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Abstract

Mercury is a relatively new purely declarative logic programming language designed to
provide the support that groups of application programmers need when building large pro-
grams. Most common errors of classic programming languages are detected by the Mercury
compiler thanks to its strong type, mode and determinism system. However, the compiler
can not catch, for example, logical errors. In this way, debuggers help programmers to
identify bugs that would take hours to find them manually.

This thesis presents the implementation of a pure Mercury debugger. Mercury has dif-
ferent back-ends, which means that the Mercury compiler compiles the Mercury code into
another language (C, Java, Erlang, etc.). Contrary to the previous Mercury debuggers,
this new one operates at another level allowing this debugger to work independently from
the back-end.

Résumé

Mercury est un langage de programmation logique purement déclaratif relativement nou-
veau et conçu pour fournir le support nécessaire aux groupes de programmeurs d’applications
lorsqu’ils conçoivent de larges programmes. La plupart des erreurs communes des langages
de programmation classique sont ici détectées par le compilateur grâce à son système ex-
igent de typage, de mode et de déterminisme. Cependant, le compilateur ne peut pas
trouver, par exemple, les erreurs de logique. Ainsi, les debuggers sont parfois utiles pour
aider les programmeurs à rapidement identifier les bugs de programmation qui prendraient
des heures s’il fallait les trouver manuellement.

Ce mémoire présente l’implémentation d’un debugger purement en Mercury. Mercury
possde différent back-ends, que le compilateur Mercury utilise pour compiler le code Mer-
cury dans un autre langage (C, Java, Erlang, etc.). Contrairement aux debuggers Mercury
précédent, ce nouveau debugger est utilis à un autre niveau lui permettant de travailler
indépendamment du back-end utilisé.
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Chapter 1

Introduction

Almost all software contains bugs. These are defects in a program which cause it to behave
in a non intended manner. There are various types of bugs, some are benign (such as a
word badly written) or they can be catastrophic and cost millions of dollars. There are
numerous examples and for a concrete one, read Ariane 5 disaster in [1].

Since many years, a lot of programming techniques have helped developers to reduce
bugs in software systems. Code reviews and testing certainly helps to reduce the number
of bugs in a system as do applying design patterns such as control abstraction and data
abstraction. It is common to apply formal verification to mathematically demonstrate the
correctness of algorithms underlying a system with respect to a certain formal specification.

However, even with a valid mathematical demonstration, it is often considered as im-
possible to write completely bug-free software which has a real complexity. So bugs are
categorized by severity, and low-severity non-critical bugs are generally tolerated, as they
do not impact the proper operation of the system, for the majority of users.

Debugging is the methodical process which detects and reduces the number of bugs, or
defects, in a computer program (or a piece of electronic hardware) thus making it behaves
as expected.

Usually, many programmers consider that debugging is a frustrating and unproductive
activity [2]. Debugging is a tedious task and requires considerable manpower. Indeed, the
most difficult part of debugging is to locate the erroneous part in the source code once a
symptom is observed (a symptom is an incorrect behaviour of the program). Once a mis-
take is found, correcting it is usually easy. For small programs, bugs are revealed simply by
reading through the code with a critical eye. Another method might be the usage of extra
statements that are logging the state of variables at different key points in the program,
also called ”printf” debugging. It can be very time consuming as the program must be
recompiled and re-executed each time that the programmer wishes to see the state of the
program. The extra statements make the program less readable, and also increase the risk
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6 CHAPTER 1. INTRODUCTION

that the programmer forgets to remove all logging statements before releasing the software.
For large software, developed by teams of programmers, this approach becomes impractical.

Tools exist to help programmers to locate bugs without them having to modify the
source code. These tools are known as debuggers. However, even with these tools, locating
bugs is sometimes an art; when various subsystems are tightly coupled, it is not uncommon
to find a bug in a section of the program that cause failures in a different section, thus
making it especially difficult to track.

Typically, the first step in pinpointing a bug is to find a way to reproduce it easily.
Once reproduced, the programmer can use a debugger to monitor the execution of the pro-
gram, see what is going on in the faulty region, and find the point at which the program
went astray. Small errors are corrected by a simple modification of the line of code. But,
a logical error is an error of thinking or planning from the programmer. Such mistakes
require sometimes a whole section of the program to be rewritten. It is not always easy to
reproduce bugs. Some bugs are triggered by inputs to the program which may be difficult
or impossible for the programmer to reproduce (like a network state for example).

Tracing debuggers, such as the Mercury debugger ’mdb’, allow the programmer to view
the state of the program at any point during its execution and quickly jump to a point of
interest by skipping previous parts which are not of interest. But debugging can become
extremely difficult because the user has to direct the search manually (by a sequence of
forward and browsing commands). To do this, the user must have an idea of where the
bug might be. These kinds of debuggers show what the program is doing, and not where
the bug is.

Another class of debuggers are declarative debuggers. They automate the scientific
approach. The scientific approach to find a bug is as follows. The debugger formulates
a hypothesis, tests it, and then formulates a new hypothesis based on the validity of the
previous hypothesis. Each answer reduces the set of possible cause of bug symptoms.
Eventually, if there is only one explanation left, it must be the cause of the bug symptom.

To test the validity of a hypothesis, the debugger asks to an oracle, typically the pro-
grammer. If the oracle asserts that the computation is correct, then the bug must be in a
subcomputation outside the one the hypothesis was about. If the oracle asserts that the
subcomputation is incorrect, then the bug must be in the subcomputation the hypothesis
was about or one of its descendant subcomputations, so the next hypothesis is about one
of these. This ability to isolate bugs is what distinguishes declarative debuggers from other
type of debugging tools.

Since this scientific approach is guaranteed to find the bug if the hypothesis test is
reliable, declarative debuggers have the potential to make the bug location task more pre-
dictable and therefore cheaper in terms of time and money.
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The Mercury language, created by the University of Melbourne, is a purely declarative
logic and functional programming language intended to support the creation of large, reli-
able programs. The Mercury compiler is under continual development and contains more
than a hundred thousand lines of code is a perfect test case.

The compiler heavily transforms the Mercury programs before any code generation.
Procedures are put into superhomogeneous form (Read Chapter 3: Mercury), higher order
predicates are transformed into first order predicates; under the commutative semantics,
conjunctions and disjunctions can be evaluated in any order. Hence, it is sometimes dif-
ficult to relate Mercury source code with its corresponding trace, even if the program is
compiled using the strict sequential semantics with all the optimizations switched off. In
order to relate the trace with the initial program, it might sometimes be helpful to have
a look at the HLDS code [3]. The HLDS for High-Level Data Structure are the compiled
program in different optimization states.

Mercury uses different backends. A backend is the targeted language in which that the
Mercury code will be transformed into. It could be low or high-level C code, Java, .NET
or Erlang.

Currently Mercury only has a debugger which works for one backend, the low-level C.
Relating this code with the Mercury code can be difficult at times, so disposing of a pure
Mercury debugger using another backend (here the high-level C code or the Erlang), could
be helpful. That is what this research aims to do. The debugger has been implemented
via the source-to-source transformation described in the paper [4]. In the following, the
new debugger will wear the name of source-to-source debugger or ’ssdb’.

The remainder of this thesis has been divided up as follows.

In chapter 2 we introduce a description of MISSION CRITICAL Europe SA and its
branch MISSION CRITICAL Australia Pty Ltd, the company of my internship. These
companies use logic programming and ontology for real world applications.

In chapter 3 we give the background which will be needed for the rest of the thesis. We
introduce the Mercury programming language followed by our first execution of a basic
program with the compiler.

In chapter 4 we describe the previous work on debuggers. We observe what exactly
a debugger is, and we detail the current procedural Mercury debugger. Then we proceed
with the related declarative Mercury debugger with its bugs search algorithms.

In chapter 5 we present the current work and state of the source-to-source debugger.
We introduce its concepts and its theoretical basis structure based on the paper [4]. Then
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the point on the practical basis structure proposes some modifications to the debugger
due to conflicts between theory (in paper [4]) and the conception of the Mercury exe-
cution system. And we finally summarise the different commands of the debugger. To
conclude, before the conclusion, we shall see some important directions for further work
on the source-to-source debugger. All these improvements are, most of the time, already
present in other debuggers and have to be implemented in addition to current features to
put the source-to-source debugger to the same level as its alter ego.



Chapter 2

Mission Critical

In a world where computers are becoming ubiquitous, the develop-
ment of reliable, cost effective and maintainable computer software is a
real challenge. The problem today that computer scientists must solve
is to find a new method to build reliable software, especially considering
the rapid changes of user requirements for their software [5, 6]. Mission
Critical Australia Ltd Pty (MC) is a company devoted to providing
customers with a solution to this challenge. Headquartered in Brus-
sels, Belgium, MC also has a subsidiary in Melbourne, Australia and a
branch is about to be created in Vancouver, Canada. The objectif of

MC is to be able to work 24h/24. It employs 15 qualified computer scientists spread over
the two current sites.

MC has pioneered an approach which allows one to build reliable software which is
flexible as requirements change. The key to this approach is to describe the problem to be
solved in a formal way by the people who understand the problem and then to consume
that description directly in the software that is written.

Ontology is used to formally describe the problem domain. Ontology allows someone
to describe concepts, the relationship between concepts, instances of concepts and the rela-
tionship between instances. For example, Person and Uncle are concepts. The relationship
between Persons and Uncles is that an Uncle is a Person who has a sibling who has chil-
dren. Similarly we can define the instances of Person, Alice and Bill. Alice and Bill are
related to each other by the fact that they are siblings. The W3C have standardized an
ontology language, OWL, that MC uses to describe problem domains [7].

This approach has enabled MC to successfully develop highly complex operational ap-
plications within a defined budget and timeframe. This approach is known as ODASE,
Ontology Driven Architecture for Software Engineering.

9
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ODASE is based on the following principles:

• It is the Business who possesses the necessary experts which have knowledge and
will help engineers to build Ontology of the business problem. This Ontology is a
model defining unambiguously the business concepts, relationships and business rules
using standards defined by the W3C.

• IT experts use ODASE robots and generate, from this Ontology, the corresponding
program source code, which is then compiled into a high performing and scalable
application.

With ODASE, the Business-IT gap is bridged by describing the business knowledge in a
formal language understandable by Business and IT experts, and consumable by computer
programs. When adaptive maintenance is required, the ontology is changed and new code
is generated [8].

Figure 2.1: Bridge between the Business and the IT made by ontologies

This tight integration of business model and code delivers low cost, high flexibility,
swift time-to-market and great usability for business-critical Internet software and allows
Mission Critical IT to offer an explicit warranty on the software, a unique proposition [8].

The robots that MC has developed generates a type and mode safe interface to the
OWL Ontology in the programming language, Mercury. Mercury has a formal semantics
which can be used to map to the OWL semantics allowing one to consume the OWL On-
tology directly in the executable code. Thus having a logical continuum all the way from
the user’s definition of the problem domain to the executable code.

This is how MC can achieve ’zero defects’ software.



Chapter 3

Mercury

Logic programming languages are theoretically superior to imperative programming lan-
guages such as Pascal, C, C++, and Ada because they operate on a higher level. In this
way, for example, it is impossible to use a variable that has not been initialized or get the
so frustrating ”pointer segmentation fault” error such as C.

Mercury combines the clarity and expressiveness of declarative programming with ad-
vanced static analysis and error detection features. Declarative means that we write what
we want as result rather than how to get this result. Its highly optimised execution algo-
rithm delivers efficiency similar to conventional programming systems. Mercury addresses
the problems of large-scale program development, allowing modularity, separate compila-
tion, and numerous optimisation/time trades-offs.

Mercury is syntactically similar to Prolog with some extra declarations. However, Mer-
cury is semantically very different from Prolog. Mercury is a pure logic programming
language with a well-defined declarative semantics. It provides declarative replacements
for Prolog ’s non-logical features and it does not retain any non-logical features; in Mercury
even I/O is declarative [9].

