
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

QROSS-checking RESCUE models

Moyen, Catherine

Award date:
2005

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/224b2eb1-6140-49f6-b1c5-a4dc342ad061

Faultés Universitaires Notre-Dame de la Paix, NamurInstitut d'InformatiqueAnnée aadémique 2004-2005
QROSS-Cheking RESCUE modelsMoyen Catherine

Mémoire présenté en vue de l'obtention du grade de Maître enInformatique

AbstratThis thesis takes plae in the �eld of the Requirements Engineering. Thisarea of Information Systems Engineering is dediated to disover the needsthat users and other stakeholders have towards a system under (re)design.To support this ativity, City University in London has developed a proessalled RESCUE, whih stands for Requirements Engineering with Senariosfor User-Centered Engineering. Our work onsists in automating some syn-hronisation heks between models and/or templates taking plae at de�nedmoments in this proess, by extending a tool developed by the CETIC (Cen-tre of Exellene in Information and Communiation Tehnologies), QROSS.Ce mémoire relève du domaine de l'Ingénierie des Exigenes. Cette branhede l'Ingénierie des Systèmes d'Information a pour but de déouvrir les besoinsdes utilisateurs et autres ateurs d'un système en phase de (re)oneption. Ilaborde en partiulier la méthode RESCUE (Requirements Engineering withSenarios for User-Centered Engineering) développée à la City University, àLondres, qui supporte les ativités de l'ingénierie des exigenes. Cette mé-thode est struturée en phases. Nous développons ii l'automatisation desontr�les de synhronisation qui ont lieu à la �n de haune des phasesde la méthode, et qui omparent di�érents modèles ou grilles (templates)entre eux. Pour ela, nous utilisons un outil appelé QROSS, développé par leCETIC (Centre d'Exellene en Tehnologies de l'Information et de la Com-muniation).
i

AknowledgementsWe would like to thank all persons who provided their assistane for therealization of this thesis:Prof Patrik Heymans from University of Namur, for his support andguidelines;Prof Neil Maiden, Dr Sara Jones and Dr Cornelius Nube at City Univer-sity, London, for their support, their warm welome and their patiene;Gaëtan Delannay at CETIC for his support and advies;Julien Stou�s, Lionel Deliege and Thomas de Bodt for their support andtheir help for the seond reading;My family, my friends and all the people who were there when i neededto be heered up.

iii

QROSS-checking RESCUE models

Abstract

This thesis takes place in the field of the Requirements Engineering. This
area of Information Systems Engineering is dedicated to discover discover
the needs that users and other stakeholders have towards a system under
(re)design. To support this activity, City University in London has devel-
oped a process called RESCUE, which stands for Requirements Engineering
with Scenarios for User-Centered Engineering. Our work consists in au-
tomating some synchronisation checks between models and/or templates
taking place at defined moments in this process, by extending a tool devel-
oped by the CETIC (Centre of Excellence in Information and Communica-
tion Technologies), QROSS.
The present thesis is structured as follow: chapter one is dedicated to in-
troducing basic notions of Requirement Engineering; in chapter two, we
introduce the RESCUE process; chapter three presents a system already
designed following the RESCUE process, used as a case study; chapter four
presents the QROSS tool and the architecture of the extensions made to it;
chapter five describes the implementation of the checks on top of the existing
QROSS infrastructure; chapter six presents the results of the automation on
the case study introduced in chapter two; and finally, chapter seven is dedi-
cated to evaluate the work we did and how we envisage its future evolution.

i

Acknowledgements

We would like to thank all persons who provided their assistance for the
realization of this thesis:

Prof Patrick Heymans from University of Namur, for his support and
guidelines;

Prof Neil Maiden, Dr Sara Jones and Dr Cornelius Ncube at City Univer-
sity, London, for their support, their warm welcome and their patience;

Gaetan Delannay at CETIC for his support and his advices;

Julien Stouffs, Lionel Deliege and Thomas de Bodt for their support
and their help for the second reading.

iii

Table of Contents

1 Introduction 1

1.1 Short definition . 1

1.2 Why is RE important? . 2

1.3 Problems in RE . 3

1.4 Types of requirements . 3

1.5 Documents for requirements 4

1.6 Paper’s structure . 5

2 The RESCUE process 7

2.1 Description . 7

2.2 Models and documents . 9

2.2.1 Context Model . 9

2.2.2 Use case model . 10

2.2.3 Strategic Dependency model (SD model) 12

2.2.4 Requirements template 13

2.3 Stages and synchronisation checks 14

2.3.1 Stage 1: the boundary stage 15

2.3.2 Stage 2: the work allocation stage 16

2.3.3 Stage 3: the generation stage 17

2.3.4 Stage 4: the coverage stage 18

2.3.5 Stage 5: the consequences stage 18

3 Case study: Countdown 19

3.1 Countdown system overview 19

3.2 Models and documents for Countdown 20

3.2.1 Stage 1 of the RESCUE process 21

3.2.2 Stage 2 of the RESCUE process 23

4 Requirements and architecture 31

4.1 Requirements . 31

4.2 QROSS: description . 31

4.3 Architecture of the QROSS-Checker 34

4.4 Repository of the QROSS-Checker 34

v

vi TABLE OF CONTENTS

4.4.1 Conceptual meta models 35

4.4.2 Implementing the meta models 39

4.4.3 OCL interpreter . 45

4.5 Parsers . 47

5 Implementing the checks 49

5.1 Introduction . 49

5.2 First phase of synchronisation checks 49

5.2.1 Check 1.1 . 49

5.2.2 Check 1.2 . 51

5.2.3 Check 1.3 . 53

5.2.4 Check 1.4 . 54

5.2.5 Check 1.5 . 59

5.2.6 Check 1.6 . 59

5.2.7 Check 1.7 . 64

5.2.8 Check 1.8 . 65

5.2.9 Check 1.9 . 65

5.2.10 Check 1.10 . 65

5.3 Second phase of synchronisation checks 66

5.3.1 Check 2.1 . 66

5.3.2 Check 2.2 . 69

5.3.3 Check 2.3 . 70

5.3.4 Check 2.4 . 72

5.3.5 Check 2.5 . 75

5.3.6 Check 2.6 . 76

5.3.7 Check 2.7 . 76

5.3.8 Check 2.8 . 77

6 Application to the case study 79

6.1 First phase of synchronisation checks 79

6.1.1 Check 1.1 . 79

6.1.2 Check 1.2 . 80

6.1.3 Check 1.3 . 82

6.1.4 Check 1.4 . 82

6.1.5 Check 1.5 . 83

6.1.6 Check 1.6 . 83

6.1.7 Check 1.7 . 86

6.1.8 Check 1.8 . 86

6.1.9 Check 1.9 . 87

6.1.10 Check 1.10 . 88

6.2 Second phase of synchronisation checks 89

6.2.1 Check 2.1 . 89

6.2.2 Check 2.2 . 89

6.2.3 Check 2.3 . 91

TABLE OF CONTENTS vii

6.2.4 Check 2.4 . 97
6.2.5 Check 2.5 . 99
6.2.6 Check 2.6 . 100
6.2.7 Check 2.7 . 101
6.2.8 Check 2.8 . 102

7 Evaluation and future works 103
7.1 Evaluation . 103
7.2 Future Works . 104

A Statements of the checks 111

B Using the QROSS-Checker 115
B.1 Creating a Context Model . 115
B.2 Creating a Use Case Diagram 115
B.3 Creating a Strategic Dependency Model 116
B.4 Using the QROSS-Checker . 116

B.4.1 Launching the QROSS-Checker 118

C Requirements types 119

D Code for parsers 121
D.1 Parsers: general methods . 121
D.2 Parser for context models . 124

E Code for the checks 133

Chapter 1

Introduction: Requirements
Engineering

1.1 Short definition

Today, it’s a well-know fact that Requirements Engineering (RE) is a crucial
phase of the development of a computer-based system. RE is dedicated to
find out what a computer based system should do, as opposed to how it
should do it, which is the aim of the software engineering. As Boehm said
in 1981 [Boeh 81], RE is “designing the right thing”, as opposed to Software
Engineering, which is “designing the thing right”. Naturally, RE and SE
are both needed to develop a useful system. Figure 1.1 shows how they are
articulated in a simple waterfall life-cycle model.

Requirements
Engineering

Software
Engineeering
« How ? »
« Getting the system right »

« What ? »
« Designnnig the right system »

Design

Coding

Testing

Integration

Figure 1.1: Standard waterfall life-cycle model

1

2 Chapter 1. Introduction

1.2 Why is RE important?

There are many reasons why RE is so important in the development of a
computer system.
The main reason is described as follows in [Sutc 02]:

“Computers systems have made the requirement problem worse
because we build systems in many different domains. The re-
quirements engineer (or designer) has to understand not only
what the user wants, but also the implications of the domain and
what is achievable. Since gathering requirements inevitably in-
volves communication between people, and natural language is
prone to misinterpretation, requirements analysis has been a fre-
quent cause of system of failure.”

The reduction of the costs generated by such errors constitutes a major mo-
tivation for RE.
Examples of system failures due to a wrong definition of user needs are nu-
merous enough to prove the importance of RE. Among well known examples
of such problems, we can cite the London Ambulance Service’s Computer
Aided Dispatch System. It had been designed to replace the manual sys-
tem of answering emergency telephone calls and dispatching an available
ambulance to the location of the emergency. Little requirements analysis
was carried out with the users of the designed system. Several problems
appeared with the use of the system: “radio blackspots where the ambu-
lance crews could not be contacted, poor user interfaces on the mobile data
terminals which resulted in the ambulance crews not reporting call progress
accurately, with the knock-on effect that the system database became in-
accurate, causing the automatic call location program to lose ambulances,
dispatch ambulance crews who were not free, send several ambulances to
the same call, and so on” [Sutc 02].
Another example of problems caused by bad requirements analyses is Euro-
control (Europe-wide air traffic control). Requirements for flight co-ordination
are complex and difficult to stabilize and finalize. The process that is the
subject of this thesis has been used to find a solution to this problem of
definition of the requirements for Eurocontrol.
RE provides strong basis to the next step in the system development, soft-
ware engineering, which will design all that has been defined by RE.

1.3. Problems in RE 3

1.3 Problems in RE

Requirements can be imposed by laws of physics and facts of nature, some
are imposed externally as constraints on design required by law, and so on.
But mostly, requirements come from people. This involves thus communi-
cation and its problems, such as tacit knowledge, the ambiguity of natural
language, and other factors like the role of power, personality and opinions.
The main issue of RE is so to transform informal and fuzzy statements of
requirements into a formal specification that is understood and agreed by
all stakeholders.

Another problem is that, theoretically, it should be possible to obtain
nearly perfect requirements. However, including time and resource con-
straints of practice, this is unlikely. As the world keeps changing while
defining requirements, these always refer to a passed state of the world and
the system. RE helps here by producing documents which can have a con-
tractual value: once this “contract” was accepted by the customer for whom
the system is conceived, the developers commit themselves to provide a sys-
tem that fulfills these requirements. Requirements are at best a compromise.

We conclude this section by citing [Sutc 02]:

“(. . .) at the heart of RE there is a paradox: users don’t know
what they want until they get it, and when they get it they see
how it could be improved or they don’t like it. Trying to overcome
this 20/20 foresight problem lies at the heart of RE.”

1.4 Types of requirements

There are various types of requirements. Some may be high-level goals,
others may be detailed rules and constraints. We give an example from
[Sutc 02] to illustrate this:

“(. . .) the requirements in a library circulation system could
include:

• the need for a complete sub-system or high-level functions:
“the system will have facilities for auditing book stock so that
old and redundant stock can be eliminated”;

• specification of a more detailed function: “the circulation
control system should calculates fines on overdue loans”;

• a statement about how a function should work: “fines should
be calculated as the number of days overdue (current date -
due date) multiplied by a configurable fine factor”;

4 Chapter 1. Introduction

• constraints on how the system should operate: “data on reader
fines should be secure and not publicly accessible”;

• statements about performance: “all search requests must be
completed within 30 seconds of submission”;

• implementation constraints: “the system must operate on a
Linux platform as well as Windows NT”.”

The major distinction is between functional and non-functional require-
ments. They are defined as follows in [Sutc 02]:

“Functional requirements are statements about what a system
should do, how it should behave, what it should contain, or what
components it should have. Functional requirements are initially
expressed as goals, e.g. “the search facility will find books that
match the user’s request”, or activities, e.g. “validate order”,
“monitor temperature”. Later, requirements become specifica-
tions expressed as entities, attributes, actions, events or states
(. . .). Functions are elaborated processes or procedures which
can be implemented as software algorithms and data structure.
Non-functional requirements (NFRs) are statements of quality,
performance and environment issues with which the system must
conform. Some examples are reliability, maintainability, porta-
bility (properties of the design), safety, security, scalability, accu-
racy, usability, and performance. NFRs are qualities and perfor-
mance criteria that are not directly implementable in software.
(. . .)”

Functional requirements may be derived from non-functional ones. An ex-
ample is given in [Sutc 02]: a designer having a non-functional requirement
explaining that “the autopilot system will fly the aircraft to ensure no col-
lisions occur” might translate what “no collisions” means as “the autopilot
will detect any aircraft which comes within an envelope of 500 meters and
take avoiding action”.

1.5 Documents for requirements

As we already said, requirements are usually expressed in natural language,
which is subject to misinterpretations.
A solution which was considered was the use of formal, mathematically
based specification language. But such languages, although they make the
meaning of the requirements less ambiguous, are not comprehensible to most
users.
Semi-formal notation, such as i* models ([Yu 96]) or context models, are
another solution, which can be coupled with more formal specification lan-
guage to ease the comprehension of the latter.

1.6. Paper’s structure 5

A last solution considered is to structure requirements by the use of tem-
plates. A good example of requirements documentation template is given
in the VOLERE method ([Robe 99], see table 1.1). Those templates can be
used within requirements management tools like RequisitePro or DOORS.

Requirement #: Requirement Type: Event/use case #:

Description:

Rationale:

Source:

Fit Criterion:

Customer Satisfaction: Customer Dissatisfaction:

Dependencies: Conflicts:

Supporting Materials:

History:

Table 1.1: Requirements template from the VOLERE method.

1.6 Paper’s structure

After having explained why RE is so important and some of its basis, we
describe in the next chapters how the RESCUE process helps to define right
requirements to provide a strong basis for implementation and how we au-
tomated some of its parts. Chapter 2 is dedicated to the explanation of
how the RESCUE process works, giving its structure and an explanation
about models and notation used in it. Chapter 3 gives the statement of the
case study we used to evaluate the results of our work, including the mod-
els which had been developed by the team at City University. In chapter
4, we describe the tool we used to automate the phases of checks in the
RESCUE process and develop the QROSS-Checker. We give the concep-
tual meta models for the various models used in the RESCUE process, and
those we used to implement our tool. Chapter 5 describes precisely how we
implemented the various checks. We sometimes give examples to make the
concept clearer when needed. Chapter 6 gives the results of the applica-
tion of the QROSS-Checker to the case study. Finally, chapter 7 concludes
this thesis by evaluating the work we did and giving some tracks for the
continuation of the work we began.

