among the different web services.

A web service can be defined according to two different aspects.
The first one is the functional aspect, namely the role of the web service. This
functional aspect represents the service provided by the web service to the users.
It can be really different from one web service to another : calculating the conver-
sion rate between two currencies, foreseeing weather forecast, applying a mathe-
matical function to a data and so on.
The second aspect is the non-functional one. This aspect describes the way the
web service manages the requests of the users and can be characterised by differ-
ent parameters. We can list among those parameters, for example, the capacity of
the web service (How much requests can the web service handle at the same time
?), its scalability, its robustness, its speed to answer a request or the accuracy of
the answer it provides to the user.
Those different parameters put together determine the ability of the web service
to provide a service which will satisfy the users. The concept of quality of service
of a web service represents this ability [Gro11].

When users interact with web services, they can assess the quality of service
of those web services. According to the quality of the service they are provided
with, users can be satisfied or not with the web service. The satisfaction (or dis-
satisfaction) of users can be expressed through feedbacks which are used to build
the reputation of that web service. The reputation of a web service is a general
opinion about the latter, it is computed through the aggregation of feedbacks
provided by users who previously had interaction with the web service [MS03].
If a web service has a good reputation, it indicates that this web service provides
good quality service to users. Obviously, a web service with a great reputation
receives more requests than a service with a low one, as users want to choose
reliable services.

As other service providers (online and offline), users reward web services to
handle their requests. The principal goal of web services is therefore to attract
users in order to handle their requests and receive rewards in exchange. Indeed,
if a web service does not get any request, it can lead to its death. One of the

1.1 Problem and motivation 5

most difficult dilemmas that a web service has to face is to find a good balance
in terms of requests it can handle in order to assure its survival. Unsurprisingly,
a web service which is not able to attract enough users, and therefore, requests,
will most certainly die in the short run. On the contrary, if a web service is too
reputable for its capacity of treatment, namely if it receives more queries that it
can manage, it will be overloaded by this high number of incoming requests and
will not handle them properly. As a result, users that send these requests provide
bad feedbacks that affect the reputation of the web service. If the reputation de-
creases, no new users will want to address their requests to this web service and,
in extreme cases, the overloading can lead to the death of the web service.

To prevent those situations from happening, one solution consists in gathering
together web services that have the same functionality. In that configuration, the
number of treatable requests of every single service is summed, resulting in a big-
ger total capacity. A web service that could not attract enough users on its own
can benefit from the fact that the requests are now addressed to the group and
redistributed among all the members of the group. Therefore, this web service
treats more requests than if it was alone. On the contrary, a web service that was
previously overloaded by too many requests can now profit from the extended
capacity of treatment to transfer some of the extra requests to other web services
of the group.

Such a group of web services is called a community of web services [EMY+08].
As web services are not on their own anymore but have now to work together
as a group, some mechanisms need to be set up in order to achieve coordination
between the different entities of the community. A web service is chosen among
all the services of the group to lead the community. This special web service is
called the master of the community while the others are its slaves.
The master of a community has several specific tasks [EMY+08]. It is the in-
termediary between the community, the web services composing the community
and the users. Indeed, the master receives requests addressed to the community
and then dispatches them to its slaves. When the response to a request is ready,
the master is in charge of sending it to the corresponding user.

As web services, communities of web services also have their own reputation.
The reputation of a community of web service depends on its own capacity to
satisfy users’ needs. In one hand, this satisfaction can be measured with param-
eters such as the speed at which the master assigns a request to a slave or the
preference of users to use this community of web services before an other one
for example. On the other hand, the satisfaction of a user also depends on the
quality of service of the slave web service that handles its request. Therefore, it
is obvious that if communities want to have good reputation, they need to be
composed by good reputation web services [YMB+08].

6 Introduction

Apart from the reception and sending of requests, the master is also respon-
sible for deciding whether or not a web service can join its community. When
a web service asks for joining a community, the master has to check if the rep-
utation of the web service corresponds to the expectations of the community.
Web services are motivated to enter a community of web services because it can
help them survive by regulating their incoming requests. Communities also have
motivations to attract new web services. Indeed, if the total number of requests
addressed to the community is too low, the master of the community can attract
new web services that are reputed to have lots of requests. On the contrary, if
there are too much requests coming to the community, the master can attract
new web services in order to have a bigger number of web services to distribute
requests. A community can also want to attract new web services in order to
profit from their reputation.
The master can attract new web services, decide whether or not a web service
can enter the community and even decide to eject a certain service from its
community if it considers that this web service does not reach the community’s
expectations anymore. The master must also try to retain the members to leave
the community.

In our study, we take a closer look to this issue and analyse the case of a
master having to decide if a new web service should be accepted or not in the
community. Web services with a bad reputation do not attract many requests.
Therefore, these web services can want to enter a community of web services in
order to get more requests. However, if the web service has a bad reputation,
it is not likely that community masters will accept them. There is a risk that
these bad web services try to pretend to have a good reputation when asking to
join a community. The master, unable to verify correctly that assumption, could
be fooled and decide to accept the web service in its community. He would only
realise after a while, when requests have been sent to this web service, that it was
a bad decision and eject the bad service out of the community. Meanwhile, the
bad impact of the web service on the community has been done as bad feedbacks
from users whose request have been handled by the bad web service affect the
reputation of the community. Therefore, it is crucial for masters of community
to make the right decision when accepting or rejecting a web service wanting to
join, but, it order to do so, masters need to have the right information about web
services.

The decision to accept a web service into a community or not is complicated
due to the lack of valuable information for masters. The goal of our thesis is to
find a way to ensure that masters of communities obtain such trustworthy data.
We decide to use a third party called information service to solve this issue.
Information services are the intermediary between web services and communi-

1.1 Problem and motivation 7

ties. Information services collect feedbacks from web services users and, based
on these feedbacks, constitutes a repository of the reputation of all web services.
When the master of a community receives a request from a web service to join
the community, it has the possibility to ask information services for information
about this particular web service. In order to get the most accurate information,
a community master does not address to one but to several information services
and can thus compute an average reputation value based on the reputations an-
nounced by those information services. Depending on this average reputation,
the master is thus more able to decide safely whether or not it should allow the
web service to enter the community.

If all information services are honest entities, there is no decision issue. The
only fact of asking about a web service to an information service would assure
masters of community to have the right information and make the right decision
according to the latter.
The problem that occurs in this 3-actors architecture (web service - community -
information service) is that communities can reward information services for the
information they get, but web services can also be tempted to reward information
services in order to force them to lie. A web service with a bad reputation is not
going to be accepted by any community if it does not reach their expectations. In
order to enter a community, the bad web service can offer to the information ser-
vice a reward if, when informing communities, the information service pretends
that the web service has an higher reputation than it actually has.

The final motivation of information services is to get as much rewards as pos-
sible. In this architecture, information services can get their rewards from two
different sources : communities reward them to get information and web services
can reward them to lie. However, these two sources of reward are not compati-
ble. Indeed, if information services accept to lie in favour of the web service, the
community that was fooled will no more have trust towards those information
services. As the community realises that the quality of the web service does not
match the one announced by the information services, the community will not
be eager to request more information from information service that provided in-
correct or even fake information.
If an information service always lies, the trust that communities have toward it
gradually decreases until no community asks for its information. If such situation
is reached, the information service is no more rewarded. Indeed, if no community
asks for information from this information service, web services have no more
motivation to reward the information service, as the latter will have no more
possibility to lie.
An information service must decide wisely when it must lie and then get rewarded
by web service, and when it is better to tell the truth, in order to get rewarded
by communities for the right information and keep their trust to assure future

8 Introduction

interactions.

Information services have to choose, each time they are asked for information,
between telling the truth and lie about the reputation value they know. It is a
complicated decision as information services want to maximise their profit and to
keep trustful relationships with communities. Furthermore, an information ser-
vice never works alone as an information source. Indeed, master of communities
asks several information services at the same time in order to get the best ap-
proximation of the actual wanted reputation value. In that situation, as other’s
actions impact its own, no information service can elude them. An information
service, before making a decision, has to calculate what will be the consequences
of its choice, depending on other one’s. The best action to make would be the
one that provides the bigger reward no matter what other information services’
actions are.

Situations with entities interacting in such a way, where one’s decision im-
pacts other’s profits, are exactly what game theory studies. In that theory, rules
can be applied in order to determine, for each interacting entities (called players),
which action is the best to take in order to reach a particular goal (one player’s
biggest gain, biggest total gain, . . .).

The game theory is perfect to model information services situations and
choices. Based on this, we are able to study in which situations information
services lie, and in which cases they prefer to tell the truth.

The goal of our study is to find which elements must have a web service net-
work in order to force information services to tell the truth. The final aim would
be to have a trustful network in which information services always give true infor-
mation and masters of communities of web services only accept in the community
web services that correspond to the community level and expectations.

1.2 Methodology 9

1.2 Methodology
Web services are the key elements of our thesis. In Chapter 2, we study the main
concepts related to the latter. We also present the idea of communities of web
services and develop the notions of reputation and trust.

Our aim is to find a mechanism to ensure honesty among information ser-
vices. As communities of web services always ask several information services at
the same time, the outcome of a single request depends on each of these infor-
mation services’ answer. When an information service chooses between telling
the truth or lying, it must therefore take other information services’ actions into
account. Such a situation can be modelled as a game. We therefore introduce in
Chapter 3 the basics of the game theory.

In Chapter 4, we define in a specific and detailed way the problem we study
and develop the theoretical solution we propose.

In order to assess the validity of our solution, we implemented a simulation
tool that we present in Chapter 5. A complete and detailed presentation of the
realisation of this simulator can be found in Appendix A.

In Chapter 6, we show the results we obtained with the use of our simulation
tool. We set up a number of test environments that help us to study the most in-
teresting cases. Then we compare the outputs computed by the simulator. These
comparisons allow us to draw some conclusions about the different constituent
elements of these environments.

We present the conclusion of our investigation in Chapter 7.

Finally, some of the limitations of our work are presented in Chapter 8 as well
as some suggestions for potential future works.

10 Introduction

11

2
Preliminaries

In this section, we deal with some of the main concepts necessary for the com-
prehension and development of our problem and solution.

First, we present some notions about web services and communities of web
services.

Secondly, we define two important concepts : the reputation and the trust.

Contents
2.1 Web services and communities 12

2.1.1 Web service . 12
2.1.2 Community of web services 14

2.2 Reputation and trust 15
2.2.1 Reputation of web services 15
2.2.2 Reputation of communities of web services 16
2.2.3 Reputation-based architecture 17
2.2.4 Trust . 17

12 Preliminaries

2.1 Web services and communities

2.1.1 Web service
As time goes by and technology evolves, Internet becomes more and more present
in our everyday life as many of our daily activities requires its use. This evolu-
tion gave birth to a new kind of market, and a new way of shopping : Web services.

Web services have the same purpose as human services : their goal is to receive
users’ requests and answer to those the best they can. One of the main reasons
for the use of web services is the development of loosely-coupled, cross-entreprise
business processes (which are also called B2B applications). This means that
web services can be used without having to worry about how it is implemented
or where in the world it is located.

The W3C defines (in [Gro04]) a web service as follows :

Definition 1. A Web service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serialization in conjunction with
other Web-related standards.

The use of a web service results of the interaction of three different actors, as
shown in Figure 2.1.

Directory

Requester
(client)

Service
providerWeb service

Service description

Client application

Service description

Publication

Interaction

Discovery

Figure 2.1: Web services’ usage actors

2.1 Web services and communities 13

The first main actor is the Service provider. It is responsible for the creation of
the web service and performs the handling of requests by computing an appropri-
ate answer. The service provider submits a description of the operations the web
service can offer. This service description is then published on an online directory.

The Directory serves as discovery agency where the service’s descriptions are
stored and made available to the users. When a user needs a particular service,
it browses through the directory in order to find the most suitable web service
according to the description establish by the provider of the latter.

When the right web service has been found, the user can begin the interaction
with the service by sending requests. The user can also be called the Requester
and acts as the third actor.

The use of a web service leads to the implication of several protocols. As
shown in Figure 2.2, a first protocol is used by the service provider and the direc-
tory to describe the web service. This protocol is WSDL (which stands for Web
Services Description Language). It consists of a XML-based language specially
designed for that purpose and standardised by the W3C [CCMW10].

Directory

Requester
(client)

Service
providerWeb service

Service description

Client application

Service description

Publication

Interaction

Discovery

WSDL
UDDI

SOAP
Figure 2.2: Web services’ usage protocols

The second used protocol is UDDI and stands for Universal Description, Dis-

14 Preliminaries

covery and Integration. UDDI allows service providers to publish the description
of their services on the directory but also the users to discover the web services.
The UDDI protocol has been standardised by OASIS [udd10].

If we now consider the way different web services interact together, it is impor-
tant to find a common message format so that web services can understand each
other and share information. We can achieve that by using SOAP (for Simple
Object Access Protocol). SOAP is “a lightweight protocol intended for exchanging
structured information in a decentralized, distributed environment” [GHM+10].
As for WSDL, SOAP is standardised by the W3C.

2.1.2 Community of web services

Web services can have similar functionalities. For example, one can find two web
services that offer currency converting operations. In this case, it is possible to
gather the web services into groups that we refer to as Communities of web ser-
vices. In a community, we find two types of web services : a unique master and
its slaves. The master takes the responsibility of leading the community and has
three main tasks. [EMY+08]

The first task consists of the management of the community. The master
“monitors all events happening in a community such as the arrival of new Web
services, departure of existing ones, identification of Web services to be part of
composite Web services, and imposing sanctions on Web services in case of mis-
behaviour.” [EMY+08]
The master can also decide to dismantle the community if it finds that the num-
ber of web services in the community falls below a certain threshold or if “the
number of participation requests in composite Web services that arrive from users
over a certain period of time is less than another threshold” [EMY+08].

The master of a community is also responsible for attracting new web services
into the community and retaining the ones that are already in the community.
This task is important because, as said in the previous paragraph, the commu-
nity could be dismantled if the number of web services that are members of the
community is too low. In order to avoid such a situation, the master consults the
directories to discover new web services. When the master finds a web service
with functionality compatible with those of the community, the provider of the
service is contacted.

Finally, the third task of the master consists of the nomination of web services
in order to participate in composition scenarios.

2.2 Reputation and trust 15

At this point, the questions of why a web service would try to join a commu-
nity and why a community would want to attract new web services arise. If we
consider a single web service, the problem is related to the number of requests
the web service has to handle. Indeed, a web service has a limited capacity of
treatment regarding the incoming requests and will try to avoid two situations.
On one hand, the number of requests could be too low compared to its total ca-
pacity. In this case, by joining a community, the web service would receive more
requests as the requests sent to the community would be distributed among all
its members. On the other hand, the web service could be overloaded by a num-
ber of requests exceeding its capacity of treatment. By entering a community,
the web service would avoid the overloading as the exceeding requests would be
distributed to other members of the community.

As for the community, we learned that the master could decide to dismantle
its community if the number of web services inside is too low. In order to avoid
this situation, the community tries to attract new web services.

2.2 Reputation and trust

2.2.1 Reputation of web services
As for non-Internet based services, like buying a flight ticket in a travel centre, it
is possible that several web services have the same functionalities. We therefore
need a notion that helps us to differentiate those different web services. We use
the concept of reputation. It is considered in the exact same way with web ser-
vices as with non-internet based services : to go on with the example introduced
in the beginning of this extract, it is more likely that someone wanting to buy
flight tickets will choose a more reputable travel centre than a less reputable one.

We can describe the reputation as the opinion of the public towards a person,
a group of people or an organisation [MS02]. The problem of this definition is that
we cannot base our concept of reputation only on the opinion of several users.
User ratings indeed tend to be subjective and can also be easily manipulated.
As a result, we need to use more objective metrics to compute the reputation of
a web service. We will here consider the Quality and the Market Share [KBMT10].

The Quality represents the capability of a web service to handle the users’
requests in a timely fashion. It is found by collecting all the rates given by the
users to this web service. We then compute the ratio between the set of positive
feedbacks and the set of all the feedbacks. In order to deal with selfish agents
that dynamically change their behaviours, we give more importance to the recent

16 Preliminaries

information by using a timely relevance function.

The Market Share indicates the extent to which the web service is active in
the network of the providers of services.

2.2.2 Reputation of communities of web services
We just saw in Section 2.2.1 how to find the reputation for a single web ser-
vice. However, in the case of a community, the metrics we use are not the same.
Moreover, the reputation of a community can be computed according to two per-
spectives : the one of a user or the one of provider of web service. Here, we
only consider the user’s point of view. The reputation is thus based on the three
following metrics : the responsiveness, the inDemand and the satisfaction.

When a user sends a request to a community, the master has to nominate a
slave from his community that can handle that request as fast as it can. The
faster the master manages to do this task, the better it is. This speed is rep-
resented by the responsiveness metric. The inDemand shows the interest of the
users towards a certain community against the others. The satisfaction simply
corresponds to the subjective opinion of the clients. We can also note that the
responsiveness and the satisfaction are direct evaluations of the interactions be-
tween the users and the community of web services while the inDemand is an
assessment of a community in relation to the other communities.

Another useful concept is the notion of performance. In order to obtain it,
we need a performance function measuring the aptitude of a community to act
successfully, that is to say having a optimal use of the allocated resources and an
optimal market share. The three needed elements to compute the performance
of a community are the reputation, the inDemand and the capacity of the com-
munity. The capacity corresponds to the maximum number of requests that a
community can handle. An acceptable performance is obtained if a community
has a good reputation and an optimal balance between its inDemand and its
capacity.