Moreover, the Mercury compiler catches most of the common errors thanks to its strong
type, mode and determinism system. Many bugs that would be classified logic errors in
imperative or in Prolog turn out in Mercury to be mode errors or determinism errors that
can be detected by the compiler, leaving only a small minority of real logic errors to chase
down using manual debugging methods. This system also allows more profound optimiza-
tions and it results in a significant improvement in speed in comparison with Prolog or
other similar languages.

11



12 CHAPTER 3. MERCURY

As stated in [10]: “Mercury is designed to appeal to at least two groups of programmers.
One group is those with backgrounds in imperative languages such as C who are looking for
a higher level and more expressive language. The other group is those with backgrounds
in logic programming languages such as Prolog who are looking for a genuinely declarative
language that supports the creation of efficient and reliable software solutions to large and
complex problems.”.

The Mercury features are examined and resumed in the following pages. These features
are the syntax, the type, the mode and the determinism of Mercury. The final section of
this chapter is devoted to the Mercury compiler.

3.1 Mercury syntax and execution overview

A logic program is a representation of a domain for which we have to solve a problem.
Domain knowledge is represented by a set of predicates and functions. The basic building
blocks are atoms and terms.

Terms are defined inductively in the following way [11]:

• a variable is a term

• a constant is a term

• if f/n is a functor of arity n
t1, ..., tn are terms
then f(t1, ..., tn) is a term

Atoms (or well-formed formula) are defined in the following way [11]:

• if p/n is a predicate of arity n
if t1, ..., tn are terms
then p(t1, ..., tn) is an atom

Predicates and functions are represented either by facts and rules. A fact is an as-
sumption or a basic relation on the domain. A rule determines a relation between different
relations of the domain. In other words, a fact is a particular case of a rule. Terms are
object used by these facts and rules. [12, 13, 14]

• A function fact is an item of the form ’Head = Result ’.

• A predicate fact is an item of the form ’Head ’.

• A function rule is an item of the form ’Head = Result :- Body ’.

• A predicate rule is an item of the form ’Head :- Body ’.
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When ’Head ’ denotes an atom and ’Body ’ a goal.

In the following pages, predicates (or functions) will be represented by the notation
’name/arity ’, such as ’main/2 ’; it means that the predicate ’main’ has two arguments.

a

b c

d

Figure 3.1: Representation of arcs and nodes problem

Example 3.1.1 The graph of Figure 3.1 can be represented by the following facts defining
a predicate arc/2.

arc(a,b). (I)

arc(a,c). (II)

arc(c,d). (III)

The predicate path/3, where path(X,Y,L) denotes that there is a path L from X to Y,
can be defined as follows:

Example 3.1.2 Rules to find a path in the Figure 3.1.

path(X,Y,[arc(X,Y)]) :- arc(X,Y). (1)

path(X,Y,[arc(X,Z)|L]) :- arc(X,Z), path(Z,Y,L). (2)

In Mercury, the body of rules are represented by goals. The most common types of
goals are conjunction, disjunction, if-then-else, unification and procedure call. In the above
example, the body of the second rule,

arc(X,Z), path(Z,Y,L)

is a conjunction with two conjuncts. Intuitively, the rule states that, for any variables X
and Y,

path(X,Y,[arc(X,Z)|L])
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will be true if both conjuncts in the body are true. Refer to [12, 15] for a full description
of these concepts.

The user interacts with the domain knowledge expressed by a logic program by means
of a query. A query is an existential question that we would like to be answered by the
logic programming system. For example, If we want to know if there is a path between the
node ’a’ and ’d ’, we can pose the query:

?- path(a,d,L).

The execution of a logic program is like a theorem proof. The execution algorithm
uses facts and rules to resolve the query. This can be formalized by the construction of
an SLD-tree which represents all solutions that can be built upon logic axioms. A node
in a SLD-tree represents the state of a derivation. A node can have one or several child
nodes. Each child represents the unification of the parent node with the head of a clause.
Unification is a binding of the variables within two terms or atoms. Unification is possible
if a substitution makes the terms identical. A substitution θ is called a unifier for the
set of simple expressions S if Sθ is a singleton. A unifier θ for S is called a most general
unifier (mgu) for S if, for each unifier σ of S, there exists a substitution γ such that σ = θσ
[11]. A path in the SLD-tree is a derivation. Leafs in the tree are either fail or true. A
fail denotes that the parent does not unify with any clause. A true denotes an empty
query that is there are no more atoms to resolve. A derivation ending in true represents a
refutation and hence a success. Each refutation has an associated computed answer, which
is the comparison of the mgu’s computed along the branch. The Figure 3.2 represents an
SLD-tree for the query path(a,d,L) and the program in Example 3.1.2.

Most languages use a depth-first search and backtrack mechanism with a leftmost atom
selection to construct the SLD-tree and hence to solve the query. In other words, we con-
tinue on the same branch until completion (succeeds or fails) before trying new ones. When
a path fails, the algorithm backtracks to the last decision point which is a decision point
where we could have chosen a different clause for unification, and then try an unexplored
alternative. If a node represents a conjunction, then the leftmost atom is chosen. In the
example, the atom selected is underlined. However, the atom selection is up to the lan-
guage and so is the selection of the clause which we unify the atom to.
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path(a, d, L)

arc(a, d)

(1)

fail

arc(a, Z), path(Z, d, L)

(2)

path(b, d, L)

(I)

arc(b, d)

(1)

fail

arc(b, Z), path(b, Z, L)

(2)

fail

path(c, d, L)

(II)

arc(c, d)

(III)

true

Figure 3.2: SLD tree from Example 3.1.2

The resolution of the problem in Figure 3.2 goes as follows: Let us consider the definition
of path/3 given before to resolve the query path(a,d,L). The root of the tree has two child
nodes. The first one result from the unification of the root atom with the head of the
rule (1) path(X,Y,[arc(X,Y)]) :- arc(X,Y). Terms ’a’ and ’d ’ unifie respectively with ’X ’
and ’Y ’ and we get arc(a,d), that is a new query constituted of the body of the clause on
which the previously computed mgu is applied . The new query does not match with any
head declared, so it fails. We backtrack to path(a,d,L) and use the second rule, number (2)
path(X,Y,[arc(X,Z)|L]) :- arc(X,Z), path(Z,Y,L), which creates a new branch. We decide
to consider the leftmost atom for unification, this because we use a leftmost atom selection.
Then, by the first rule, there is a matching with two facts. arc(a,Z) can be unified with the
fact (I) arc(a,b) or (II) arc(a,c). If we consider the unification with (I), only path(b,d,L)
becomes relevant for the success of the clause. We can see that this atom does not match
with any (head of) clause. If the clause is unified with rule (2), no fact will match with
arc(b,Z) and thus fails. In this case, we backtrack to the clause arc(a,Z), path(Z,d,L) and
we unify the leftmost atom with the rule (1) and the fact (II), so we bind ’Z ’ with ’c’. In
this case, only path(c,d) becomes relevant and it succeeds by matching with the rule (1)
and the fact (III) arc(c,d). The fact that we have constructed a derivation resulting in
success resolves our query. There is a path from node ’a’ to the node ’d ’ by ’c’.

L = [arc(a,c), arc(c,d)].
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The following is the Example 3.1.2 translated in Mercury

Example 3.1.3 arc and path predicates written in Mercury

1 :− module f i n d p a t h .
2 :− interface

3 :− import module i o .
4
5 :− pred main ( io : : di , uo : : di ) is det .
6
7 :− implementation .
8 :− import module s t r i n g .
9

10 main ( ! IO) :−
11 path (a , d ,L) ,
12 i o . w r i t e (L , ! IO) ,
13 i o . n l ( ! IO ) .
14
15
16 :− pred arc ( s t r i n g , s t r i n g ) .
17 :− mode arc ( in , in ) is det .
18
19 arc (a , b ) .
20 arc (a , c ) .
21 arc ( c , d ) .
22
23 :− pred path ( s t r i n g , s t r i n g , l i s t (T) ) .
24 :− mode path ( in , in , out ) is semidet .
25 :− mode path (out , out , in ) is det .
26
27 path (X, Y, [ arc (X,Y) ] ) :− arc (X, Y) .
28 path (X, Y, [ arc (X,Z ) |L ] ) :− arc (X, Z) , path (Z ,Y,L ) .

Let’s analyse each part of this program [3].
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The first lines of a Mercury program are often like this:

:- module find_path.

:- interface

:- import_module io.

:- pred main(io::di, uo::di) is det.

:- implementation.

:- import_module string.

It declares the content of the module ’find path’ which is saved in the ’find path.m’ file.
The interface code lines describe all visible construction (predicates, functions, etc.) to
other modules that might import ’find path’. Later, we have the implementation section,
which is hidden to other modules. Then we have:

:- pred main(io::di, uo::di) is det.

This line declares the signature of the ’main’ predicate and illustrates three strong
points of Mercury, namely the use of type, mode and determinism information.

Both parameters are of the type ’io’, which are used to read and write data on standard
streams (read from a file, write data to the screen, etc.). The type concept is explained
later in section 3.2. The first argument has the mode ’di ’ for destructive input, and the
second has the mode ’uo’ for unique output. Both of these modes and others are explained
later in details in section 3.3. Finally, we got the ’det ’ word for the determinism. It means
that the predicate is deterministic and will have exactly one solution. All determinisms are
described in section 3.4.

If we look to the body of the predicate main/2 , we have:

main(!IO) :-

path(a,d,L),

io.write(L, !IO),

io.nl(!IO).

It calls the path/3 predicate and writes the solution on the standard output stream
with the io.write/3 predicate from the ’io’ module:

:- pred io.write(T::in, io::di, io::uo) is det.
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The path/3 predicate has the following signature and code:

:- pred path(string, string, list(T)).

:- mode path(in, in, out) is semidet.

:- mode path(out, out, in) is semidet.

path(X, Y, [arc(X,Y)]) :- arc(X, Y).

path(X, Y, [arc(X,Z)|L]) :- arc(X, Z), path(Z,Y,L).

The two different modes of the predicate path/3 represent two different usages of the
predicate. More details will be given about type, mode and determinism in the following
sections.

3.2 Types

As most other languages, Mercury has some basic built-in types: int, float, string and
char. It is also possible to construct new types including arrays, sets and lists by means
of discriminated union and equivalence types [16]. Finally, Mercury has two special types
respectively univ to represent any other type or io.state to perform I/O [12]. We are going
to see them in this order.

The discriminated union type. It is a description of a possibly infinite set of values by
a finite number of constructors. Each constructor can have its own specific arguments.

Any discriminated union looks like this:

Example 3.2.1 Some discriminated type example

:- type event_type

---> call

; exit

; fail

; redo.

:- type list(int)

---> [] % The empty list

; [int | list(int)].

In the first case, an event type can take one of the four ports (call, exit, fail or redo).
In the second case, the type list(int) can be either an empty list or the possible
infinite list with one integer followed by a list(int).
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Example 3.2.2 Instantiation examples of type list(int)

[]

[1,2,3]

[1,1,2,3,5]

Both constructors of the list(int) might not be confused with each other.

The type list(int) is a list of integers. Its definition may be generalized by the
following construction:

:- type list(T)

---> [] % The empty list

; [T | list(T)].

In this way, the type list(T) might take any argument type.

Each field in the constructor can be named and individual fields can be accessed for
within a program. Furthermore, constructors may be overloaded. In other word,
they can have multiple occurrences having the same name and arity, as long as they
all have different argument types.

The equivalent type. Equivalence identifies one type name with another. For example:

Example 3.2.3 An equivalent type

:- type position == int.

:- type list_position = list(position).

In this way, list position have to be used as a list of integers and have the same
features.

The ”universal” type: univ. The type univ is used when one needs to transform dif-
ferent types in a homogeneous structure. It is possible to perform this by using
the predicates type to univ/2 and univ to type/2, which convert any type to the
universal type and back again.

The ”state of the world” type : io.state. When a predicate uses an I/O, the old
state of the world is passed and produces a new state of the world. Like names in
mathematics, once bound, a logical variable cannot change that binding afterwards.
Here is an example with an io.state variable and the predicate write/3 :
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io.write(L, !.IO_In, !:IO_Out)

Both value ’!.X ’ and ’!:X ’ represent respectively the current and the next value in a
sequence labelled X. Note that both of these values may be represented by a syntac-
tic sugar of the form ’!X ’. That is, ’p(..., !X, ...)’ is parsed as ’p(..., !.X, !:X, ...)’ [12].