Chapter 2

The RESCUE process

2.1 Description

In this chapter, we will describe the RESCUE process. We initially point
out that RESCUE is a process in constant evolution and that there are
thus several versions of it. The version on which we worked is version 5
([Maid 04b]).
To introduce the RESCUE process, we cite [Maid 04b]: “The purpose of the
RESCUE process, when applied in the context of a new project, is to guide
the projects requirements engineering team to deliver a complete, correct and
testable specification of requirements for a future system. It recognises real-
world constraints on the process, and also supports the analysis of current
work practices to inform the change that will arise from the introduction of
the new system. In addition, it uses creative design processes to generate
additional requirements and to underpin these requirements with high-level
design alternatives.”
RESCUE has been conceived for the design of socio-technical systems that
involve people as well as software. Thus, the process must design people’s
activities as well as the software systems that support peoples work. “The
RESCUE (. . .) process (. . .) supports a concurrent engineering process in
which different modelling and analysis processes take place in parallel. The
concurrent processes are structured into 4 streams (. . .).”([Maid 04d])
Those vertical streams are shown in figure 2.1 from [Maid 04b]. These
streams are described as follows in [Maid 04d]:

“Each stream has a unique and specific purpose in the specifica-
tion of a socio-technical system:

1. Human activity modelling provides an understanding of how
people work, in order to baseline possible changes to it ([Vice 99]);

2. System modelling enables the team to model the future sys-
tem boundaries, actor dependencies and most important
system goals ([Yu 94]);

7

8 Chapter 2. The RESCUE process

Activity Modelling System Goal Modelling Use Case Modelling Requirements Management

Gather data
on current
situation

Determine
system

boundaries

Develop
use case

model

Define
system-level
requirements

 1st Synchronisation point

Model
current

situation

Determine
system

dependencies, goals
and rationale

Describe use
cases

Define and
document

requirements

Context model &
use case diagram
for current system

Creative
design

workshops

Context model
for future system

Context model
for future system

Use cases
summaries for
future system

Use case diagram &
use case summaries
for future system System-level requirements

in VOLERE shellRequirements
Extended
use cases

 2nd Synchronisation point

Refine system
dependencies,

goals and
rationale

Specify use
cases

Define and
document

requirements

Use case descriptions
& i* SD model for
current system

i* SD model for
future system

Use case descriptions
for future system

System-level requirements
and associated use cases

3rd Synchronisation point

Refined i* SD model
for future system

Walkthrough
scenarios

Define and
document

requirements

Use case specifications
for future system

Use case associated
with requirements

 4th Synchronisation point

Impact
analysis

Refine and
change

requirements

 5th Synchronisation point

Scenarios associated
with requirements

Figure 2.1: The RESCUE process structure

3. Use case modelling and scenario-driven walkthroughs enable
the team to communicate more effectively with stakehold-
ers and acquire complete, precise and testable requirements
from them ([Sutc 98]);

4. Managing requirements enables the team to handle the out-
comes of the other 3 streams effectively as well as impose
quality checks on all aspects of the requirements document
([Robe 99]);

Sub-processes during these 4 streams are co-ordinated using 5
synchronisation stages that provide the project team with differ-
ent perspectives with which to analyse system boundaries, goals
and scenarios. These stages are implemented as synchronisation
checks (. . .).”

These stages will be described further in this chapter, in section 2.3.

2.2. Models and documents 9

2.2 Models and documents

As we can see in figure 2.1, various models and documents are generated
during the RESCUE process. For each model, we give an explanation about
the notations, concepts and tools used. Additional guidelines to draw these
models to make them suitable to the we have developed are given in appendix
B.

2.2.1 Context Model

The first diagram produced is a context model. As said in [Maid 05a],
it “separates what the project team will design and what is beyond its scope
(. . .)” and “provides the baseline for more complicated i* SD model and use
case model”. These latter models will be explained further in this chapter.
The context model is presented as a data flow diagram, composed of actors
(or agents1), divided into several levels:

1. the technical level contains the computer based systems to design or
redesign;

2. the socio-technical level, which contains the primary users, i.e. the
users whose work will be changed by the redesign of the technical
system;

3. the “uncontrolled system” level contains systems and people that will
change to accommodate the new system and its users, but not depen-
dent to it;

4. the external level contains systems and people that do not change ,
which act independently of the work being studied but has connections
to it.

The level 4 is not mandatory. So, it is possible to have context models
showing only 3 levels.
These various levels are represented by rectangles included one in the other,
the outermost corresponding to level 4 if any, at the level 3 otherwise, the
innermost corresponding to level 1. Initially, these levels were represented
using circles, but for the ease of computation of the position of actors within
these levels in he phase of implementation of our tool, we chose rectangles
to represent them.

Subsystems in the technical system (level 1) are represented by circles
with the name of the subsystem in it. This is the original notation.

1The term “actor” is used interchangeably with the term “agent” and denotes people,
systems or companies

10 Chapter 2. The RESCUE process

Actors outside the technical system were initially represented as text state-
ments. Once again, for the ease of computation, we chose to use rectangles
with rounded corners with the name of the actor in it.

These actors interact. These interactions, taking place either between an
actor and the new system, or between actors beyond the system boundary,
are represented as data flows, by arrows labeled to describe the information
that is flowing. The arrow head indicates the direction of the flow, the arrow
head pointing to the actor or system receiving the information. The data
flows can be one-way or two-way data flows.

Initially, RESCUE users built context models using MS Word. To make
the implementation of parsers easier, we chose to use an already used tool
in the RESCUE process: MS Visio (see section 4.5).

We can see an example of a context model on figure 3.1 on page 21. This
example will be explained with more details in chapter 3

2.2.2 Use case model

A use case model consists of a use case diagram and a set of use case descrip-
tions made according to a template. The two following subsections explain
those concepts.

Use case diagram

This model is the well-known use case diagram defined in the UML ([Rumb 99]).
So we will not explain further what a use case diagram is.
An example of a use case diagram can be found in figure 3.2, on page 22,
with an explanation.

Use case template

A description should be produced for each use case in the use case diagram.
Each description is done using the use case template defined in the table
2.1. This template was initially developed in the CREWS-SAVRE project
([Sutc 98]) and has been slightly modified for use in the RESCUE process.
An example of a use case description using this template is provided by table
3.2 on page 26.

2.2. Models and documents 11

Use case ID Unique ID for the use case

Name of use case Name of the use case

Text A text field describing the use case

Author Name of the author

Date Date use case was written

Source Source of the use case

Actors Actors involved in the use case

Problem statement Description of current problem

(now)

Precis Informal scenario description

Functional requirements Descriptions of all functional requirements associ-
ated with this use case

Non-functional
requirements

Descriptions of all non-functional requirements asso-
ciated with this use case

Added value Benefit of Use Case above and beyond the original
scenario from the original system

Justification Why is the use case needed in the future system?

Triggering event Event or events that can trigger the use case

Preconditions Necessary conditions for the use case to occur

Assumptions Explicit statement of any assumptions made in writ-
ing the use case

Successful end states Successful outcome(s) of the Use Case

Unsuccessful end states Unsuccessful outcome(s) of the Use Case

Different walkthrough Different situations and contexts in which the use

contexts case takes place

Normal course 1. Action 1

Descriptions of all functional and non-functional re-
quirements related to Action 1

2. Action 2

Descriptions of all functional and non-functional re-
quirements related to Action 2

. . .

Variations 1. If [condition] then [variation statement, identify-
ing 1 or more actions in the normal course which are
different in the condition given]

Descriptions of all functional and non-functional re-
quirements related to this Variation.

List of one or more actions to replace relevant actions
in the normal course, together with their associated
functional and non-functional requirements.

. . .

Satisfaction arguments Maintained by RequisitePro

Option Maintained by RequisitePro

Features Maintained by RequisitePro

Table 2.1: Use case template

12 Chapter 2. The RESCUE process

2.2.3 Strategic Dependency model (SD model)

This model describes the network of dependency relationships between ac-
tors. It is made using the i* goal modelling approach developed by Eric Yu
in his PhD thesis ([Yu 96]). To support i* modelling, a plug-in to MS Visio
called REDEPEND has been developed at City University. We describe
here the notations used within this type of model:

• An actor is simply represented by a circle containing its name. The
actor situated at the left side of the “D” we see on a dependency is
called the depender, the actor who “wants” something. The actor on
the right of the “D” is called the dependee, the actor who has the
“ability” to provide something.

• The authors of [Maid 04b] define a goal as “a condition or state of the
world that can be achieved or not”. A goal dependency between two
actors is represented as shown on figure 2.2. This must be interpreted
as “the customer depends on the airline to have tickets bought”. Here,
the customer is the depender and the airline is the dependee.

Customer AirlineTickets
purchased

Figure 2.2: i* Goal Dependency

• The authors of [Maid 04b] explain that a soft-goal is “used into i*
to denote non functional requirements, relating to properties of the
future system”. A soft goal dependency is shown on figure 2.3. Here,
the student (depender) depends on the teacher (dependee) to learn
well.

Student TeacherLearn well

Figure 2.3: i* Soft Goal Dependency

2.2. Models and documents 13

• The following definition of a resource is given in [Maid 04b]: “Means,
including objects or tool available to actors to achieve goals in the prob-
lem domain. In i*, resources may be either physical, informational or
time resources”. Figure 2.4 illustrates a resource dependency. The
example given on the schema must be interpreted as “the passenger
depends on the Countdown Indicator to have the bus arrival informa-
tion”.

Passenger Countdown
Indicator

Bus Arrival
Information

Figure 2.4: i* Resource Dependency

• “In i* modelling, a task is a particular way of achieving a goal; a
sequence of actions which produces a change in the problem domain”
([Maid 04b]). Figure 2.5 gives an example of a task dependency. The
interpretation here is: “the teacher depends on the student to deliver
lecture”.

Teacher StudentDeliver lecture

Figure 2.5: i* Task Dependency

An example of an SD model is given on figure 3.5 on page 24 and will be
explained further.

2.2.4 Requirements template

A requirement is defined as follows in [Robe 99]: “Something that a prod-
uct must do or a quality that the product must have”. The requirements
are divided in three different levels defined as follows in [Maid 04b]: system
level requirements, “which relate to the system as a whole”, use case level
requirements, “which relate to a particular use case as a whole”, and action
level requirements, “which relate to an individual action in a use case”.
The requirements template has been adapted from the VOLERE require-
ment template (see table 1.1) of J. and S. Robertson [Robe 99]. All the

14 Chapter 2. The RESCUE process

requirements related to existing use cases should be described in a require-
ment template. In the RESCUE process, those requirement templates are
fulfilled using RequisitePro. Table 2.2 presents this template2.

Requirement tag Unique ID

Requirement type One of the allowable RESCUE requirements types

Use case Relevant use case (if requirement comes from a use
case)

Description A one sentence statement of the intention of the
requirement

Rationale Why the requirement is considered important or
necessary

Status Proposed or Pending or Approved

Owner Person responsible for the requirement

Source Origin of the requirement

Stability High or Medium or Low

Fit criterion A quantification of the requirement used to deter-
mine whether the solution meets the requirement

Customer
satisfaction

Measures the desire to have the requirement imple-
mented on a scale 1 – 5

Customer
dissatisfaction

Measures unhappiness if the requirement is not im-
plemented on a scale 1 – 5

Dependencies Other requirements with a change effect

Conflicts Other requirements that contradict this one

Supporting
materials

References to any explanatory information

History Date requirement was raised, dates and details of
changes

Table 2.2: Requirements template

2.3 Stages and synchronisation checks

As we said at the beginning of this chapter, the RESCUE process is divided
into 5 stages, ended by a synchronisation point. These synchronisation
points are implemented as checks which have to be satisfied, to insure that
the bases for the following stage are right and to have the agreement of all
stakeholders taking part in the development of the system. At these syn-
chronisation points, the models produced during the completed stage are

2The various types of requirements used in the RESCUE process are given in appendix
C

2.3. Stages and synchronisation checks 15

submitted to checks pairwise. These checks are done “manually”: the RES-
CUE user analyses the relevant models and compares the artefacts related
to the check. Figure 2.6 from [Maid 04c] presents the stages of the RES-
CUE process, and illustrates the checks as black arrows between diagrams
or templates. The various statements of the checks we implemented are
from [Maid 04c]. They do not exactly correspond to the checks in version
5 ([Maid 04b]) of the process. This choice was made because our work is
based on a case study (see chapter 3 and [Maid 04c]) and we did not have
the results for the checks of version 5. However, the checks are very similar
in both versions, as only one check in the second stage has been added to
version 5.

In the next subsections, we describe the stages and give some typical
examples of checks done at the end of each stage.

Use case diagram
- Future

Use case
descriptions
- Future

SD model - Future

Refined SD model
- Future

Use case
specifications
- Future

Scenarios

ImpactScenarios

 Stage 1

 Stage 2

 Stage 3

 Stage 5

Context Model & Use
Case diagram - Current Context Model

- Future

Design
ideas from
creativity
workshop

Use case description &
SD model - Current

 Stage 4

Requirements
database

System level
requirements

Use case- and action-
level requirements

1.4, 1.5, 1.6

1.3

1.1, 1.2
1.7, 1.8, 1.9

1.10

2.1

2.2, 2.3
2.6, 2.7

2.4, 2.5

2.8

Requirements documents

4.2, 4.3

Figure 2.6: Rescue road map

2.3.1 Stage 1: the boundary stage

The first stage is called the boundaries stage. During this stage, infor-
mation about the human processes are collected, using various techniques,
like observation, informal scenario walkthroughs, interviews or contextual
inquiry. The team then determines the system boundaries, by drawing con-

16 Chapter 2. The RESCUE process

text models (see section 2.2.1) for the current and the future systems. Use
case diagrams are build for both systems (see section 2.2.2). System level
requirements identified by the activities modelled previously are described
by a requirement template (see section 2.2.4) and are recorded in the re-
quirements database in RequisitePro if their status is “Approved”. They
obtain this status if they pass through the quality gateway used in the RES-
CUE process. Other requirements are acquired using various techniques, like
brainstorming, rapid prototyping or card sorting. At the end of the stage,
some checks are done. “Data about the current system, as well as the (. . .)
context models of current and future systems and the use case diagram for
the current system are used to check the completeness and correctness of
the use case diagram for the future system. System-level requirements are
checked against use case summaries” [Maid 04c].
We give here some typical examples of checks, but all statements can be
found in appendix A. All these checks will be explained in chapter 5.

Check 1.1 Every actor in the context model for the current system is a
candidate actor for the context model of the future system.

Check 1.3 Every use case in the use case diagram for the current system is
a candidate for a use case in the use case diagram of the future system.

Check 1.4 Every adjacent actor which communicates directly with the tech-
nical system (level 1) in the context model for the current system is a
candidate actor for the use case diagram of the current system.

Check 1.6 For every data flow from or to level 1 (or one of the sub systems
within level 1) of the context model of the current system, there should
be a corresponding line in the use case diagram for the current system
indicating involvement of the relevant actor in the relevant use case.