The reputation can explain why it could be interesting for a single web ser-
vice to join a community. A web service alone can easily be overloaded by an
intense flow of users’ requests. It will lead to a poor responsiveness and therefore
a fall in the users’ satisfaction. As a result, the web service will see a drop in
its reputation. A solution is to group different web services in a community. By
aggregating the total number of requests that each single web service can handle,
and redistributing them equitably among all its members, a community will be
granted a better availability and hence better performance. On the contrary, it is

2.2 Reputation and trust 17

possible that a single web service is not able to attract enough users in compari-
son with its capacity. In this case, joining a community will help the web service
to obtain more requests to handle.

Having a good reputation can be double-edged. It will indeed bring to the
reputable web service a large amount of requests. The consequence of that de-
mand can be an overloading. The challenge here is to find a tradeoff between
one’s capacity and market share so that a web service is neither overloaded nor
idle. Once such a tradeoff has been found, a web service should see a stabilisation
of its reputation and its market share level. [KBM+10]

Now, the arising question of why a web service would be encouraged to join a
community with a lower reputation that can possibly degrade its own reputation
finds its answer quite easily. Survival is simply a more critical goal than carrying
on the current level of reputation. Therefore, joining a community is encouraged
for a web service even if it decreases its reputation as long as the total performance
level is higher.

2.2.3 Reputation-based architecture
In order to work with the concept of reputation, a system needs to have an ar-
chitecture using the two following specific elements : some registries containing
entries that describe individual web services and a reputation system [EMY+08].
The registries can be implemented using the UDDI protocol which defines a stan-
dard method for publishing and discovering the network-based software compo-
nents of a service-oriented architecture [udd10]. The reputation system is the
core component of a reputation-based architecture and has two main functions.
The first is to maintain a repository of run-time operational data that are needed
to compute the performance metrics of a community and the second is to rank
the communities according to their reputation using a ranking algorithm. The
reputation system is also referred to as the Controller Agent and is also respon-
sible for detecting malicious acts in the system.

User and provider agents, proxies between respectively the user and the
provider and the other parties, are also needed. It is important that they re-
main independent in order to intercept trusted run-time data about each web
service interaction.

2.2.4 Trust
The advantage of using service-oriented architectures is that we can now create
applications that interoperate in a smooth way and whose components are loosely

18 Preliminaries

Figure 2.3: Architecture of reputation-based Web services communities

coupled. The question that arises is how to select services for the purpose of com-
position scenarii. An important criterion for this selection of services can be the
trust. Trust can be defined as “the measure of willingness that the trustee will
fulfil what he agrees to do” [BKG09]. A “new trust model for service selection
based upon social network analysis to capture the emergence of trust via service
networks” was proposed in [BKG09].

In this model, we can distinguish two sets of services : the customers and the
providers. All of these services belong to the same community in the sense that
a service can share information with the other services through the network.

Assessing the trust of a provider can be done using two types of assessments.
The first is called direct assessment. It can be computed if the customer has
enough transactions with the provider. However, it is likely that sometimes a
customer did not have a sufficient number of interactions with a provider. In this
case, the customer uses the network to get information about the provider from
other services that know this provider and are willing to share their knowledge.
This technique is called indirect assessment.

When a customer asks another customer (that we will refer to as informant)
for information, the latter has two possible strategies : he can tell the truth or
lie. Obviously, we want to reach a situation corresponding to a Nash equilibrium
in which informants have no better choice than telling the truth. This can be
achieved through a 3-step incentive mechanism where informants obtain rewards
or penalties according to their strategies in 3 steps.

The strategy xk of each agent ck is defined in terms of the provider’s trust

2.2 Reputation and trust 19

value this agent reveals. Thus, the utility function of a customer agent ck is
defined as follows :

uk(x) = fk(x) + gk(x) + c.hk(x)

where

• fk(x) > 0

• fk(x) < |gk(x)|

• fk(x) + |gk(x)| < |hk(x)|.fk(x).

The first step incentive fk(x) is a positive reward that a customer gives to
an informant willing to give her information. The second step incentive gk(x)
corresponds to a value that will be granted to a informant depending on the sim-
ilarity between the information it gave and the average information revealed by
the other informants. This second value can be negative if the difference is high
and therefore acts as a punishment preventing informant to reveal incorrect in-
formation. Finally, after having used the provider, the customer can tell whether
it fits the informants’ predictions about the provider’s behaviour. The difference
between what was expected and what was actually experienced is used to calcu-
late the third step incentive hk(x). Of course, the latter can only be considered
if the customer decides to have a transaction with the provider. In this case, c
will be set to 1 in the utility function.

It is important that each incentive has to be higher than the sum of the
previous ones, that is to say fk(x) < |gk(x)| and fk(x) + |gk(x)| < |hk(x)|. It
guarantees the incentive compatibility property which means that each informant
will reveal exactly what they believe about providers or, in other words, they will
tell the truth. This can be proved by using the three following lemmas :

• The first says that revealing the true trust value about the provider is a
Nash equilibrium strategy in the trust game.

• The second lemma affirms that if the provider is untrustworthy, revealing
a false trust value about it is not a Nash equilibrium strategy in the trust
game.

• On the other hand, if the provider is trustworthy, revealing a false trust
value about it is a Nash equilibrium strategy in the trust game. This is the
third lemma.

20 Preliminaries

From this three lemmas, we can tell that a customer has an incentive to lie only
if the second step incentive gk(x) is strictly positive and the third step incentive
is not obtained (c = 0). In this case, the gained utility will be |fk(x) + gk(x)|.
However, by telling the truth, he can get the three incentives and the gained
utility will be |fk(x) + gk(x) + hk(x)|. And so, telling the truth is the best
strategy under Nash equilibrium.

21

3
Resolution technique : game theory

Information services are agents interacting with both web services and commu-
nities of web services. When they are requested to give information about a web
service, they can either choose to tell the truth and give the actual information
or lie and provide a false one. Each of these actions creates a different profit and
affects differently the relationships the information service has towards the two
other agents. Furthermore, an information service is never requested alone as
community masters always request several information services at the same time.
Results provided by the other information services also affect the profit and the
relationship between the information service and the community on one hand,
and between the information service and the web service information is asked
about on the other hand. For these reasons, an information service decision to
tell the truth or lie depends on other agents’ actions.
The use of game theory can help us to model such situations as games, putting
these agents in the roles of players. It will help us to analyse the different options
an information service faces, and understand what are the reasons that make a
choice seem better than another.

In this Chapter, we begin by making the concept of game more concrete by
presenting a well-known example in Section 3.1. We then take a quick overview
of this discipline basis concepts in Section 3.2 where we introduce concrete no-
tations. In Section 3.3, we talk about one of the main notions of game theory,
which is the Nash equilibrium. To finish, we take a look at the Pareto efficiency
in Section 3.4, where we see how we can identify a state where the welfare of each
player is taken into account.

This Chapter has been written thanks to the help of the game theory book
[OSB09].

22 Resolution technique : game theory

Contents
3.1 Theory presentation . 23

3.1.1 Examples . 23
3.2 Basic concepts . 24

3.2.1 Payoff function . 24
3.2.2 Game analogy . 25
3.2.3 Strategic game with ordinal preferences 25
3.2.4 Best response function 26

3.3 Nash Equilibrium . 27
3.3.1 Introducing new examples 27
3.3.2 Domination . 29
3.3.3 Nash equilibrium . 29
3.3.4 Examples’ Nash equilibria 30
3.3.5 Strict and non-strict Nash equilibrium 31
3.3.6 Nash equilibrium and best response function 31
3.3.7 Nash equilibrium and domination 32

3.4 Pareto efficiency . 32

3.1 Theory presentation 23

3.1 Theory presentation
Game theory can be applied in many fields where people interact such as poli-
tics, economy, social issues or games. This discipline simplifies those everyday life
situations in which decision makers have to take actions by modelling them as
what is called games. Like in chess, depending on how players move their paws,
the outcome of the game changes. The analogy is just that simple : if we take
business men as players, depending on how they manage their paws (financial
resources for example), the outcome of the game (the market situation) changes.

3.1.1 Examples
One night, two thieves break into a little shop along the street. These armed
burglars steal all the money. Two days after, the police track and arrest two
people separately. Those two suspects, Cameron and Kevin, are held in different
rooms at the police station and have no way to communicate.

The police face a problem as they collect clues to accuse both of them of
minor offense, but not enough proofs to convict any of the two lads for the major
crime of armed robbery.

To obtain confessions, the police offers each of the two people to “make a
deal”. The deal works as follows :

• If both decide not to talk, they will go to prison for 1 year.

• If one confesses and the other stays silent, the first one is free whereas the
other goes to prison for 5 years.

• If both of them confess, they both have a 3 years imprisonment sentence.

Both Cameron and Kevin have to decide on their own which decision they
want to take, knowing that the outcome of the situation will depend not only of
their own choice, but also on the choice of the other one.

Such situations, where people have to make choices, and where each decision-
maker does not master every variable of the problem, and thus depend and in-
teract with other ones, can be modelled as games.

Such games are what game theory studies, and the one described above is one
of its most famous examples called “The prisoner dilemma”.

In order to be easier to use, let’s represent the prisoner dilemma as an array :

24 Resolution technique : game theory

Kevin
Talk Not Talk

Cameron Talk 3,3 0,5
Not Talk 5,0 1,1

Table 3.1: The prisoner dilemma - representation of possible sentences in terms
of years spent in jail

In Table 3.1, we can see more easily what are the outcomes (in terms of years
in jail sentence), for each person, according to each choice combination, the first
number always being the outcome for Cameron, the second one being the outcome
for Kevin.

3.2 Basic concepts

3.2.1 Payoff function
As normal human beings, both lads prefer freedom to jail. If they have to go
anyway, the shorter is the better, we all agree on that.

This really natural idea is the base of a mathematical concept called the pay-
off function1. This function assigns a value to each of the possible outcomes,
increasing the value as the satisfaction regarding an outcome improves. An out-
come is preferred to another one only if the value of the payoff function of the
first one is higher than the one of the second. Seeing it the other way around, if
we have u, the payoff function, and a and b, two different outcomes of a game :
u(a) > u(b) if and only if the decision-maker prefers a to b

Such a function is useful in terms of reading and comparison. Indeed, in Table
3.1, the best outcomes can easily be figured out as the context is explained just
before. Knowing the figures stand for years in prison, everyone knows that we
are looking for the shortest one, but this is not the case for every situation.
In another context, the biggest figure could represent the best outcome. In a
third one, it could be impossible to express outcomes as figures.
A payoff function solves this kind of communication and comprehension problems
: the higher the better, and equality represents indifference.

Let’s go back to our two suspects and apply to them the concept of the payoff
function. The worst that can happen to any of them is to have to go to prison
for 5 years, we can assign to such an outcome a payoff value of 0. Staying in jail

1Other names for this function are preference indicator function. or utility function

3.2 Basic concepts 25

for 3 years is a little better, and for only 1 year is much better, the payoff values
are respectively of 1 and 2. The best outcome is to be free, and deserves a payoff
value of 3.

Kevin
Talk Not Talk

Cameron Talk 1,1 3,0
Not Talk 0,3 2,2

Table 3.2: The prisoner dilemma - representation of possible sentences in terms
of payoff values

The preference between outcomes are said to be “ordinal”, that is to say a
payoff function can help us figure that a player prefers an action a to an action
b, which payoff value is a little bigger, and prefers the action b to a third action
c, which payoff value is even bigger, but it cannot define “how much” an action
is preferred to one other.

3.2.2 Game analogy
We use the game concept to model interactions between decision-makers and ex-
tend the analogy to all the aspects of these interactions. We refer to what we
called until now decision-makers as players. Those players have to make a choice
between different actions, and A(i) is the set of all the actions a(i) available to
player i. We talk about an action profile when we want to refer to one of the
situations, where each player chooses one of its actions.

As we saw before, some outcomes are better than others, so players have
preferences about the action profiles.

3.2.3 Strategic game with ordinal preferences
The first model of game theory we consider is the model of strategic game with
ordinal preferences. We use the qualification “with ordinal preferences” to insist
on the fact that when an action is chosen, it will be chosen every time the game
is played.

26 Resolution technique : game theory

This concept is defined as follows [OSB09] :

Definition 2. A strategic game (with ordinal preferences) consists of :

• a set of players

• for each player

– a set of actions
– preferences over the set of action profiles

3.2.4 Best response function
Let’s go back to our prisoner dilemma, and let’s try to analyse what can happen.

• Both suspects will do everything they can to benefit from the best possible
outcome.

• The best outcome would be freedom (payoff value of 3), so both of them
are interested in talking.

• But they both know that talking is the action the other will also certainly
prefer. And if both of them talk, both of them go to jail for 3 years (payoff
value of 1).

• At this point, not talking can be considered, as it would mean only 1 year
in prison (payoff value of 2). But this means having faith in the decision of
the other suspect, hoping that she will not talk either. Not talking means
taking the risk of falling into the worse possible situation, which is letting a
traitor partner gain freedom while having to sleep in jail for 5 years (payoff
value of 0).

In some situation, suspects have total faith in each other and have no fear
of staying silent, in other situation, suspects know their partners are selfish and
will always talk, but let’s take the situation where one suspect, say Kevin, isn’t
sure about Cameron’s behaviour. One of the best options for him is to compare
actions and see what is the best action to take, in each case.

• If Cameron talks, then Kevin has the choice between staying 3 of 5 years in
prison, the best outcome for him if the first one, so he talks too.

• If Cameron does not talk, then Kevin has the choice between being free, or
staying 1 year in prison, once again he prefers the first outcome and decides
to talk.

3.3 Nash Equilibrium 27

To draw up this list of actions, which are the best to choose according to each
of the other players’ actions, is in fact building what we call the best response
function.

The definition of the best response function Bi of a player i is [OSB09] :

Definition 3. Bi(a−i) = {ai in Ai : ui(ai, a−i) ≥ ui(a′i, a−i) for all a′i in Ai}
where :

• ai is the action taken by the player i

• a−i is the list of other players’ actions

• ui(a′i, a−i) is the payoff value for the player i for the action profile (a′i, a−i)

In this definition, we can see that the application of this function Bi to an
action a of an other player results in the set of all the best actions i can play if
the other player plays a. Those best actions are the ones whose payoff value is
at least as good as the one of any other action.
If we apply those notations to our example, we get :

• for Cameron

– BCameron(TalkKevin) = {Talk}
– BCameron(Not talkKevin) = {Talk}

• for Kevin

– BKevin(TalkCameron) = {Talk}
– BKevin(Not talkCameron) = {Talk}

3.3 Nash Equilibrium

3.3.1 Introducing new examples
To strengthen comprehension of already seen concepts, and to ease illustration
of following ones, let’s take a look at two other well-known examples.

• Bach or Stravinsky ?
Bernard and Stan are two friends and they would like to go to a concert.
They do not have the same tastes : Bernard likes listening to Bach whereas
Stan prefers the music of Stravinsky. However, each of them would rather
go to a concert with a friend, even if the music is not his favourite, than go
to a concert alone.

28 Resolution technique : game theory

Stan
Bach Stravinsky

Bernard Bach 2,1 0,0
Stravinsky 0,0 1,2

Table 3.3: Bach or Stravinsky - game representation

This situation is modelled in Table 3.3 :

The best response functions are :

– for Bernard
∗ BBernard(BachStan) = {Bach}
∗ BBernard(StravinskyStan) = {Stravinsky}

– for Stan
∗ BStan(BachBernard) = {Bach}
∗ BStan(StravinskyBernard) = {Stravinsky}

• Matching pennies
Dorothy and Stuart are playing a simple game. Each of them has a coin and
can choose to show one side of the coin or the other. At the same moment,
they have to show the side they chose to the other player. Dorothy wins the
game if the sides are different, but if they are the same, Stuart is the winner

This game is modelled in Table 3.4:

Stuart
Head Tail

Dorothy Head 0,1 1,0
Tail 1,0 0,1

Table 3.4: Matching pennies - game representation

The best response functions are :

– for Stuart
∗ BStuart(HeadDorothy) = {Head}
∗ BStuart(TailDorothy) = {Tail}

– for Dorothy

3.3 Nash Equilibrium 29

∗ BDorothy(HeadStuart) = {Tail}
∗ BDorothy(TailStuart) = {Head}

3.3.2 Domination
If we take a look at the best response function of any of the suspects in the
prisoner dilemma, we can observe that, no matter what the other does, the best
thing to do is always to talk. An action with this property is called a dominant
action, and the other ones are called dominated actions. Not every game has a
dominant action. Indeed, the prisoner dilemma is the only one of the three given
examples to have such an action.

There are two levels of dominance :

• Strict domination appears when an action is better than another one, no
matter what the other players’ actions are. It can be defined as follows
[OSB09] :

Definition 4. Player i’s action a′′i strictly dominates her action a′i if ui(a′′i , a−i) >
ui(a′i, a−i) for every list a−i of the other players’ actions

• Weak domination appears when an action is at least as good as another one
no matter what the other players’ actions are, and better than the other
one for some of the actions of the other players. It can be defined as follows
[OSB09] :

Definition 5. Player i’s action a′′i strictly dominates her action a′i if ui(a′′i , a−i) ≥
ui(a′i, a−i) for every list a−i of the other players’ actions

3.3.3 Nash equilibrium
Let’s get back, once again, to our prisoner dilemma. We saw with the best re-
sponse function that talking was the best thing to do, or at least the best response
to give to any action of the other suspect. Let’s suppose that both Cameron and
Kevin decide to talk, we are thus in the situation where both of them will go
to prison for 3 years. According to the set of outcomes, this is the second worst
result one can get (payoff value of 1), so not what you would expect someone to
look for. Nevertheless, this is the best each suspect can have, if the other one
does not change his mind.