This is how Mercury gives a declarative semantics to the code that performs I/O.

3.3 Modes

Basically, the mode of a predicate, or function, is a mapping from the initial state of in-
stantiation of the arguments of a predicate, or the arguments and result of a function, to
their final state of instantiation [12].

The two most common modes are the standard notion for inputs and outputs. A vari-
able not bound to anything is said to be free. Conversely, a variable bound to some piece
of data containing any free data is said to be ground.

If a variable contains some ground data at the start of the call and, since we can never
alter the contents of a bound variable, it must be in the same instantiation state after the
call, it is an input variable. Thus, the definition of the in mode is:

:- mode in :: (ground -> ground).

An output variable, however, is one that is expected to be free at the start of the call
and which will contain some ground data at the end of the call. The mode definition of
out is therefore:

:- mode out :: (free -> ground).

The mode can be supplied in the pred declaration or as a separate declaration. So, the
path/3 predicate view before can be declared in the following way:

Example 3.3.1 Merge pred and mode declaration

:- pred path(string::in, string::in, list(T)::out) is semidet.

However, it happens often that a predicate has several modes. Each mode represents a
different usage and corresponds to a different procedure in the compiled code.

path/3 comes from the Example 3.1.3. It can be specified in Mercury by the following
declarations.
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Example 3.3.2 Several modes for a predicate

:- pred path(string, string, list(T)).

:- mode path(in, in, out) is semidet.

:- mode path(out, out, in) is semidet.

Each mode declaration corresponds to a different usage of this predicate:

• in the first one, the user provides start and end point and wishes compute a path
between them.

• in the second one, the user provides a path and wishes to verify that the path exists
and to compute begin and end point.

Finally, there are some other modes available, called unique modes. In Mercury, the
concept of uniqueness which say that an object is unique if there is only one reference to it
at any point in the computation. There are three standard modes for manipulating unique
values:

:- mode di == unique >> dead. % destructive input

:- mode uo == free >> unique. % unique output

:- mode ui == unique >> unique. % unique input

Unique means that the value has only one reference. Whereas the dead means that
there is no more reference to this value. Mode ’uo’ is used to create a unique value. Mode
’ui ’ is used to inspect a unique value without losing its uniqueness. Mode ’di’ is used to
desallocate or to reuse the memory occupied by a value that will not be used. The two
most used are ’di ’ and ’uo’ mode by using IO. For example, the previous write/3 predicate
has the following signature:

:- pred io.write(T::in, io::di, io::uo) is det.

3.4 Determinism

Determinism declarations are attached to mode declarations. The programmer and the
compiler analyse the bodies of procedures to categorise these modes according to the max-
imum number of solutions it can produce (zero, one, or more than one) and whether or not
it can fail before producing its first solution [17]. The determinism of goals is inferred from
the determinism of their component parts. Thus the inferred determinism of a procedure
is just the inferred determinism of the procedure body. In a short form [12]:
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Maximum number of solutions
Can fail? 0 1 >1

det
no erroneous cc multi multi

semidet
yes failure cc nondet nondet

Table 3.1: Mercury’s determinism

The annexe 2 presents five types of determinism with an example.

The four determinisms det, semidet, multi and nondet suffice for the vast majority of
procedures but there are a very small number of procedures which require another de-
terminism because they never produce a solution. The determinism failure is used for
procedures that always fail. Computations that always fail may not export any binding,
and can be replaced by the goal fail. The determinism erroneous is used for procedures
that operationally correspond to aborting execution; from program’s point of view they
neither succeed nor fail. (The logical semantics for erroneous procedure is that they loop,
e.g., Evaluated to undefined.) [17].

As seen above in the determinism annotations described earlier, there are ’committed
choice’ versions of multi and nondet, called cc multi and cc nondet. These is typically
used instead of multi or nondet if all calls to that mode of the predicate (or function)
occur in a context in which one, and only one solution is needed, whatever this solution is.
We call it a single-solution context. There are several efficiency reasons to use committed
choice determinism annotations. See [12] for more details.

3.5 Higher order terms

Mercury supports higher-order predicates; which is a predicate passed as an argument to
another predicate. The higher order term appears as a variable in the procedure and its
utilisation is similar to that of a regular predicate. It can be called by placing arguments
in parenthesis after the higher order variable.

For example, a ’map’ predicate, which applies a higher order term to the elements of a
list to produce a new list, could be defined as follows:
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Example 3.5.1 map/3 predicate

map(_, [], []).

map(P, [H0 | T0], [H | T]) :-

P(H0, H),

map(P, T0, T).

Actually, one can pass only a single mode of a predicate as a higher-order argument.
To pass a whole predicate in argument, one has to pass multiple higher-order procedure
terms.

3.6 Compiler

The Mercury compiler is called ’mmc’ for Melbourne Mercury Compiler. It uses different
back-ends. Each of them generates a specified code: high- and low-level C, Java, .NET,
Assembler or Mercury byte-code. The most commonly used is the low-level C back-end.
The low-level C is fast and portable under almost all software and hardware platforms.
See annexe 1 for details on ’How to use the Mercury compiler’.

Mercury uses eager evaluation, also known as strict evaluation, meaning that an ex-
pression is evaluated as soon as it gets bound to a variable. It is in contrast with lazy
evaluation, or non strict evaluation, meaning that a computation is delayed until the re-
sult of the computation is known to be needed [18, 19].

Besides, Mercury programs are heavily transformed before any code is generated. The
program goes through a set of passes during compilation. Once all of them are executed,
the program is compiled. Mercury’s type, mode, and determinism verification systems are
three of these passes and ensure that many of the most trivial programming errors are
caught at compile-time rather than at run-time. Procedures are put into superhomoge-
neous form, high order predicates are transformed into first order predicates. All of these
passes speed up, on one hand, the development of applications by catching most of errors
before the execution; and on the other hand, the execution of these applications thanks to
the optimizations from the compiler. In fact, as most of information is given by the user,
the inference engine does not have to compute it itself.

The program is compiled using other high-level optimizations, including automatic
inlining, common subexpression elimination, predicate specialization to eliminate unused
arguments, specialization of higher-order predicates when their higher-order arguments are
known, and the reuse of the storage of terms that occur more than once in a predicate. Fi-
nally, the compiler also implements a whole host of low-level optimizations. These include
constructing ground terms at compile time, stack slot allocation using graph colouring,
elimination of dead labels and code, and many others [3]. Read [20] for a detailed descrip-
tion of optimizations operated by the Mercury compiler.



Chapter 4

Previous works on debuggers

In this part of my thesis, I am considering that it is important to mention, describe and
resume some of the works done before me in the same domain. Obviously, substantial parts
of this section are based on [21, 22, 2, 23, 24, 25].

Debugging is, in general, a tiring task due, mostly, to the size of the program or the
limitations of the debuggers. The difficulty of software debugging varies greatly with the
programming language used and the available tools, such as debuggers.

In lower-level languages such as C or assembly, it is often difficult to detect bugs that
may cause silent problems, such as memory corruption, and pinpoint the initial problem
might take hours. In those cases, memory debugger tools may be needed. Debuggers such
as gdb, lcc and cdb are quite old in the domain for debugging C code, see the documenta-
tion on how to debug a C/C++ program in [26, 27, 28, 29].

Generally, the debugging of high-level programming languages, such as Java, is easier
because they have features such as exception handling that make real sources of devious
behaviour easier to spot. Java debuggers usually implement thread debugging, which is
not yet available on Mercury debuggers. Do not hesitate to see [30, 31] for full details on
how-to-use a java debugger.

In specific situations, static code analysis tools can be very useful. These tools identify
complex programming bugs that can result in system crashes, memory corruption, and
other serious problems within the source code. Some issues detected by these tools would
take weeks to identify with a traditional compiler or interpreter, since these tools generally
perform a more thorough and complex semantic analysis than a classic compiler. Both
commercial and free tools exist in various languages. These tools can be extremely useful
when checking very large source trees, where it is impossible to perform code walkthroughs.
However, these tools have always a various rate of false positives bugs detected. Splint (for
C) or Bandera (for Java) are examples of free software. Commercial tools like CAST can
analyse more than twenty-five languages [21].

24
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Similar tools exist for debugging electronic hardware (e.g., computer hardware) as well
as low-level software (e.g., BIOSes, device drivers) and firmware. Instruments such as
oscilloscopes, logic analyzers or incircuit emulators (ICEs) are often used, alone or in com-
bination.

Basic debuggers exist also for logic programming languages. Opium (for Prolog [32])
and Opium-M (for Mercury [33]) or Morphine (for Mercury [34]) are some well-known ex-
amples. But all of these examples are specialised in a specific domain, they are specific
for a back-end and interact at a very low-level with the runtime system. This is why MC
asked me to realize another type of debugger. Firstly, this chapter explains in details what
a debugger is. Then, secondly, it presents two different types of debuggers for Mercury.
And finally, the next chapter introduces the new debugger that I did during my internship.

4.1 What is a debugger?

Debuggers enable the programmer to monitor the execution of a program, stop it, re-start
it, set breakpoints, change values in memory and even, in some cases, go back in time
(with some limits) avoiding the need to restart debugging from the beginning due to an
erroneous input during debugging. Basically, a debugger is an application able to stop the
execution of a program at some points, and let the programmer examine the current state
of the program: stacks, registers, variables, arguments, and so on. This can give a way for
the programmer to hunt bugs in the program and to detect exactly where an error could be.

Many programmers find debugging a frustrating and unproductive activity. A typical
debugging session goes as follows:

1. They step through the source code upon encountering a procedure call

2. They check the values of a procedure input argument and find them correct.

3. They step over the execution of the procedure in the debugger, regaining control
when the procedure returns to its caller.

4. They check the values of a procedure’s outputs, and find some of them to be incorrect.

At this point, they know there is an error somewhere in the call tree of the procedure,
but they don’t yet know precisely where. The natural action would be to re-execute the
call and check the values of variables at a selection of program points before the call returns.

Traditional debuggers, such as gdb, can execute the program only in the usual forward
direction, and are often unable to help the programmer in an effective way. As it is
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impossible to go backwards, there is no way to recover the previous value of an assigned-
to-variable, and it is therefore not possible to restore the computation to the state it had
before the call. The only choice for the programmer is to restart from scratch, stop its
execution at the problematic call, and examine the execution of the call in more detail.
This has several problems:

• If the program modifies data it uses as input, then the programmer must restore the
program to its initial state before re-execution.

• Reaching the point of the program before the problematic call may take considerable
time.

• The programmer may arrive at the call after a long sequence of operations (continue
to breakpoint, next etc) and could be unable to repeat it.

• Any deviation from the original input upon re-execution may prevent the debugger
from re-establishing the same state of the computation at the time of the call. The
only cure is to restart execution one more time.

• If some input comes from sources that are outside the programmer’s control, such as
network connections, then re-establishing the state of the computation at the time
of the call may never be possible.

A mechanism that would allow the debugger to reset the computation to the state it
had at the time of the call, effectively allowing the programmer to jump backwards in the
program’s timeline, would avoid these problems. Problems and solutions for this purpose
are described in [35].

4.2 Mercury debuggers

The following section present two different Mercury debuggers. The procedural debugger
transforms the code by adding trace events, allowing it to stop the execution at each event.
The declarative debugger asks questions to the user to detect which part, in a predicate,
is buggy.

4.2.1 Mercury procedural debugger

The Mercury debuggers view the execution of a program as a sequence or trace of events;
when debugging is enabled, the compiler generates code that gives the runtime system
control at each event. The runtime system can then interact with the programmer, allow-
ing him to inspect the state of the computation and to issue commands. Some of these
commands tell the debugger to give the control back to the program being debugged, and
to interact with the programmer again only at a future event that matches a specified
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condition [2].