Check 1.10 Services and functions related to use cases in the use case dia-
gram for the future system should map to system level requirements,
i.e. high level functional and non functional requirements in the re-
quirements database.

2.3.2 Stage 2: the work allocation stage

In the second stage, data about human activity in the current system gath-
ered during the first stage is structured. Use case descriptions and an i* SD
model (see section 2.2.3) for the current system are derived from the context
model and the use case diagram built during stage 1. An i* SD model is
also developed for the future system, derived from its context model.
Creative design workshops can be run to discover new requirements for the
future system. These workshops take the context model, the use case dia-
gram and some simple use case summaries providing basic descriptions of

2.3. Stages and synchronisation checks 17

the use cases included in the use case model as inputs. For the future sys-
tem, a revised context model, new requirements and new (or revised) use
cases are produced.
The use case modelling stream takes the key tasks and requirements from
the use case diagram and the i* SD model along with creative design ideas
and requirements from the creative design workshops, and produces use case
descriptions, using the use case template.
“This is the stage at which most cross checking is done in order to bring the
models of the current situation and first-cut i* models to bear on the devel-
opment of correct and complete use case descriptions” [Maid 04c]. Here are
some examples:

Check 2.1 All external actors in the i* SD model of the current system
should correspond to actors in the use case descriptions for the current
system.

Check 2.2 All external actors in the i* SD model of the current system are
candidate actors for the i* SD model for the future system.

Check 2.3 All dependencies in the i* SD model of the current system are
candidate dependencies for the i* SD model for the future system.

Check 2.4 All actions in the use case descriptions for the current system are
candidate actions for the use case descriptions for the future system.

Check 2.7 For all task dependencies identified in the i* SD model of the
future system, which represent tasks carried out by actors in the use
case diagram, there should be a part of a use case description which
describes how those tasks are carried out.

Check 2.8 All requirements associated with use cases using the RESCUE
use case template should be stored in the requirements database.

2.3.3 Stage 3: the generation stage

In the third stage, SD model is refined and used to inform the development of
more detailed use case specifications. This enables ART-SCENE, a “scenario
generator” tool developed at City University, to generate a range of scenarios
to be used in stage 4 of the process. Any new requirement appearing during
this phase is recorded in the RequisitePro’s database, using the requirement
template.
No checks are needed at the end of this stage, the major output (scenarios)
being generated automatically. Indeed, the requirements recorded in the
RequisitePro’s database will be checked at the end of the next stage.

18 Chapter 2. The RESCUE process

2.3.4 Stage 4: the coverage stage

In the fourth stage, the scenarios generated during stage 3 are used to dis-
cover complete and correct requirements for the future system. They are
recorded in the requirements database in RequisitePro, within the structure
provided by the requirements template. These scenarios are used to drive
scenario walkthroughs, using the ScenarioPresenter, which is a Web-based
software tool in which access to scenarios, requirements and comments can
be shared.
Once again, all the new requirements discovered during this stage have to
be recorded in the requirements database, using the requirement template.
The checks at this stage relate to the structure of the requirements database.
Here they are:

• Check 4.1 Ensure that each requirement is either a system level require-
ment or is linked to a use case, use case action, or alternative course.

• Check 4.2 Check whether each use case action is linked with require-
ments of the right types using simple heuristics3 based on action- and
requirement- types, for example do human-computer interaction actions
have candidate functional, usability, look-and-feel, training and perfor-
mance requirements specified for them.

• Check 4.3 For all except system-level requirements, check that require-
ment fit criteria are grounded in the use cases to which requirements
are linked.

2.3.5 Stage 5: the consequences stage

The final stage is to use scenarios to analyse the impact of the future sys-
tem, as it is specified in the requirements specification, on its environment.
Results from this analysis can lead to changes to the requirements, which
have to be recorded in the database.
The last step consists in checking if all these changes have been recorded:

• Check 5.1 Ensure that all impact consequences are recorded in the re-
quirements database.

• Check 5.2 Ensure that change requests are generated for all impact
consequences recorded in the requirements database.

3For more details on these heuristics, see [Maid 04b], page 110

Chapter 3

Case study: Countdown

3.1 Countdown system overview

To illustrate how the RESCUE process is used, and how the tool we devel-
oped could be useful, we chose a simple example: the Countdown system.
The models, diagrams and templates found in this chapter are based on
those found in [Maid 04c].
Countdown is a system designed by London buses to remove one of the
biggest disadvantages of traveling by bus: uncertain waiting times. Count-
down uses digital displays at bus stops to provide waiting passengers with
information about waiting times. The information given by countdown dis-
plays, as found in [Jone 04], is the following:

• The order in which buses will arrive at the stop;

• The number of each bus;

• The destination of each bus - this information originates from the driver
who keys a two-digit code into the system at the start of the journey;

• The time until the bus arrives - based on how long the central computer
estimates it will take the bus to reach the bus stop from where it is at
any point in time - the precise position of the bus at any time is known
from the automatic vehicle location (AVL) system;

• Base-line messages - the base line of the Countdown display can scroll
messages across the screen from left to right every 90 seconds - mes-
sages convey general information on matters such as night buses and
congestion.

[Maid 04c] explains how the countdown system worked before its redesign:

“Countdown uses a network of roadside beacons to pinpoint the
location of buses. These small devices are placed on lampposts
along the line of the bus route and each one has a unique iden-
tity. The beacons are only activated when a bus passes and they

19

20 Chapter 3. Case study: Countdown

transmit their identity to the bus.(. . .)

The equipment on board each bus consists of a microwave transpon-
der, modem and odometer (wheel revolution counter). The transpon-
der (. . .) picks up the identity of the beacons it passes and resets
the odometer count. Both beacon identity and odometer count
are stored in the modem which communicates through the LT1

Buses radio system to the central computer. A polling mecha-
nism requests each bus location every 30 seconds.

The central computer communicates with the network of indica-
tors at bus stops using BT2 lines. It downloads information via
the LT buses radio system every 30 seconds, calculates bus ar-
rival times, and updates all Countdown indicators.

At the start of the journey the driver keys in a code that rep-
resents the destination of the bus. The central system uses this
data to determine which stops the bus will pass.(. . .) If the des-
tination has to be changed while the bus is en-route, the driver
re-keys to the new destination.(. . .)

Finally, there is a route manager for each bus route. The route
manager is based at the route’s garage. He uses information
from the central system to manage bus routes effectively. To do
this he communicates with bus drivers directly via the LT Buses
radios to change routes and redirect buses.”

3.2 RESCUE models and documents for the Count-
down system

We will expose the models and documents produced by applying the RES-
CUE process for the Countdown system. Note that the models and diagrams
already implements the guidelines that make them suitable to QROSS (see
appendix B). Moreover, we obtained only one use case description for the
current system from the RESCUE team. We built a use case description
for the future system, using data we found in the requirements database.
Note also that it is impossible to present the requirements database here for
reasons of space. However, the latter use case description gives an idea of
what it contains.

1London Transport
2British Telecom

3.2. Models and documents for Countdown 21

3.2.1 Stage 1 of the RESCUE process

Context model for the current Countdown system

In this model, the technical system is composed of two subsystems: AVL
system3 and On-board bus system. The actors within level 2 -the socio-
technical level- are Driver, Route controller and Indicator. In level 3, we
find Road-side beacon, Passenger, London Transport and Communication
System. There is no level 4.

On-Board Bus
System

AVL System
Bus locations

Bus information/route information / traffic information

Route controller

Driver

Indicator

Bus route

Bus information

Passenger
Road-side Beacon

Communication system London Transport

Instructions / status
Instructions/status Traffic information

Traffic Information

Bus Information

Beacon ID

Figure 3.1: Context model for the current Countdown system

Use case diagram for the current Countdown system

In the use case diagram for the current system, we find the same actors
as those directly communicating with the level 1 in the context model, i.e.
Driver, Indicator, Road-side beacon, Route controller and London Trans-
port. Passenger and Communication system do not communicate directly
with the level 1 in the context model and are not represented in the use case
diagram modelling these interactions.

3Automatic Vehicle Location system

22 Chapter 3. Case study: Countdown

System

Driver

Alert controller
to emergency

Provide information
for travel decisions

*
*

* *

London Transport

Receive current
traffic information

Operator sign-on

*

*

Road-Side beacon

Determine bus
location and arrival times

* *

«extends»

*

*

Route controller

Send route
information

*

*

Monitor bus
location

«extends»

* *

Indicator

Figure 3.2: Use case diagram for the current Countdown system

Context model for the future Countdown system

Within level 1, we find the systems to be redesigned, composed of two sub-
systems: AVL System and On-board bus system. All the other actors are
the same as in the context model for the current system (figure 3.1), except
that Indicator has been replaced by Display and Road-side beacon by GPS.
The boundaries have been refined, if we compare with the context model
for the current system: The passenger is included within level 3, and a level
4 has appeared, including Communication system, London Transport and
GPS.

On-board Bus
system AVL System

Bus information/route information / traffic information

Route controller

Display

Bus information

Passenger

GPS

Communication system London Transport

Instructions / status
Instructions/status Traffic information

Traffic Information

Bus Information

Bus locations

Driver

Bus route

Bus signal

Figure 3.3: Context model for the future Countdown system

3.2. Models and documents for Countdown 23

Use case diagram for the future Countdown system

Here again, the actors represented are the actors communicating directly
with level 1 in the context model. Communication system and Passenger
are thus not represented.

System

Driver

Alert controller
to emergency

Provide information
for travel decisions

*

*

*
*

London Transport

Receive current
traffic information

Operator sign-on

*

*

GPS

Determine bus
location and arrival times* *

«extends»

*

*

Route controller

Send route
information

*

*

Monitor bus
location

«extends»

Display

*
*

Figure 3.4: Use case diagram for the future Countdown system

3.2.2 Stage 2 of the RESCUE process

SD model for the current Countdown system

From the context model and the use case diagram for the current system
(see respectively figures 3.1 and 3.2), an i* SD model is built for the current
system, modelling goals, rationale and dependencies of the system. The
actors marked with a “*” are non external actors and correspond to actors
within level 1 and 2 of the context model.

2
4

C
h
a
p
te

r
3
.
C

a
se

stu
d
y
:

C
o
u
n
td

o
w

n

PassengerDriver*

AVL
System*

Route
Controller*

Countdown
Indicator*

On-Board
Bus

System*

Road-side
beacon

Be Easy
to Use

Operate
Without

Error

Bus
Located

Manage
Routes

Effectively

Information
be Accurate

Information
be Reliable

Bus Locations
be Up-to-date

Buses
Located

Calculate
Arrival Times

Bus
Information

Information
be Reliable

Information be
Up-to-date

Bus Arrival
Information

Information
be Reliable

Information
be Accurate

Make Travel
Decisions

Route
Changes be

Received

Current Bus
Information
Received

Display Bus
Information

London
Transport

Bus
Information
Monitored

Destination
and User ID

be Input

Indicator be
Readable

Response
Received
Quickly

Bus Location
Monitored

Emergency
Reported

Communication
doesn't cause

Danger

Get to
destination

Traffic
Information be

Updated

Route
Changes
Decided

Comms
System

Driver
Contacted

System Be
Available

Communication
be

Understandable

Time
Card

Figure 3.5: SD model for the current Countdown system

3.2. Models and documents for Countdown 25

Use case descriptions for the current Countdown system

As we said in the introduction, we obtained only one use case description
for the Countdown system. It is the use case description corresponding to
the use case “Provide information for travel decisions” related to the actor
“Indicator”.

Use case ID UC5 Current

Name of use case Provide information for travel decisions

Text /

Author J. Bloggs

Date 12th February 2003

Source Observation and interviewing at a bus stop in Hol-
loway Road

Actors Indicator, Passenger, AVL system

Problem No problemo
statement (now)

Precis The indicator at the bus stop provides information
for passengers to make travel decisions.

Functional The same information about bus arrival times
requirements should be available on all types of display in the

future system.
Information about which buses are mobility buses
should be displayed on the Countdown indicator.

Non-functional Estimated bus arrival times should be accurate to
requirements within 2 minutes.

Added value Undefined

Justification Undefined

Triggering event Passenger seeks bus information from the Count-
down indicator.

Preconditions Passenger is at bus stop.
Countdown indicator is present at bus stop.

Assumptions Undefined

Successful Passenger gets enough information about bus
end states arrival times to make a satisfactory decision about

travel.

Unsuccessful Passenger gets insufficient information to make
end states a satisfactory travel decision.

Passenger does not understand information pre-
sented.

Different walk- Undefined
through contexts

Table 3.1: Use case description for the current Countdown system (part 1)

26 Chapter 3. Case study: Countdown

Normal course 1. The passenger seeks bus information from the
Countdown indicator.
2. The Countdown indicator shows the bus infor-
mation for the relevant route(s).
3. The passenger reads bus information from the
Countdown indicator.
4. The passenger recognises which route number(s)
will take them closest to their destination.
5. The passenger remembers expected arrival
time(s) for bus(es) on route(s) of interest.
6. The passenger uses the bus information to make
decisions about their journey.
7. Every 30 seconds the AVL system updates the
Countdown indicator.
8. The passenger occasionally checks his/her deci-
sion when information on the indicator is updated.

Variations 1. If passenger has a mobility restriction, then pas-
senger seeks information about mobility buses from
the Countdown indicator.
6. If wet weather, then passenger may decide not
to use a bus if expected waiting time is too long
6. If night, then passenger may decide not to use a
bus if expected waiting time is too long

Version history Maintained by RequisitePro

Satisfaction argu-
ments

Undefined

Option Undefined

Features Undefined

Table 3.2: Use case description for the current Countdown system (part 2)

SD model for the future Countdown system

From the context model and the use case diagram for the future model (see
figures 3.3 and 3.4 respectively), an i* SD model is derived. The non external
actors in this SD model are marked by a “*” and correspond to the actors
within levels 1 and 2 in the context model for the future system.

3
.2

.
M

o
d
e
ls

a
n
d

d
o
c
u
m

e
n
ts

fo
r

C
o
u
n
td

o
w

n
2
7

PassengerDriver*

AVL
System*

Route
Controller*

Countdown
Display*

On-Board
Bus

System*

GPS

Be Easy to
Use

Operate
Without Error

GPS
Receiver

Bus
Located

Manage
Routes

Effectively

Information
be Accurate

Information
be Reliable

Bus Locations
be Up-to-date

Buses
Located

Calculate
Arrival Times

Bus
Information

Information
be Reliable

Information be
Up-to-date

Bus Arrival
Information

Information
be Reliable

Information
be Accurate

Make Travel
Decisions

Route
Changes be

Received

Current Bus
Information
Received

Display Bus
Information

London
Transport

Bus
Information
Monitored

Time
Card

Destination
and User ID

be Input

Display be
Readable

Response
Received
Quickly

Bus
Location

Monitored

Emergency
Reported

Communication
doesn't cause

Danger

Get to
destination

Traffic
Information
be Updated

Route Changes
Decided

Comms
System

Driver
Contacted

System Be
Available

Communication
be

Understandable

Figure 3.6: SD model for the future Countdown system

28 Chapter 3. Case study: Countdown

Use case description for the future Countdown System

As we already said, this use case description has been built using data we
found in the requirements database. The database we had access to was
incomplete, and thus, the information provided in this description is not
complete either.