When we reach such a point in a game, where no one can improve its situation
by changing his action if the other players keep their actions, we face a Nash
Equilibrium. The concept of Nash Equilibrium is defined as follows [OSB09] :

30 Resolution technique : game theory

Definition 6. The action profile a∗ in a strategic game with ordinal preferences
is a Nash equilibrium if, for every player i

ui(a∗) ≥ ui(ai, a∗−i)

for every action ai of player i, where ui is a payoff function that represents players
i’s preferences.

A Nash equilibrium corresponds to what we can call a steady state : if, when-
ever the game is played, the action profile is the same Nash equilibrium, then no
player has a reason to choose any different action. It can also express a stable
social form : if everyone adheres to it, then no individual wishes to deviate from
it.

3.3.4 Examples’ Nash equilibria
Let’s take a look to our example situations and determine for each of them their
Nash equilibrium :

Prisoner dilemma

Kevin
Talk Not Talk

Cameron Talk 1,1 3,0
Not Talk 0,3 2,2

Table 3.5: The prisoner dilemma - Nash equilibrium

As we saw above : if one of the suspects talks, the other one cannot do any-
thing else but talk if she wants to minimise her sentence.

Bach or Stravinsky ?

Stan
Bach Stravinsky

Bernard Bach 2,1 0,0
Stravinsky 0,0 1,2

Table 3.6: Bach or Stravinsky - Nash equilibria

We can observe that this situation offers two Nash equilibria. Indeed, if one
of the two friends decides to go to a concert, whichever it is, the best for the

3.3 Nash Equilibrium 31

other one is to go too : even if he is not fond of the composer, he would rather
go out with his friend than alone.

Matching pennies

Stuart
Head Tail

Dorothy Head 0,1 1,0
Tail 1,0 0,1

Table 3.7: Matching pennies - no Nash equilibrium

In contrast with Bach or Stravinsky example, where we had two Nash equi-
libria, in this case, we have none. The rules of the matching pennies game are
designed is such a way that no matter which situation we are standing in, there
is always one of the two players who can do better by changing her action.

Our three little examples are enough to highlight an important observation :
in a ordinal game, there is not always a Nash equilibrium, and if there is, there
can be more than one.

3.3.5 Strict and non-strict Nash equilibrium
The Nash equilibrium can bring in a payoff value that is better for a player than
any other one if the other players keep their actions. If it is the case for every
player, if changing an action means having a worse payoff for everybody, then we
have a strict Nash equilibrium.
But if there is another payoff that is not worse, but only “no better” (which
means having a equality), we have a non-strict Nash Equilibrium.

3.3.6 Nash equilibrium and best response function
We recall that the best response function of a player is the list of the actions that
are the best to choose according to each of the other players’ actions (Definition
3). We can link this function to the concept of Nash equilibrium as follows
[OSB09] :

Definition 7. The action profile a∗ is a Nash equilibrium of a strategic game
with ordinal preferences if and only if every player’s action is a best response to
the other players’ actions.

32 Resolution technique : game theory

In situations where players do not have a lot of action possibilities, finding a
Nash equilibrium by examining each action profile is possible, but when the num-
ber of actions grows, using the best response functions to find a Nash equilibrium
is a better idea.

3.3.7 Nash equilibrium and domination
According to Definition 4, a strictly dominated action will never be the best
to choose as there will always be a better one, no matter what the other play-
ers do. A strictly dominated action will thus never be used in a Nash equilibrium.

According to Definition 5, a weakly dominated action is only worst for some of
the other player’s actions, so, in a strict Nash equilibrium, no player’s equilibrium
action will be weakly dominated, but, such an action can belong to a non-strict
Nash equilibrium.

3.4 Pareto efficiency
Another interesting state in games, besides Nash equilibrium, is what is called a
Pareto optimum. The concept of Pareto optimality (or Pareto efficiency) appears
with an action profile where no one can improve its gains without degrading
another one’s. When players are in a situation where no player can increase
(even a bit) its outcome without decreasing other one’s, then players reached
Pareto efficiency.
Such action profiles reflect situations where players tend more to maximise the
global welfare rather than the outcome of oneself.
As for Nash equilibrium, where we have strict and non-strict equilibrium, a Pareto
optimum can be weak or strong [OSB09].

Definition 8. An action profile a∗ is a weak Pareto optimum if there is no action
profile strictly preferred over a∗ by every player. a∗ is a strong Pareto optimum
if there is no action profile considered at least as good as a∗ by every player and
strictly preferred by at least one player.

Let’s look for Pareto optimums in our well-known examples :

Prisoner dilemma

We see that in this situation, if no one talks, neither Kevin nor Cameron can
change her decision and improve her outcome without making the other one’s
worse. The Pareto improvement is not the same action profile as the Nash equi-
librium, and we can see that both outcomes would be improved by choosing the

3.4 Pareto efficiency 33

Kevin
Talk Not Talk

Cameron Talk 1,1 3,0
Not Talk 0,3 2,2

Table 3.8: The prisoner dilemma - Pareto improvement

first one (from payoff value of 1 to payoff value of 2).

Bach or Stravinsky ?

Stan
Bach Stravinsky

Bernard Bach 2,1 0,0
Stravinsky 0,0 1,2

Table 3.9: Bach or Stravinsky - 2 Pareto improvements

In this example, we can see that Nash equilibrium and Pareto improvement
are the same action profiles. Indeed, even if one of the friends is listening to a
concert he dislikes, he could not increase his payoff value without decreasing the
one of his pall.

Matching pennies

Stuart
Head Tail

Dorothy Head 0,1 1,0
Tail 1,0 0,1

Table 3.10: Matching pennies - all the action profiles are Pareto optima

Whereas this example presents no Nash equilibrium, each of its action profiles
is a Pareto optimum. Whatever the present situation is, changing action, for any
of the players, would mean damage either her own outcome, or the other player’s.

34 Resolution technique : game theory

35

4
Sound web services collaborative mechanism

The problem we handle has been introduced in Chapter 1. In this Chapter, we
present the latter in a more specific and detailed way in Section 4.1. A specific
modeling is presented in Section 4.1.1.

The introduction of our solution to this issue is presented in Section 4.2. Its
different key elements are presented and modelled in Sections 4.3, 4.4 and 4.5.

Section 4.6 is dedicated to the game theory analysis of this first solution.

We take into account the conclusions of the game theory analysis and develop
our complete solution in Section 4.8.

Contents
4.1 Problem definition . 37

4.1.1 Modeling . 39
4.2 Solution modeling . 41
4.3 Environment entities 41

4.3.1 Communities of web services 41
4.3.2 Web services . 42
4.3.3 Information services 42

4.4 Payments . 43
4.4.1 Community payments 43
4.4.2 Web services payment 46

4.5 Trust evolution . 46
4.6 Game theory study . 48

4.6.1 Types of games . 48

36 Sound web services collaborative mechanism

4.7 Cases overview . 48
4.7.1 Honest single web services 49
4.7.2 Dishonest single web services 52

4.8 Introduction of the trust value into the choice process 55

4.1 Problem definition 37

4.1 Problem definition
As we saw in Section 2.1.2, web services providing the same service (namely that
have the same functional aspects) can be grouped in communities controlled by
a master.

If a web service has not enough requests, or too many, it can be interested
in joining such a community. Requests received by communities are dispatched
among the different web services composing the community, assuring that none
of those web services are either overloaded or idle. A web service wanting to join
a community asks the master of the latter for the permission to join. The master
can accept or deny the joining request, depending on the needs of the community
and on the reputation of the requesting web service.
Community masters can also be interested in inviting new web services in the
community. First, if there are too many requests to handle, it is necessary to add
new web services to avoid overloading. Second, if there are not enough requests,
bringing new web services can bring new clients and new requests. As communi-
ties’ reputation depends partly on the reputation of the web services composing
them, masters can also invite new web services if they find the reputation of those
web services interesting for the community.

In order to make a decision, to decide whether or not to accept a request-
ing web service, the community master has to analyse the web service to know
whether or not its reputation is satisfactory. Indeed, if the reputation of a web
service does not match the community expectations, bad feedbacks provided be-
cause of this web service can have a bad impact on the community reputation.

A solution to get information about web services’ reputation is to ask it to
an information service, namely a special web service which task is to gather and
sell information about other web services’ reputation. Masters need to verify the
information before making decisions, therefore they send queries about the same
web service to several information services and compare their answers.

When providing information to community masters, information services have
the choice between telling the truth (and providing the reputation they actually
know) and lying (and providing a reputation different from the one they know).
Both actions have incentives. On one hand, telling the truth assures the infor-
mation service to keep a trustful relationship with community masters, but if
the information service tells the truth about a bad web service, the latter will
not reward the information service for the bad review. On the other hand, lying
can provide to the information service bigger direct reward, but contributes to
damage the relationship between the information service and the community. As
a result, communities have less trust towards lying information services, and ask

38 Sound web services collaborative mechanism

less frequently for interactions with them, bringing in fewer rewards.
Furthermore, as masters of communities use several information services at the
same time in order to compare their information, the decision to lie or tell the
truth also depends on other information services behaviour.

The problem we study is the situation where web services pay information
services each time they get chosen to join a community. A web service that
does not have a reputation high enough to be accepted in a community could
be tempted to cheat and pay more the information services. This bonus reward
encourages information services to lie when informing a community, referencing
a web service as having a bigger reputation than it actually has. As a result,
masters might invite potentially bad web services to join their community, and
by doing so, they could damage the reputation of the community.

If the reward web services give to information services to fake their opinion is
big enough, these information services are tempted to lie, as there is more direct
profit to gain by lying than by telling the truth. If a community accepts a web
service because of fake information, the community master expects from it more
than it can really handle. After a period of use, community masters can know
whether or not the information services have been honest. Indeed, the value of
this honesty can be determined by comparing the reputation provided by infor-
mation services and the actual reputation of the web service. If an information
service has not been honest, it is unlikely that the community uses it again as an
informant. The opportunity for the information service to be paid for informa-
tion decreases at the same time.

Information services are in the same situation as players in game theory. As
we saw in Chapter 3, players in game theory have different possibilities regard-
ing the decision or action to make, and are in a game with other players. The
outcome of the game represents a gain (positive, negative or neutral) for each
player. Each player’s action has an impact on other players’ outcome, and only
the combination of all players’ actions defines which outcome will come out the
game. Information services, when deciding between telling the truth or lying,
have to consider the effects of other information services’ action on their own.

If information services have incentives to lie, this can compromise the global
integrity of the network (composed by web services, communities of web services,
information services and final users). Indeed, communities can neither trust in-
formation services nor web services and users can see their requests handled in
an unsatisfying way they did not expect.

4.1 Problem definition 39

4.1.1 Modeling
The fact that information services have the possibility to lie is thus a crucial is-
sue. In this Section, in order to facilitate comprehension and reading we present
its modeling.

We formalise the problem as follows :

• A community of web services i is referred to as Ci

• Two different web services types are taken into account:

– A single web service j, wanting to be referenced and signed up into
communities, is referred to as Sj

– An information service k, which get paid by Sj to improve the
reputation value of the latter when informing Ci and by Ci to provide
information, is referred to as Ik

web services

master
web service

web service

web service web service

web service

information
 services

asks for web
services reputation

 references single
web services

subscribes

asks to join the
 community

asks to enter
 the community

communities of web services

Figure 4.1: Model architecture

40 Sound web services collaborative mechanism

Each part of the architecture has different goals :

• Single web service

– Handle user requests according to its capacity (the single web service
wants neither to be overloaded nor to be idle)

– Be rewarded for a service
– Have a good reputation

• Community of web services

– Handle user requests according to its capacity (the community of web
services wants its web services neither to be overloaded nor to be idle)

– Be rewarded for a service
– Have a good reputation

• Information service

– Be rewarded to reference single web services

When Ci asks Ik for information about the quality of Sj, Ik provides a repu-
tation value as an answer. A value (representing what Ik reports to be the repu-
tation of Sj to Ci) is assigned to the triplet (Ci,Sj,Ik). We name it r(Ci, Sj, Ik).

Definition 9. The value r(Ci, Sj, Ik) represents the reputation value of Sj re-
ported by the information service Ik to community Ci.

Such a value is saved by Ci in registries because Ci needs to keep a record
of information received about joining web services in order to compare it to the
actual reputation value.

On one hand, the objective of Ci is to have a good reputation and by defi-
nition to be composed by reputable web services. Ci would like to encourage Ik
to tell the truth, in order to invite only really reputable services and penalise Ik
if it is not honest. On the other hand, the objective of Sj is to be invited in a
(reputable) community, therefore Sj can give reward to Ik if it gives good (but
fake) references.

Profits for Ik can come from different sources, so that the truthfulness of the
information is not ensured. The objective of the following section is to look for a
solution where the information reflects the truth.

4.2 Solution modeling 41

4.2 Solution modeling

In this section, we explain our research for a solution to the problem presented
in Section 4.1.

The different concepts we use to build our solution model are presented in the
following sections : environment entities in Section 4.3, payments in Section 4.4
and concept of trust and trust evolution in Section 4.5.

Using game theory, we show in Section 4.6 what are the effects of those con-
cepts. A dichotomic approach is used to explore the different possible cases,
beginning with simple ones and, browsing in a rational way case by case, evolut-
ing in complexity.

This vision of the environment points out what the defects are and directly
shows what should be introduced into the model in order to correct them.

4.3 Environment entities

Those entities have been defined in Section 4.1.1, we add here precisions about
the hypothesis we make to build our solution model.

4.3.1 Communities of web services

At first, community masters are honest, their payment reflect the actual experi-
ence they had with web services. A community having a good interaction with a
web service will not pretend it was bad in order to give less rewards.

Secondly, each community has expectations regarding the web services it adds.
We translate those expectations by using a threshold. This threshold represents
the minimal reputation value a web service has to offer in order to be accepted
by this community. Community masters accept any web service which reputa-
tion exceeds the threshold. A community does not have a “maximal threshold”,
meaning that no web service is “too good” for a community.

Finally, a community learns from its experience : if the community realises
that a information service lied, it will be less inclined to request this information
service again. Conversely, if the information service gave to the community an
accurate idea of the web service reputation, the community will be motivated to
request this information service again.

42 Sound web services collaborative mechanism

4.3.2 Web services
Web services can be either good or bad for a community according to the threshold
of the community.

Definition 10. The value of the judgement of community Ci considering web
service Sj is calculated as follows :

ju(Sj, Ci) =

good if RSj
≥ tCi

bad if RSj
< tCi

where :

• tCi
is the value of the threshold for community Ci.

• RSj
is the reputation value of Sj.

4.3.3 Information services
Information services are players of the games, as the outcome of those games
depends on their behaviour. Each of them has two possible actions :

• Tell the truth
That means reporting the actual reputation of a web service (the reputation
they know).

• Lie
That means reporting a fake reputation about a web service. In order for
the lie to be useful, the fake reputation value has to allow the web service
to join a community. Therefore,

– Let tCi
be the value of the threshold for community Ci

– Let frSj
be the fake reputation value of Sj

To join the community, we need to have frSj
≥ tCi

.

4.4 Payments 43

4.4 Payments
We divide the payments information services receive in two categories : payments
from communities of web services (α, β, γ) and payments from web services (π).

4.4.1 Community payments
The reward given from the community to an information service is divided in 3
parts. This division is done in order to increase information services’ honesty.
Indeed, 2 of the 3 payments are calculated according to the given information
and its accuracy.

The first payment (α) is given to the information service if the latter accepts
to provide information to the community, it is the payment for the interaction.
The second payment (β) is paid according to the likeness between the information
given by the information service and the average reputation value calculated from
all information services’ information. Finally, the third payment (γ) is determined
by comparing the reputation value given by the information service and the actual
reputation observed by the community.

α payment

α is the payment Ci gives to Ik as an incentive to give Ci information about Sj.
Ik always gets α in its wholeness as it is the payment for the only fact of providing
the information.

β payment

β is the payment Ci gives to Ik after collecting reports about Sj from I0..k.
The value of β is based on the average reputation A(Ci, Sj, I0..k) :

Definition 11. The average reputation of Sj, computed from the information
given by I0..k to Ci, is calculated as follows :

A(Ci, Sj, I0..k) =

k∑
x=0

(r(Ci, Sj, Ik)TrIx
Ci

(t))
k∑
x=0

TrIx
Ci

where :

• TrIx
Ci

represents the value of trust Ci has towards Ix at a time t (defined in
Definition 16).

44 Sound web services collaborative mechanism

In this definition, we can see that Ci already uses its experience when com-
puting the average reputation. Indeed, the reputation value reported by each
information service will be balanced by the trust that Ci has towards these in-
formation services. This way, information given by information services which
already proved to be trustworthy will carry more weight than other information
services’ when computing the average reputation.

Definition 12. The value of the β payment is calculated as follows :

βk = fβ(|A(Ci, Sj, I0..k)− r(Ci, Sj, Ik)|)

where :

• A(Ci, Sj, I0..k) represents value of the average reputation.

• r(Ci, Sj, Ik) represents the value of the reputation of Sj reported by Ix.

Definition 13. The function fβ is calculated as follows :

fβ =

βmax if |A(Ci, Sj, I0..k)− r(Ci, Sj, Ik)| ≤ βa

min{βmax, 1
|A(Ci,Sj ,I0..k)−r(Ci,Sj ,Ik)|} if βa < |A(Ci, Sj, I0..k)− r(Ci, Sj, Ik)| < βb

0 if βb < |A(Ci, Sj, I0..k)− r(Ci, Sj, Ik)|

where :

• βmax represents the maximum value Ci accepts to give as β payment.

• βa is the maximal difference Ci accepts from Ik between the average repu-
tation and the reputation reported by Ik in order to give βmax to Ik.

• βb is the maximal difference Ci accepts from Ik between the average reputa-
tion and the reputation reported by Ik in order to give a β payment greater
than 0 to Ik.