Events can be classified into two categories, interface or external events and internal
events. Interface events describe the interaction between one invocation of a procedure
(one mode of a predicate) and its caller, while internal events describe the flow of control
inside the call. The four types of interface events supported by the declarative debugger
correspond to the four ports in Byrd’s box model [25]:

Each call to a procedure is represented by a box. A box represents the invocation of a
single procedure. Each box has four ports: they are named the Call, Exit, Fail and Redo
ports. The labelled arrows indicate the control flow in and out of a box via the ports.

Figure 4.1: The Byrd’s box model

If a head of a clause unifies with the goal, then we seek solutions to all the subgoals in
the body of the unified clause.

Control then ‘flows’ into the box associated with the procedure unified through the
Call port. The Call port for an invocation of a procedure represents the first time the
solution of the associated goal is sought.

Control reaches the Exit port if the procedure succeeds. It only occurs if the initial
goal has been unified with the head of one of the procedure’s clauses and all of its subgoals
have been satisfied. Then control is about to return to its caller.

The Redo port can only be reached if the procedure call has been successful and some
subsequent goal has failed. Then the system uses backtracking to try to find some alterna-
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tive way of solving some top-level goal.

Basically, backtracking is the way a logical language attempts to find another solution
for each procedure that has contributed to the execution up to the point where some pro-
cedure fails. This is done back from the failing procedure to the first procedure that can
contribute an alternative solution.

During backtracking, control passes through the Redo port. The previously unified
clause backtracks through the subgoals that were previously unified. We can reach the
Exit port again if another of its subgoals succeeds, or failing and reach the Fail port, then
another clause can be unified [21].

In addition of these ports, there is an event used to handle exceptions in Mercury named
excp.

At each event, the debugger can provide several kinds of information which identify the
procedure (the name of the predicate or function, its arity, its mode, its depth, etc.) and
the list of its arguments (including their names, types, values, etc).

4.2.2 Mercury declarative debugger

Principes

Logic programming languages have both a declarative semantics and an operational se-
mantics. The declarative semantics views the program as a set of logical statements whose
logical consequences give the meaning of a program, while the procedural semantics views
the program as a sequence of instructions to be executed by the machine. The declarative
semantics is higher level and closer to the specifications and therefore, closer to the way
that programmers think during the analysing of the application domain, than the opera-
tional semantics. In Mercury, the operational semantics is very closely coupled with the
declarative semantics. This makes it much easier to implement a declarative debugger for
Mercury, than it would be for a non-strict language, such as Haskell [2].

The fact that Mercury has a clean declarative semantics means that it is amenable
to declarative debugging. Declarative debuggers work by asking to an oracle (usually the
programmer) questions about the intended meaning of the various parts of the program,
and comparing this to its behaviour. By tracking inconsistencies between behaviour and
intended meaning, such debuggers can locate a point in the program in which the correct
results of a number of subcomputations are combined into an incorrect result. This point
is the precise location of a bug in the program source [2]. At this point, we can highlight
three parts in the declarative debugger [24]:
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• The backend, which is responsible for generating the evaluation dependency tree or
EDT.

• The analyser, which searches the EDT for bugs.

• The oracle, which gives answer to each query from the analyser to ascertain which
nodes are erroneous and which nodes are correct.

It is possible to invoke the declarative debugger from within the procedural debugger in
different situations. Depending on the case, the kind of diagnosis that the runtime system
asks the algorithm to perform differs [2, 23].

The type of the questions asked by the debugger is roughly:
<node display>
“Is it valid?”

Where <node display> represents some information on the current node in the EDT.

The oracle (the programmer) can answer the questions by either:

yes the error is not in this node.

no the error is in this node.

don’t know the oracle does not know if it is yes or no. The debugger will search
for the reply itself by computation or, if it does not find the answer,
the debugger will postpone the question.

inadmissible the answer is neither yes nor no. The oracle knows that the call
should never have happened due, for example, to incorrect inputs.

In any case, any question with an answer different from don’t know will never be asked
again. Other complex commands are possible but they are not described in this thesis,
read the declarative debugger part in the Mercury User’s Guide [3] for details.

In the following points, we will introduce different algorithms used by the declarative
debugger to track back a bug in a program.

The declarative debugger general algorithm

The algorithm of the declarative debugger constructs an evaluation dependency tree (or
EDT). Each node in the EDT corresponds to an exit, fail or excp (for exceptions) event



30 CHAPTER 4. PREVIOUS WORKS ON DEBUGGERS

in the trace. Each of these nodes has an assertion associated: whether the solution repre-
sented by an exit event is correct, whether the set of solutions returned before a fail event
is complete, or whether the exception thrown at an excp event was expected to be thrown.
The declarative debugger searches the EDT for a node in the tree which shows where
correct premises are combined together to form an incorrect result; in other words, an in-
correct node whose children are all correct represents a bug. Initial methods of declarative
debugging constructed a complete EDT and were unusable for real world programming
due to their lack of performance. Recent research in logic programming has resulted in
different ways to construct the EDT efficiently as explained in [36].

In practice, the EDT is constructed by the Mercury declarative debugger on demand,
and subtrees are eliminated with knowledge gained from the oracle. We do not build the
entire EDT directly because we need to construct different EDT fragments depending on
one hand, the reply from the oracle, and on the other hand, the result of certain construc-
tions during the execution (e.g. negations and if-then-else goals, read [23, 24] for details).

The following schema represents this idea. Each node in the tree corresponds to an
exit, fail or excp event. The tree is generated piece by piece and never fully materialized
(the debugger constructs only required portions), thanks to information gained from the
oracle. By exploring a parent, children nodes are generated below it [22, 2, 23].

Figure 4.2: SLD tree constructed on demand

The Example 4.2.1 contains the areas/1 and area/1 predicates. The areas/1 takes
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a list of shapes in argument and its body uses area/1 to compute the area of the shape
depending of its argument (here, the shape is a box or a circle).

Example 4.2.1 area and areas predicate example for different search algorithms

area(circle(Radius)) = Radius * pi. % should be sqr(Radius) * pi

area(box(Width, Height)) = Width * Height.

areas([]) = [].

areas([Shape | Shapes]) = [area(Shape) | areas(Shapes)].

The example contains a bug: the computation of the area of a circle is wrong. The
objective is to find the bug with the declarative debugger. The questions asked by the
declarative debugger depend on the way in which EDT is constructed. We will use the
Example 4.2.2 below, which respects the rules from Example 4.2.1, to illustrate a number
of different search strategies.

Example 4.2.2 this line contains a bug.

areas([box(2, 3), box(4, 5), circle(2), box(3, 4)]) = [6, 20, 6.28, 12].

Top-down search

Using this mode, the declarative debugger will ask about the children of the last question
the user answered ’no’ to. The algorithm asks questions on children in the order they
are executed. This makes the search more predictable and easier to understand from the
user’s point of view as the questions will more or less follow the program execution. The
drawback of top-down search is that it may require a lot of questions to be answered before
a bug is found, especially with deeply recursive programs. This search mode is used by
default when no other mode is specified [22].

The following example represents a session of queries/answers between the declarative
debugger and the oracle when debugging the code of Example 4.2.1 with a top-down search.

Example 4.2.3 top-down algorithm search

areas([box(2, 3), box(4, 5), circle(2), box(3, 4)]) = [6, 20, 6.28, 12].

Valid?

> no

areas(box(4, 5), circle(2), box(3, 4)]) = [20, 6.28, 12].

Valid?

> no
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areas([circle(2), box(3, 4)]) = [6.28, 12].

Valid?

> no

areas([box(3, 4)]) = [12].

Valid?

> yes

area(circle(2)) = 6.28.

Valid?

> no

Found bug:

area(circle(2)) = 6.28

Divide and query search

In this search mode, for each question, a node is picked that divides the tree into two
roughly equal parts. It result in O(log N) questions on average where N is the number of
events between the event where the declarative debugger was invoked and the corresponding
call event. This makes the search possible for long running programs where a top-down
search mode would require an unnecessary large number of questions to be answered.
However, questions may appear to come from unrelated parts of the program making them
harder to answer [22].

Example 4.2.4 divide and query algorithm search

areas([box(2, 3), box(4, 5), circle(2), box(3, 4)]) = [6, 20, 6.28, 12].

Valid?

> no

areas([circle(2), box(3, 4)]) = [6.28, 12].

Valid?

> no

areas([box(3, 4)]) = [12].

Valid?

> yes

area(circle(2)) = 6.28.

Valid?

> no
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Found bug:

area(circle(2)) = 6.28

Subterm dependency tracking

Most of the time, the user wants to see the value of a specific variable. When a call is
erroneous, there is often a small part of one of the arguments which is incorrect. If the
user indicates that a subterm of an argument is incorrect, the declarative debugger will
ask about the call that created the subterm [22].

In the Example 4.2.5, the user is invoking the browser which allows him to quickly
isolate a term without answering multiple questions from the declarative debugger. From
within this browser, the user can access a subterm by specifying what subterms to skip.
In the example below, a ’2’ ignores the term and the ’1’ isolates the current term to allow
the user to examine the details of it.

Example 4.2.5 subterm dependency tracking algorithm search

areas([box(2, 3), box(4, 5), circle(2), box(3, 4)]) = [6, 20, 6.28, 12].

Valid?

> browse return

browser> cd 2/2/1 % jump to the desired term

browser> print % print the value of the term

6.28

browser> mark

area(circle(2)) = 6.28 % print the term and its value

Valid?

> no

Found bug:

area(circle(2)) = 6.28
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The Figure 4.3 shows what exactly does the previous browser command cd 2/2/1 :

Figure 4.3: Example of a browsing of a specific term

Other more advanced algorithms exist but are not described in this thesis, read [3, 24]
for more details.



Chapter 5

The source-to-source debugger

This chapter represents my specific technical contribution performed during my internship
in MISSION CRITICAL Australia Pty Ltd, It is mainly based on the article ”The imple-
mentation technology of the Mercury debugger” [4].

Basically, the Mercury debugger ’mdb’ generates low level C code for the debugging
phase and it is sometimes hard to relate it with the original Mercury code. That is why
MC asked me to create a source-to-source debugger (or ssdb) which transforms an input
Mercury program into a new Mercury program, which allows its execution and its debug-
ging at the same time. The advantage of this is that when the transformation are done at
the Mercury level, the developer can then generate the code from any back-ends (both the
C, the Java and the Erlang back-end) without major work needed.

In the following pages, I will present my experience. Firstly, this chapter introduces
basic concepts of the new debugger. Secondly, it introduces the work done in the paper
[4] by Zoltan Somogyi, this paper gives a theoretical structure for the transformation per-
formed by the source-to-source debugger. Thirdly, the chapter explains some problems
met during the implementation. After that, it shows what the generated code looks like,
then it describes all commands available for the users, it proposes some improvements and
finally, it shows the results of a performance test between the ’mdb’ debugger and the new
source-to-source debugger.

The source-to-source debugger is a trace-based debugger and is divided in two inde-
pendent parts. The first part gets the code to debug and modifies it by adding code inside
the body of each procedure. These lines, also called events, allow the debugger to give the
runtime system control to the user. The second part of the debugger is used to navigate
inside the code by jumping from an event to another one. The two parts of the ssdb will
be called respectively the generator and the navigator.

35
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5.1 Basic concepts

5.1.1 Events

The selection of event type (also call ports) is an important decision in traced-based de-
buggers, since such debuggers can only give control to the user at these events. Traditional
Prolog debuggers have given control to the user at the four ports in Byrd’s box model [3, 37]:

call A call event occurs just after a procedure has been called, and
control has just reached the start of the body of the procedure.

exit An exit event occurs when a procedure call has succeeded, and
control is about to return to its caller.

redo A redo event occurs when all computations to the right of a proce-
dure call have failed, and control is about to return to this call to
try to find alternative solutions.

fail A fail event occurs when a procedure call has run out of alternatives,
and control is about to return to the rightmost computation to its
left that has remaining alternatives which could lead to success.

These ports are clearly important in the understanding of the program behaviour be-
cause they describe the interaction of a procedure with its callers. The generator part of
the debugger transforms a given source program in order to give information about each
procedure and eventually to stop the execution of the navigator at these ports.