Use case ID UC1 Future

Name of use case Provide information for travel decisions

Text /

Author Bloggs

Date 2nd December 2003

Source interviews with project managers

Actors

Problem No problemo
statement (now)

Precis The display at the bus stop provides information
for passengers to make travel decisions.

Functional Undefined
requirements

Non-functional Undefined
requirements

Added value Undefined

Justification Undefined

Triggering event Passenger seeks bus information from the Count-
down indicator.

Preconditions Passenger is at bus stop.
Countdown display is present at bus stop.

Assumptions Undefined

Successful Passenger gets enough information about bus
end states arrival times to make a satisfactory decision about

travel.

Unsuccessful Passenger gets insufficient information to make
end states a satisfactory travel decision.

Passenger does not understand information pre-
sented.

Different walk- Undefined
through contexts

Table 3.3: Use case description for the future Countdown system (part 1)

3.2. Models and documents for Countdown 29

Normal course 1. The passenger looks at the Countdown display.
2. The Countdown display shows the bus informa-
tion for the relevant route(s).
3. The passenger recognises which route number(s)
will take them closest to their destination.
4. The passenger remembers expected arrival
time(s) for bus(es) on route(s) of interest.
5. The passenger decides which bus route to use.
6. Every 30 seconds the AVL system transmits up-
dated bus information to the Countdown display.
7. The passenger occasionally checks his/her deci-
sion when information on the indicator is updated

Variations 1. If the passenger has poor eyesight, then he can
seek information from the Countdown display in an
audible way.
6. If the AVL system does not update the various
Countdown displays with the new expected arrival
times, then a passenger message is displayed on the
Countdown displays.

Version history Maintained by RequisitePro

Satisfaction argu-
ments

Undefined

Option Undefined

Features Undefined

Table 3.4: Use case description for the future Countdown system (part 2)

Chapter 4

Requirements and
architecture of the
QROSS-Checker

4.1 Requirements

The aim of our work is to automate the synchronisation checks of the RES-
CUE process. These checks are indeed great time spendings. Their automa-
tion is meant to spare RESCUE users time and money.
We took more interest in the first two phases for the logical reason of chronol-
ogy, first. Another reason is that the first phase is quite simple, so it makes a
good start for the understanding of the checking process. The second phase
is the one which takes more time to apply manually. Its automation will
thus be the most rewarding.

Hence, the idea is to build a tool which takes the models developed in
the two first phases as input and produces a text file containing the results
of the checks as output, as shown on figure 4.1.

4.2 QROSS: description

QROSS is a web based application, coded in Python, developed by the
CETIC. It was initially designed to compute quality metrics on source code.
To this end, QROSS imports code from two kinds of sources: file systems
and CVS servers. The code is then parsed, using source navigator, in or-
der to populate the tool’s object oriented repository, based on ZODB. The
metrics are computed on the artefacts contained in this repository. They
are expressed in OCL, the Object Constraint Language which is part of the
UML ([Rumb 99]). We can see the architecture of the tool on figure 4.2,
and the structure of the repository on figures 4.3 and 4.4.

31

32 Chapter 4. Requirements and architecture

? Visualization of the
results of the checks

Metrics

Context
Model

Use Case
Diagram

i* SD Model

Functional &
non functional
Requirements
Descriptions

MS Visio

MS Visio
+ Redepend

 plug-in

MS Word
+ Volere
template

Requisite Pro

Use Case
Descriptions

MS Visio
file

MS Word file

MS Acces
Database

Tool

Figure 4.1: Inputs and outputs for the RESCUE process.

Software
project

import
Metamodel
instance(s)

Metrics
definitions

Metrics
computation

Metrics results

Comparisons with
similar projects

Java sources
C++ sources
...

Source
Navigator

Java metamodel
C++ metamodel
...

Object Constraint
Language

Figure 4.2: Architecture of the tool QROSS.

The tool source navigator is dedicated to parse only source code. More-
over, at that time, the repository could contain Java or C++ source code
but nothing else; the class “ModelElement” found in the figure 4.3 was not
elaborated further in the current version of the tool. Thus, we had to extend
QROSS to make it suitable for dealing with RESCUE related artefacts, by
implementing parsers and adapting the repository.

4.2. QROSS: description 33

-name : String

Artefact

-modelName : String

ModelElement

-codeName : String

CodeElement

CodeModule CodeTypeDeclaration

CodeClass

CodeType

CodeExternalTypeDeclaration

CodeVariable

CodeAttribute

CodeGlobalVariable

CodeLocalVariable

CodeOperation

CodeMethod

CodeFunction

CodeParameter

Figure 4.3: General structure of the repository.

CodeModule

JavaPackage

CodeClass

JavaClass

- visibility : String
- static : Boolean
- abstract : Boolean
- interface : Boolean

CodeExternalTypeDeclaration

JavaExternalType

CodeAttribute

JavaAttribute

- visibility : String
- static : Boolean
- transient : Boolean
- volatile : Boolean

CodeMethod

JavaMethod

- visibility : String
- static : Boolean
- synchronized : Boolean
- final : Boolean
- native : Boolean
- abstract : Boolean

CodeParameter

JavaParameter

Figure 4.4: Structure of the repository specific to Java code.

34 Chapter 4. Requirements and architecture

4.3 Architecture of the QROSS-Checker

Our checker was built by extending QROSS. Metrics are now computed on
other types of artefacts, taken from the meta models of the various notations
and templates used in the RESCUE process.
The files produced during the different phases of the RESCUE process,
recorded using formats suitable to QROSS, are the inputs of QROSS. We im-
plemented parsers and repository loaders for each of these files. By parsing
these files, we generate a database content representing the various inputs.
Finally comes the stage of the checks. The greatest part of these is done by
using OCL requests made on the elements of the generated database con-
tent. Figure 4.5 represents this process.

Software
project

import
Metamodel
instance(s)

Metrics
definitions

Metrics
computation

Metrics results

Comparisons with
similar projects

Java sources
C++ sources
RESCUE
documents Source

Navigator

Java metamodel
C++ metamodel
RESCUE
metamodels

Object Constraint
Language

Results of the
RESCUE checks

Treatment on
metrics results

« Parsing »

Figure 4.5: Architecture of our tool, by extending and adapting the archi-
tecture of QROSS.

4.4 Repository of the QROSS-Checker

To prepare the implementation to populate the repository, we built a meta
model for each concept encountered in the RESCUE process. We will de-
scribe those in the following subsections, in their order of appearance in
the RESCUE process. An explanation on the details of importance for the
remainder of this thesis will be joined to each schema.

4.4. Repository of the QROSS-Checker 35

4.4.1 Conceptual meta models

Meta model for RESCUE projects

Firstly, we meta modeled what a RESCUE project should contain.

-projectName : String

UserNeedProject

-schemaName : String

UserNeedSchema

-pieceName : String

UserNeedSchemaPiece

1 0..1 1 1..*

currentContextModel >
futureContextModel >
currentUseCaseDiagram >
futureReqTable >
currentSDModel >
futureSDModel >

pieces >

Figure 4.6: Meta model for RESCUE projects

On figure 4.6, there should be one relationship for each type of schema
related to a project but, since they are all similar, we drew only but repeated
the name of the relationship.

So, we can see on figure 4.6 that a RESCUE project can contain one con-
text model for the current system, one for the future system, one use case
diagram for the current system, one for the future system, one requirements
database (for the future system), one SD model for the current system and
one for the future system.
To be significant, a RESCUE project must not be empty, i.e. it must con-
tain at least one schema. Each of these schemas is composed of at least one
piece.
A UserNeedSchema is identified by a schemaName, and a UserNeedSchema-
Piece by a pieceName.

In the following subsections, we describe the meta model for each type
of schema.

Meta model for context models

The first model appearing in the RESCUE process is the context model.
Figure 4.7 shows its meta model.
As we can see on that figure, a context model schema is composed of agents
and of informations exchanged between those agents. To be significant, a
context model must contain at least one agent.

36 Chapter 4. Requirements and architecture

-schemaId : String

ContextModelSchema

-cAgentName : String

ContextAgent

1

1..*

-informationNature : String

ContextInformation

TechnicalAgent SocioTechnicalAgent UncontrolledSystemAgent OutsideAgent

1

*

P

* < sends 1..2

* receives > 1..2

Figure 4.7: Conceptual meta model for context models

An agent can send and receive several types of information. An agent
must be a technical agent, a socio technical agent, an uncontrolled agent, or
an outside agent.

An information is sent by one and only one agent and received by one
and only one agent in the case of a unidirectional data flow, and sent and
received by two and only two agents in the case of a bidirectional data flow.

The attribute schemaId in the class ContextModelSchema represents the
name given to the MS Visio file containing the schema. The attribute cA-
gentName in the class ContextAgent represents the name given to the actor
on the schema. Finally, the attribute informationNature in the class Con-
textInformation represents the name we found on the arrow representing
this flow of information in the schema.

Meta model for use case diagrams

As we can see on figure 4.8, a use case diagram is composed of actors and
of use cases. To be significant, a use case diagram must contain at least one
actor.

An actor can be involved in various use cases, and several actors can be
involved in the same use case.

The attribute ucdName in the class UseCaseDiagram represents the
name given to the MS Visio file containing the diagram. The attribute
actorName in the class UseCaseActor represents the name given to this ac-
tor on the schema. The attribute ucName in the class UseCase represents

4.4. Repository of the QROSS-Checker 37

-ucdName : String

UseCaseDiagram

-actroName : String

UseCaseActor

-ucName : String
-useCaseID : String
-author : String
-date : String
-precis : String
-functionalRequirements:(String)*
-nonFunctionalRequirements:(String)*
-triggeringEvent:(String)*
-precondition:(String)*
-successfulEndStates:(String)*
-unsuccessfulEndStates:(String)*
-NormalCourse:String[]
-variations:String[]

UseCase

1 *11..*

* is involved in > *

includes

1

*

>

extends

1

*

>

Figure 4.8: Conceptual meta model for use case diagrams

the name given to the use case on the schema. All the other attributes are
the ones we find in the use case description corresponding to the use case
(see table 2.1 on page 11). The relation between a use case found on the
use case diagram and its use case description is done using the attribute
ucName, which has to be the same as the name of the use case found in the
use case description.

Meta model for SD models

We can see on figure 4.9 that an SD model is composed of actors and of
dependencies between those actors. To be significant, an SD model must
contain at least one actor.

An actor can be the depender or the dependee for several dependencies.

A dependency is related to one and only one actor being the depender of
it, and to at least one actor being the dependee for it1. An SD dependency
is either a resource dependency, a task dependency, a goal dependency or a
soft goal dependency.

As usual, the attribute sdName in the class StrategicDependencyModel
represents the name given to the MS Visio file containing the schema. The
attribute actorName in the class SDActor represents the name given to

1Although that is not frequently seen, several dependees for a dependency are allowed,
to solve problems of space in big SD model diagrams

38 Chapter 4. Requirements and architecture

-sdName : String

StrategicDependencyModel

-actorName : String

SDActor

-dependencyName : String

SDDependency

1

1..*

SDResourceDependency SDTaskDependency SDGoalDependency SDSoftGoalDependency

1

*

1
is the

Depender
*

1..*
has

Dependees
*

P

>

>

Figure 4.9: Conceptual meta model for SD models

the actor on the schema, and the attribute dependencyName in the class
SDDependency represents the name given to the dependency on the schema.

Meta model for requirements databases

The meta model for requirements databases is shown on figure 4.10. A
requirements database is composed of requirements. To be significant, a
requirements database must contain at least one requirement.

The attributes in the class Requirement are the ones found in the re-
quirement template used in RequisitePro (see table 2.2 on page 14). As
there is only one requirement table, it is not necessary to give it a name to
identify it. That is the reason why there is no attribute name in the class
RequirementsTable.

4.4. Repository of the QROSS-Checker 39

RequirementsTable

-reqID : String
-description : String
-rationale : String
-status : String
-owner : String
-source : String
-stability : String
-fitCriterion : String
-customerSatisfaction : int
-customerDissatisfaction : int
-supportingMaterial : String
-versionHistory : String
-relatedToUseCase: String[]
-reqInSatisfArg:String[]
-specificationInSatisfArg: String[]
-options : String
-reqType : String

Requirement

1

1..*

dependsOn

*

*

>

decomposedInto

*

*

>

Figure 4.10: Conceptual meta model for requirements databases

4.4.2 Implementing the meta models

We will introduce this section with an explanation about notations used in
the schemas we show in the following subsections.

(type)* : describes a list of elements of type type. The list can be empty.

(type)+ : describes a list of elements of type type. The list contain at least
one element.

- : the attribute or method following this symbol is a private one.

+ : the attribute or method following this symbol is a public one.

General repository

The repository of the QROSS-Checker needed to be extended to be able to
contain the models being part of the RESCUE process. We can see these
extensions on figure 4.11.

The first thing to explain about the choices of implementation we made
is the reason why we do not use the class ModelElement provided in the
former repository of QROSS. As we have seen on figure 4.6, we are working

40 Chapter 4. Requirements and architecture

in terms of projects. However, a RESCUE project is not a model, it is a set
of models. So, we chose to create a new class, inheriting the class Artefact,
UserNeedElement.

-name : String

Artefact

-modelName : String

ModelElement

-codeName : String

CodeElement

CodeModule CodeTypeDeclaration

CodeClass

CodeType

CodeExternalTypeDeclaration

CodeVariable

CodeAttribute

CodeGlobalVariable

CodeLocalVariable

CodeOperation

CodeMethod

CodeFunction

CodeParameter

-userNeedName : String

UserNeedElement

-currentContextModel : ContextSchema
-futureContextModel : ContextSchema
-currentUseCaseDiagram : UseCaseDiagram
-futureUseCaseDiagram : UseCaseDiagram
-futureReqTable : RequirementsTable
-currentSDModel : StrategicDependencyModel
-futureSDModel : StrategicDependencyModel
-futureUseCaseTable : UseCaseDiagram

UserNeedProject

+GetPieces()

-pieces : (UserNeedScemaPiece)+

UserNeedSchema

+GetName2() : String

-nickName : String

UserNeedSchemaPiece

P

P

Figure 4.11: Repository of the QROSS-Checker

As we noticed that the various classes in the meta model for RESCUE
projects on figure 4.6 contained a similar attribute “name” containing a
string, we decided to put it on the UserNeedElement class. Indeed, the
classes UserNeedProject, UserNeedSchema and UserNeedSchemaPiece in-
herit this class and thus its attributes.