4.4 Payments 45

Figure 4.2: β function

γ payment

γ is the payment Ci gives to Ik if Sj joined Ci and Ci assessed its reputation.
After this evaluation Ci can compare r(Ci, Sj, Ik) to the observed reputation value
O(Ci, Sj) and pays Ik with a value of γ.

Definition 14. The value of the γ payment is calculated as follows:

γk = fγ(|r(Ci, Sj, Ik)−O(Ci, Sj)|)

where :

• r(Ci, Sj, Ik) represents the value of the reputation of Sj reported by Ix.

• O(Ci, Sj) represents the value of Sj actual reputation observed by Ci when
sending requests.

Definition 15. The function fγ is calculated as follows :

fγ =

γmax if |A(Ci, I0..k, Sj)− r(Ci, Sj, Ik)| ≤ γa

min{γmax, 2
|O(Ci,Sj)−r(Ci,Sj ,Ik)|} if γa < |O(Ci, Sj)− r(Ci, Sj, Ik)| < γb

0 if γb < |O(Ci, Sj)− r(Ci, Sj, Ik)|

where :

46 Sound web services collaborative mechanism

• γmax represents the maximum value Ci accepts to give as γ payment.

• γa is the maximal difference Ci accepts from Ik between the observed repu-
tation and the reputation reported by Ik in order to give γmax to Ik.

• γb is the maximal difference Ci accepts from Ik between the observed reputa-
tion and the reputation reported by Ik in order to give a γ payment greater
than 0 to Ik.

Figure 4.3: γ function

4.4.2 Web services payment
π is the payment Sj gives to Ik to increase the reputation of Sj when reporting
about it to communities. This payment will only be received if Ci chooses to add
Sj.

4.5 Trust evolution
In order to receive the best information, community masters prefer asking for
information to trustworthy information services, that is to say information ser-
vices that already gave accurate information about web services’ reputation. In
order for community masters to know which information service it has to choose,

4.5 Trust evolution 47

masters keep records of their previous experiences with each information service
by means of a trust value related to each information service.

This trust value at a time t, is represented as TrIx
Ci

(t).

Definition 16. The trust value of community Ci towards Ix at a time t is cal-
culated as follows :

TrIx
Ci

(t) = TrIx
Ci

(t− 1) + fτ (|r(Ci, Sj, Ik)−O(Ci, Sj)|)

where :

• r(Ci, Sj, Ik) represents the value of the reputation of Sj reported by Ix.

• O(Ci, Sj) represents the value of Sj actual reputation observed by Ci.

• TrIx
Ci

(t−1) represents the trust at a time t−1, that is too say the last known
value of the trust.

• fτ is the trust update function.

Definition 17. The trust update function is calculated as follows :

fτ =

max bonus if |O(Ci, Sj)− r(Ci, Sj, Ik)| ≤ τa

m ∗ |O(Ci, Sj)− r(Ci, Sj, Ik)|+ b if τa < |O(Ci, Sj)− r(Ci, Sj, Ik)| < τb

max malus if τb < |O(Ci, Sj)− r(Ci, Sj, Ik)|

where :

• m = (max malus−max bonus)
τb−τa

.

• b = (max malus−m ∗max bonus)).

• max bonus represents the maximal trust gain Ci gives to Ik.

• max malus represents the maximal trust loss Ci imposes on Ik.

• τa is the maximal difference Ci accepts from Ik between the observed repu-
tation and the reputation reported by Ik in order to add max bonus to the
trust given to Ik.

• τb is the maximal difference Ci accepts from Ik between the observed repu-
tation and the reputation reported by Ik in order to add to the trust given
to Ik a value greater than max malus.

48 Sound web services collaborative mechanism

Figure 4.4: τ function

4.6 Game theory study
According to our model, when requested for information about a web service, in-
formation services only use payments α, β, γ and π as data to make their decision.
Using game theory, we present what are the effects of these payments.

4.6.1 Types of games
We take two types of games into account. On one hand, we consider one shot
game. As the name implies, the game is there only played once. On the other
hand, we consider repeated games, where the game is played several times. As a
consequence, each game can be influenced by the outcome of the previous ones.

4.7 Cases overview
In this section, we review the different cases we decided to consider. For each of
them, we analyse the situation as a game involving two players that are repre-
sented by a 2x2 array. Rows show the strategies of a single information service.
Columns indicate the strategies of the group of all the other involved information
services. Each cell of the array represents an action profile, that is to say the
outcome each player has according to their chosen strategies. The first outcome
is the one of the single information service and the second is the one of the group
of information services. For each case, we try to know whether there is a Nash
and/or a Pareto equilibrium.

4.7 Cases overview 49

We begin in Section 4.7.1 by considering the several cases where the single
web service is honest. In these cases, the web service does not try to corrupt in-
formation services by giving them rewards. Therefore, we only take into account
the first three payments α, β and γ. We first see what happens in the context of
a one shot game. Then, we move to a repeated game context.

Secondly, in Section 4.7.2 we admit that web services can have dishonest
behaviour. In other words, information services can receive π incentives in order
to improve fraudulently the information they give to communities. As before, we
start by studying a one shot game and then a repeated one.

4.7.1 Honest single web services
• One shot game

– S is a good web service

First, let us assume that the web service S, wishing to enter the com-
munity, is a good one.

Other information services
Tell the truth Lie

Information service Tell the truth (α + β + γ), (α + β + γ) (α), (α + β−)
Lie (α), (α + β− + γ) (α + β), (α + β)

Table 4.1: Honest single web services - One shot game - S is good

If every information service tells the truth and informs the community
that the web service is good, then every information service receives a
maximum payment of α+ β + γ. Indeed, information services receive
α in reward for the processing of the request. They gain β because the
value of the report that each information service gives is close to the
average of all reported values. Finally, they receive a third payment
γ thanks to the fact that the observed reputation and the announced
reputation are close.

If one information service decides to change its strategy while all the
others remain constant, namely if it decides to lie while the others
continue to tell the truth, this information service degrades its total
payment. It still receives α but neither β nor γ because the reputa-
tion it reported is far from the average and the observed reputation.
On the other hand, the other information services also experience a

50 Sound web services collaborative mechanism

degradation in their total payment. Indeed, because one information
service decided to report a reputation totally different, the average
reputation is smaller than if every information service had reported
a similar value. We express the fact that the average reputation is
smaller by writing β− instead of β. For those information services, the
reported reputation and the observed reputation are alike, therefore
the γ payment does not degrade.

If it is the group of information services that decides to change its strat-
egy and lie, information services composing that group only get α and
β− as payment. If the majority of information services announce that
the web service is bad, the community does not accept it. Therefore
the third payment γ is not granted. The information service that did
not change its strategy only gets α. This information service receives
neither β− , because its announced reputation is far from the average
one, nor γ, because the web service does not enter the community.

If everyone decides to lie, all information services get α and β and
nobody receives γ as the web service does not enter the community.

We can see that there is an incentive to tell the truth for everyone.
Telling the truth corresponds to the situation that guarantees the max-
imum payment α+β+γ. That situation is the only Nash equilibrium
of this case and is Pareto optimal.

– S is a bad web service

In this second case, we assume that the web service that wants to be
part of the community is a bad one.

Other information services
Tell the truth Lie

Information service Tell the truth (α + β), (α + β) (α + γ), (α + β−)
Lie (α), (α + β−) (α + β), (α + β)

Table 4.2: Honest single web services - One shot game - S is bad

If every player tends to tell the truth and reveals that the web service
is bad, they all get a payment of α + β. They receive α for the pro-
cessing of the request and β because each information service reports
a similar value and is therefore close to the average reputation value.

4.7 Cases overview 51

Nevertheless, the web service does not enter the community and no-
body gets the γ payment.

If the information service decides to modifies its strategy and lies by
announcing that the web service is good, it degrades its total payment.
The information service actually still receives α but not β as the rep-
utation it announced is no more comparable to the average. As for
the other information services, they get the two first payments but the
second one is slightly lower in comparison to the previous situation.
Therefore, they receive α + β−.

In the next situation, let us assume that the group of other information
services changes its strategy and begins to lie. Because the majority of
information services declare the web service as good, the web service
is accepted to join the community. Soon, the community realises that
it was not the truth and that the web service was actually a bad one.
Therefore, the group of information services receives α + β−. On the
other hand, the information service that kept its strategy of telling the
truth gets α+ γ. Indeed, the information service does not receive the
second payment but is rewarded by γ as it reported correctly that the
web service was bad.

If everyone decides to lie, all the information services get α + β. No-
body receives γ because the web service joins the community but the
latter discovers that the web service was actually bad.

In this case, we can see that the strategy of telling the truth for ev-
ery information services is the only Nash equilibrium. But there are
two Pareto optimal situations : one if everybody tells the truth and
another if each information service lies.

• Repeated game

– S is a good web service

In the context of a repeated game, if the web service that wishes to
enter the community is good, the solution is trivial. Indeed, if the best
strategy for the information services is already to tell the truth in an
one shot game, no matter how many times the game is played, the
players will not change their behaviour.

52 Sound web services collaborative mechanism

– S is a bad web service

If the web service is bad, the argumentation is the same than in the
previous case. Because the information services already tend to tell
the truth in an one shot game, they will not change their strategies no
matter how many times the game is played.

4.7.2 Dishonest single web services
We now assume that web services can have a dishonest behaviour. In other words,
we mean that a web service can give a π incentive to information services in order
to make them fake their reputation and provide an improved reputation value to
the communities.

• One shot game

– S is a good web service

If the web service that wants to join the community is a good one, we
assume that it has no interest in trying to corrupt information services
as it already has a good reputation. Therefore, this case is similar to
the one with a honest web service. We have a Pareto optimal Nash
equilibrium when all the Information services tell the truth.

– S is a bad web service

Let us assume now that the web service that wishes to enter the com-
munity is bad and that it can give a π incentive to information services
in order to make them provide a fake improved reputation value to the
community.

Other information services
Tell the truth Lie

Information service Tell the truth (α + β), (α + β) (α + γ), (α + β− + π)
Lie (α), (α + β−) (α + β + π), (α + β + π)

Table 4.3: Dishonest single web services - One shot game - S is bad

We analyse the situation in which every information service tells the
truth and reports to the community that the web service is bad. Here,
each information service receives α + β as total payment. α is once
again given in exchange of the processing of the request. Information

4.7 Cases overview 53

services also get β because they all report a similar reputation value
for the web service and are therefore all close to the average reputation
value. They do not receive γ because the web service does not join the
community, as it has been reported as a bad one.

If the information service decides to change its strategy and begins to
lie, its total payment decreases to α. Indeed, the information service
does not receive β anymore because it is the only one to report a good
reputation value and is therefore far from the average. As for the other
information services, they receive α+ β−. Nobody gets γ because the
web service does not join the community.

In the situation where the group of other information services changes
its strategy and lies, the web service joins the community. The single
information service that continues to tell the truth receives α but not
β. Nevertheless, the information service gets γ for having truthfully
reported that the web service was not a good one. The other infor-
mation services receive α+ β−. But because the web service joins the
community, they also get the π reward from the web service itself.

If all information services decide to lie, they get α + β + π. The web
service joins the community but the community master will discover
that the web service is not as good as expected. Therefore, information
services do not receive γ. On the other hand, because of their lie, they
are rewarded by π.
In this case, we see that lying and obtaining the π reward from the
web service for all the information services corresponds to the unique
Nash equilibrium of this game. This situation is also Pareto optimal.

• Repeated game

– S is a good web service

Once again, if the web service that wants to enter the community is
good and the game is played repeatedly, the best strategy for infor-
mation services is to tell the truth because it was already the case in
the one shot game and nothing changes this behaviour.

– S is a bad web service

54 Sound web services collaborative mechanism

The problem we face in the one shot game with a bad web service is
that the best strategy for the information services is to take the in-
centive π and lie to the community. Obviously, this should not be an
acceptable behaviour in the long term and we therefore need to find a
solution in order to prevent this from happening.

4.8 Introduction of the trust value into the choice process 55

4.8 Introduction of the trust value into the choice
process

Giving a clear motivation to lie puts the information service in a situation where
it has to choose between different actions, each creating different outcomes for
the information service. The data the choices are based on are various. An
information service has to consider the direct gain it can earn from its choice.
At least a small part of this gain comes from the community that requested it,
but a part of the gain can also be composed of bribes coming from the web service.

If we assume that only those payments were taken into account, the choice
would be simple : the action to choose is the action that brings the bigger gain
to the information service.

But, as we saw in Section 4.3.1, communities learn from their experience and
from their mistakes.
If an information service lies to a community, motivated by a consequent bribe,
admittedly it will get a large gain instantaneously, but will loose credibility with
regard to the community. The latter will be no more, or at least less motivated to
ask this particular information service for information about web services. Fewer
requests means less opportunities to get paid for information services. As a con-
sequence, an information service will need to consider the direct gain but also
the effects of its action on the motivation for communities to request it.

To combine payments seen in Section 4.4 and this idea of keeping being paid
in the future, we propose in this work to introduce a solution by means of a
reward function information services will use when having to decide whether or
not they should lie. The output of the function will be a value representing direct
payments, but also expectation about future payments. This reward function,
in order to reflect this expectation about future payments, has to balance direct
payments with a parameter related to the possibility of getting those future pay-
ments.

The trust a community has towards an information service is the value the
community will consider when requesting this information service, and thus pay
it for the service. This is why, when creating our reward function, we decide to
use the trust as the balance factor.

56 Sound web services collaborative mechanism

Definition 18. The reward function for an information service Ik, requested
among other information services I0..z by community Ci to give information about
Sj can be calculated as follows :

R(Ci, Sj, Ik, I0..z) = α(k) + β(k) + γ(k) + π(k)
+ TrIk

Ci
(t+ 1) ∗ (α(k) + β(k) + γ(k) + π(k))

where :

• TrIk
Ci

(t+ 1) is the value of the trust ot Ci towards Ik after the choice of Ik.

The first part of the function corresponds to the direct value a player gains
from the four possible payments α, β, γ and π.

The main idea of the second part of the function is that TrIk
Ci

will vary de-
pending on the behaviour of the information service. If the information service
provides fake reputation reports, it is possible that a community will allow a bad
web service to join. The community realises it was a lie and the information ser-
vice gets penalised by a decrease of TrIk

Ci
. On the other hand, if the information

service acts honestly and allow a good web service to enter a community, then
TrIk

Ci
increases.

Thanks to that mechanism, the second part of the payoff function acts as a
bonus/malus depending on the behaviour of the information service. The purpose
for the information service is obviously to maximise the possible payoff bonus.
That can only be achieved by adopting a honest behaviour, so in other words, by
telling the truth on a repeated basis.

The reward function acts as a utility function for the information service.
Indeed, the value of TrIk

Ci
(t+ 1) depends on the information the information ser-

vice gives (a true information or a lie). Therefore the value of the reward the
information service gets will also depend on it. When having to decide whether
it is best for it to lie or tell the truth, an information service can compare the
different possible values of the reward function C.

In order to make the value of the reward function closer to the definition of a
utility function value, we decide to bound it between 0 and 1.
The actual value of the reward function is R(Ci, Sj, Ik, I0..z) ∈ [0, 2 ∗ (α(k) +
β(k) + γ(k) + π(k))].
By introducing the division of this value by 2 ∗ (α(k) + β(k) + γ(k) + π(k)), we
limit the range to [0, 1].

4.8 Introduction of the trust value into the choice process 57

Definition 19. The reward function for an information service Ik, requested
among other information services I0..z by community Ci to give information about
Sj can be calculated as follows :

R(Ci, Sj, Ik, I0..z) =
α(k) + β(k) + γ(k) + π(k) + TrIk

Ci
(t+ 1) ∗ (α(k) + β(k) + γ(k) + π(k))

2 ∗ (α(k) + β(k) + γ(k) + π(k))

where :

• TrIk
Ci

(t+ 1) is the value of the trust ot Ci towards Ik after the choice of Ik.

58 Sound web services collaborative mechanism

59

5
Simulation tools

Now that we propose a solution for the problem we approached, we demonstrate
that the latter is correct. In order to do that, we use a program that allows us to
simulate the different entities we used and their behaviour in the way we defined
them. The results of this simulation program should assess whether the theoret-
ical solution we presented in Section 4.2 is coherent with what we can expect in
a real-time context.

Contents
5.1 Context and existing tools 60
5.2 Tool presentation . 61

5.2.1 Environment and entities 61
5.2.2 Rewards and incentives 62
5.2.3 User interface . 62
5.2.4 Results . 63

60 Simulation tools

5.1 Context and existing tools
In order to conduct experimentations, we first consider some of the existing sim-
ulation tools, Ascape [Asc11] and MASON [MAS11] in particular. Nevertheless,
some limitations force us not to use these two simulators and implement our own
solution instead.

As explained previously, one of the main issues in web services and commu-
nities of web services networks is for the community master to choose whether
or not to accept a web service in the community. As an answer to this problem,
we introduced the new concept of information service which role is to inform
communities about web services’ reputation.

The concept of information service being the main component of our system,
we needed it to be part of the simulation. Unfortunately, because of the original-
ity of this concept, it was logically impossible to find it in an existing simulator.
Another crucial element of our model was the introduction of a specific way of
calculation for the payments and the trust evolution.
Because our model introduces new and targeted concepts, we decided that a new
specific tool would be more appropriate to reach the objectives and details of our
model.
As explained in A.1, even our specific simulator requires some implementation
choices and slight restrictions. Reaching an appropriate solution with an exist-
ing simulation tool would thus have represented a huge amount of additional
modifications.