5.1.2 The stacks

The navigator has its two own stacks to manipulate the representation of each procedure.
When the debugger enters in a procedure by its call port, some information about the
procedure is put on one or both stacks. This information about a procedure is called a
frame. Each frame has the following fields:

• The event number: each event has a unique event number. It represents at what step
in the program the execution is.

• The call sequence number (CSN): a CSN is used to be able to detect which events are
related together, each event within the same procedure has the same call sequence
number.

• The depth: the depth gives the number of ancestors linking the current top call with
the initial invocation of main. It is computed by the size of the stack. A call or a
redo will increment the depth caused by a push on the stack. An exit or a fail will
diminish the depth caused by a pop from the stack.
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• The procedure ID: this structure contains the name of the procedure, and the name
of the module which includes this procedure.

• The list of variables: this list contains all information about the procedure arguments.
Each argument might be represented by one of the following constructions:

– unbound head var(var name, pos) : this structure is used by an output argument
in a call or redo port, at this moment, the argument does not have any value.
At the exit or fail port, the argument become as bound head var argument.

– some [T] bound head var(var name, pos, T) : this structure is used by a bound
argument, it is an input argument at any port or an output argument at exit
or fail port.

– some [T] bound other var(var name, T) : in Mercury, some elements are some-
times neither input nor output, in this case, they are unused. As this structure
is almost never used, read Mercury documentation for more details.

The var name represents the name of the parameter, pos is the position in the list of
arguments of the predicate, T is the value of the variable and finally, some[T] is a hidden
structure which holds the type of the variable.

As said before, the ssdb has two stacks. One is the principal stack and it is modified
at each event, the second one is used only to hold non-deterministic procedures information.

At each event of a procedure, the principal stack is modified as follows:

call The navigator constructs a frame containing the information pro-
vided in the call port and pushes it on the stack at the beginning
of the call.

exit The frame is popped from the stack at the end of the exit.
redo The same frame than the one pushed during the call event is popped

on the stack at the beginning of the redo.
fail The frame is popped from the stack at the end of the fail.

The second stack is used only to keep the non-deterministic procedures information.
See Too many operations are executed after a retry at point 5.3.1. for more details.

call The frame is push on the stack at the beginning of call.
exit The frame is pop from the stack at the end of the exit.
redo The stack is not modified.
fail The stack is not modified.
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5.1.3 Goal determinism

During the code transformation, the debugger has to detect what is the determinism of
each goal. There are two possibilities:

• It is possible to ask to the compiler to detect it by itself. It is generally the best option
because it avoids most of possible errors. The only drawback is that it consumes times
to compute each determinism of each construction.

• The other option is to set the determinism category by hand. In this case, the pro-
grammer has to know all determinism rules. The determinism of each goal is inferred
according to the following rules. These rules work with the two components of de-
terminism category: whether the goal can fail without producing a solution, and the
maximum number of solutions of the goal (0, 1, or more).

Here is how determinism has to be determined for each type of goal [12]:

Calls - p(arg1, arg2, ...argN)

The determinism of a call comes from either the determinism declared or from the
determinism from the called mode of the called procedure.

Unifications - Goal1 = Goal2

The determinism of unification is either det, semidet or failure, depending on its mode.
The assignment unification is deterministic. A unification that tests whether a variable

has a given top function symbol is semideterministic, unless the compiler knows the top
function symbol of that variable, in which case its determinism is det or failure. An equal-
ity test is always semideterministic.

Conjunctions - Goal1, Goal2

The conjunction succeeds if each conjunct succeed in the same execution. Otherwise,
the conjunction will fail.

Disjunctions - Goal1; Goal2

A disjunction, that is not a switch, can fail if each disjunct fail. Otherwise, only
one disjunct is required for the succeeding of the disjunction.

Switches

A disjunction is a switch if each disjunct has near its start a unification that test
the same bound variable against a different function symbol.
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Example 5.1.1 switch example

io.read_char(X, !IO),

(

X = a,

...

;

X = b,

...

;

...

)

A switch can fail if the various arms of the switch do not cover all the function symbols
in the type of a switched-on variable. A switch can succeed several times if different arms
succeed successively.

If-then-else - if CondGoal then ThenGoal else ElseGoal

If the CondGoal cannot fail, the CondGoal and ThenGoal form a conjunction and
its determinism is computed accordingly. Otherwise, an if-then-else can fail if either the
ThenGoal or the ElseGoal can fail. It fails if the ElseGoal fails and if at least one of
the CondGoal and the ThenGoal fail. It can succeed more than once if any one of the
CondGoal, the ThenGoal and the ElseGoal can succeed more than once.

Negations - \+ Goal

Negation goals succeed if the negated goal fails and vise-versa. The determinism of
negations respects the following table:

Determinism of NOT G Determinism of G

erroneous erroneous
failure det

det

multi failure

other semidet

Table 5.1: Goal negation
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5.2 Theoretical basis structure

5.2.1 The theoretical transformation

After having decided, in the precedent section, which events to be used, the next step was
to choose how to arrange them to give control execution to the navigator after each event.
As explained in [4], the simplest approach is to use a source-to-source transformation, as
show by Ducasse and Noye.

Suppose the original predicate rule is as follow:

Head :- Body.

and we modify it by a source-to-source transformation. In other word, the debugger takes
a source code in input and generates a new source code in output.

The source code in output looks like the following:

Head :-

( trace ( call , Head )

; trace ( fail , Head )

),

Body,

( trace ( exit , Head )

; trace ( redo, Head )

).

The predicate trace introduces events around the Body of the original predicate rule.
The trace predicate is deterministic and therefore, does not modify the determinism of
the source code. The general idea behind the transformations is as follows. Where the
program is executed under the supervision of the debugger, a call to the trace predicate
allows the user to interact with the navigator.

However, the transformation above does introduce a number of disjunctions, which in
the case of Mercury can change the determinism of the given procedure. This transfor-
mation breaks one of the invariants that the Mercury execution algorithm depends on,
namely that a procedure declared to be det (i.e. to have exactly one solution) or semidet
(i.e. to have either zero or one solution) will not leave behind any nondet stack frames
(Mercury’s equivalent of Prolog choice points) when it exits. Trying to get around this by
simply saying that in debugging mode, all procedures are considered to be nondet or multi
(and thus allowed to have more than one solution) would not work. In Mercury, I/O is
only allowed in a deterministic context, so this change would in effect disallow I/O [4].

A simpler approach, which we adopted, is to vary the transformation depending on the
determinism of the procedure. We transform deterministic procedure into:
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Head :-

trace ( call , Head ),

Body,

trace ( exit , Head ).

and semideterministic one to:

Head :-

(

trace ( call , Head ),

Body

->

trace ( exit , Head )

;

trace ( fail , Head ), fail

).

For nondet and multi procedures (procedures that can succeed more than once) we use
a variant of Ducass and Noy’s transformation, which has the same operational semantics
but leads to better code in Mercury, because the Mercury compiler generates more efficient
code for nested disjunctions than for conjoined disjunctions [4]:

Head :-

(

trace ( call , Head ),

Body,

( trace ( exit , Head )

; trace ( redo , Head ), fail

)

;

trace ( fail , Head ), fail

).
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5.2.2 Practical Transformation

The theoretical model gives the skeleton for the code generation. This section follows the
theoretical transformation schemas but now, we put more information to show how to
allow the interactions between the user and the debugger.

The following procedure, which could represent any procedure in Mercury:

p( <arguments> ) :-

<original body>

can be transformed, accordingly to its determinism, into one of the following possibility.

Deterministic model transformed ( 1 – 1 solution )

Contains a call event and an exit event.

1 p( <arguments> ) :−
2 promise < o r i g i n a l pur i ty > (
3 CallVarDesc = [ <arguments> ] ,
4 impure c a l l p o r t ( ProcId , CallVarDesc ) ,
5 < o r i g i n a l body >, % remaining ou tpu t s
6 ExitVarDesc = [ <arguments> ] ,
7 impure e x i t p o r t ( ProcId , ExitVarDesc , DoRetry ) ,
8 (
9 DoRetry = do ret ry ,

10 p ( <arguments> )
11 ;
12 DoRetry = do not r e t ry ,
13 % bind ou tpu t s
14 )
15 ) .

This is how the theoretical deterministic schema is transformed into the practical
schema. The trace predicate has been replaced in this case either by:

impure call_port ( ProcId, CallVarDesc )

or

impure exit_port ( ProcId, ExitVarDesc, DoRetry )

depending on the type of the event needed. These predicates transfer control to the nav-
igator, providing it with the necessary information about the current procedure (ProcId)
and the state of its arguments upon call (CallVarDec) and exit (ExitVarDesc).
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The impure word is a purity concept used by Mercury and is not explained in details
in this thesis as it is rarely used. Some predicates cannot be implemented within the
paradigm of the logic programming, but it would be more convenient or more efficient to
write such predicates with the facilities of Mercury. These predicates become then impure
and the programmer needs to make it explicit for the compiler. Refer to The Mercury
Language Reference Manual [12] on page 112 for more details on the purity.

The lines:

(

DoRetry = do_retry ,

p ( <arguments> )

;

DoRetry = do_not_retry ,

% bind outputs

)

is a construction which allows the retry command after the exit port. The retry com-
mand allows the debugger to go backwards in the execution of the program, it comes back
to the call event which have the same CSN that the exit event retried.

Furthermore, to fully understand the code, take in note that:

CallVarDesc and ExitVarDesc are lists of var value. Each var value represents an
argument of the predicate, properly encoded in the type expected by the debugger.

:- type var_value

---> unbound_head_var ( var_name, var_pos ) % output

; some[T] bound_head_var ( var_name, var_pos, T ) % input

; some[T] bound_other_var ( var_name, var_pos, T ) % unused

.

:- type var_name == string. % name of the argument

:- type var_pos == int. % position of the argument in the <arguments>

Finally, note that this deterministic model transformed is also valid for the cc multi
determinism.
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Semi-deterministic model transformed ( 0 – 1 solution )

The following transformation is performed by the debugger on every semi-deterministic
predicates.

1 p ( <arguments> ) :−
2 promise < o r i g i n a l pur i ty > (
3 CallVarDesc = [ <arguments> ] ,
4 impure c a l l p o r t ( ProcId , CallVarDesc ) ,
5 (
6 < o r i g i n a l body> % remaining ou tpu t s
7 −>

8 ExitVarDesc = [ <arguments> ] ,
9 impure e x i t p o r t ( ProcId , ExitVarDesc , DoRetryA ) ,

10 (
11 DoRetryA = do ret ry ,
12 p ( <arguments> )
13 ;
14 DoRetryA = do not r e t ry ,
15 % bind ou tpu t s
16 )
17 ;
18 impure f a i l p o r t ( ProcId , CallVarDesc , DoRetryB ) ,
19 (
20 DoRetryB = do ret ry ,
21 p ( <arguments> )
22 ;
23 DoRetryB = do not r e t ry ,
24 f a i l
25 )
26 )
27 ) .

This transformation is similar to the deterministic transformation except that there is
a fail port, the body of the original predicate is placed in the condition of an if-then-else
construction. This allows interactions with the navigator in a different way upon success
or failure of the original body.

Please note that this transformation is also valid for the cc nondet determinism.
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Non-deterministic model transformed ( 0 – M solutions )

The transformation for the non-deterministic procedures is similar to others:

1 p ( <arguments> ) :−
2 promise < o r i g i n a l pur i ty > (
3 (
4 CallVarDesc = [ <arguments> ] ,
5 impure c a l l p o r t ( ProcId , CallVarDesc ) ,
6 < o r i g i n a l body>, % remaining ou tpu t s
7 ExitVarDesc = [ <arguments> ] ,
8 (
9 impure e x i t p o r t ( ProcId , ExitVarDesc , DoRetryA ) ,

10 (
11 DoRetryA = do ret ry ,
12 p ( <arguments> )
13 ;
14 DoRetryA = do not r e t ry ,
15 % bind ou tpu t s
16 )
17 ;
18 impure r edo po r t ( ProcId , ExitVarDesc ) ,
19 f a i l
20 )
21 ;
22 impure f a i l p o r t ( ProcId , CallVarDesc , DoRetryB ) ,
23 (
24 DoRetryB = do ret ry ,
25 p ( <arguments> )
26 ;
27 DoRetryB = do not r e t ry ,
28 f a i l
29 )
30 )
31 ) .