The relation pieces between UserNeedSchema and UserNeedSchemaPiece
was transformed into a UserNeedSchema attribute containing a list of at
least one element of type UserNeedSchemaPiece.
We added an attribute nickName in UserNeedSchemaPiece. This will be
used for pieces of schemas drawn with MS Visio. For these elements, the
attribute userNeedName in the class UserNeedElement contains the figure
identifying the shape in the MS Visio file. The attribute nickName contains
the name given to the shape in the MS Visio file. The method GetName2()
returns the nickName. This will be useful in implementing the checks.
Finally, the relations between UserNeedProject and UserNeedSchema found

4.4. Repository of the QROSS-Checker 41

on the figure 4.6 were transformed into UserNeedProject attributes contain-
ing an element of a subclass of UserNeedSchema. An additional attribute,
“futureUseCaseTable”, has been added. It is used to store the use case de-
scriptions found in the RequisitePro database. They are indeed two sources
for MS Word documents containing the use case descriptions: MS Word files
and entries in the RequisitePro data base. We need to be able to compare
the two of them (see check 2.8), so we decided to keep both in separate
tables in our repository. This will be useful to implement the checks 2.4
and 2.5 (see sections 5.3.4 and 5.3.5). It contains a UseCaseDiagram with
instances of UseCase only, no instance of UseCaseActor. This ignores the
constraint of integrity saying that a use case diagram is significant only if
it contains at least one instance of UseCaseActor. But, the content being
the same for use cases coming from use case descriptions in an MS Word
format and use case descriptions found in the RequisitePro database, it was
not useful to implement a new model.

Each schema will be a subclass of the class UserNeedSchema and each
piece of those schemas will be a subclass of the class UserNeedSchemaPiece.
These subclasses will be detailed in the following sections.

Repository specific to context models

UserNeedSchema

ContextSchema

UserNeedSchemaPiece

ContextAgent

ContextOutsideAgent

ContextUncontrolledSystemAgent

ContextTehnicalAgent

ContextSocioTechnicalAgent

ContextInformation

- senders : (ContextAgent)+
- receivers : (ContextAgent)+

+ GetCompleteInfo() : String
+ GetFirstSender() : ContextAgent
+ GetFirstReceiver() : ContextAgent
+ GetAllSenders() : (ContextAgent)+
+ GetAllReceivers : (ContextAgent)+

P

P

Figure 4.12: Repository specific to context models

As we said above, the class ContextSchema inherits the class UserNeed-
Schema. Its two types of pieces, ContextAgent and ContextInformation,
inherit the class UserNeedSchemaPiece. The attributes schemaId in Con-
textSchema, cAgentName in ContextAgent and informationNature in Con-

42 Chapter 4. Requirements and architecture

textInformation2 are now recorded in the attribute userNeedName in User-
NeedElement, as all those classes inherit the latter one.

The relations “sends” and “receives” between ContextAgent and Con-
textInformation became attributes containing ContextAgent in ContextIn-
formation. This choice has been done because having the name of the in-
formation, its senders and its receivers is the only way to identify a Contex-
tInformation. Indeed, the same information can be sent by various agents,
and an information sent by an agent can be received by various agent. Let
us notice that the attributes “senders” and “receivers” will contain at least
one (for unidirectional data flows) and at most two (for bidirectional data
flows) elements of the type ContextAgents. In a given instance of Contex-
tInformation, both lists have the same length (1 or 2).

The method GetCompleteInfo() on ContextInformation objects returns
a string containing the name of the information exchanged and the name of
its senders and receivers, separated by special characters.
The methods GetFirstSender() and GetFirstReceiver() on ContextInforma-
tion objects returns an element of type ContextAgent containing the object
representing the first sender found in the attribute senders and the first re-
ceiver found in the attribute receivers respectively. This will be used in the
implementation of the checks. Let us point out that those methods, applied
on the same element, always return different instance of ContextAgent, even
if the data flow is a two-way one. Indeed, if a two-way data flow takes place
between an agent “A” and an agent “B”, we have the following property:

• the attribute senders will contain
[“ContextAgent instance “A””, “ContextAgent instance “B””]
(or [“ContextAgent instance “B””, “ContextAgent instance “A””]);

• the attribute receivers will contain
[“ContextAgent instance “B””, “ContextAgent instance “A””]
(or [“ContextAgent instance “A””, “ContextAgent instance “B””] re-
spectively).

A call to those methods on an object ContextInformation having this prop-
erty allows us to determine the agents between which the data flow takes
place without having to compare the agents collected.
The methods GetAllSenders() and GetAllReceivers() on ContextInforma-
tion objects simply returns a list of at least one and at most two elements
of type ContextAgent containing the objects representing the senders found
in the attribute senders and the receivers found in the attribute receivers
respectively.

2see figure 4.7 for recall

4.4. Repository of the QROSS-Checker 43

Repository specific to use case diagrams

UserNeedSchema

UseCaseDiagram

UserNeedSchemaPiece

UseCase

- precis : String
- actors : (String)*
- funcReq : (String)*
- nonFuncReq : (String)*
- actions : (String)*
- variations : (String)*

UseCaseActor

- useCases : (UseCase)*

+ GetCompleteInfo() : String

Figure 4.13: Repository specific to use case diagrams

As we said, the class UseCaseDiagram inherits the class UserNeedSchema.
Its two types of pieces, UseCaseAgent and UseCase, inherit the class UserNeed-
SchemaPiece. The attributes ucdName in UseCaseDiagram, actorName in
UseCaseActor and ucName in UseCase3 are now recorded in the attribute
userNeedName in UserNeedElement, as all those classes inherit the latter
one.

The relation “is involved in” between a UseCaseActor and a UseCase
has been implemented as an attribute useCases containing a list of Use-
Cases. This list can be empty, hence an actor is not necessarily involved in
any use case.

The method GetCompleteInfo() on UseCaseActor objects returns a string
containing the name of the actor and the use cases he is involved in, sepa-
rated by special characters.

Some relations and attributes are present in the class UseCase on figure
4.8 but not on figure 4.13. This is due to the fact that, after analysing the
checks and discussions with the RESCUE team, a few fields of the use case
template (see table 2.1 on page 11) were useful to implement the checks,
which is the aim of our work. The relevant ones are the followings :

• Use case ID;

• Name of use case;

• Actors;

3see figure 4.8 for recall

44 Chapter 4. Requirements and architecture

• Precis;

• Functional requirements;

• Non functional requirements;

• Normal course;

• Variations.

Repository specific to SD models

UserNeedSchema

StrategicDependencyModel

UserNeedSchemaPiece

SDDependency

- depender : SDActor
- dependees : (SDActor)+

SDTaskDependency

+ GetCompleteInfo() : String

SDResourceDependency

+ GetCompleteInfo() : String

SDSoftGoalDependency

+ GetCompleteInfo() : String

SDGoalDependency

+ GetCompleteInfo() : String

SDActor

- isTheDepender : (SDDependency)*
- isADependee : (SDDependency)*

+ IsExternal() : int

Figure 4.14: Repository specific to SD models

As usual, the class StrategicDependencyModel inherits the class UserNeed-
Schema. Its two types of pieces, SDActor and SDDependency, inherit the
class UserNeedSchemaPiece. The attributes sdName in StrategicDependen-
cyModel, actorName in SDActor and dependencyName in SDDependency4

are now recorded in the attribute userNeedName in UserNeedElement, as
all those classes inherit the latter one.

The relations “is the Depender” and “has Dependees” between SDActor
and SDDependency became attributes in both SDActor and SDDependency
classes. The redundancy of this information is justified because it increases
the effectiveness of the implementation of the checks.

4see figure 4.9 for recall

4.4. Repository of the QROSS-Checker 45

The method GetCompleteInfo() on each type of SDDependency objects
returns a string containing the type of the dependency, its name, its depen-
der and its dependees, separated by special characters.
The method IsExternal() on SDActor objects returns “1” if the actor is an
external one, “0” if not.

Repository specific to requirements tables

UserNeedSchema

RequirementsTable

UserNeedSchemaPiece

Requirement

- description : String
- rationale : String
- fitCriterion : String
- reqType : String

Figure 4.15: Repository specific to requirements tables

The class RequirementsTable is a subclass of UserNeedSchema, and Re-
quirement is a subclass of UserNeedSchemaPiece.
So, as usual, the attribute reqID in Requirement has been removed, the class
inheriting indirectly the class UserNeedElement and its attribute userNeed-
Name. The attributes appearing on figure 4.10 but not on figure 4.15 have
not been implemented because they are of no interest for the checks.

4.4.3 OCL interpreter

To implement the checks, we use metrics expressed in OCL. The OCL in-
terpreter included in QROSS have an access to all the classes we defined
above and to their public and private attributes and methods. Moreover, it
can access attributes and methods inherited from QROSS classes, or from
Python classes on top of which they are built. In particular, we will of-
ten make use of the method “myobject. class . name ” which provides us
with the name of the class the object myobject is an instance of.

We give here a short introduction to the Object Constraint Language,
announcing the major elements of syntax which will bring the reader to a
better understanding of the remainder of this thesis, especially in chapter
5. “The Object Constraint Language (OCL) is a text language for writing
navigation expressions for constraints, guard conditions, actions, precondi-
tions and post-conditions, assertions and other kinds of UML expressions.”
[Rumb 99]

46 Chapter 4. Requirements and architecture

“Syntax for some common navigation expressions is shown below. These
forms can be chained together. The left-most element must be an expression
for an object or a collection of objects. The expressions are meant to work
on collections of values when applicable.” [Rumb 99]

item.selector selector is the name of an attribute in the name of the item
or the name of a role of the target end of a link attached to the item.
The result is the value of the attribute or the related object(s).

item.selector[argument-list] selector is the name of an operation on the
item. The result is the return value of the operation applied to the
item.

collection→collection-property collection-property is the name of a built-
in OCL function on collections. The result is the property of the
collection. Illegal if the collection property is not a predefined OCL
function. Several of the properties are listed below.

collection→select(boolean-expression) boolean-expression is written in
terms of objects within the collection. The result is the subsets of ob-
jects in the collection for which the expression is true.

collection→size The number of elements in the collection.

self Denotes the current object (may be omitted if the context is clear).

operator The usual arithmetic and Boolean operators: =, <, >, <=, >=,
<>, +, -, *, /, not.

We give here a simple example relative to the class diagram of figure 4.16:
School.students→select(result = ‘failed’)→size
This query counts the number of instances of Student attached to the cur-
rent instance of School who have failed.

-name : String

School
-name : String
-result : String

Student1 *
students

Figure 4.16: Example for OCL: class diagram

4.5. Parsers 47

4.5 Parsers

To make it easier to implement parsers, we had to constrain the users to use
the existing tools in a defined way.
Firstly, the context model and the use case diagrams were originally drawn
using MS Word. This turned out to be very complex to parse, due to the
unforeseeable and complex format of the files produced. Hence, we decided,
in dialogue with the RESCUE team, to constraint the users to build it with
MS Visio. This tool being already used to draw the SD model, this also limits
the number of different tools used in the RESCUE process. We defined the
shapes to use, and the correct way to draw the models and diagrams. This
is translated into a set of guidelines reproduces in appendix B on page 115.
An example of the code for parsers can be found in appendix D on page 121.

Chapter 5

Implementing the checks

5.1 Introduction

In this chapter, we explain the reasoning made to implement the checks.
Each of the following section is devoted to a particular check and follows the
same template. We first transcribe the original statement of the check found
in [Maid 04c]. Then, if needed, we clarify its meaning and remove possible
ambiguities. Clarifications were made by asking the RESCUE team for the
intended meaning of the checks. We also explain the difficulties we have met
to properly understand and implement the check. We then provide its im-
plementation in OCL, sometimes completed with custom python code when
needed. Finally, the MS Word table generated which is used to question
the RESCUE stakeholders is shown. Sometimes, an example is provided to
make the concepts clearer. When the code is not provided, it can be found
in appendix E.

5.2 First phase of synchronisation checks

5.2.1 Check 1.1

Original statement

This check was defined in the RESCUE process as follow:

Every actor in the context model for the current system is a
candidate actor for the context model of the future system.

Precise statement

We transcribed this as follow:

For each actor found in the context model for the current system
but not found in the context model for the future system, are we

49

50 Chapter 5. Implementing the checks

sure we want to remove it from the context model for the future
system?
For each actor found in the context model for the future system
but not found in the context model for the current system, are
we sure we want to add it to the context model for the future
system?

Difficulties

The main difficulty here was the use of the word “candidate”. We had to
define it precisely to find exactly what the users of the RESCUE process
want to have as a result.
The first idea was that all the actors present in the current model had to be
in the future model, i.e. the context model for the future system contained
at least all the actors of the model for the current system.
After discussions with the users, we found that this was not exactly the con-
cept. It is more about the fact of being sure whether one wants to remove
or add an actor in the model.
So, the idea is to produce two lists. The first contains the actors present
in the current system but not in the future system. The second one is the
list of the actors present in the future system but not in the current one.
Questions will be asked to the stakeholders based on these lists.

Implementation

This has been implemented using only the OCL language. It is indeed quite
simple.
The first thing to do was to select all the actors of each model. This has
been done using the two following queries.

CurrentContextAgents = currentContextModel.pieces→
select (agent | agent. class . name = ’ContextTechnicalAgent’
or agent. class . name = ’ContextSocioTechnicalAgent’
or agent. class . name = ’ContextOutsideAgent’
or agent. class . name = ’ContextUncontrolledSystemAgent’)
.GetName2()

FutureContextAgents = futureContextModel.pieces→
select (agent | agent. class . name = ’ContextTechnicalAgent’
or agent. class . name = ’ContextSocioTechnicalAgent’
or agent. class . name = ’ContextOutsideAgent’
or agent. class . name = ’ContextUncontrolledSystemAgent’)
.GetName2()

5.2. First phase of synchronisation checks 51

We then made the disjunction between these two sets of actors. Here are
the OCL requests used to produce the result.

Check 1 1 Part1 = CurrentContextAgents→
select (actor | not FutureContextAgents→
includes(actor))

Check 1 1 Part2 = FutureContextAgents→
select (actor | not CurrentContextAgents→
includes(actor))

The elements of the lists “Check 1 1 Part1” and “Check 1 1 Part2” are then
included in the MS Word table containing the result of the check (see table
5.1). The table will then be included in the MS Word file generated by the
QROSS-Checker.

MS Word table

Check 1.1
Every actor in the context model for the current system is a candidate
actor for the context model of the future system.

Do you want to remove these actors to create your new system?

Comments from City Comments from others

Output 1 1 Part1 1

Output 1 1 Part1 2

. . .

Do you want to add these actors to create your new system?

Comments from City Comments from others

Output 1 1 Part2 1

Output 1 1 Part2 2

. . .

Table 5.1: Table containing the results of the check 1.1

5.2.2 Check 1.2

Original statement

Every data flow in the context model for the current system is a
candidate data flow for the context model of the future system.

52 Chapter 5. Implementing the checks

Precise statement

For each data flow found in the context model for the current
system but not found in the context model for the future system,
are we sure we want to remove it from the context model for the
future system?
For each data flow found in the context model for the future
system but not found in the context model for the current system,
are we sure we want to add it to the context model for the future
system?

Difficulties

The difficulty found here is the same as in the check 1.1, i.e. the use of the
word “candidate”. The reasoning is thus the same as in 5.2.1, applied to
data flows instead of actors.