5.2 Tool presentation 61

5.2 Tool presentation
In this section, we make a brief presentation of the simulation tool we created.
A more complete and technical presentation of the tool can be found in the
Appendix A.

5.2.1 Environment and entities
In the simulation, three types of entities interact with each other in order to reach
their goals. Web services want to join communities in order to get more requests.
Communities of web services want to add to the community only web services
that have a reputation that fits their expectations. Information services want to
get the bigger reward possible when giving information to communities.

Here follows a quick presentation of our modeling of those entities into the
simulation.

Each community of web services knows some information services and requests
a certain number of them when looking for information about web services. Com-
munities trust information services they know. The trust value attributed to each
information service depends on the validity of previous interactions between the
community and these information services. Logically, when looking for informa-
tion, communities request the information services they trust the most.
As presented in Definition 10, the judgement of a community towards a web
services depends on the community threshold. Each community has a specific
threshold contained between 0 and 1.

Web services are presented in the simulation as entities defined by a quality
of service and a quality of service variability. The quality of service of a web ser-
vice is the value of the maximum quality of service a web service is able to offer.
When working, a web service cannot always offer this maximal quality of service.
If it is overloaded, for instance, the speed at which the web service provides an
answer to a request decreases, affecting the quality of service. In our simulation,
we do not simulate the actual sending of requests. The quality of service vari-
ability is thus a parameter we use to define the probability for a web service to
answer to a request with a quality of service different from its maximum capacity.

Because we do not simulate users, the representation of the reputation in the
simulation is quite simple. The reputation of a web service is based on a general
opinion of its quality of service. Therefore, an information service knowledge
about a web service reputation is computed as the average value of a set of qual-
ity of service values.

62 Simulation tools

The more honest an information service is, the more likely it is that com-
munities request it to get information about web services. On the contrary, if
an information service is used to lie, communities do not ask it for information.
Consequently, if an information service has not been requested for a long time, it
is preferable for it to tell the truth if asked to handle future requests. Therefore,
if an information service is not requested for a defined amount of time, its prob-
ability to tell the truth increases. This probability is expressed with a parameter
we name truth trend.

5.2.2 Rewards and incentives
Rewards and trust are granted if the information provided by an information
service is close to a specific value (the average reputation value for the β func-
tion and the actual reputation value for both γ function and the trust update
function). The closer the information is to this specific value, the bigger is the
reward. In other words, the smaller is the difference between the information and
this specific value, the bigger is the reward.

In order to compute the different rewards and the trust update, we use a
mechanism of two points function. The β function, the γ function and the trust
update function are divided in three sections.

If the difference between the given information and the referenced value is in
the first section (between 0 and the A point), the reward (or trust update) is
maximum. If the difference is in the second section (between points A and B),
the reward (or trust update) is computed according to the specific function (see
Definitions 13, 15 and 17). Finally, if the difference is in the third section (greater
than point B), the reward (or trust update) is minimal.

5.2.3 User interface
We developed our simulation tool so that the behaviour of each of these entities
can be configured. In order to make this process easier, we created a user inter-
face. The different parameters that can be set are grouped in two configuration
screens.

In Figure 5.1, the user can modify the parameters related to the different en-
tities. The number of communities can be chosen as well as, for each of them, the
minimum reputation level that a web service must have in order to be accepted
in the community.

The user can select the number of web services and the number of categories
in which web services will be distributed. For each category, a percentage of

5.2 Tool presentation 63

Figure 5.1: User interface - Entities configuration

population and a quality of service range can be chosen.

The number of information services can be selected and, for each information
service, an initial truth trend value.

In the second configuration screen of the simulation tool, shown in Figure 5.2,
the parameters related to the rewards and incentive can be defined by the user.
The behaviour of the different functions can be modelled as the user can choose
the extreme points (below point A, the gained value will be maximum whereas
above point B, the gained value will be minimum).

5.2.4 Results
When the user starts the simulation, the evolution of the results is displayed
using different graphs. The latter can be saved on the computer. A progress
bar indicates the progression of the current simulation. Information about events
happening during the simulation are also shown in a notification area.

64 Simulation tools

Figure 5.2: User interface - Rewards and incentive configuration

Figure 5.3: User interface - Results

65

6
Simulation results

In Section 4.8, we proposed a theoretical solution to insure that information ser-
vices in the network would have an honest behaviour. Thanks to an appropriate
adjustment of incentives and rewards and the consequent trust management, we
model a mechanism where information services are motivated to tell the truth
when communities request information.

In this chapter, we use the simulation tool we developed (presented in Chap-
ter 5 and detailed in Appendix A) and its results to show the validity of the
theoretical concepts we introduced. The main objective of this experimentation
is to illustrate the theoretical development by simulating the evolution of several
test environments.

In the first section of this chapter, we introduce the simulation test environ-
ments. We present each of these environments and detail the various parameters
we set for each of them. Results of each test environment are then examined and
compared according to various outputs. We mainly focus on three aspects. First,
we analyse the repartition of web services in the communities at the end of each
run, that is to say the percentage of good web services that were accepted, of bad
web services that were accepted and of bad web services that were rejected. We
then take a look at each information service trust average evolution. Finally, the
Truth/Lie ratio evolution is studied.

At the end of this chapter, we summarise the results we obtained by doing
a comparative analysis of the data we gathered from the simulation of each test
environment.

66 Simulation results

Contents
6.1 Test environments . 67
6.2 Test environments synthesis 89
6.3 Results analysis . 90
6.4 Conclusion . 112

6.4.1 Results comparison . 112
6.4.2 Final observations . 117

6.1 Test environments 67

6.1 Test environments
In this section, we review the different test environments we use during the sim-
ulation. Among all possible environments, we selected the seven most interesting
ones. First and second environments are used as basis. We then present the
variations we introduced in order to obtain the other five environments.

• Environment 1: Basic environment without R

To obtain this first environment, we present the situation in which the
reward function (Definition 19) is not used within the games. The trust
function (Definition 16) is still used by communities to update the trust
they have towards information services, but information services do not
take the impact on their trust into account when choosing whether to lie
or tell the truth.

In this environment, the outcome of a game for a information service is
calculated as follows :

α(k) + β(k) + γ(k) + π(k)

instead of

α(k) + β(k) + γ(k) + π(k) + TrIk
Ci

(t+ 1) ∗ (α(k) + β(k) + γ(k) + π(k))
2 ∗ (α(k) + β(k) + γ(k) + π(k))

This aims to compare benefits we can obtain in terms of results satisfaction
when we use and when we do not use R.

We take a sample of 1000 web services. As the time length of a simulation
depends on the number of used web services, this number is big enough to
give us results consequent enough to observe the evolution of the trend. A
bigger number of web services would not have improved the quality of the
results but only impacted the duration of tests.

The population of these web services is composed of only one category of
web services whose QoS ranges from 0 to 1 according to a random reparti-
tion. We assume that the web services are relatively small and can therefore
not handle a lot of requests. As a result, it is likely that a request is not pro-
cessed with the maximal QoS, therefore the QoS variability of this unique

68 Simulation results

category has been set to 0.8.

Regarding information services, this first environment counts 10 of them.
This number insures the communities have a sufficient choice when they
request information about web services without being too random and scat-
tered. Their initial truth trend has been set to a neutral value of 0.0. This
value expresses the fact that at the beginning of the simulation, information
services do not have personal incentive to tell the truth.

This first environment is composed by 10 communities. Each community
uses 5 information services when evaluating the quality of a particular web
service. To let a web service join, all communities require a minimum rep-
utation value of 0.5.

Concerning payments and rewards, we first set the value of α to 5.0, β max
to 20.0 and γ max to 40.0. The β and γ functions used in this environment
are shown in Figures 6.1 and 6.2. The initial π is set to 20.0 and the π step
to 5.0.

6.1 Test environments 69

Difference

β

Figure 6.1: Environment 1 - β function

Difference

Figure 6.2: Environment 1 - γ function

Finally, the trust update function is set as shown in Figure 6.3 with a max
bonus value of 0.2 and a max malus of -0.1.

70 Simulation results

Difference

Figure 6.3: Environment 1 - Trust update function

6.1 Test environments 71

• Environment 2 : Basic environment with R

In this second environment we use the same parameters than those set for
the first one. The only difference is that, from now and for every other test
environment, the reward function is used.

We take a sample of 1000 web services as it provides results that allow good
observations without having a too long simulation.

The population of these web services is composed of only one category of
services whose QoS ranges from 0 to 1 according to a random repartition
and with a QoS variability of 0.8.

The second environment features 10 communities that use 5 information
services when they request information about a web service. Information
services start with a neutral initial truth trend of 0.0.

Regarding payments and rewards, we set first the value of α at 5.0, β max
at 20.0 and γ max at 40.0. The β and γ functions used in this environment
are shown in Figures 6.4 and 6.5. The initial π is set to 20.0 and the π step
to 5.0.

72 Simulation results

Difference

β

Figure 6.4: Environment 2 - β function

Difference

Figure 6.5: Environment 2 - γ function

The trust update function used with this environment is set as shown in
Figure 6.6 with a max bonus value of 0.2 and a max malus of -0.1.

6.1 Test environments 73

Difference

Figure 6.6: Environment 2 - Trust update function

74 Simulation results

• Environment 3 : Increased initial π and π step

This third environment is very similar to the second one except for the
value of the π payment.

We take a sample of 1000 web services as it provides results that allow good
observations without having a too long simulation.

The population of these web services is composed of only one category of
services whose QoS ranges from 0 to 1 according to a random repartition
and with a QoS variability of 0.8.

The third environment features 10 communities that use 5 information ser-
vices when they request information about a web service. Information ser-
vices start with a neutral initial truth trend of 0.0.

Regarding payments and rewards, we set first the value of α at 5.0, β max
at 20.0 and γ max at 40.0. The β and γ functions used in this environment
are shown in Figures 6.7 and 6.8.

The main change of this environment compared to the second one is that
we increase both π related parameters so that the initial π is set to 40.0
and the π step to 10.0. Thanks to these modification, we should see that
information services are more tempted to lie.

6.1 Test environments 75

Difference

β

Figure 6.7: Environment 3 - β function

Difference

Figure 6.8: Environment 3 - γ function

The trust update function used with the environment is set as shown in 6.9
with a max bonus value of 0.2 and a max malus of -0.1.

76 Simulation results

Difference

Figure 6.9: Environment 3 - Trust update function

6.1 Test environments 77

• Environment 4 : Increased maximum malus

In this fourth environment, we took the parameters of the third environ-
ment as basis but introduced some modifications.

We take a sample of 1000 web services as it provides results that allow good
observations without having a too long simulation.

The population of these web services is composed of only one category of
services whose QoS ranges from 0 to 1 according to a random repartition
and with a QoS variability of 0.8.

The fourth environment features 10 communities that use 5 information
services when they request information about a web service. Information
services start with a neutral initial truth trend of 0.0.

Regarding payments and rewards, we set first the value of α at 5.0, β max
at 20.0 and γ max at 40.0. The β and γ functions used in this environment
are shown in Figures 6.10 and 6.11. The initial π is set to 40.0 and the π
step to 10.0.

78 Simulation results

Difference

β

Figure 6.10: Environment 4 - β function

Difference

Figure 6.11: Environment 4 - γ function

In this fourth environment, we modified the shape of the trust update func-
tion. We set the value of the maximum malus at -0.5. The trust update
function here is represented by the Figure 6.12. This modification should
incite the information services to be more honest.

6.1 Test environments 79

Difference

Figure 6.12: Environment 4 - Trust update function

80 Simulation results

• Environment 5 : Increased maximum bonus

In this environment, we also took the third environment as basis but we
modified it in a different way than in the fourth environment.

We take a sample of 1000 web services as it provides results that allow good
observations without having a too long simulation.

The population of these web services is composed of only one category of
services whose QoS ranges from 0 to 1 according to a random repartition
and with a QoS variability of 0.8.

The fifth environment features 10 communities that use 5 information ser-
vices when they request information about a web service. Information ser-
vices start with a neutral initial truth trend of 0.0.

Regarding payments and rewards, we set first the value of α at 5.0, β max
at 20.0 and γ max at 40.0. The β and γ functions used in this environment
are shown in Figures 6.13 and 6.14. The initial π is set to 40.0 and the π
step to 10.0.

6.1 Test environments 81

Difference

β

Figure 6.13: Environment 5 - β function

Difference

Figure 6.14: Environment 5 - γ function

The main difference in comparison to previous environments lays in the
variables of the trust update function. Indeed, we decide this time to use
a max bonus of 0.5 instead of an important max malus. The used trust
update function is shown in Figure 6.15. With this modification, the infor-
mation services should be more tempted to tell the truth.

82 Simulation results

Difference

Figure 6.15: Environment 5 - Trust update function

6.1 Test environments 83

• Environment 6 : Low number of used information services

In this sixth environment, we come back to the second environment as basis
but modify the way communities handle their relation with the information
services.

We take a sample of 1000 web services as it provides results that allow good
observations without having a too long simulation.

The population of these web services is composed of only one category of
services whose QoS ranges from 0 to 1 according to a random repartition
and with a QoS variability of 0.8.

The sixth environment features 10 communities. In this test environment,
each community only uses 2 information services when they request infor-
mation about a web service. With this low number of used information
services, the information services in the system should be less requested,
their truth trend is likely to increase during the simulation and, therefore,
they should be less tempted to lie. The information services also start with
a neutral initial truth trend of 0.0.

Regarding payments and rewards, we set first the value of α at 5.0, β max
at 20.0 and γ max at 40.0. The β and γ functions used in this environment
are shown in Figures 6.16 and 6.17. The initial π is set to 20.0 and the π
step to 5.0.

84 Simulation results

Difference

β

Figure 6.16: Environment 6 - β function

Difference

Figure 6.17: Environment 6 - γ function

The trust update function used with the environment is set as shown in
Figure 6.18 with a max bonus value of 0.2 and a max malus of -0.1.

6.1 Test environments 85

Difference

Figure 6.18: Environment 6 - Trust update function

86 Simulation results

• Environment 7 : Large number of communities with high knowledge of
information services

In this last test environment, we also used the second environment as basis
but we introduced another modification about information services.

We take a sample of 1000 web services as it provides results that allow good
observations without having a too long simulation.

The population of these web services is composed of only one category of
services whose QoS ranges from 0 to 1 according to a random repartition
and with a QoS variability of 0.8.

The seventh environment features 30 communities that use 5 information
services when they request information about a web service. Information
services start with a neutral initial truth trend of 0.0. In this environment,
the communities can also be aware of 4 times more information services
than the number of used information services when requesting information
about a web service. Usually, communities only know 2 times more infor-
mation services.

Regarding payments and rewards, we set first the value of α at 5.0, β max
at 20.0 and γ max at 40.0. The β and γ functions used in this environment
are shown in Figures 6.19 and 6.20. The initial π is set to 20.0 and the π
step to 5.0.

6.1 Test environments 87

Difference

β

Figure 6.19: Environment 7 - β function

Difference

Figure 6.20: Environment 7 - γ function

The trust update function used with the environment is set as shown in
Figure 6.21 with a max bonus value of 0.2 and a max malus of -0.1.

88 Simulation results

Difference

Figure 6.21: Environment 7 - Trust update function

6.2 Test environments synthesis 89

6.2 Test environments synthesis
In Table 6.1, a summary of the parameters used for each test environment is
presented.

Test environment
1 2 3 4 5 6 7

Reward function used No Yes Yes Yes Yes Yes Yes
Number of web services 1000 1000 1000 1000 1000 1000 1000

Number of categories of web services 1 1 1 1 1 1 1
QoS Variability 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Number of information services 10 10 10 10 10 10 10
Initial truth trend 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Number of communities 10 10 10 10 10 10 30
Number of used information services 5 5 5 5 5 2 5

Number of known information services 10 10 10 10 10 4 20
Minimum reputation value 0.5 0.5 0.5 0.5 0.5 0.5 0.5

α 5.0 5.0 5.0 5.0 5.0 5.0 5.0
β 20.0 20.0 20.0 20.0 20.0 20.0 20.0
γ 40.0 40.0 40.0 40.0 40.0 40.0 40.0

Initial π 20.0 20.0 40.0 40.0 40.0 20.0 20.0
π step 5.0 5.0 10.0 10.0 10.0 5.0 5.0

Maximum bonus 0.2 0.2 0.2 0.2 0.5 0.2 0.2
Maximum malus -0.1 -0.1 -0.1 -0.5 -0.1 -0.1 -0.1

Table 6.1: Test environments parameters

90 Simulation results

6.3 Results analysis
In the previous section, we defined the several test environments that we used
with our simulation to illustrate our theoretical solution. In this section, we anal-
yse the results we obtained for each environment. This analysis is done according
to a systematic approach.

For each environment, we first remind the main properties of the environ-
ment. We then examine the repartition of the web services in the communities
at the end of the simulation. This graph is interesting because it gives a good
idea whether or not the result of the simulation is satisfying.

Next, we take a look at the evolution of the trust average and truth trend at
the end of the simulation of each of the information services. It should indicate
how communities react toward information services’ behaviour.

Finally, we consider the Truth/Lie ratio evolution. This ratio presents the
global network action tendency. The evolution of the latter should reflect the
effects of the chosen parameters on this tendency.

To conclude this section, we compare the results we obtained, see if they are
consistent and verify the theoretical solution we proposed.

6.3 Results analysis 91

• Environment 1 : Basic environment without R

In this first test environment, we set up a population of 1000 web services
distributed in one category whose QoS ranges from 0 to 1 and QoS variabil-
ity equals 0.8. This environment also features 10 information services with
an initial truth trend of 0, 10 communities using 5 information services and
a minimum reputation value of 0.5.

The value of α is 5, β max 20, γ max 40, initial π 20 and π step 5. The
maximum bonus is 0.2 and the maximum malus is -0.1.