There is a disjunction on the call and fail port. If the execution goes into the call, there
is a new disjunction between exit and redo port. Note that with a disjunction, more than
one disjunct can succeed at a time. The redo port is used to try to find an alternative
solution.

Please note that this transformation is also valid for multi determinism.
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Failure model transformed ( 0 – 0 solution )

When the debugger reaches a failure goal, it is composed with a call event followed by a
fail event. A retry is always possible but it will fail straight away.

1 p ( <arguments> ) :−
2 promise < o r i g i n a l pur i ty > (
3 CallVarDesc = [ <arguments> ] ,
4 impure c a l l p o r t ( ProcId , CallVarDesc ) ,
5 < o r i g i n a l body >, % remaining ou tpu t s
6 FailVarDesc = [ ] ,
7 impure f a i l p o r t ( ProcId , FailVarDesc , DoRetry ) ,
8 (
9 DoRetry = do ret ry ,

10 p ( <arguments> )
11 ;
12 DoRetry = do no t r e t r y
13 )
14 ) .
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Erroneous model transformed ( 0 – 0 solution )

Finally, if the debugger reaches an erroneous goal, it should stop because otherwise the
state of the debugger would become incoherent. In fact, as developed in the transforma-
tion, there is only a call port which pushes a frame on the stack, but this one will never
be popped. Throwing an exception at this moment and propagate it to the caller could be
added in future work.

So, if the debugger reaches an erroneous procedure, it will stop running. Hopefully,
this kind of code is extremely rare and used in very particular context.

1 p ( <arguments> ) :−
2 promise < o r i g i n a l pur i ty > (
3 CallVarDesc = [ <arguments> ] ,
4 impure c a l l p o r t ( ProcId , CallVarDesc ) ,
5 < o r i g i n a l body >
6 ) .

An erroneous procedure always stops the execution of the program. It happens, for
example, when the execution enters in an infinite loop.
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5.3 Practical structure

Obviously, an implementation of the above schemes is not straightforward because it re-
quires advanced manipulations of the program variables (like the detection of the variable
type). Some problems arose that makes that the implementation does not strictly fol-
lows the theory, mainly for the non-deterministic predicates. The explanation on encoun-
tered problems and the final detailed source-to-source transformations for non-deterministic
predicates are shown in the following pages.

5.3.1 Non-deterministic model transformed –final release ( 0 – M
solutions )

Two problems arose during the execution of non-deterministic procedures by the ssdb.
Firstly, the debugger drops the event number and the call sequence number between an
exit and a redo event. And secondly, the debugger executes too many operations if a retry
occurs. Let us examine these problems in more detail.

First issue: The debugger loses the event number and the call sequence number

The problem with the non-deterministic code is that the procedure can be called more than
once during the same execution. Remember the event sequence of a non-deterministic pro-
cedure: A non-deterministic procedure is represented by a call event, followed by a sequence
of exit and redo events, and ended by a fail event.

At the call port, the debugger creates a frame containing all data of the current pro-
cedure: name of the procedure, name of the module in which the procedure is declared,
the current event number of the call, the CSN (call sequence number), the depth, and the
arguments of the procedure. This frame is then pushed on the stack.

At the exit port, the output arguments of the procedure are filled inside the frame
stack. So the user can print them and performs some operations on them before the next
call. Then, at the end of the exit event, the frame is popped from the stack, and all data
concerning the event number and CSN (Call Sequence Number) during the call event are
lost.

At the redo port, how to get the right CSN of the call event since it was popped from
the stack? How to get the right event number if the user do a retry?

The first solution was to modify the generated code. If the CSN and event number are
introduced and computed in the generated code, we avoid wrong number problems.
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So, the generated code should look like the following:

1 p ( <arguments> ) :−
2 promise < o r i g i n a l pur i ty > (
3 (
4 CallVarDesc = [ <arguments> ] ,
5 g e t c u r r e n t c s n (CSN) ,
6 get current event number (EventNum) ,
7 ge t c sn inc r ement (CSNInc ) ,
8 get event number increment (EventNumInc1 ) ,
9 impure c a l l p o r t ( ProcId , EventNumInc1 , CSNInc , CallVarDesc ) ,

10 < o r i g i n a l body>, % remaining ou tpu t s
11 ExitVarDesc = [ <arguments> ] ,
12 (
13 get event number increment (EventNumInc2 ) ,
14 impure ex i t po r t non de t ( ProcId , EventNumInc2 , CSNInc ,
15 ExitVarDesc ) ,
16 %I f Retry : go to f a i l p o r t n o n d e t
17 ;
18 get event number increment (EventNumInc3 ) ,
19 impure r edo po r t ( ProcId , EventNumInc3 , CSNInc , ExitVarDesc ) ,
20 f a i l
21 )
22 ;
23 get event number increment (EventNumInc4 ) ,
24 FailVarDesc = [ ] ,
25 impure f a i l p o r t n o n d e t ( ProcId , EventNumInc4 , CSNInc ,
26 CallVarDesc , DoRetryB ) ,
27 (
28 se t cur r ent event number (EventNum) ,
29 s e t c u r r e n t c s n (CSN) ,
30 DoRetryB = do ret ry ,
31 p ( <arguments> )
32 ;
33 DoRetryB = do not r e t ry ,
34 f a i l
35 )
36 )
37 ) .

This solution is easy to implement but very greedy in time resources during the code
generation. Each new predicate inserted (get current csn, get current event number, etc.)
consumes a lot of time to be inserted in the original source code.
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There is a way to significantly improve the code generation time. It is possible to work
without ”getters” and ”setters” of the Event Number and the CSN. As we lose the Event
Number and the CSN when the frame is popped at the exit event, another solution is to
keep this frame somewhere. So the simplest way is to implement a second stack, which
will contain only the multi/non-deterministic procedure frame.

As a reminder of operations on multi/non-deterministic procedures, the order of the
events in such procedures is the following:

• For a nondet procedure : there is a call event, followed by zero to n exit and redo
events and finally by a fail event.

• For a multi procedure : there is a call event, followed by one to n exit and redo event
and finally by a fail event.

The difference is not at the call or fail port level as the frame is simply pushed at the
call event and popped at the fail event on both stacks. This means of course that the
difference is between the call and fail port. When an exit event occurs, only the principal
stack is popped and the procedure frame from the call port remains on the nondet stack.
When the redo event occurs, the frame on the nondet stack is called back and pushed
on the principal stack. To call back the frame, the debugger just needs the name of the
procedure, the name of the module in which this procedure is and the depth of the call.
In this way, a recursive call is handled as any other procedure calls.

Second issue: Too many operations are executed after a retry

With the non-deterministic procedure, when a retry happens, the remaining branches of
the decision tree are not destroyed. In other words, when a retry is executed in the middle
of a multi/nondet procedure, the execution stops at the current call point and creates a
new decision point in the SLD tree and calls the new procedure. When this call is over, the
debugger comes back to the old decision point of the caller and terminates its execution.
If we have the following example:
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Example 5.3.1 Too many operations executed

:- pred main(io::di, io::uo) is cc_multi.

main(!IO) :-

unsorted_solutions(p ,Solutions).

:- pred p(list(int)::out) is multi.

p(A) :-

(

append([1], [2], [])

->

A = []

;

append([2], [4], Xs),

append(A, _, Xs)

).

The solutions of this little program are the following: ([2], [4], [2,4])
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If we examine the execution of this program with the ssdb navigator, we could get an
interaction like the following:

Example 5.3.2 Too many operations executed

Event # Call # Depth Event Type Procedure Result

1 1 1 call main
2 2 2 call p
3 2 2 exit p [ ]
4 2 2 redo p
5 2 2 exit p [2]

—>retry : new decision point
2 2 2 call p
3 2 2 exit p [ ]
4 2 2 redo p
5 2 2 exit p [2]
6 2 2 redo p
7 2 2 exit p [4]
8 2 2 redo p
9 2 2 exit p [2,4]
10 2 2 redo p
11 2 2 fail p

—>end of retry : finish of the old decision point
12 2 2 redo p
13 2 2 exit p [4]
14 2 2 redo p
15 2 2 exit p [2,4]
16 2 2 redo p
17 2 2 fail p
18 1 1 exit main

Table 5.2: Wrong event number in the debugger

In this case, the solutions are computed more than one time and the event number
becomes wrong when the ”retried” procedure is finished. The correct event number at
the end of the execution should be 12, and not 18. This is caused because the compiler
executes both decisions in the tree instead of only the decision created by the retry. The
solution was to slightly modify the non-deterministic model.
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1 p ( <arguments> ) :−
2 promise < o r i g i n a l pur i ty > (
3 (
4 CallVarDesc = [ <arguments> ] ,
5 impure c a l l p o r t n ond e t ( ProcId , CallVarDesc ) ,
6 < o r i g i n a l body>, % remaining ou tpu t s
7 ExitVarDesc = [ <arguments> ] ,
8 (
9 impure ex i t po r t nonde t ( ProcId , ExitVarDesc ) ,

10 %I f Retry : go to f a i l p o r t n o n d e t
11 ;
12 impure redo port nondet ( ProcId , ExitVarDesc ) ,
13 f a i l
14 )
15 ;
16 FailVarDesc = [ ] ,
17 impure f a i l p o r t n ond e t ( ProcId , CallVarDesc , DoRetryB ) ,
18 (
19 DoRetryB = do ret ry ,
20 p ( <arguments> )
21 ;
22 DoRetryB = do not r e t ry ,
23 f a i l
24 )
25 )
26 ) .

The code, generated for the retry just after the exit port, has been removed. All ports
have been renamed as well. In theory, when the user does a retry after an exit port of non-
deterministic procedures, the program jumps at the matching fail port of this procedure.
All operations between these two points have to be ignored, then the retry is automatically
called when the program reaches the fail port. In this way, we keep the right event number.
Such a jump in the code could be annoying if several operations take a while to execute
themselves (I.e. if the program needs to access a lot to the hard disk). Otherwise, even
several million operations are almost instantaneous.

Nevertheless, there is a limitation. As the generated code is executed by the compiler,
the operations are computed. Considering that the runtime system is not giving back
the control to the user, it remains invisible for him. But, if the user prints the result set
with a predicate such as unsorted solutions/2, same solutions appear more than once. The
debugger is going to live with this constraint.
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5.4 The generated code

If we take back the example program in annexe 2, we can isolate the deterministic predicate
’p’, the code for this predicate is:

:- pred p(int::in, int::out) is det.

p(X, Y) :-

g(X, Y).

The Mercury code generated by the debugger is shown on the next page.

The low-level C code generated by the Mercury debugger is closer to the assembler than
a classic C code. As said before, the source-to-source debugger can use any of the back-ends
that Mercury has (low and high-level C code, Java, .NET and Erland back-end) making
it easier to be understood by a human and to do the correspondence with the Mercury code.