Implementation

The first step is to collect all the data flows we find in both context models
in order to produce two lists, each representing the data flows present in its
respective context model. Here are the OCL queries used to do this:

CurrentDataFlowInfo = currentContextModel.pieces→
select (info | info. class . name = ’info’).GetCompleteInfo()

FutureDataFlowInfo = futureContextModel.pieces→
select (info | info. class . name = ’info’).GetCompleteInfo()

The method GetCompleteInfo() gives us several types of information about a
data flow: the name given to the data flow and the sender and the receivers
of this data flow. The following step is to make the disjunction between
these two sets of data flows. Once again, this being quite simple, only the
use of OCL queries is necessary. Here they are:

Check 1 2 Part1 = CurrentDataFlowInfo→
select (info | not FutureDataFlowInfo→ includes(info))

Check 1 2 Part2 = FutureDataFlowInfo→
select (info | not CurrentDataFlowInfo→ includes(info))

All the elements of these two lists are then included in the MS Word table
used to present the results of the check (see table 5.2). The table is then
included in the MS Word file generated by the QROSS-Checker.

5.2. First phase of synchronisation checks 53

MS Word table

Check 1.2
Every Data flow in the context model for the current system is a candidate
data flow for the context model of the future system.

Do you want to remove these data flows to create your new system?

Comments from City Comments from others

Output 1 2 Part1 1

Output 1 2 Part1 2

. . .

Do you want to add these data flows to create your new system?

Comments from City Comments from others

Output 1 2 Part2 1

Output 1 2 Part2 2

. . .

Table 5.2: Table containing the results of the check 1.2

5.2.3 Check 1.3

Original statement

Every use case in the use case diagram for the current system is
a candidate for a use case in the use case diagram of the future
system.

Precise statement

Once again, the use of the word “candidate” makes us translate the previous
check by two sentences:

For each use case found in the use case diagram for the current
system but not found in the use case diagram for the future sys-
tem, are we sure we want to remove it from the use case diagram
for the future system?
For each use case found in the use case diagram for the future
system but not found in the use case diagram for the current sys-
tem, are we sure we want to add it to the use case diagram for
the future system?

Implementation

We follow exactly the same reasoning, i.e. we collect the two lists of use
cases, one for each diagram, and then make the disjunction between the two
sets of use cases. Here are the OCL requests to collect the use cases:

54 Chapter 5. Implementing the checks

CurrentUseCases = currentUseCaseDiagram.pieces→
select (uc | uc. class . name = ’UseCase’)
.GetName2()

FutureUseCases = futureUseCaseDiagram.pieces→
select (uc | uc. class . name = ’UseCase’)
.GetName2()

We then make the disjunction:

Check 1 3 Part1 = CurrentUseCases→
select(uc | not FutureUseCases→ includes(uc))

Check 1 3 Part2 = FutureUseCases→
select (uc | not CurrentUseCases→ includes(uc))

Once again, the elements of these two lists are simply included in the MS
word file containing the results of the checks (see table 5.3).

MS Word table

Check 1.3
Every use case in the use case diagram for the current system is a
candidate for a use case in the use case diagram for the future system.

Do you want to remove these use cases to create your new system?

Comments from City Comments from others

Output 1 3 Part1 1

Output 1 3 Part1 2

. . .

Do you want to add these use cases to create your new system?

Comments from City Comments from others

Output 1 3 Part2 1

Output 1 3 Part2 2

. . .

Table 5.3: Table containing the results of the check 1.3

5.2.4 Check 1.4

Original statement

Every adjacent actor which communicates directly with the tech-
nical system (level 1) in the context model for the current system
is a candidate actor for the use case diagram of the current sys-
tem.

5.2. First phase of synchronisation checks 55

Precise statement

For each adjacent actor, i.e. which communicates directly with
the technical system (level 1) in the context model for the current
system, do you need to have it present in the use case diagram
of the current system?
For each adjacent actor present in the use case diagram for the
current system, does it have to be an adjacent actor, i.e. to
communicate directly with the technical system (level 1) in the
context model for the current system?

We have to point out here that the expression “communicates directly”
means “there is a data flow between the two actors (with no intermediary)”.
So, we can give a simple definition to the concept of “adjacent actor”:

An actor from a context model is an “adjacent actor” if:

• it is an actor from level 2, 3 or 4

and

• there exists at least one direct data flow between this actor
and one of the subsystems within level 1

Implementation

The first OCL query collects the names of the actors of the use case diagram
for the current system.

CurrentUseCaseActors = currentUseCaseDiagram.pieces→
select (actor | actor. class . name = ’UseCaseActor’).GetName2()

The following phase consists in collecting the adjacent actors from the cur-
rent context model. To this end, we need to distinguish the actors from level
1 and actors coming from other levels.
We first collect the actors of the level 1.

CurrentLevel1 = currentContextModel.pieces→
select (actor | actor. class . name = ’ContextTechnicalAgent’)

We use the list obtained to collect the “adjacent” data flows, i.e. the data
flows involving only one actor from level 1. For more readability, we used
two OCL requests. The first one collects all the data flows. The last one uses
the first one to collect, among the data flows, the ones which are “adjacent”.

56 Chapter 5. Implementing the checks

CurrentDataFlows = currentContextModel.pieces→
select(df | df. class . name = ’ContextInformation’)

CurrentAdjDataFlows = CurrentDataFlows→select(df |
((CurrentLevel1→includes(df.GetFirstSender())

and
(not CurrentLevel1→includes(df.GetFirstReceiver())))
or
(CurrentLevel1→includes(df.GetFirstReceiver())

and
(not CurrentLevel1→includes(df.GetFirstSender())))))

We then have to determine which actors are actually adjacent actors,
i.e. exchange data flows with the level 1. They correspond to actors not
coming from level 1, involved in at least one adjacent data flow. So, we
use the last OCL request we made, to select the actors we are interested in.
From the data flows collected by CurrentAdjDataFlows we collect all their
senders and their receivers, then removing the senders and receivers coming
from level 1. Finally, we make this collection a set to avoid repetitions in
the result produced.

CurrentAdjActors = CurrentAdjDataFlows.GetAllSenders().GetName2()
→union(CurrentAdjDataFlows.GetAllReceivers().GetName2())
→select(actor | not CurrentLevel1→includes(actor))→asSet()

The final step consists in computing the disjunction between the ad-
jacent actors from the context model for the current system, collected by
CurrentAdjActors, and the use case actors for the current system, collected
by CurrentUseCaseActors. This is done with the two following OCL queries:

Check 1 4 Part1 = CurrentAdjActors→
select(actor | not CurrentUseCaseActors→includes(actor))

Check 1 4 Part2 = CurrentUseCaseActors→
select(actor | not CurrentAdjActors→includes(actor))

Each element of these lists is then simply put in the right place in the
text file containing the results of the checks (see table 5.4).

5.2. First phase of synchronisation checks 57

MS Word table

Check 1.4
Every adjacent actor which communicates directly with the technical
system (level 1) in the context model for the current system is a
candidate actor for the use case diagram for the current system.

These adjacent actors from the context model of the current system
are not present in the Use Case diagram of the current system:

Comments from City Comments from others

Output 1 4 Part1 1

Output 1 4 Part1 2

. . .

These actors from the Use Case diagram of the current system are
not present in the Context model of the current system:

Comments from City Comments from others

Output 1 4 Part2 1

Output 1 4 Part2 2

. . .

Table 5.4: Table containing the results of the check 1.4

Example

We build here a simple example to illustrate what we have just said. Fig-
ure 5.1 represents the context model, and figure 5.2 represents the use case
diagram, both for our current system.

The first thing to do is to identify the adjacent actors in the con-
text model. Stephen, his girlfriend and Andrew are adjacent actors. But
Stephen’s mother is not one of those because she does not communicate
directly with the system within level 1, i.e. Stephen’s and Andrew’s com-
puters.

The next step consists in identifying the actors in the use case diagram.
We have three actors: Stephen, Andrew and Andrew’s girlfriend. The result
of the check 1.4 gives us the disjunction between these two sets of actors, as
given in the table 5.5.

58 Chapter 5. Implementing the checks

Stephen’s
computer

Andrew’s
computer

mp3 files/ divx files

Stephen Andrew

mp3 files/ divx files mp3 files/ divx files

Stephen's mother

Elton John's CD

Stephen's girlfriend

mp3 files

Figure 5.1: Example: context model for the current system

System

Add mp3 files

Stephen

Andrew

Andrew's girlfriend

*

*
**

*

*

Add divx files

* *

Figure 5.2: Example: use case diagram for the current system

Check 1.4
Every adjacent actor which communicates directly with the technical
system (level 1) in the context model for the current system is a
candidate actor for the use case diagram for the current system

These adjacent actors from the context model of the current system
are not present in the Use Case diagram of the current system:

Comments from City Comments from others

Stephen’s girlfriend

These actors from the Use Case diagram of the current system are not
present in the Context model of the current system:

Comments from City Comments from others

Andrew’s girlfriend

Table 5.5: Results of the check 1.4

5.2. First phase of synchronisation checks 59

5.2.5 Check 1.5

Original statement

The system boundary in the use case model for the current system
should be the same as the boundary between level 1 and 2 in the
context model for the current system.

Difficulties

After discussion with the staff at City University, we found that this check
is not really useful. This check actually consists in verifying that the actors
involved in the use case diagram are the same as those communicating di-
rectly with the level 1 in the context model. This verification is indeed done
by applying the check 1.6 (see section 5.2.6).

5.2.6 Check 1.6

Original statement

For every data flow from or to level 1 (or one of the sub systems
within level 1) of the context model of the current system, there
should be a corresponding line in the use case diagram for the
current system indicating involvement of the relevant actor in
the relevant use case.

Precise statement

This one was clear enough and did not need to be rewritten. We must only
point out that the “or” within “data flow from or to level 1” is an exclusive
or. Indeed, the possible data flows between subsystems within level 1 are
not considered.
This could be translated as:

For every data flow involving an adjacent actor and a subsystem
from level 1 of the context model of the current system, there
should be a corresponding line in the use case diagram for the
current system indicating involvement of the relevant actor in
the relevant use case.

Difficulties

The main difficulty to solve here was that there was no precise syntax to
name the data flows in the context model. For example, to improve the
readability of overloaded context models, the users sometimes use only one
arrow to represent several data flows, by writing all the data exchanged in
these flows on the arrow. In collaboration with the users, we decided to

60 Chapter 5. Implementing the checks

separate each data name by a special character. The one we chose is “/”.
So, it is now possible to determine how much use cases have to be related
to an actor in the use case diagram.

Implementation

The data flows from or to level 1 for the context model for the current system
have been computed during the check 1.4, under the name “CurrentAd-
jDataFlows” (see section 5.2.4). We collect the name of the information
exchanged, of its senders and of its receivers using the method GetCom-
pleteInfo() on ContextInformation objects.

CurrentAdjDataFlowsInfo = CurrentAdjDataFlows.GetCompleteInfo()

We had also to collect information about actors present in the use case
diagram and, for each of those actors, the use cases they are involved in.
This is done using the following query:

CurrentUseCaseInfo = currentUseCaseDiagram.pieces→
select (actor | actor. class . name = ’UseCaseActor’)
.GetCompleteInfo()

As we already said, the method GetCompleteInfo() on use case actors
provides us, for a given actor, with the list of the use cases he is involved in.

We had to apply a treatment on this information because the OCL does
not provide us with a function which could allow us to compare strings ap-
proximately. Indeed, we need to compare the name of a use case with the
name of the information exchanged by a data flow to determine if there is
a certain percentage of words being similar. This percentage has been de-
termined empirically to 70. This is done by a function in python, named
“StringCompared”, which takes two string as arguments and returns the
percentage of identical words in those strings.
So, we use python code to check if, for each element of “CurrentAdjDataFlows-
Info”, we can find a corresponding use case in the list related to the actor
from level 2, 3 or 4 involved in the data flow. To identify the actors coming
from level 2, 3 and 4, we need to have the list of their names. This is done
using a simple OCL request:

CurrentLevel234 = currentContextModel.pieces→
select(actor | actor.type = ’agent’ and
not CurrentLevel1→includes(actor)).GetName2()

5.2. First phase of synchronisation checks 61

Let us say that the elements of CurrentAdjDataFlowsInfo have the fol-
lowing structure:

• CurrentAdjDataFlowsInfo[0] contains the name of the information ex-
changed in the data flow.

• CurrentAdjDataFlowsInfo[1] contains the name of the actors sending
the information.

• CurrentAdjDataFlowsInfo[2] contains the name of the actors receiving
the information.

We use a dictionary to represent values provided by the metric “CurrentUse-
CaseInfo”. The keys of this dictionary are the name of the actors present in
the use case diagram, and its values are the lists of use cases in which the
actor “key” is involved. We name it “useCaseActorDict”.
Firstly, we give the pseudo code for this check, and then the python code:

actorsLevel234 = Values(CurrentLevel234)
useCaseActors = keys(useCaseActorDict)
missingFlows = [] ##will contain the data flows for which no

##equivalent use case has been found
for each flow in CurrentAdjDataFlowsInfo:

flowActor234 = ” ##will contain the sender or receiver coming
##from level 2, 3 or 4.

if flow.sender ∈ actorsLevel234:
flowActor234 = flow.sender

else:
flowActor234 = flow.receiver

if flowActor234 ∈ useCaseActors:
for each info in contextInfo:

numberOfUseCaseFound = 0
for each useCase in useCaseActorDict[flowActor234]:

if Compare(useCase, info) is satisfying:
numberOfUseCaseFound = numberOfUseCaseFound+1

if ((twowayDataFlow and (numberOfUseCaseFound<2))
or(onewayDataFlow and ((numberOfUseCaseFound=0))):

missingFlows = missingFlows + flow
if flowActor234 not in use case diagram
else:

missingFlows = missingFlows + flow
write missingFlows

62 Chapter 5. Implementing the checks

bidirectional = 0
actorsLevel234 = project.metricsValues[’CurrentLevel234’][0]
for flow in CurrentAdjDataFlowsInfo:

contextInformations = flow[0]
senders = flow[1]
receivers = flow[2]
flowActor234 = ” # contains the actor coming from level 2, 3 or 4

involved in the data flow
if senders[1] != ”:

bidirectional data flow
bidirectional = 1
if senders[0] in level234:

flowActor234 = senders[0]
elif senders[1] in level234:

flowActor234 = senders[1]
else:

unidirectional data flow
if senders[0] in level234:

flowActor234 = senders[0]
elif receivers[0] in level234:

flowActor234 = receivers[0]
if ucActorDict.has key(flowActor234):

search for corresponding use case in those of this flowActor234
contextInformations = contextInformations[0].split(’/’)
for info in contextInformations:

res = 0
for uc in useCaseActorDict[flowActor234]:

res2 = self.StringCompared(info.upper(), uc.upper())
if res2 > 70:

res = res+1
if ((bidirectional==0) and(res<1)):

write(info+’sent by: ’+str(senders[0:-1])+
’received by: ’+str(receivers[0:-1]))

elif ((bidirectional==1)and(res<2)):
write(info+’sent by: ’+str(senders[0:])+

’received by: ’ + str(receivers[0:]))
else:

write(contextInformations[0]+’sent by: ’+ str(senders[0:-1])+
’received by: ’ + str(receivers[0:-1]) +
’(cause actor ’+flowActor234+’not found in Use Case diagram)’)

bidirectional = 0

5.2. First phase of synchronisation checks 63

MS Word table

Check 1.6
For every data flow from or to level 1 (or one of the sub systems within
level 1) of the context model of the current system, there should be
a corresponding line in the use case diagram for the current system
indicating involvement of the relevant actor in the relevant use case.