The main properties of this first test environment is that the reward func-
tion is not used.

After the run of the simulation, the results we obtained with this environ-
ment are not really satisfying.

Figure 6.22: Environment 1 - Community repartition

As we can see in the previous Figure 6.22, the repartition of web services
from each community at the end of the simulation is not very good. Indeed,
the proportion indicates that lots of bad web services have been accepted.
This can be explained by the fact that the maximum malus of the trust
update function is very low and, therefore, information services are not

92 Simulation results

enough penalised when they choose to lie.

Figure 6.23: Environment 1 - Trust evolution

Furthermore, Figure 6.23 shows us that despite this bad repartition, the
trust average of the different information services evolves positively during
the simulation. We can tell that this situation is due to the difference be-
tween the maximum bonus and the maximum malus of the trust update
function. Thanks to it, the trust increases more rapidly than it decreases.

6.3 Results analysis 93

Figure 6.24: Environment 1 - Trust

As mentioned previously, Figure 6.24 indicates how high is the trust aver-
age of each information service at the end of this first simulation.

Figure 6.25: Environment 1 - Truth/Lie ratio

Finally, we can see in Figure 6.25 that the Truth/Lie ratio is stable.

94 Simulation results

• Environment 2 : Basic environment with R

In this second test environment, we set up a population of 1000 web services
distributed in one category whose QoS ranges from 0 to 1 and QoS variabil-
ity equals 0.8. This environment also features 10 information services with
an initial truth trend of 0, 10 communities using 5 information services and
a minimum reputation value of 0.5.

The value of α is 5, β max 20, γ max 40, initial π 20 and π step 5. The
maximum bonus is 0.2 and the maximum malus is -0.1.

The difference between the first environment is that the reward function is
now used and we should therefore see an improvement in the results.

Figure 6.26: Environment 2 - Community repartition

As we can see in Figure 6.26, the repartition of web services in the com-
munities at the end of the simulation has improved compared to the first
environment. The proportion of accepted bad web services has decreased
and is now at 52.3%. In the previous environment, this percentage was
58.9%. We can tell that the introduction of R had a positive but limited
impact on the results of the repartition.

6.3 Results analysis 95

Figure 6.27: Environment 2 - Trust evolution

Regarding the evolution of the trust average of each information services,
the conclusion is the same as for the first environment. Since we did not
modify the trust update function, the results are logically very similar.

Figure 6.28: Environment 2 - Trust

96 Simulation results

Figure 6.29: Environment 2- Truth/Lie ratio

6.3 Results analysis 97

• Environment 3 : Increased initial π and π step

In this third test environment, we set up a population of 1000 web services
distributed in one category whose QoS ranges from 0 to 1 and QoS variabil-
ity equals 0.8. This environment also features 10 information services with
an initial truth trend of 0, 10 communities using 5 information services and
a minimum reputation value of 0.5.

The value of α is 5, β max 20, γ max 40, initial π 40 and π step 10. The
maximum bonus is 0.2 and the maximum malus is -0.1.

Compared to the second environment, we mainly modify and increase the
value of π parameters. As it was expected, the results with this environ-
ment are even worse than previously.

Figure 6.30: Environment 3 - Community repartition

Figure 6.30 clearly shows that the quality of the repartition of the web
services in the communities has been decreased, with a lot more bad web
services accepted within the communities by comparison with previous envi-
ronments. This can easily be explained by the fact that information services
are more tempted to lie thanks to the higher initial π and π step.

98 Simulation results

Figure 6.31: Environment 3 - Trust evolution

Logically, the evolution of the trust average is not as positive as in the
second environment due to the higher number of bad web services that
were accepted by the communities. Nevertheless, the difference between
the maximum bonus and the maximum malus still prevents this evolution
from being too negative. Indeed, we can see in Figure 6.31 that the trust
average did not change far away from the neutral value of 0.0.

Compared to the previous environment, the Truth/Lie ratio (Figure 6.33)
has been degraded. This result is quite logic. As we give the information
services high initial π and π step, they lie a lot more, resulting in a lower
Truth/Lie ratio.

6.3 Results analysis 99

Figure 6.32: Environment 3 - Trust

Figure 6.33: Environment 3 - Truth/Lie ratio

100 Simulation results

• Environment 4 : Increased maximum malus

In this fourth test environment, we set up a population of 1000 web services
distributed in one category whose QoS ranges from 0 to 1 and QoS variabil-
ity equals 0.8. This environment also features 10 information services with
an initial truth trend of 0, 10 communities using 5 information services and
a minimum reputation value of 0.5.

The value of α is 5, β max 20, γ max 40, initial π 40 and π step 10. The
maximum bonus is 0.2 and the maximum malus is -0.5. By increasing the
maximum malus from -0.1 to -0.5, the results of this simulation should have
been substantially improved in comparison with what we obtained with the
previous environment. Indeed, that is what we can observe with the fol-
lowing figures.

Figure 6.34: Environment 4 - Community repartition

First, let us analyse the Figure 6.34 and the repartition of the web services
among the different communities at the end of the simulation. As we can
see, the proportion of bad web services accepted by the communities is here
far less important than in environment 3 (Figure 6.30). The percentage of
bad web services accepted was 72,45% in the previous environment, it is
now decreased to 23,19%. The explanation is that, thanks to an higher
maximum malus than the one used in environment 3, information services
are less tempted to lie and are severely punished if they do. Therefore, a lot

6.3 Results analysis 101

more web services are rejected by the communities, as shown in the Figure
6.34 by the central blue portions.

Figure 6.35: Environment 4 - Trust evolution

Despite the satisfying repartition of web services in the communities, the
evolution of the average trust of each information service is not positive
(Figure [6.35). At the end of the simulation, none of the information ser-
vices has a positive trust average. We can explain this situation by the fact
that the maximum malus is very important. Indeed, even though a lot of
bad web services are refused by communities, indicating that the informa-
tion services are mostly telling the truth, the important malus has a huge
impact on the trust. This impact can only partially be compensated by the
lower maximum bonus.

At the end of the simulation, we can see in Figure 6.36 that the truth trend
of some of information services has been increased a little bit.

In this environment, information services had a clear incentive to tell the
truth. This is shown by the Figure 6.37 where the Truth/Lie ratio is high.
It also tends to slightly increase during the simulation.

102 Simulation results

Figure 6.36: Environment 4 - Trust

Figure 6.37: Environment 4 - Truth/Lie ratio

6.3 Results analysis 103

• Environment 5 : Increased maximum bonus

In this fifth test environment, we set up a population of 1000 web services
distributed in one category whose QoS ranges from 0 to 1 and QoS variabil-
ity equals 0.8. This environment also features 10 information services with
an initial truth trend of 0, 10 communities using 5 information services and
a minimum reputation value of 0.5.

The value of α is 5, β max 20, γ max 40, initial π 40 and π step 10. The
maximum bonus is 0.5 and the maximum malus is -0.1.

In this environment, we take inspiration from the third environment but we
modify it in the opposite way compared to the environment 4. Instead of
increasing the maximum malus, we boosted the maximum bonus. Unlike
the previous environment, the results here are totally unsatisfying as we see
in the next figures.

Figure 6.38: Environment 5 - Community repartition

First, let us begin with the repartition of the web services in the commu-
nities presented in the Figure 6.38. The results are comparable with those
obtained with the second environment. The proportion of bad web services
that are accepted is very high. In average, the percentage of those web ser-
vices is 68,31% which is close to what we noticed in the third environment

104 Simulation results

(72,45%).

Such an important percentage of bad web services accepted can be ex-
plained by the combination of the high value of the π parameters and the
low maximum malus. Indeed, the information services are tempted to lie
thanks to the substantial incentives and are not discouraged because of the
low maximum malus.

Figure 6.39: Environment 5 - Trust evolution

Despite the consequent proportion of bad web services accepted, Figure
6.39 indicates how positively the trust average of all the information ser-
vices evolves during the simulation. Such a result is not surprising. The
high maximum bonus of the trust update function is responsible for the
quick compensation of the loss generated by one or several lies by a consid-
erable gain when telling the truth only once.

As for the repartition of web services in the communities, the Truth/Lie
ratio in this environment is comparable to what we obtained in the third
environment, even if the result is slightly better.

6.3 Results analysis 105

Figure 6.40: Environment 5 - Trust

Figure 6.41: Environment 5 - Truth/Lie ratio

106 Simulation results

• Environment 6 : Low number of used information services

In this sixth test environment, we set up a population of 1000 web services
distributed in one category whose QoS ranges from 0 to 1 and QoS variabil-
ity equals 0.8. This environment also features 10 information services with
an initial truth trend of 0, 10 communities using 2 information services and
a minimum reputation value of 0.5.

The value of α is 5, β max 20, γ max 40, initial π 20 and π step 5. The
maximum bonus is 0.2 and the maximum malus is -0.1.

To set up this environment, we go back to the parameters of the second
environment. The main change we decide to introduce is to reduce from
5 to 2 the number of information services used by each community when
asking for information about a particular web service.

By reducing the number of information services used by the communities,
the probability for an information service to be used has decreased. There-
fore, the truth trend of the information services is more likely to increase
and, as a result, we see an improvement of the outputs as the following
figures indicate.

Figure 6.42: Environment 6- Community repartition

6.3 Results analysis 107

When we look at the repartition of web services in the communities at the
end of the simulation in the Figure 6.42, we can see that the results are
better than what we obtained with the second environment. In the latter,
the proportion of bad web services that were accepted by the communities
was 52.3% while here it is 30.1%. The progression of the truth trends can
explain why the information services chose to tell the truth.

Figure 6.43: Environment 6 - Trust evolution

Figure 6.43 shows that the average trust of all the information services
evolves in a positive and continuous way during this simulation. As ex-
pected, we can see in Figure 6.44 that the truth trend for each information
service at the end of the simulation can be very high.

108 Simulation results

Figure 6.44: Environment 6 - Trust

Looking at the Truth/Lie ratio in Figure 6.45, we can tell that results are
good. Indeed, the ratio gradually increases during the simulation which
indicates that information services are more likely to tell the truth in the
future interactions.

Figure 6.45: Environment 6 - Truth/Lie ratio

6.3 Results analysis 109

• Environment 7 : Large number of communities with high knowledge of
information services

In this last test environment, we set up a population of 1000 web services
distributed in one category whose QoS ranges from 0 to 1 and QoS variabil-
ity equals 0.8. This environment also features 10 information services with
initial truth trends of 0 and 30 communities using 5 information services
and a minimum reputation value of 0.5.

The value of α is 5, β max 20, γ max 40, initial π 20 and π step 5. The
maximum bonus is 0.2 and the maximum malus is -0.1.

In this last environment, we increase the number of information services in
the system and set it to 30. Communities are also aware of 4 times more
information services than the number of information services they use when
they request information about a web services.

Thanks to these modifications, the probability for an information service
to be chosen should decrease and, therefore, its truth trend is likely to in-
crease. As we can see in the following figures, this give us some good results.

Figure 6.46: Environment 7 - Community repartition

First, let us analyse the repartition of the web services in each community
at the end of the simulation. As we can see in Figure 6.46, this repartition

110 Simulation results

is good, with a low percentage of bad web services accepted.

Figure 6.47: Environment 7 - Trust evolution

Figure 6.47 indicates that the evolution of the trust average of each infor-
mation service has positively evolved during the the simulation.

Figure 6.48: Environment 7 - Trust

6.3 Results analysis 111

We can see in Figure 6.48 that, as expected, the truth trend of all the in-
formation services at the end of the simulation is very high, even maximum
for the majority of the information services.

Figure 6.49: Environment 7 - Truth/Lie ratio

Similarly to the previous environment, the Truth/Lie ratio shown in Figure
6.49 is high and keeps increasing during the simulation. The final value in
this environment is even better than what we obtained in the sixth envi-
ronment. This is mainly due to the fact that, over time, the trend of the
information services to tell the truth increases.

112 Simulation results

6.4 Conclusion
In this section, we propose a synthesis of the results we obtained through the
simulation of the test environments we presented in Section 6.1. We first com-
pare the quality of the outputs of each test environment. We use for that purpose
graphs that combine the main properties of the test environments.

Then we end this section by making a conclusion that summarises the main
ideas and observations we made during this experimentation phase.

6.4.1 Results comparison

To begin this results comparison, we are interested in the repartition of the web
services in the communities at the end of each simulation.

As we can see in Figure 6.50, we have two distinct groups of repartition. In-
deed, the test environments 1, 2, 3 and 5 provide repartition with a high density
of bad web services accepted in the communities. Conversely, with the test en-
vironments 4, 6 and 7, this density is lower and we observe that a lot more bad
web services have been rejected by the communities.

From these observations, we can draw some conclusions. First of all, modify-
ing the value of the maximum malus proves to be more effective than modifying
the maximum bonus. This is due to the fact that with an important malus,
information services are severely punished when lying to a community and are
therefore more tempted to tell the truth.

Environments 6 and 7 show us good results as bad web services accepted are
approximately twice less numerous than in environments 1, 2, 3 and 5, and as
bad web services rejected are at least twice more numerous than in those environ-
ments. Those two environments have in common the fact that, in both of them,
an information service has less chance of being chosen.

In environment 6, this is due to the fact that a community only uses 2 in-
formation services when asking for information about a web service, and only
knows 4 of them. In environment 1, 2, 3 and 5, an information service uses 5
information services and knows 10.

In environment 7, this phenomenon is explained by the fact that every com-
munity knows four times more information services than it uses, whereas in the
other environments, a community only knows twice more information services

6.4 Conclusion 113

than it uses.

Let’s illustrate this by those 3 numbers, showing for each environment the
probability for an information service to be chosen at the “first round” by at
least 1 community :

Environment Probability
1 to 5 0,999

6 0,737
7 0,838

Table 6.2: Probability of information service “first round” choice per environment

If an information service is not chosen in a specific period of time, the truth
trend of the information service grows and the probability for this information
service to be honest in the future is higher. This explains why environments 6
and 7 have better results in this repartition.

Figure 6.50: Communities repartition

In Figure 6.51, we compare the trust average that all communities have to-
wards all information services in each test environment. In this graph, we can see

114 Simulation results

that we obtain a negative value in two cases, in test environments 3 and 4. With
regard to the third test environment, we increase the value of the initial π and
the π step. With these modifications, the information services are more tempted
to lie, resulting in a low final trust average.

As for the fourth test environment, such a low trust average can seem surpris-
ing at first sight since we observe a good community repartition in Figure 6.50.
This is explained by the fact that the maximum malus set in this case is very
important. Information services are therefore severely punished each time they
lie.

If we look at the trust average of the fifth test environment, which also fea-
tures modified π parameters values, we can see that the important maximum
bonus has a opposite effect and that the resulting trust average is high.

Figure 6.51: Trust average

We then analyse the trust trend average of all information services for each
test environment. We observe in Figure 6.52 that the truth trend is very high in
the case of the two last test environments. In the latter, we modify the param-
eters of the simulation so that communities use less information services when
requesting about the quality of a web service (in the test environment 6) or have
knowledge of more information services (in the test environment 7). As a result,
information services in both test environments are less likely to be requested and
their truth trend increases. It is consistent with the fact that in both situations,
community repartitions are good.

6.4 Conclusion 115

Figure 6.52: Truth trend

Finally, we take a look at the evolution of the Truth/Lie ratio of each of the
test configuration.

Figure 6.53: Truth/Lie ratio

We can see that the five first environments have a Truth/Lie ratio that varies

116 Simulation results

at the beginning, but quickly stabilises after 2000 or 3000 evaluations. The dif-
ferent level at which they stabilise are easily explained with the help of Figure
6.541. Logically, environment that have a bigger proportion of bad web services
accepted are the environment where information services lie the most, and the
other way round.

Figure 6.54: Truth/Lie ratio and community repartition comparison

Regarding the test environments 6 and 7, we saw in Figure 6.52 that the
information services’ truth trends are high at the end of the simulation. These
high truth trends explain the increasing shape of the Truth/Lie ratio of these two
test environments as information services are more likely to progressively tell the
truth.

1Note that the value of Truth/Lie ratio in Figure 6.54 represents the final value of this ratio
for every environment.

6.4 Conclusion 117

6.4.2 Final observations
Thanks to those simulation results, we managed to extract some guidelines in or-
der to create environments that increase the probability for information services
to be honest.

First, we can argue that the introduction of the reward function is not a so-
lution per se, as we saw that the impact on the results were better but only in a
slight way. The choice of a right environment is thus clearly decisive.

Concerning the parameters of the reward function, it is not its direct appli-
cation that causes great modifications. However, its combination with an ap-
propriate choice of values for max bonus and max malus has direct impacts on
results. Increasing the max malus provides more honest answers from informa-
tion services as lying becomes very penalising. On the other hand, increasing the
max bonus does not appear to be very efficient as it increases the flaw identified
in the results of the simulation of the second environment, that is to say that
information services are more trusted than they should be.

Another way for communities to maximise their chance to get accurate infor-
mation from information services is to get linked to the bigger possible number
of information services. Doing so, a community has more choice when looking
for information about a particular web service. As a logical consequence, the
probability for an information service to be requested decreases. When having
less choice, a community could be reduced to the obligation of selecting an infor-
mation service which trust is not satisfying. In the situation where a community
knows many information services, this kind of limited choice is avoided. Informa-
tion services are put aside when lying and therefore gain motivation to tell the
truth for future requests.

118 Simulation results

119

7
Conclusion

In this chapter, we recall the most important points of our investigation and
summarise the problem we studied and the solution we introduced.