After the generator of the ssdb has generated the code, the navigator allows the user
to navigate through it with different commands. Read the next section ’5.5. The com-
mands of the ssdb’ to know what commands are available with the navigator.
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The Mercury code for the predicate ’p’ is the following:

1 :− mode p ( ( b u i l t i n . in ) , ( b u i l t i n . out ) ) i s det .
2 t e s t . p(X, Y) :−
3 promise pure (
4 ModuleName = ” t e s t ” , % Name of the module
5 PredName = ”p” , % Name of the procedure
6 % ProcId con s t r u c t i on
7 ProcId = ssdb . s sdb p ro c i d (ModuleName , PredName ) ,
8 EmptyVarList = l i s t . [ ] , % Creation o f the parameter empty l i s t
9 VarName = ”Y” , % Name of the argument

10 VarPos = 1 , % Pos o f the argument
11 VarDesc = ssdb . unbound head var (VarName , VarPos ) , % Argument type
12 Ful lL i s tVar = l i s t . [ VarDesc | EmptyVarList ] , % Add to the l i s t
13 VarName = ”X” ,
14 VarPos = 0 , % Dit to with the second argument
15 % Constructor ( because i t i s an input argument )
16 TypeCtorInfo 15 = t yp e c t o r i n f o ( ”” , ” i n t ” , 0 ) ,
17 VarDesc = ssdb . bound head var ( TypeCtorInfo 15 , VarName , VarPos , X) ,
18 Ful lL i s tVar = l i s t . [ VarDesc | Ful lL i s tVar ] ,
19 impure ssdb . h and l e e v en t c a l l ( ProcId , Ful lL i s tVar ) , % Ca l l event
20 t e s t . g (X, V 18 ) , % Body o f the procedure
21 EmptyVarList = l i s t . [ ] , % Creation o f the second l i s t
22 VarName = ”Y” , %
23 VarPos = 1 , % Only modi f i ed argument are genera ted again
24 TypeCtorInfo 22 = t yp e c t o r i n f o ( ”” , ” i n t ” , 0 ) ,
25 VarDesc = ssdb . bound head var ( TypeCtorInfo 22 , VarName , VarPos , V 18 ) ,
26 Ful lL i s tVar = l i s t . [ VarDesc | EmptyVarList ] ,
27 Ful lL i s tVar = l i s t . [ VarDesc | Ful lL i s tVar ] ,
28 % Exi t event
29 impure ssdb . hand l e even t ex i t ( ProcId , Ful lListVar , DoRetry ) ,
30 ( % cann o t f a i l sw i t ch on ‘DoRetry ’
31 % DoRetry has func to r ssdb . d o r e t r y /0
32 t e s t . p (X, Y) % Switch f o r the r e t r y
33 ;
34 % DoRetry has func to r ssdb . d o no t r e t r y /0
35 Y = V 18
36 )
37 ) .

The lines 3 to 19 and 21 to 37 have been generated by the ssdb. This shows the efforts
that the ssdb have to do even for a very small predicate.
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5.5 The commands of the ssdb

The debugger generator uses five different types of commands:

• forward commands allow the user to go forward from a step to another by jumping.

• backward command (composed only with the retry command) sets the debugger to
a previous state.

• browsing commands allow the user to see parameters or stack and their features at
each step.

• breakpoint commands enable the user to set breakpoint and manage them like he
wants.

• other commands like the exit or help command.

The current source-to-source debugger does not handle yet all commands that the ’mdb’
does. But the more important and useful ones are present and can be used.

In the following pages, note that an ancestor is a call before the current call.

5.5.1 Forward movement commands

’step’ or ’s’

Forwards to the next event.
An empty command line is interpreted in the same way.

’next [num]’ or ’n [num]’

Continues execution until the program reaches the next num’th ancestor of the call to
which the current event refers. The default value of num is one, in this case, the navigator
skip all events until it reaches the next event with the same CSN. For example, if num is
2, it goes to the next event of the parent of the current call. The debugger reports an error
if the execution is already at the end of the specified call.
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’finish [num]’ or ’f [num]’

Continues execution until the program reaches a final (exit or fail) port of the num’th
ancestor of the call to which the current event refers. The default value of num is one,
which means skipping to the end of the current call. For example, if num is 2, it finishes
(go to the last event of the procedure) the call of the parent of the current procedure. The
debugger reports an error if execution is already at the desired port.

’goto num’ or ’g num’

Continues execution until the program reaches the event number num.

’continue’ or ’c’

Continues execution until it reaches the end of the program or a breakpoint enabled. Read
the ’Breakpoint commands’ subsection for more details on breakpoint commands.

5.5.2 Backward movement command

’retry [num]’ or ’r [num]’

If the optional number is not given, restarts execution at the call port of the call corre-
sponding to the current event. If the optional number is given, restarts execution at the
call port of the call corresponding to the num’th ancestor of the call to which the current
event belongs. For example, if num is 2, it restarts the parent of the current call.
A retry over I/O actions are not safe. A note concerning this problem is explained in 5.6
Potential expected developments section.

5.5.3 Browsing commands

’print’ or ’p’

Prints the values of all the known variables in the current environment.

’stack’

Prints each procedure on the stack with an ordinal number and their respective arguments.
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’browse name’

Invokes the interactive term browser to browse the value of the variable in the current
environment with the given name.

The interactive term browser allows one to examine particular subterms. The depth
and size of printed terms may be controlled. The displayed terms may also be clipped to
fit within a single screen.

’up’

Set the current environment to the stack frame of the num’th level ancestor of the current
environment (the intermediate caller is the first-level ancestor).

This command will report an error if the current environment does not have the required
number of ancestors, or if there is an execution trace information about the requested an-
cestor, or if there is no stack trace information about any of the ancestors between the
current environment and the requested ancestor.

’down’

Set the current environment to the stack frame of the num’th level descendant of the current
environment (the procedure called by the current environment is the first-level descendant).

This command will report an error if there is no execution trace information bout the
requested descendant.

5.5.4 Breakpoint commands

’break module_name procedure_name’ or ’b module_name procedure_name’

Puts a break point on the specified procedure. By default, the break point is enabled.

If a procedure is overloaded (e.g. : bar.baz/3 and bar.baz/4 or bar.baz/3 with another
mode), the execution will stop at each occurrence of the procedure overloaded.

If a procedure has more than one module name, like: foo.bar.baz.procedure name. Then,
all module names should be put in the module name field.
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’break info’

Lists details, status and print lists of all break points.

’disable num’

Disables the break point with the given number.

’disable *’

Disables all break points.

’enable num’

Enables the break point with the given number.

’enable *’

Enables all break points.

’delete num’

Deletes the break point with the given number.

’delete *’

Deletes all break points.

5.5.5 Miscellaneous

’help’

Prints summary information about all the available commands.

’exit’

Quits the debugger and abort the execution of the program.

End-of-file on the debugger’s input is considered as an exit command.
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5.6 Potential expected developments

This section proposes some improvements that could greatly improve the user friendliness
and the efficiency of the debugger:

• Add condition, then, else, disjunction and switch port [4].

• Handle exception.

• IO tabling (see User Guide [3] p25).

• Tab completion.

• Command history.

• Improve time performance during the code generation and execution.

5.6.1 Addition of other ports

In addition to the four interface (or external) ports already implemented, a fifth one should
be added to handle exceptions:

excp A excp event occurs when control leaves a procedure and returns
to its caller due to an uncaught exception.

In addition, currently, the debugger does not provide any information about the inter-
nal execution of the procedure. We should create event types corresponding to every kind
of decision about the flow of control. These internal event types are the following: if part,
then part, else part, conjunction, disjunction, switch and negation, negf, negs [4].

The counterpart of these added events will be a significant time consuming code gen-
eration. As the code generation is very slow, an option should be used to set on/off the
generation of these internal events.

5.6.2 Handle exceptions

Each time that the program reaches a point where an exception is thrown, the execution
of the debugger should stop and show the state at this point without crashing. Note that
the exceptions discussed here are similar to the exceptions in some imperative languages,
such as Java. To handle exceptions, the debugger has to manage built-in procedures.

In Mercury, the special predicate throw/1 is used to throw exceptions. Calling throw/1
causes its arguments to be thrown as an exception.
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Example 5.6.1 Utilisation of the throw/1 predicate

divide(N, D, Q) :-

( if D = 0 then

throw(division by zero)

else

Q = N / D

).

If a thrown exception is not caught, then the program aborts. For procedures which
can succeed at most once, a try predicate can be used to handle it. For example:

Example 5.6.2 Utilisation of the try predicate

maybe_divide(D, N, MaybeQ) :-

try(divide(D, N), Result),

( if Result = succeeded(Q) then

MaybeQ = yes(Q)

else

MaybeQ = no

).

In this example, the first argument to try is the closure which may throw an exception.
The predicate divide/3 is currified to send only an output argument. Once the proce-
dure has been executed, the second argument is unified with one of the three following
possibilities:

• succeeded(R), if the call succeeds, where R is bound to the output of the procedure,

• failed, if the call failed or

• exception(E), if the call throws an exception, E is bound to the exception.

The try all(Goal, MaybeException, Solutions) functor is used for procedures that may
succeed more than once. If no exception is thrown by Goal, than MaybeException is bound
to ’no’ and Solution is bound to the list of solutions found. Otherwise, if Goal throws
an exception, MaybeException is bound to ’yes(E)’ and Solutions to the list of solutions
found before the exception. When an exception is thrown, a excp event is generated and
have the same CSN than the matching call event in the stack.

5.6.3 I/O tabling

As already explained, it is a well-known fact that we can not do a retry through an IO
operation.
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For example, if a procedure reads a file character by character, during the first exe-
cution, the procedure will read and return the first character, then, if we do a retry, the
program should send the first character again and not the second one. To achieve this, we
need to remember what IO was done before the retry and send the result of each operation
when we do a retry.

We will illustrate the problem by means of a small example which uses IO operations:

Example 5.6.3
1 :− import module i o .
2 :− import module r e q u i r e .
3
4 :− pred main ( io : : di , i o : : uo) is det .
5
6 :− implementation .
7
8 main ( ! IO) :−
9 i o . open inpu t ( ” . . / bar / baz . t x t ” , IOResult , ! IO ) ,

10 (
11 IOResul t = io . e r ro r ( ErrInput ) ,
12 e r ro r ( i o . e r ro r mes sage ( ErrInput ) )
13 ;
14 IOResul t = ok ( Stream ) ,
15 i o . r e a d f i l e a s s t r i n g ( Stream , MaybeFi leAsStr ing , ! IO ) ,
16 (
17 MaybeFi l eAsStr ing = ok ( F i l eAsS t r i n g ) ,
18 i o . w r i t e s t r i n g ( F i l eAsS t r ing , ! IO)
19 ;
20 MaybeFi l eAsStr ing = error ( , ErrReadFi l eAsStr ing ) ,
21 e r ro r ( i o . e r ro r mes sage ( ErrReadFi l eAsStr ing ) )
22 ) ,
23 i o . c l o s e i n p u t ( Stream , ! IO)
24 ) .
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In this very small program, there are some IO operations, if we do a retry on:

io.open input Which opens a file to perform operations on it. We should not open
twice the same file for an evident reason of performance: If we have
either a huge file or thousands of files, it will quickly overheads the
memory.

io.read file as string Which reads a string in the opened file. We have to send back the
string read by the reading operation.

io.write string Which writes a string. We have to write the same string as the first
time.

io.close input Which closes a file, a file already closed throws an exception.

The paper on Idempotent I/O for safe time travel [35] explains clearly all problems met
and propose some solutions.

5.6.4 Tab completion

Command line completion is a common feature of command line interpreters, in which the
program automatically fills in partially typed tokens. Depending on the specific interpreter
and its configuration, these elements may include commands, arguments, environment vari-
able names and other entities. Command line completion is often invoked, by default, by
pressing the tab key and frequently called tab completion.

To use this feature, a table must be kept in memory and be filled in at the start of
the debugger. The table needs to hold all procedure and function names of the current
debugged program. Implementing this feature must (partially) be done in C because Mer-
cury does not handle keystroke function.

5.6.5 Command history

Having the command history available is a common feature in a program that interacts with
the user through a command line interface. Command history involves making previously-
entered commands (usually up to some limit) easily available to enter once again at the
command line. The usual method is for the user to use the Up (and Down) keyboard arrow
keys to navigate through the command history, but some programs also offer the facility
for the user to press a certain function key which will show a menu of recent commands,
from which the user can select one by typing a number.



64 CHAPTER 5. THE SOURCE-TO-SOURCE DEBUGGER

Command history takes advantage of the fact that the user may want to execute the
same command many times, such as a developer frequently compiling and running a pro-
gram, or the new command may be a small modification of a previous one, hence requiring
little typing to modify it. It therefore saves a lot of typing for the user and increases the
speed and accuracy of input to the computer.

5.6.6 Manage built–in procedures

When the code is generated, the option “–no-ssdb” is used to avoid handling built-in proce-
dure by ssdb. In fact, the built-in procedure is implemented with other built-in procedures
and an infinite loop may occur during the code transformation. To avoid this, an inde-
pendent variable is used to disable the source-to-source debugger in the second level of
built-in procedures. Be aware that this improvement could greatly reduce the speed of the
debugger, in that way, an option should be created to enable or disable this feature.