These data flows of the current context model do not have
corresponding use cases in the use case diagram:

Comments from City Comments from others

Output 1 6 1

Output 1 6 2

. . .

Table 5.6: Table containing the results of the check 1.6

Example

To make the concepts of this check clearer, we illustrate it, using the same
schemas as in the example illustrating the check 1.4 (see section 5.2.4), i.e.
figure 5.1 for the context model and figure 5.2 for the use case diagram.
We first identify the data flows from or to level 1:

• “mp3 files/divx files” between Stephen and Stephen’s computer

• “mp3 files” between Stephen’s girlfriend and Stephen’s computer

• “mp3 files/divx files” between Andrew and Andrew’s computer

The exchange of mp3 and divx files between Stephen’s and Andrew’s com-
puters is not a data flow we are interested in, since both concerned actors
are within level 1. We are not interested either in the flow of Elton John’s
cd between Stephen’s mother and Stephen, since none of the actors is from
level 1.
To satisfy the check in the use case diagram, we should have:

• a line between Stephen and a use case involving mp3 files

• a line between Stephen and a use case involving divx files

• a line between Stephen’s girlfriend and a use case involving mp3 files

• a line between Andrew and a use case involving mp3 files

• a line between Andrew and a use case involving divx files

64 Chapter 5. Implementing the checks

But we can see on figure 5.2 that we have:

• a line between Stephen and a use case involving mp3 files

• a line between Stephen and a use case involving divx files

• a line between Andrew’s girlfriend and a use case involving mp3 files

• a line between Andrew and a use case involving mp3 files

The results of the check 1.6 are thus given by the table 5.7

Check 1.6
For every data flow from or to level 1 (or one of the sub system within
level 1) in the context model for the current system, there should be
a corresponding line in the use case diagram for the current system
indicating involvement of the relevant actor in the relevant use case.

These data flows of the current context model do not have
corresponding use cases in the use case diagram:

Comments from City Comments from others

mp3 files
sent by Stephen’s
girlfriend
received by Stephen’s
computer

divx files
sent by Andrew
received by Andrew’s
computer

Table 5.7: Results of the check 1.6 for the example.

5.2.7 Check 1.7

Original statement

Every adjacent actor (at level 2, 3 or 4) which communicates
directly with the technical system (level 1) in the context model
for the future system is a candidate actor for the use case diagram
for the future system.

This one is the same as the check 1.4, but applied to context model and
use case diagram for the future system. The reasoning is thus similar to the
one described in section 5.2.4

5.2. First phase of synchronisation checks 65

5.2.8 Check 1.8

Original statement

The system boundary in the use case model for the future system
should be the same as the boundary between level 1 and 2 in the
context model for the future system.

This one is the same as the check 1.5 which is included by the check 1.6
(see section 5.2.6), but applied to the schemas for the future system (see
section 5.2.5)

5.2.9 Check 1.9

Original statement

For every data flow from or to level 1 (or one of the sub systems
within level 1) of the context model for the future system, there
should be a corresponding line in the use case diagram for the
future system indicating involvement of the relevant actor in the
relevant use case.

This check is similar to the check 1.6, applied to context model and use
case diagram for the future system (see section 5.2.6).

5.2.10 Check 1.10

Original statement

Services and functions related to use cases in the use case dia-
gram for the future system should map to system level require-
ments, i.e. high level functional and non functional requirements
in the requirements database.

Difficulties

In this check, the main difficulty is the lack of precision in the way that ser-
vices, functions and functional and non functional requirements are stated.
To be effective in the comparison of these, we should use an analyzer for
natural language, if we do not want to constrain the users in the definition
of these statements. Such issues are out of the scope of this thesis. In dia-
logue with the members of the RESCUE team, we decided thus to let this
check down, because we do not have an analyzer. However, this point will
be discuss in chapter 7

66 Chapter 5. Implementing the checks

5.3 Second phase of synchronisation checks

5.3.1 Check 2.1

Original statement

All external actors in the i* SD model of the current system
should correspond to actors in the use case descriptions for the
current system.

Precise statement

All external actors in the i* SD model of the current system,
corresponding to actors from level 3 or 4 in the context model,
should correspond to actors in the use case descriptions for the
current system.

Difficulties

One of the issues which we have encountered here is that in i* there was
no notational convention to distinguish external and internal actors. This
is a knowledge the users of the RESCUE process had, and so did not need
to make it explicit. But to make it accessible to QROSS, we needed to
transcribe it.
We decided that, instead of marking the external actors, the users should
mark the “internal” ones, to facilitate the user work. Indeed, those are used
most frequently and the users undoubtedly memorize them more easily. We
chose as a convention to mark these by a “*” in their name. The use of a
“*” is of course forbidden in names of other actors.
We built a function “isExternal” on objects of type SDActor, which informs
us with the fact that an SDActor is external or not.

Implementation

The first thing to do to implement this check is to collect the names of the
external actors of the i* SD model. This is done using an OCL request:

CurrentExternalSDActors = currentSDModel.pieces→
select(actor | actor. class . name = ’SDActor’)→
select(actor | actor.IsExternal()<>0).GetName2()

We also need to have the list of actors enumerated in the different use case
descriptions. This is done using the following OCL request.

CurrentUseCaseDescrActors = currentUseCaseDiagram.pieces→
select(useCase | useCase. class . name = ’UseCase’)
.GetActors()→asSet()

5.3. Second phase of synchronisation checks 67

The next stage is to make a disjunction between these two sets using an
OCL request:

Check 2 1 = CurrentExternalSDActors→
select(act | not CurrentUseCaseDescrActors→includes(act))

The result produced is inserted in the word document produced as the result
of running the checker (see table 5.8).

MS Word table

Check 2.1
All external actors in the i* SD model of the current system should
correspond to actors in the use case descriptions for the current system.

These external actors in the Strategic dependency model for the current
system are not present in the use case descriptions:

Comments from City Comments from others

Output 2 1 1

Output 2 1 2

. . .

Table 5.8: Table containing the results of the check 2.1 for the example.

Example

To make the concepts of external actors and actors found in the use case
descriptions clearer, we build an i* SD model, a use case diagram and a use
case description, simplified for the ease of comprehension. Let us say that
we have the i* SD model presented on figure 5.3 from [Maid 05a]. We can
see that the external actors are “Airline” and “Passenger”, as the two other
ones have a “*” within their names.

Let us say that we have the corresponding use case diagram, presented
on figure 5.4, and a part of a use case description, found in table 5.9. We can
notice that the writer of this use case diagram forgot that “Airline” played
a part in this system and did not mention it in the use case description. So,
the result produced by running the QROSS-Checker is given in table 5.10.

68 Chapter 5. Implementing the checks

Passenger

Airline

WebSite*

Credit
Check

System*

Maximise
revenues

Maximise new
customers

Reliable
information

Purchase
quickly

Income

Ticket
reference

Credit
rating

Tickets
purchased

Check
credit card

Figure 5.3: i* SD model for the current system.

System

Purchase online
tickets

Passenger

*

*

Figure 5.4: Use case diagram for the current system.

Name of use case Purchase online tickets

Use Case ID UC1

Author Me

Date 17/03/2005

Source A simple mind

Actors Passenger

Problem statements None

Precis The passenger connects himself to
the website and buys tickets.

.

Table 5.9: Use case description for the current system.

5.3. Second phase of synchronisation checks 69

Check 2.1
All external actors in the i* SD model for the current system should
correspond to actors in the use case descriptions for the current system.

These external actors in the SD model for the current system are not
present in the use case descriptions

Comments from City Comments from others

Airline

Table 5.10: Results of the check 2.1

5.3.2 Check 2.2

Original statement

All external actors in the i* SD model of the current system are
candidate actors for the i* SD model for the future system.

Precise statement

For each external actor found in the i* SD model for the current
system but not found among all the actors in the i* SD model
for the future system, are we sure we want to remove it from the
i* SD model for the future system?
For each actor found in the i* SD model for the future system
but not found among external actors in the i* SD model for the
current system, are we sure we want to add it to the i* SD model
for the future system?

Difficulties

Here again, we faced difficulties we already encountered. They are the use
of the word “candidate”, as in section 5.2.1, and the problem of determining
external actors, as in section 5.3.1. These issues have already been solved.

Implementation

We already have the list of external actors for the i* SD model for the current
system, since we collected it in the check 2.1 (see section 5.3.1). So, the first
thing we do is collecting all the actors from the i* SD model for the future
system, using the following OCL query:

FutureSDActors = futureSDModel.pieces→
select(actor | actor. class . name = ’SDActor’)
.GetName2()

70 Chapter 5. Implementing the checks

We then make the disjunction between the two sets of actors.

Check 2 2 Part1 = CurrentExternalSDActors→
select(act | not FutureSDActors→includes(act))

Check 2 2 Part2 = FutureSDActors→
select(act | not CurrentExternalSDActors→includes(act))

Finally, we put the element of the obtained lists in the word document
containing the results of the checks (see table 5.11).

MS Word table

Check 2.2
All external actors in the i* SD model of the current system are candidate
actors for the i* SD model of the future system.

Do you want to remove these external actors from the SD model to create
the new system?

Comments from City Comments from others

Output 2 2 Part1 1

Output 2 2 Part1 2

. . .

Do you want to add these external actors to create the new system?

Comments from City Comments from others

Output 2 2 Part2 1

Output 2 2 Part2 2

. . .

Table 5.11: Table containing the results of the check 2.2

5.3.3 Check 2.3

Original statement

All dependencies in the i* SD model of the current system are
candidate dependencies for the i* SD model for the future system.

Precise statement

For each dependency found in the i* SD model for the current
system but not found in the i* SD model for the future system,
are we sure we want to remove it from the i* SD model for the
future system?
For each dependency found in the i* SD model for the future
system but not found in the i* SD model for the current system,

5.3. Second phase of synchronisation checks 71

are we sure we want to add it to the i* SD model for the future
system?

Difficulties

There were no difficulty, except, as usual, the use of the word “candidate”.

Implementation

The implementation is quite simple and only requires the following OCL
requests.
The two first ones collect the dependencies found in the i* SD model for the
current and the future system:

CurrentSDDependency = currentSDModel.pieces→
select(dep | dep. class . name = ’SDResourceDependency’

or dep. class . name = ’SDTaskDependency’
or dep. class . name = ’SDGoalDependency’
or dep. class . name = ’SDSoftGoalDependency’)
.GetCompleteInfo()

FutureSDDependency = futureSDModel.pieces→
select(dep | dep. class . name = ’SDResourceDependency’

or dep. class . name = ’SDTaskDependency’
or dep. class . name = ’SDGoalDependency’
or dep. class . name = ’SDSoftGoalDependency’)
.GetCompleteInfo()

The method “GetCompleteInfo()” on SD dependencies provides us with all
the information we need about these dependencies, i.e. the elements of
CurrentSDDependency have the following structure:

• CurrentSDDependency[0] indicates the type of dependency which we
deal with, i.e. its value can be “resource”, “task”, “goal” or “softGoal”;

• CurrentSDDependency[1] contains the name of the dependency;

• CurrentSDDependency[2] indicates the depender;

• CurrentSDDependency[3] indicates the dependees.

The two next requests are used to do the disjunction between the two sets
of dependencies:

Check 2 3 Part1 = CurrentSDDependency→
select(dep | not FutureSDDependency→
includes(dep))

Check 2 3 Part2 = FutureSDDependency→
select(dep | not CurrentSDDependency→
includes(dep))

72 Chapter 5. Implementing the checks

MS Word table

Check 2.3
All dependencies in the i* SD model of the current system are candidate
dependencies for the i* SD model of the future system.

Do you want to remove these dependencies to create the new system?

Comments from City Comments from others

Output 2 3 Part1 1

Output 2 3 Part1 2

. . .

Do you want to add these dependencies to create the new system?

Comments from City Comments from others

Output 2 3 Part2 1

Output 2 3 Part2 2

. . .

Table 5.12: Table containing the results of the check 2.3

5.3.4 Check 2.4

Original statement

All actions in the use case descriptions for the current system
are candidate actions for the use case descriptions for the future
system.

Precise statement

For each action found in the use case descriptions for the current
system but not found in the use case descriptions for the future
system, are we sure we want to remove it from the use case
descriptions for the future system?
For each action found in the use case descriptions for the future
system but not found in the use case descriptions for the current
system, are we sure we want to add it to the use case descriptions
for the future system?

Difficulties

The main difficulty here is that we have to compare two actions to determine
if they are similar. Once again, since we do not have a lexical analyzer for
natural language, the only way to do it is to constrain the user. We thus
require the user to use the same sentence to describe the same action, in the

5.3. Second phase of synchronisation checks 73

current and the future model. This is an acceptable compromise, since it
does not charge more the user, and, moreover, it facilitates the traceability.

Implementation

We start by collecting all the actions for use case descriptions for the current
and the future models, using OCL requests:

CurrentUseCaseActions = currentUseCaseDiagram.pieces→
select(uc | uc. class . name = ’UseCase’).GetActions()

FutureUseCaseActions = futureUseCaseTable.pieces→
select(uc | uc. class . name = ’UseCase’).GetActions()

The next step consists in comparing each element of the list “CurrentUse-
CaseActions” with each element of the list “FutureUseCaseActions” to de-
termine if the first one have an equivalent in the second list and vice versa.
We compare the strings representing these use case actions, using the func-
tion “StringCompared” (see section 5.2.6), which returns the percentage
of identical words in the two strings. To consider two use case actions as
equivalent, this percentage has to be at least 65. It has been determined
empirically.
Here is the python code to implement this:

74 Chapter 5. Implementing the checks

cActions= project.metricsValues[’CurrentUseCaseActions’][0]
contains the results of the query “CurrentUseCaseActions
fActions = project.metricsValues[’FutureUseCaseActions’][0]
contains the results of the query “FutureUseCaseActions
cActionsNonF=[] #actions found in current use case descriptions

but not in future use case descriptions
for cA in cActions: #for each action in the current UCD

res = 0
for fA in fActions: #for each action in the future UCD

r = self.StringCompared(cA.upper(), fA.upper())
if r>res:

res = r
if res>65: # if the actions are equivalent

pass
else: # if the actions are not equivalent

cActionsNonF.append(cA)
fActionsNonC=[] #actions found in future use case descriptions

but not in current use case descriptions
for fA in fActions: #for each action in the future UCD

res = 0
for cA in cActions: #for each action in the current UCD

r = self.StringCompared(fA.upper(), cA.upper())
if r>res:

res=r
if res>65: # if the actions are equivalent

pass
else: # if the actions are not equivalent

fActionsNonC.append(fA)

We then include the elements of the lists cActionsNonF and fAction-
sNonC in the word document generated by running the QROSS-Checker
(see table 5.13).