We have seen that a web service could try to join a community when it does
not receive enough requests from users or when it is overloaded because it could
threaten its survival. In order to accept this web service, the community has to
perform an analysis of the latter to be sure that it can live up to the community’s
expectations in terms of reputation. Unfortunately, the community cannot rely
on the information provided by the web service itself as it can produce fake in-
formation to improve its chance to be accepted. Therefore, we introduced a new
type of service called information services.

The purpose of an information service is to gather and sell information about
other web services’ reputation. When a web service asks to join, a community
sends queries to several information services about the latter and, based on the
answers, decides to accept or reject the web service.

Unfortunately, the honesty of the information services cannot always be guar-
anteed. Indeed, we can imagine that a web service with a very bad reputation
can try to corrupt the information services by giving them incentives to lie. The
information services would then provide fake results to the communities and the
web service would be accepted.

At this point, an information service can therefore be paid according to a
4-step mechanism. Three of the payments an information service can receive
come from the communities while the last one is given by the web services. One
of these payments (β) and the decision of accepting a web service is computed
according to the average reputation value. Therefore, an information service has
to take into account other information services’ potential action before deciding

120 Conclusion

what to do. An information service achieves this reflection using game theory
principles.

We used these game theory principles to study the possible behaviour of infor-
mation services during their interactions with a community. We noticed that with
this current payment mechanism, information services were heavily influenced by
the incentive given by bad web services to make them fake the information they
provide. Therefore, we had to define a payment mechanism where decisions taken
by an information service have influence on its future payments. With this mech-
anism, telling the truth should bring in a big reward whereas lying should be
punished.

If information services are offered big rewards to lie, it is more than likely that
lying is what they decide to do. The problem for those information services is
that, even if direct rewards are important, future rewards are likely to decrease.
Indeed, communities notice when dishonest information services lie and request
these information services less frequently. Information services receive less re-
quests and therefore less rewards for information.
When deciding whether to lie or tell the truth, information services have to think
about direct rewards but also future potential ones. We expressed this considera-
tion in a combination of both rewards : the reward function. The reward function
needs to balance direct rewards with the probability of being requested in the
future. This probability is directly linked to the trust a community has towards
an information service, this is why we used this value of trust as parameter to
balance rewards.

In order to assess our model, we implemented a simulation tool. In this tool,
we simulated the behaviour of the different entities (web services, information
services and communities of web services). Each of these can be configured. This
allowed us to set up different environments and scenarii. The aim of these sim-
ulations was to compare the outcome of the use of our model in these different
environments. The execution of those several scenarii showed a great variability
in the results, emphasizing the importance of the environment parameters.

Simulations helped us to underline two key elements that guarantee a certain
honesty from information services.
First, information services tend to be more afraid by a big penalty than they
are motivated by a big reward. Therefore, good results can be obtained for
communities if they strongly decrease the trust they have towards an information
service when the latter lies.
The other key element for an honest system is for communities to broaden their
contact set. If a community knows a large amount of information services, it
can choose to request only the more trusted ones. If the amount of information

121

services a community knows is big enough then lying only once is sufficient for
an information service to never be chosen again. Information services are then
more urged to tell the truth.

122 Conclusion

123

8
Limitations and future works

We are aware that the work we have accomplished has its own limitations. In
some situations, it appears that flaws can be found in our theory. Furthermore,
we sometimes postulate assumptions that seemed to create a truncated vision of
the reality. In this last chapter, we discuss some of the weaknesses that could be
subjects for future works in order to be corrected.

The first problem concerns the potential issue that can occur with the bribe
web services offers. In the theoretical solution we developed, we try to ensure that
the agents in the system adopt a honest behaviour by proposing a mechanism
relying on 3+1 incentives. This mechanism combined with the evolution of the
trust that the communities have towards the information services should counter
the bribes of the web services. In our study, we assume that the value of these
bribes are set to a reasonable scale compared to the payments received from the
communities. Unfortunately, we could imagine situations where such incentives
are very high. In that case, it is possible that the information services are really
motivated to lie. This phenomenon might be increased if the game between the
agents is played a few number of times, as explained in Section 4.7.2. Such a sit-
uation could be met, for example, in an environment where agents are in a stable
state. In this environment, the amount of requests sent by users is manageable
by the web services, so that web services are neither overloaded nor idle. They do
not need to join a community in order to gain or distribute requests. As for the
communities, the web services composing them is suitable to handle the requests
and therefore do not feel the need to increase their size.

Another limitation we can point concerns the way payments are distributed.
In our model, we consider that all agents are trustworthy regarding the payments
they give. Indeed, when an information service has to be rewarded in exchange
for its service or receive an incentive to lie, we assume that the communities and
the web services are honest and actually pay it. Of course, it is possible that in

124 Limitations and future works

some cases, we could be dealing with dishonest agents that could promise high
payments or incentives but might not be able to afford such amounts. In the
future, this problem could be approached in order to make our model closer to
the reality. We can imagine the introduction of some mechanisms that guaran-
tee the honesty of the agents thanks to penalties that would be applied when a
community or a web service refuses to make the payment.

The collusion between the agents of the system is another problem that we
did not handle in our solution but that could raise some interesting questions.
In our theoretical development, we assume that no interaction exists between
the agents apart from the requests of service and information. Unfortunately, it
could sometimes well be the case. For example, a group of several information
services could decide to share information about some web services and take the
same decision. When a request from a community about the reputation of a web
service arrives, the information services could agree on the answer to return. As a
result, the requested information services would give the same information to the
community. This scammed situation could be profitable for the lying information
services in terms of rewards as they would receive higher payments.

BIBLIOGRAPHY 125

Bibliography

[Asc11] Ascape guide. http://ascape.sourceforge.net/index.html,
January 2011.

[BKG09] Jamal Bentahar, Babak Khosravifar, and Maziar Gomrokchi. Social
network-based trust for agent-based services. In AINA Workshops,
pages 298–303. IEEE Computer Society, 2009.

[CCMW10] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana. Web services description language (wsdl) 1.1. http:
//www.w3.org/TR/wsdl, November 2010.

[Ecl11] Eclipse. http://www.eclipse.org/, January 2011.

[EMY+08] Said Elnaffar, Zakaria Maamar, Hamdi Yahyaoui, Jamal Bentahar,
and Philippe Thiran. Reputation of communities of web services -
preliminary investigation. In AINA Workshops, pages 1603–1608.
IEEE Computer Society, 2008.

[GHM+10] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques
Moreau, and Henrik Frystyk Nielsen. Soap version 1.2
part 1: Messaging framework. http://www.w3.org/TR/2003/
REC-soap12-part1-20030624/, November 2010.

[Gro04] Web Services Architecture Working Group. Web services architec-
ture - w3c working group note. pages 6–9, 2004.

[Gro11] W3C Working Group. Qos for web services: Requirements and
possible approaches. http://www.w3c.or.kr/kr-office/TR/2003/
NOTE-ws-qos-20031125/, August 2011.

[Jav11] Java. http://www.java.com, January 2011.

http://ascape.sourceforge.net/index.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.eclipse.org/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3c.or.kr/kr-office/TR/2003/NOTE-ws-qos-20031125/
http://www.w3c.or.kr/kr-office/TR/2003/NOTE-ws-qos-20031125/
http://www.java.com

126 BIBLIOGRAPHY

[JFr11] Jfreechart. http://www.jfree.org/jfreechart/, January 2011.

[KBM+10] Babak Khosravifar, Jamal Bentahar, Ahmad Moazin, Zakaria Maa-
mar, and Philippe Thiran. Analyzing communities vs. single agent-
based web services: Trust perspectives. In IEEE SCC, pages 194–
201. IEEE Computer Society, 2010.

[KBMT10] Babak Khosravifar, Jamal Bentahar, Ahmad Moazin, and Philippe
Thiran. On the reputation of agent-based web services. In Maria
Fox and David Poole, editors, AAAI. AAAI Press, 2010.

[KBT+09] Babak Khosravifar, Jamal Bentahar, Philippe Thiran, Ahmad
Moazin, and Adrien Guiot. An approach to incentive-based repu-
tation for communities of web services. In ICWS, pages 303–310.
IEEE, 2009.

[MAS11] Mason. http://cs.gmu.edu/˜eclab/projects/mason/, January
2011.

[MB07] Zaki Malik and Athman Bouguettaya. Evaluating rater credibility
for reputation assessment of web services. In Boualem Benatallah,
Fabio Casati, Dimitrios Georgakopoulos, Claudio Bartolini, Wasim
Sadiq, and Claude Godart, editors, WISE, volume 4831 of Lecture
Notes in Computer Science, pages 38–49. Springer, 2007.

[MS02] E. Michael Maximilien and Munindar P. Singh. Conceptual model
of web service reputation. SIGMOD Record, 31(4):36–41, 2002.

[MS03] E. Michael Maximilien and Munindar P. Singh. An ontology for web
service ratings and reputations. In Stephen Cranefield, Timothy W.
Finin, Valentina A. M. Tamma, and Steven Willmott, editors, OAS,
volume 73 of CEUR Workshop Proceedings, pages 25–30. CEUR-
WS.org, 2003.

[OSB09] Martin J. OSBORNE. An introduction to game theory - Interna-
tional edition. Oxford University Press, 2009.

[udd10] Uddi 101. http://uddi.xml.org/uddi-101, November 2010.

[YMB+08] Hamdi Yahyaoui, Zakaria Maamar, Jamal Bentahar, Nabil Sahli,
Said Elnaffar, and Philippe Thiran. On the reputation of commu-
nities of web services. In Proceedings of the 8th international con-
ference on New technologies in distributed systems, NOTERE ’08,
pages 4:1–4:8, New York, NY, USA, 2008. ACM.

http://www.jfree.org/jfreechart/
http://cs.gmu.edu/~eclab/projects/mason/
http://uddi.xml.org/uddi-101

127

A
Simulation tool - technical presentation

In this chapter, we present in details the simulation tool we developed. We begin
by presenting the choices we made for the modeling and the implementation.
An overview of the different entities follows.
The technical structure of the implementation is explained after that.
During a simulation, each entity of the environment acts according to a specific
dynamic. The next section is composed of the implementations of each of these
dynamics.
We end the presentation of our tool with a detailed review of every screen of the
simulator.

Contents
A.1 Simulation choices . 127

A.1.1 modeling . 127
A.1.2 Implementation choices 129

A.2 Entities overview . 129
A.2.1 Web service . 129
A.2.2 Community of web services 131
A.2.3 Information service . 132

A.3 Architecture . 133
A.4 Simulation dynamic . 137

A.4.1 Web service . 137
A.4.2 Community of web services 137
A.4.3 Information service . 138

A.5 Screens overview . 139
A.5.1 Configuration - Entities 139

128 Simulation tool - technical presentation

A.5.2 Configuration - Rewards 141
A.5.3 Results - QoS repartition 143
A.5.4 Results - Truth/Lie ratio 145
A.5.5 Results - Trust average 147
A.5.6 Results - Evolution of the trust average 149
A.5.7 Results - Community repartition 151

A.1 Simulation choices 129

A.1 Simulation choices
We introduce here the several choices we made regarding our simulation program.
In the modeling section, we explain the simplifications that allowed us to develop
a efficient implementation without overlooking key elements of our work. Ele-
ments that have been simplified are in majority out of the scope of the core of
our investigation.

We then present the several implementation choices we made.

A.1.1 modeling
The first major choice we made was to stay the simplest possible and focus on
what was really important, that is to say the interactions between web services,
information services and communities. Thus, we intentionally overlooked some
key elements and concepts that exists in the reality but were not really needed
in the optic of our work.

The concept of user and the links he can have with web services and com-
munities are not represented in our simulator because it would have introduced
some unnecessary complexity. Consequently, the value of the reputation of a web
service in our simulation is a static one. It does not vary along with the interac-
tions the service has like it would in normal case. We decided here to assign a
random value for each web service during its initialization.

Considering that we did not represent the interactions between information
services and users, information services can not use feedbacks provided by the
latter to compute the reputation value of each web service. A solution could have
been to simply share the static value of the web services but, in this case, all the
information services would have the exact same value for every web service. A
situation that is not likely to happen in reality where it should exist some vari-
ations between the value that each information service possesses. We therefore
decided to introduce a small random variation that is added to the actual rep-
utation value and then transmit to the web services. This variation depends on
one of the web service attributes, which is called “constancy”. The higher the
constancy of a web service is, the lower is the chance for a information service to
make correspond to this web service a reputation that is not the real one.

We also chose to categorise different web services in a dichotomic way. De-
pending on a threshold, a web service can be declared as good or bad. Since the
interactions between several web services and users are not implemented, there is
no way that a web service could improve its reputation level. Therefore, in order

130 Simulation tool - technical presentation

to prevent that an important number of bad web services that would always be
rejected by communities flooded the system, we imposed a defined limited num-
ber of attempts to join a community. Afterwards, web services are shut down.

Regarding the way we implemented the communities, we decided to get rid of
all the master/slaves aspects. A master to dispatch them among the web services
of the community was not necessary as there were no actual request from users to
treat. Moreover, we proceeded in that way because we decided not to represent
the attraction/retention capabilities that a master should normally have. In our
simulator, the joining requests always come from web services that want to enter
a community. And when a web service joins a community, we considered that he
never leaves it. Therefore, we chose to limit our implementation of a community
to a list of different web services. The algorithm responsible for the acceptation
or the rejection of a joining request is handled inside the community but not
delegated to a specific web service.

Communities do not always need to add new web services. In some cases,
their performances are such that they do not want to let new web services join
them. In our simulation, we do not consider that fact and assume that commu-
nities remain open about the idea of accepting new web services and do not have
a limit regarding the number of web services they let join.

In reality, mechanisms like UDDI registries help the different entities to search
for the others. For example, a web service uses these registries to discover the
communities that exist in the system. Here, in order to simplify and avoid the
management of such registries, we decided to implement a unique object Repos-
itory that references all the web services, communities and information services.
Moreover, we used the singleton pattern so that all the different entities can easily
call that repository.

We decided to let a specific object handle the data that serves as results.
We also implemented it using the singleton pattern. The concerned entities can
therefore easily call the object and transmit some information to it.

A.2 Entities overview 131

A.1.2 Implementation choices
We decided to develop our solution with the Java programming language in its
1.6 revision [Jav11]. As SDK, we used Eclipse 3.6 (Helios) [Ecl11]. In order to
display the results of the simulation with graphs, we added to our project the
JFreeChart library [JFr11].

We also wanted our simulation program to be user-friendly. Thus, we decided
to develop a simple user interface. The latter basically contains two screens. The
first allows the user to configure the upcoming simulation and the second shows
the obtained results in real time. We developed our interface according to the
Model-View-Controller (MVC) pattern. In other words, our code is divided so
that some classes are designed to handle the data, some to present this informa-
tion to the user of the program and some are intended to control the interface.

The Observer pattern is also used in order to update the interface with the
data transmitted by the several entities.

A.2 Entities overview
In this section, we review each main entity in order to analyse their goals in the
system, the hypothesis we made about them for the simulation and the parame-
ters that compose them.

A.2.1 Web service
Parameters

• Id
This number identifies the web service among all the others.

• Quality of service
This value expresses the quality of service the web service can offer when
answering to a customer’s request.

• Quality of service variability
This value expresses the percentage of variability of the web service’s quality
of service. This value has been introduced in the program to simulate the
fact that web services can not always answer to requests with the same
quality of service (if overloaded for example). The bigger is this value, the
bigger is the chance for the web service, if asked, to return a QoS value
different from the real one. However, the difference between the returned
QoS and the real one does not vary too much.

132 Simulation tool - technical presentation

• Bribe value
If a web service wants to pay an information service in order to motivate
this information service to lie about its reputation, this value represents
the value of the initial reward the web service promises to the information
service for this lie.

• Bribe step
If the initial bribe value is not enough to motivate the information service
to lie, the bribe step value is the one by which the web service increases its
bribe.

• Number maximum of attempts
If the web service is either not accepted or rejected by a community, this
number represents the number of times the web service can try to enter
another community.

Goals

• The only goal of a web service is to be accepted in a community.

Hypothesis
We assume that :

• No web service wants to work on its own but all want to join a community.

• Web services do not have expectations regarding the communities they
want to enter. As a result, the choice of the community to request is made
randomly.

• A web service always wants an information service to lie about its reputation
if the community the web service wants to enter has a too big minimum
accepted reputation value.

• Web services do not change their quality of service over time.

• As a consequence to the precedent point, communities will not accept a
web service they already rejected, and a a web service will not try to enter
a community it has already been rejected from.

• A web service only joins one community at a time.

• A web service tries to join one community. If the web service manages to
be accepted and to stay in a community, it will never want to leave this
community.

A.2 Entities overview 133

A.2.2 Community of web services
Parameters

• Id
This number identifies the community of web services among all the others.

• Number of used information services
When a community wants to have information about a web service want-
ing to join it, the community asks to different information services about
this web service. This value indicates the number of different information
services the community queries.

• List of known information services
This list registers all the information services a community knows. When
the community asks for information about a web service, the community
selects information services from this list to ask them.

• List of web services in the community
This list registers all the web services that are in the community.

• web service minimum accepted reputation
This value indicates the minimum reputation for a web service to have in
order to join the community.

Goals

• The goal of a community of web services is to only accept and keep good web
services (the concept of good web service is explained in the next point).

Hypothesis
We assume that :

• A community considers a web service as a good one if the reputation of this
web service is at least equal to the minimum accepted reputation value of
the community.

• Communities do not have a maximum capacity. As a result, they always
accept web services as long as the reputation of those web services are good
enough.

• A community does not know all the information services in the system. The
only information services the community knows is a set of randomly chosen
information services. The size of this set is, if possible (if there are enough
information services in the system) equal to
2*number of used information services. If there are not enough infor-
mation services to equal this number, the community simply knows all the
information services in the system.