5.6.7 Improve time performances

The performances of the debugger could be greatly improved by some code modifications.

• The ssdb should generate only one list of variables instead of two during the list
argument generation. Currently, the debugger generates a new argument list during
the call and the exit of the procedure. A unique list should be used. Arguments are
added to the list during the call. But during the exit event, only output arguments
have to be added to the list. Some modifications in the ’print’ command are necessary
to compute the list in order to only print the relevant arguments.

• Limit the number of appended lists in the implementation.

• Find a way to enable the optimisations. Most of the optimizations for the debugger
are turn off for now. Maybe some modifications in the code could enable more opti-
mizations to boost the debugger speed.

5.6.8 Others

Some other exotic features would improve the user friendliness of the debugger:

• The possibility to add options in command line. ’mdb’ enables the user to add options
in several commands like print output in a different way, ask more details, etc.

• A parameter file could be used to set some parameters for the debugger, during
the second start up of the debugger, it will simply copy these parameters to use
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them. These parameters could modify line length, number of lines on the screen, the
formatting with ’pretty printer’ or with another similar library.

• Many other commands exist and might be added, such as the call to the declarative
debugger for example.

• The ssdb does not handle the multi-threading (or parallelism).

5.7 Performance Test Results

The Mercury compiler is a huge and complex program with more than a hundred thousand
lines of code. It is mainly a combination of three different languages: Mercury, Nu-Prolog
and SISCtus Prolog. Basically, when a new feature is added to the compiler, one has to
rebuild it by using the bootcheck command which demonstrates that the added feature
does not cause any unexpected modifications in an other part of the debugger.

To complete this overview about the code transformation implemented as an addi-
tional phase within the Melbourne Mercury Compiler, we will show the influence of the
code transformation during the execution time. To perform this task, we will use it to
check the six most important classes of the compiler, important in term of study subjects
(number of lines of code, complexity, etc.). The Table 5.3 shows the six modules used for
the performance test. It also gives an idea in term of lines of code (LOC) of these modules.

Module name LOC

typecheck.m 2939
polymorphism.m 3371

code info.m 4410
mercury compile.m 5275

llds out.m 5676
modules.m 8454

TOTAL 30125

Table 5.3: The six most interesting modules used for the performance test

As explained before, Mercury uses distinct grades to compile its applications. Each of
them uses specific optimizations and therefore, takes different times to compile.

The asm fast.gc is the most common grade used as it contains all optimizations for
Mercury.
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The asm fast.ssdebug.gc introduces the transformations from the source–to–source de-
bugger but unfortunately turn off some optimizations for implementation purpose.

The next table show the slowdown due to the transformations performed with the
asm fast.ssdebug.grade during the execution time.

Grade Compilation time (in sec.)

asm fast.gc 17.03
asm fast.ssdebug.gc 121.93

Table 5.4: Mercury’s grade speed slowdown

The ratio is 7.15 times slower with ssdb enabled. This ratio is due, on one hand, by all
the optimizations turned off, and on the other hand, by the difference of level that code
transformations operate on (The higher the transformations operate, the slower it will be).

Note that this test was done on:

• Intel Core 2 Duo CPU T7300 c©2.00GHz

• Ubuntu

• Without Internet connexion and as few processes running as possible

• Without any extra flags
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Conclusion

Depending of the programming language used and therefore the available debuggers, the
difficulty of software debugging greatly varies.

Logic languages have demonstrated their effectiveness to implement powerful and ef-
ficient debuggers with less effort compared to classic imperative languages. High-level
programming languages, such Java, make debugging easier because they have features
such as exception handling that make real sources of devious behaviour easier to spot. In
C and other lower-level programming languages, bugs are often difficult to identify and
finding the root cause of the problem may take hours.

Traditionally, most people have equated logic programming with Prolog, and have con-
cluded that logic programming is not suitable for writing application programs except in
narrow domains [12]. But MC has proved the opposite. They use an approach based on
ontologies to formally describe the problem domain. This approach has enabled MC to
successfully develop highly complex operational applications within a defined budget and
timeframe. This approach is known as ODASE, Ontology Driven Architecture for Software
Engineering.

The first complex application coded in Mercury was for FOREM, the regional unem-
ployment agency of Wallonia in Belgium (with 3000 employees and an annual budget of
250 million euros). FOREM is continually facing complex and changing regulations which
directly impact many of its business processes. In the past, several contractors had failed
to develop a satisfactory system able to support a new employment programme. FOREM
asked MC to develop such a system with the following requirements: 3-tier architecture
with clear separations, Internet-ready with strong performance and robust security, fur-
thermore it should be adaptative in the sense that it easily allows the business process
modifications necessary to cope with a continuously changing regulation. Finally, MC pro-
duced a ”light” client of 22,000 lines of Java code, although only dealing with presentation
layout, whereas the application server requires only 18,000 lines of Mercury code. This
bodes well for Mercury’s performance, cost (both development and maintenance) and re-
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liability [38, 39].

Mercury, with its strong types, mode and determinism system and all its other embed-
ded features allow a high percentage of common errors to be identified during compile-time.
Therefore, coding in Mercury, can be substantially faster and more cost effective than in
any other languages as illustrated by the FOREM case. That system has proven to be suit-
able to create debuggers. Three different debuggers had been created in the past: a simple
procedural debugger similar to the tracing system of Prolog implementations, a prototype
declarative debugger, and a debugger based on the idea of automatic trace analysis [4], the
new complementary debugger has been implemented, in a similar way than existing pro-
cedural debuggers, which might be used with any back-ends proposed by Mercury. Now,
the possibility to generate a different code than the low-level C code, such as Erlang or
high-level C code, makes easier to match the relation with the Mercury code. However,
the current implementation of the source-to-source debugger needs various improvements.

Another part of my work was take into account all the remarks proposed to improve
the speed of the new debugger. The point was important as stated by Zoltan Somogyi at
the beginning of my task: ”There is no quick execution, you just have the choice between
a slow or a very slow execution time depending on the implementation”.

In the current state, the development of the source-to-source debugger is not over.
Handling exceptions should be the next functionality to be added. The debugger should
be able to handle exceptions, go through it without crashing and show the state of the
program before the exception. A second very useful future work should be the debugging
of built-in procedures, to go through the program step by step in every procedure and be
able to see whether a variable takes a value that is not expected by the programmer. Other
improvements are necessary to keep the program consistent during the debugging such as
I/O tabling. New features should also be added to the navigator as the Tab completion and
the Command History, two common features in debuggers. Finally, some speed improve-
ments are certainly possible if we reduce the number of list appends and if we limit the
generation of only one list of argument for each procedure. However, the main commands
for the new debugger are available and it handles perfectly all determinisms; this was the
main objectives of my work.
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Annexe 1

How to use the Mercury compiler

In order to compile a program, the Mercury compiler has to be invoked with ’mmc −
−make < filename >’.

Example 6.0.1 file find path.m compiled:

$ mmc -- make find_path

$ ./find_path

Which gives the following result:

Example 6.0.2 Result of find path.m once executed:

[arc(a,c), arc(c,d)]

And it creates an executable ’filename’. For programs that consist of more than one
source file, it is the command Mmake which ensures that steps are done in the right order
and not repeated.

The Mercury compiler uses grades which set a brunch of options. These options are
related to the target language, the garbage collection strategy, the profiling technique, the
debugging, the parallel generation of code and many other parameters. The entire program
must be compiled with the same settings of these options, and it must be linked to a
version of the Mercury library which has been compiled with the same settings [35]. This
is especially important for large programs written in Mercury like the Mercury compiler
itself.

Example 6.0.3 find path.m from Example 3.1.3, compiled with a grade.

$ mmc debug.asm_fast.gc my_member

In this example, the program is compiled with the debug grade, which allows the pro-
grammer to use the Mercury debugger on this program. The asm fast grade uses different
feature to speed up the compilation and execution time of the applications. And finally, the
.gc grade called the Hans Boehm’s conservative garbage collector for C (see the Mercury
User Guide [3] for all details).
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Annexe 2

1 % Example o f a d e t e rm i n i s t i c code .
2 %
3 :− module t e s t .
4 :− interface .
5
6 :− import module i o .
7
8 :− pred main ( i o : : di , i o : : uo) i s det .
9 :− pred p( i n t : : in , i n t : : out ) i s det .

10 :− pred g ( i n t : : in , i n t : : out ) i s det .
11 :− implementation .
12
13 main ( ! IO) :−
14 p (1 , X) ,
15 i o . wr i t e (X, ! IO ) ,
16 i o . n l ( ! IO ) .
17
18 p(X, Y) :−
19 g (X, Y) .
20
21 g (X, X) .
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1 %Example o f a semi−d e t e rm i n i s t i c code .
2 %
3 :− import module i o .
4 :− import module l i s t .
5
6 :− pred main ( i o : : di , i o : : uo) i s det .
7 :− pred p( i n t : : in , i n t : : out ) i s semidet .
8 :− pred g ( i n t : : in , i n t : : out ) i s det .
9 :− implementation .

10
11 main ( ! IO) :−
12 (
13 p (1 , X)
14 −>

15 i o . wr i t e (X, ! IO ) ,
16 i o . n l ( ! IO)
17 ;
18 i o . w r i t e s t r i n g ( ”\np f a i l e d ” , ! IO)
19 ) .
20
21 p(X, Y) :−
22 g (X, Y) ,
23 L = [ 2 , 3 , 4 ] ,
24 l i s t . d e l e t e (L , X, L0 ) . % l i s t . d e l e t e /3 i s semidet code .
25
26 g (X, X) .
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1 % Example o f a non−d e t e rm i n i s t i c code .
2 %
3 :− import module i o .
4 :− import module l i s t .
5 :− import module s o l u t i o n s .
6
7 :− pred main ( i o : : di , i o : : uo) i s cc mu l t i .
8 :− pred p( l i s t ( i n t ) : : out ) i s multi .
9 :− pred g ( l i s t ( i n t ) : : out ) i s multi .

10 :− implementation .
11
12 main ( ! IO) :−
13 un so r t ed so l u t i on s (p , So l u t i on s ) ,
14 i o . wr i t e ( So lut ions , ! IO ) ,
15 i o . n l ( ! IO ) .
16
17 p(A) :−
18 promise pure
19 (
20 g (A)
21 ) .
22
23 g (A) :−
24 (
25 append ( [ 1 ] , [ 2 ] , [ ] )
26 −>

27 A = [ ]
28 ;
29 append ( [ 2 ] , [ 4 ] , Xs ) ,
30
31 append (A, , Xs) % th i s i s nondet code .
32 ) .
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1 % Example o f a f a i l u r e code .
2 %
3 :− import module i o .
4
5 :− pred main ( i o : : di , i o : : uo) i s det .
6 :− pred p( i n t : : out ) i s det .
7 :− pred g ( i n t : : out ) i s fa i lure .
8 :− implementation .
9

10 main ( ! IO) :−
11 ( i f
12 p(A) ,
13 g (A)
14 then
15 i o . wr i t e ( ”A = ” , ! IO ) ,
16 i o . wr i t e (A, ! IO ) ,
17 i o . n l ( ! IO)
18 else
19 i o . w r i t e s t r i n g ( ” f a i l e d ” , ! IO)
20 ) .
21
22 p(A) :−
23 A = 10 .
24
25 g ( A) :−
26 f a i l . % th i s i s f a i l u r e code .
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1 % Example o f an erroneous code .
2 %
3 :− import module i o .
4
5 :− pred main ( i o : : di , i o : : uo) i s det .
6 :− pred loop ( i n t : : in ) i s erroneous .
7 :− implementation .
8
9 main ( ! IO) :−

10 X = 1 ,
11 (
12 X = 2 ,
13 true
14 ;
15 X = 1 ,
16 loop (X) ,
17 i o . wr i t e ( ”X = ” , ! IO ) ,
18 i o . wr i t e (X, ! IO ) ,
19 i o . n l ( ! IO)
20 ) .
21
22 loop (X) :− loop (X) . % i l l i m i t e d loop i s cons idered
23 % as erroneous code .