134 Simulation tool - technical presentation

• Each time a community wants to get information about a web service, the
community asks about it to a group of information services. This group is
composed of
number of used information services information services. Those in-
formation services are the
number of used information services - 1 information services that have
the best trust value according to the community and the last one is the infor-
mation service that has the worst trust value according to the community.
The latter is chosen in order to give a chance to the “worst” information
services to improve their trust value.

A.2.3 Information service
Parameters

• Id
This number identifies the information service among all the others.

• Truth trend value
This value indicates the probability for an information service to tell the
truth to a community of web services if the information service has the
choice to lie.

Goals

• The goal of an information service is to increase the rewards it can get from
the communities on one hand, and from the web services on the other hand.

Hypothesis
We assume that :

• An information service which has good truth value according to commu-
nities of web services will be often requested to give information. On the
contrary, an information service which is not often requested is more likely
to have poor truth value according to the communities. Those, more than
the others, need to increase their trust value towards the communities.
Therefore, each time an information service is not requested for a specific
amount of time (easily modifiable in the code), its
truth trend value increases.

A.3 Architecture 135

A.3 Architecture
In this section, we review the architecture we adopted for our program. We take
a look at each class we coded and briefly explained its purpose.

Our main Java project is composed of the six following packages :

• controller :
The controller package contains a single class Controller. This Controller
serves as entry point for the entire application. Indeed, the Controller is
in charge of initializing the interface and the different entities necessary for
the simulation. The Controller is also responsible for handling the events
triggered by the interface, for example when the user presses a button.

• entities :
This package contains the implementation of the different entities that are
used for the simulation such as web services or information services. We
detail later each of these entities.

• exceptions :
As its name suggests, the exceptions package contains all the exceptions
that can be thrown by the application during its execution.

• gameTheory :
The gameTheory package essentially contains classes related to the game
theory mechanisms. More explanations on these classes can be found later
in the document.

• observer :
In order to make it more suitable to our needs, we redefined the Observer
pattern with the methods that were useful to us. In this package, we can
thus find our version of the two interfaces Observer and Observable.

• utils :
The utils package contains some classes that are used as tools during the
simulations. The Rule class represents a rule to compute the payments of
trust update. The Stats class is used to gather information about the cur-
rent simulation. Those data can then be transmitted to the view in order
to provide results to the user. Finally, the WebServicesStarter class allows
us to prevent all the web services set for the simulation to start simultane-
ously. The Stats and the WebServicesStarter have been implemented using

136 Simulation tool - technical presentation

the singleton pattern.

• view :
The view package contains all the classes used to display the interface of
the simulation program.

We now examine in more details the content of the entities and the gameThe-
ory packages.

The entities package

As we said, the entities package contains our implementation of the entities
whose behaviour is observed through the running simulations. Therefore, we find
here the WebService, InformationService and Community classes. We also put
in this package the Repository, isGroup and Report classes.

• Community :
As we explained in Section A.1.1, we didn’t implement the concepts of
master/slaves in this implementation of the community. Therefore, a com-
munity contains simply a list of all the web services that are inside but
without introducing a special distinction between them. A community is
identified by an ID number and also possesses a list that maps to each in-
formation service that the community has had contact with a trust value.
A special value called acceptanceReputation indicates the minimum repu-
tation level that the community requests to accept a new web service. The
Community class implements the Runnable interface in order to run in its
own thread.

• InformationService :
The InformationService class is not a very complicated one. Each infor-
mation service maintains a list that maps web services with a reputation
value. An ID number identifies each information service. This class also
implements the Runnable interface so that each information service runs
within a thread.

The behaviour of a information service is here fairly simple. It reacts to the
requests that come from communities and shares with them the information
it knows about web services.

A.3 Architecture 137

• IsGroup :
When a community searches information about a particular web service, it
requests a group of information services. The IsGroup class represents this
group.
The IsGroup is in charge of the game theory part of the simulator. When
information is requested for a community, each information service from
the created IsGroup uses game theory in order to decide which decision it
should make and which information it should provide.

• Report :
The Report class represents the list of reputation values that a community
received from the information services it requested about the quality of a
particular web service.

• Repository :
To avoid the complexity of dealing with multiple registries for the locali-
sation of the entities, we decided to implement a single component called
Repository. This component knows all the entities that are present in the
system. Thus, it maintains a list of communities, a list of information ser-
vices and a list of web services.

We developed the Repository class following the singleton pattern. All the
communities, information services and web services can thus access this
Repository and send it requests.

• WebService :
The WebService contains a number of attributes that define the web ser-
vice. First, an ID number is used to identify the service. A float value
indicates the reputation value of the web service and a boolean detects if
the service belongs to a community or not.

As we explained in the section dedicated to the choices of implementation,
we introduced some randomness when it comes to the knowledge that in-
formation services hold about the reputation of the web services. This has
been implemented through a method that returns alternated version of the
reputation of the requested web service.

As for Community and InformationService, the WebService class imple-
ments the Runnable interface that allows each instance of he class to run

138 Simulation tool - technical presentation

within its own thread. The latter stops when the web service enters a com-
munity or reaches the maximum number of attempts.

The gameTheory package

The gameTheory package contains a group of classes that implement concepts
related to the game theory. We find here the classes that represent the Action-
Profile, the Choices, the Outcome and the Game. The way we implemented these
classes restricts the game to a two-players play.

• ActionProfile :
An ActionProfile corresponds to the couple formed by the Choices made by
the players and the Outcome that the players gains in the current situation.

• Choices :
This class represents the choices made by each of the two players. These
choices are coded using integers.

• Game :
The Game class is the most complicated of this package. It contains a list
that maps choices to outcomes that model the game. Two integer values
indicate the number of actions that the two players can choose.

When a game has been initialised, we can apply some methods on it in
order to compute results. For example, a method allows us to find the best
response function for a given player. Another useful function helps us to
find the Nash equilibrium of the game.

• Outcome :
The Outcome corresponds to the gains that each player can receive accord-
ing to a certain situation.

A.4 Simulation dynamic 139

A.4 Simulation dynamic
In this section, we explain what happens during a simulation for each entity.

A.4.1 Web service
1. All web services are created according to the population and reputation

data chosen by the user in the configuration screen.

2. Web services are put in a list and wait to enter the system by groups. This
is a technical choice we made in order not to overload the computer running
the simulation.

3. When a web service enters the system, it asks a community randomly chosen
to join it.

(a) The community does not accept the web service, the web service goes
back to step 3, as long as its
maximum number of attempts is not reached.

(b) The community accepts the web service but tests it and rejects it after
a time, the web service goes back to step 3, as long as its
maximum number of attempts is not reached.

(c) The community accepts the web service and keeps it.

4. The web service becomes inactive and another one can enter the system.

A.4.2 Community of web services
1. All web services are created according to

used information services and
web service minimum accepted reputation data chosen by the user in
the configuration screen.

2. The community creates a sorted list of the known information services. In
this list, the information services are ordered by the trust the community
has towards them.

3. At regular intervals, the community tests its web services (simulating the
mechanism of sending requests).

(a) If a web service passes the test, it stays in the community.
(b) If a web service does not pass the test, the community ejects the web

service.

140 Simulation tool - technical presentation

4. Each time a web service asks the community to join, the community creates
a group of information services and asks them about the reputation of the
web service. This group is composed of the
used information services - 1 first information services of the commu-
nity list (created at step 2) and of the last one of this list.

5. The community gets acquainted with the average reputation.

(a) If this value is good enough (equals or is superior to the community
web service minimum accepted reputation), the community accepts
the web service.

(b) If this value is not good enough (inferior to the community
web service minimum accepted reputation), the community does
not accept the web service.

A.4.3 Information service
1. All information services are created according to the truth trend data

chosen by the user in the configuration screen.

2. The information service gets acquainted with the reputation of all the web
services in the system.

3. The information service waits for a specific amount of time (called session)
to be requested by a community to give information about a web service
reputation.

(a) If the information service is requested by a community, it analyses
(thanks to game theory) the best action to make (tell the truth or lie
to the community about the web service reputation) and informs the
community of the consequent reputation.

(b) If the information service is not requested by a community within this
time, the
truth trend value of the information service increases.

A.5 Screens overview 141

A.5 Screens overview
In order to make the usage of the simulator more user-friendly, we decided to
implement a user interface. The latter should help the user to prepare and con-
figure simulations in an easy way. The application consists essentially in two
main activities. In the first, the user configures the upcoming simulation while
in the second, the results of the simulation are displayed in real-time.

A.5.1 Configuration - Entities
This first configuration screen allows the user to configure the entities.

Figure A.1: Configuration screen - Entities

In (1), the user can select one of the two configuration screen. “Entities”
corresponds to the screen allowing to modify the several parameters regarding
the agents while “Rewards” lets the user set the value of the rewards, incentive,
β function, γ function and τ function.

In the panel identified by (2), the user can configure the communities. The
number of communities that will be deployed during the upcoming simulation

142 Simulation tool - technical presentation

can be selected using (3). In the panel identified by (4), the parameters of each
community can be set :

• Number of used IS : Set the number of information services used by the
community when requesting information about a web service.

• Min WS reputation : Set the minimum reputation value required by the
community to allow a web service to join.

In the panel identified by (5), the user can configure the web services. The
number of web services that will be deployed during the upcoming simulation
and the number of categories in which they will be distributed can be selected
using (6). In the panel identified by (7), the parameters of each category of web
services can be set :

• QoS range : Set the range in which the QoS of the Web services of the
category will vary.

• Population percentage : Set the percentage of the total web services
that will belong to the category.

• QoS variability : Set the QoS variability of the web service.

In the panel identified by (8), the user can configure the information services.
The number of information services that will be deployed during the upcoming
simulation can be selected using (9). In the panel identified by (10), the truth
trend parameter of each information service can be set.

By clicking the button identified by (11), the user starts the simulation with
the parameters that have been chosen.

A.5 Screens overview 143

A.5.2 Configuration - Rewards
The second section of the configuration screen is used to set parameters regarding
the rewards and incentive.

Figure A.2: Configuration screen - Rewards

In (1), the user can select one of the two configuration screen. “Entities”
corresponds to the screen allowing to modify the several parameters regarding
the agents while “Rewards” lets the user set the value of the rewards, incentive,
β function, γ function and τ function.

In the panel identified by (2), the user can modify the value of the rewards
α, β max and γ max and the parameters related to the incentives, initial π and
π step.

In the panel identified by (3), the parameters of the β function can be ad-
justed. This function has been defined in Section 4.4 in Definition 13. The shape
of this function has been presented in Figure 4.2 and the Point A parameter rep-
resents the βa while Point B represents βb.

In the panel identified by (4), the parameters of the γ function can be ad-
justed. This function has been defined in Section 4.4 in Definition 15. The shape

144 Simulation tool - technical presentation

of this function has been presented in Figure 4.3 and the Point A parameter rep-
resents the γa while Point B represents γb.

In the panel identified by (5), the parameters of the τ function can be ad-
justed. This function has been defined in Section 4.5 in Definition 16. The shape
of this function has been presented in Figure 4.4 and the Point A parameter rep-
resents the τa while Point B represents τb. The user can also set the value of the
maximum bonus and the maximum malus.

By clicking the button identified by (6), the user starts the simulation with
the parameters that have been chosen.

A.5 Screens overview 145

A.5.3 Results - QoS repartition
This screen displays the repartition of the web services of the current simulation
according to their quality of service value.

Figure A.3: Results screen - QoS repartition

In (1), the user can select one of the five results screens.

In (2), a chart that represents the repartition of the web services according
to their quality of service is displayed. The Y-axis (3) represents the quality
of service of a web service while the X-axis (4) represents all the web services
deployed during the current simulation.

The progress bar identified by (5) indicates the progression of the current
simulation.

In the area identified by (6), real-time notifications about the current simu-
lation are displayed.

By clicking the button identified by (7), PNG image files of the results charts
are generated and saved on the computer.

146 Simulation tool - technical presentation

By clicking the button identified by (8), the user can interrupt the current
simulation.

A.5 Screens overview 147

A.5.4 Results - Truth/Lie ratio
This screen displays the evolution of the Truth/Lie ratio. This ratio corresponds
to the total amount of times the information services chose to tell the truth com-
pared to the total of choices they had to make.

Figure A.4: Results screen - Evolution of the Truth/Lie ratio

In (1), the user can select one of the five results screens.

In (2), a chart that represents the evolution of the Truth/Lie ratio is dis-
played. The Y-axis (3) represents the Truth/Lie ratio. Each time a community
asks information services for information about a web service, each of these infor-
mation service can choose either to lie or tell the truth. The X-axis (4) represents
each of these choices.

The progress bar identified by (5) indicates the progression of the current
simulation.

In the area identified by (6), real-time notifications about the current simu-
lation are displayed.

148 Simulation tool - technical presentation

By clicking the button identified by (7), PNG image files of the results charts
are generated and saved on the computer.

By clicking the button identified by (8), the user can interrupt the current
simulation.

A.5 Screens overview 149

A.5.5 Results - Trust average
This screen displays the trust average and the truth trend of each information
service.

Figure A.5: Results screen - Trust average and truth trend

In (1), the user can select one of the five results screens.

In (2), a chart that represents the current trust average and truth trend of
each information service deployed in the running simulation is displayed. The
trust value that a particular community has towards an information service
evolves according to the τ function we defined in Section 4.5. In this chart,
we show the average trust that all the communities have towards the deployed
information services. The Y-axis (3) represents the value of the trust average
and the truth trend. The trust average can vary between -1 and 1 while the truth
trend can vary between 0 and 1. The X-axis (4) indicates all the information
services that have been deployed in the current simulation. The colours used to
distinguish the truth trend and the trust average are shown in (5).

The progress bar identified by (6) indicates the progression of the current
simulation.

150 Simulation tool - technical presentation

In the area identified by (7), real-time notifications about the current simu-
lation are displayed.

By clicking the button identified by (8), PNG image files of the results charts
are generated and saved on the computer.

By clicking the button identified by (9), the user can interrupt the current
simulation.

A.5 Screens overview 151

A.5.6 Results - Evolution of the trust average
This screen displays the evolution of the trust average of each information service.

Figure A.6: Results screen - Evolution of the trust average

In (1), the user can select one of the five results screens.

In (2), a chart that represents the evolution of the trust average of each infor-
mation service deployed in the running simulation is displayed. The trust value
that a particular community has towards an information service evolves according
to the τ function we defined in Section 4.5. In this chart, we show the evolution
of the average trust that all the communities have towards the deployed infor-
mation services. The Y-axis (3)) represents the value of the trust average. The
trust average evolves each time an information service is requested information
about a web services by the communities. The X-axis (4) indicates all of these
requests. The colours used to distinguish the trust average of each information
service are shown in (5).

The progress bar identified by (6) indicates the progression of the current
simulation.

152 Simulation tool - technical presentation

In the area identified by (7), real-time notifications about the current simu-
lation are displayed.

By clicking the button identified by (8), PNG image files of the results charts
are generated and saved on the computer.

By clicking the button identified by (9), the user can interrupt the current
simulation.

A.5 Screens overview 153

A.5.7 Results - Community repartition
This screen displays the repartition of the web services of each community.

Figure A.7: Results screen - Community repartition

In (1), the user can select one of the five results screens.

In (2), a chart that represents the current repartition of the web services in
each community deployed in the running simulation is displayed. There are four
different types of web services : bad web services that have been accepted, bad
web services that have been rejected, good web services that have been accepted
and web services that have been accepted but not tested yet (in other words, the
community does not know if the web service is really good or bad). The Y-axis
(3) represents the repartition of each type of web services while the X-axis (4)
indicates all of the communities that have been deployed in the current simula-
tion. The colours used to distinguish the different types of web services are shown
in (5).

The progress bar identified by (6) indicates the progression of the current
simulation.

154 Simulation tool - technical presentation

In the area identified by (7), real-time notifications about the current simu-
lation are displayed.

By clicking the button identified by (8), PNG image files of the results charts
are generated and saved on the computer.

By clicking the button identified by (9), the user can interrupt the current
simulation.

	Introduction
	Problem and motivation
	Methodology
	Preliminaries
	Web services and communities
	Web service
	Community of web services

	Reputation and trust
	Reputation of web services
	Reputation of communities of web services
	Reputation-based architecture
	Trust

	Resolution technique : game theory
	Theory presentation
	Examples

	Basic concepts
	Payoff function
	Game analogy
	Strategic game with ordinal preferences
	Best response function

	Nash Equilibrium
	Introducing new examples
	Domination
	Nash equilibrium
	Examples' Nash equilibria
	Strict and non-strict Nash equilibrium
	Nash equilibrium and best response function
	Nash equilibrium and domination

	Pareto efficiency

	Sound web services collaborative mechanism
	Problem definition
	Modeling

	Solution modeling
	Environment entities
	Communities of web services
	Web services
	Information services

	Payments
	Community payments
	Web services payment

	Trust evolution
	Game theory study
	Types of games

	Cases overview
	Honest single web services
	Dishonest single web services

	Introduction of the trust value into the choice process

	Simulation tools
	Context and existing tools
	Tool presentation
	Environment and entities
	Rewards and incentives
	User interface
	Results

	Simulation results
	Test environments
	Test environments synthesis
	Results analysis
	Conclusion
	Results comparison
	Final observations

	Conclusion
	Limitations and future works
	Simulation tool - technical presentation
	Simulation choices
	modeling
	Implementation choices

	Entities overview
	Web service
	Community of web services
	Information service

	Architecture
	Simulation dynamic
	Web service
	Community of web services
	Information service

	Screens overview
	Configuration - Entities
	Configuration - Rewards
	Results - QoS repartition
	Results - Truth/Lie ratio
	Results - Trust average
	Results - Evolution of the trust average
	Results - Community repartition