5.3. Second phase of synchronisation checks 75

MS Word table

Check 2.4
All actions in use case descriptions for the current system are candidate
actions for use case descriptions of the future system.

Do you want to remove these actions to create the new system?

Comments from City Comments from others

Output 2 4 Part1 1

Output 2 4 Part1 2

. . .

Do you want to add these actions to create the new system?

Comments from City Comments from others

Output 2 4 Part2 1

Output 2 4 Part2 2

. . .

Table 5.13: Table containing the results of the check 2.4

5.3.5 Check 2.5

Original statement

All variations in the use case descriptions for the current system
are candidate variations or use cases for the future system.

Precise statement

For each variation found in the use case descriptions for the
current system but not found in the use case descriptions for the
future system, are we sure we want to remove it from the use
case descriptions for the future system?
For each variation found in the use case descriptions for the
future system but not found in the use case descriptions for the
current system, are we sure we want to add it to the use case
descriptions for the future system?

This check being similar to the check 2.4, but applied to the variations
instead of actions, the reasoning is similar as well.

76 Chapter 5. Implementing the checks

5.3.6 Check 2.6

Original statement

All external actors in the i* SD model of the future system should
correspond to actors in the use case descriptions for the future
system.

This check being similar to the check 2.1, applied to the future system,
the reasoning is similar (see section 5.3.1 for more details).

5.3.7 Check 2.7

Original statement

For all task dependencies identified in the i* SD model of the
future system, which represent tasks carried out by actors in the
use case diagram, there should be a part of a use case description
which describes how those tasks are carried out.

Difficulties

Not having a natural language analyzer, it seemed impossible to relate the
name of a task dependency with a description. The only thing we could do
was to determine if, in a use case description, we could find the actor doing
the task involved in the task dependency, and then searching in this use case
description if we could find the name of the task dependency. That proved
not to be sufficient.
We decided thus in dialogue with the City team to let this check down for
the QROSS-Checker. However, this check need to be done manually. We
proposed thus to provide the list of task dependencies for the i* SD model,
for the ease of the users. Collecting these dependencies could indeed be
hard, and there is always a danger to forget one or several of these. This
list is provided in the word document containing the results of the checks.

Implementation

Here is the OCL request used to collect the task dependencies for the i* SD
model for the future system:

FutTaskDependencies = futureSDModel.pieces→
select(dep | dep. class . name = ’SDTaskDependency’)
.GetCompleteInfo()

5.3. Second phase of synchronisation checks 77

MS Word table

Check 2.7
For all task dependencies identified in the i* SD model of the future system,
which represent tasks carried out by actors in the use case diagram, there
should be a part of a use case description which describes how those tasks
are carried out.

Here is a list of the task dependencies in the SDModel for the future system:

Comments from City Comments from others

FutTaskDeps 1

FutTaskDeps 2

. . .

Table 5.14: Table containing the results of the check 2.7

5.3.8 Check 2.8

Original statement

All requirements associated with use cases using the RESCUE
use case template should be stored in the requirements database.

Precise statement

All requirements we find in the word documents corresponding to
use case descriptions made with the RESCUE use case template
should be stored in the requirements database.

Difficulties

The main difficulty encountered here is the lack of time. Being the last check
to be implemented, this one has not been finished. We needed to clarify the
source of the word documents containing the use case description. There
are indeed two sources where we can find these word documents. The use
case descriptions are recopied manually within RequisitePro to create the
requirements database.
Moreover, we did not know if the name given to the requirements were the
same in the word documents and in the database.
For all these reasons, this check was not developed at this stage.

Chapter 6

Application to the case study

We present here the results of applying our QROSS-Checker to the case
study introduced in chapter 3. For each check, we provide the MS Word
table produced as well as a small explanation.
Note that this is a post-mortem application of our tool tot he case study.
The case was used for testing purposes and, here, for illustration but not
for actually checking the models and documents during the project devel-
opment.

6.1 First phase of synchronisation checks

6.1.1 Check 1.1

This check compares the actors coming from the context model for the cur-
rent system (see figure 3.1, page 21) with the actors coming from the context
model for the future system (see figure 3.3, page 22). If we examine these
two figures, we can see that two actors are present in the model for the
current system but not in the model for the future system: Indicator and
Road-side beacon. The same way, we can see that two actors are present in
the model for the future system but not in the model for the current system:
GPS and Display. Table 6.1 shows that the results obtained for the check 1.1
by applying the QROSS-Checker to the context models for the Countdown
system are those we expected.

79

80 Chapter 6. Application to the case study

Check 1.1
Every actor in the context model for the current system is a candidate
actor for the context model of the future system.

Do you want to remove these actors to create your new system?

Comments from City Comments from others

INDICATOR

ROAD-SIDE BEACON

Do you want to add these actors to create your new system?

Comments from City Comments from others

GPS

DISPLAY

Table 6.1: Results of the check 1.1 for the Countdown system.

6.1.2 Check 1.2

Similarly to the check 1.1, this check compares the data flows from the
context model for the current system (see figure 3.1, page 21) with the data
flows from the context model for the future system (see figure 3.3, page 22).
Examining these two figures, we notice that the following data flows stand
in the model for the current system but not in the model for the future
system:

• Bus locations from On-board bus system to AVL system;

• Bus information / route information / traffic information between AVL
system and Route controller;

• Bus information from AVL system to Indicator;

• Bus information from Indicator to Passenger;

• Beacon ID from Road-side beacon to On-board bus system.

The same way, we can see that the following data flows stand in the model
for the future system but not in the model for the current system:

• Bus information / route information / traffic information from AVL
system to Route controller;

• Bus information from AVL system to Display;

• Bus information from Display to Passenger;

• Bus signal from On-board bus system to GPS.

Table 6.2 shows that the results obtained for the check 1.2 by applying the
QROSS-Checker to the context models for the Countdown system are those
we expected.

6.1. First phase of synchronisation checks 81

Check 1.2
Every data flow in the context model for the current system is a candidate
data flow for the context model of the future system.

Do you want to remove these data flows to create your new system?

Comments from City Comments from others

BUS LOCATIONS
sent by: [’ON-BOARD BUS
SYSTEM’]
received by: [’AVL
SYSTEM’]

BUS INFORMATION/
ROUTE INFORMATION/
TRAFFIC INFORMATION
sent by: [’AVL SYSTEM’,
’ROUTE CONTROLLER’]
received by: [’ROUTE
CONTROLLER’, ’AVL
SYSTEM’]

BUS INFORMATION
sent by: [’AVL SYSTEM’]
received by: [’INDICATOR’]

BUS INFORMATION
sent by: [’INDICATOR’]
received by: [’PASSENGER’]

BEACON ID
sent by: [’ROAD-SIDE
BEACON’]
received by: [’ON-BOARD
BUS SYSTEM’]

Do you want to add these data flows to create your new system?

Comments from City Comments from others

BUS INFORMATION/
ROUTE INFORMATION/
TRAFFIC INFORMATION
sent by: [’AVL SYSTEM’]
received by: [’ROUTE
CONTROLLER’]

BUS INFORMATION
sent by: [’AVL SYSTEM’]
received by: [’DISPLAY’]

BUS INFORMATION
sent by: [’DISPLAY’]
received by: [’PASSENGER’]

BUS LOCATIONS
sent by: [’GPS’]
received by: [’AVL
SYSTEM’]

BUS SIGNAL
sent by: [’ON-BOARD BUS
SYSTEM’]
received by: [’GPS’]

Table 6.2: Results of the check 1.2 for the Countdown system.

82 Chapter 6. Application to the case study

6.1.3 Check 1.3

This check compares the use cases found in the use case diagram for the
current system (see figure 3.2 on page 22) with those found in the use case
diagram for the future system (see figure 3.4 on page 23). By looking at
them, we can see that all the use cases present in the use case diagram for
the current system are found in the use case diagram for the future system
and vice versa. The table presenting the results obtained by running the
QROSS-Checker on these diagrams will thus be empty.

Check 1.3
Every use case in the use case diagram for the current system is a
candidate for a use case in the use case diagram for the future system.

Do you want to remove these use cases to create your new system?

Comments from City Comments from others

Do you want to add these use cases to create your new system?

Comments from City Comments from others

Table 6.3: Results of the check 1.3 for the Countdown system.

6.1.4 Check 1.4

This check compares the adjacent actor from the context model for the
current system (see figure 3.1 on page 21) with the actors found in the use
case diagram for the current system (see figure 3.2 on page 22). The adjacent
actors are enumerated below:

• Road-side beacon;

• Indicator;

• Driver;

• Route controller;

• London transport.

By observing the use case diagram, we can see that the list above corresponds
to the actors found on the use case diagram. Thus, the table presenting the
results of this check will be empty.

6.1. First phase of synchronisation checks 83

Check 1.4
Every adjacent actor which communicates directly with the technical system
(level 1) in the context model for the current system is a candidate actor
for the use case diagram for the current system.

These adjacent actors from the context model of the current system are not
present in the Use Case diagram of the current system:

Comments from City Comments from others

These actors from the Use Case diagram of the current system are not
present in the Context model of the current system:

Comments from City Comments from others

Table 6.4: Results of the check 1.4 for the Countdown system.

6.1.5 Check 1.5

Although this check is not implemented, we chose to put its statement in
the word document produced by the QROSS-Checker, to prevent the users
being disturbed by the fact that a check is missing. This way, we also respect
the original numbering of the checks.

Check 1.5
The system boundary in the use case model for the current system model
should be the same as the boundary between levels 1 & 2 in the context model
for the current system.

Table 6.5: Statement of the check 1.5 (not implemented).

6.1.6 Check 1.6

Here, we check that for every data flow from or to level 1 in the context model
for the current system (see figure 3.1 on page 21), there is a corresponding
line in the use case diagram for the current system (see figure 3.2 on page
22) indicating involvement of the relevant actor in the relevant use case.
Here is the list of data flows from or to level 1 for the context model for the
current system:

• Beacon ID from Road-side beacon to On-board bus system;

• Bus information from AVL system to Indicator;

• Bus information / route information / traffic information between AVL
system and Route controller;

• Bus route from Driver to On-board bus system;

• Traffic information from AVL System to London Transport.

84 Chapter 6. Application to the case study

We give the list of the use cases found in the use case diagram for the current
system, related to the actor involved in:

• Driver: Alert controller to emergency;

• Driver: Operator sign-on;

• Indicator: Provide information for travel decisions;

• Road-side beacon: Determine bus location and arrival time;

• Route controller: Send route information;

• Route controller: Monitor bus location;

• London Transport: Receive current traffic information.

The matches found by the QROSS-Checker are the correspondences between
the data flow “Traffic information from AVL System to London Transport”
and the use case “receive current traffic information“ related to the actor
“London Transport”, and between the data flow “route information between
AVL System and Route controller” and the use case “send route informa-
tion” related to the actor ‘Route controller”. All the other data flows will
thus appear in the table presenting the results of this check.

6.1. First phase of synchronisation checks 85

Check 1.6
For every data flow from or to level 1 (or one of the sub systems within
level 1) of the context model of the current system, there should be
a corresponding line in the use case diagram for the current system
indicating involvement of the relevant actor in the relevant use case.

These data flows of the current context model do not have corresponding
use cases in the use case diagram:

Comments from City Comments from others

BUS INFORMATION

sent by: [’AVL SYSTEM’,

’ROUTE CONTROLLER’]

received by: [’ROUTE

CONTROLLER’, ’AVL

SYSTEM’]

(2 use cases missing (1 for
each direction))

ROUTE INFORMATION

sent by: [’AVL SYSTEM’,

’ROUTE CONTROLLER’]

received by: [’ROUTE

CONTROLLER’, ’AVL

SYSTEM’]

(1 use case missing (for 1 of
the directions))

TRAFFIC INFORMATION

sent by: [’AVL SYSTEM’,

’ROUTE CONTROLLER’]

received by: [’ROUTE

CONTROLLER’, ’AVL

SYSTEM’]

(2 use cases missing (1 for
each direction))

BUS ROUTE
sent by: [’DRIVER’]
received by: [’ON-BOARD
BUS SYSTEM’]

BUS INFORMATION
sent by: [’AVL SYSTEM’]
received by: [’INDICATOR’]

BEACON ID
sent by: [’ROAD-SIDE
BEACON’]
received by: [’ON-BOARD
BUS SYSTEM’]

Table 6.6: Results of the check 1.6 for the Countdown system.

86 Chapter 6. Application to the case study

6.1.7 Check 1.7

This check is similar to the check 1.4 and compares the adjacent actor from
the context model for the future system (see figure 3.3 on page 22) with the
actors found in the use case diagram for the future system (see figure 3.4 on
page 23). The adjacent actors are enumerated below:

• GPS;

• Display;

• Driver;

• Route controller;

• London transport.

By observing the use case diagram, we can see that the list above corresponds
to the actors found on the use case diagram. Thus, like for the check 1.4,
the table presenting the results of this check is empty.

Check 1.7
Every adjacent actor (level 2, 3 or 4) which communicates directly with the
technical system (level 1) in the context model for the future system is a
candidate actor for the use case diagram for the future system.

These adjacent actors from the context model of the future system are not
present in the Use Case diagram of the future system:

Comments from City Comments from others

These actors from the Use Case diagram of the future system are not
present in the Context model of the future system:

Comments from City Comments from others

Table 6.7: Results of the check 1.7 for the Countdown system.

6.1.8 Check 1.8

For the same reason as for the check 1.5, we indicate the statement of the
check in the word document produced by running the QROSS-Checker.

Check 1.8
The system boundary in the use case model for the future system model
should be the same as the boundary between levels 1 & 2 in the context
model for the future system.

Table 6.8: Statement of the check 1.8 (not implemented).

6.1. First phase of synchronisation checks 87

6.1.9 Check 1.9

Similarly as for check 1.6, we check that for every data flow from or to level
1 in the context model for the future system (see figure 3.3 on page 22),
there is a corresponding line in the use case diagram for the future system
(see figure 3.4 on page 23) indicating involvement of the relevant actor in
the relevant use case. Here is the list of data flows from or to level 1 for the
context model for the future system:

• Bus locations from GPS to On-board bus system;

• Bus signal from On-board bus system to GPS;

• Bus information from AVL system to Display;

• Bus route from Driver to On-board bus system;

• Bus information / route information / traffic information from AVL
system to Route controller;

• Traffic information from AVL System to London Transport.

We give the list of the use cases found in the use case diagram for the future
system, related to the actor involved in:

• Driver: Alert controller to emergency;

• Driver: Operator sign-on;

• Display: Provide information for travel decisions;

• GPS: Determine bus location and arrival time;

• Route controller: Send route information;

• Route controller: Monitor bus location;

• London Transport: Receive current traffic information.

The matches found by the QROSS-Checker are the correspondences between
the data flow “Traffic information from AVL System to London Transport”
and the use case “receive current traffic information“ related to the actor
“London Transport” and between the data flow “route information between
AVL System and Route controller” and the use case “send route informa-
tion” related to the actor ‘Route controller”. All the other data flows will
thus appear in the table presenting the results of this check.

88 Chapter 6. Application to the case study

Check 1.9
For every data flow from or to level 1 (or one of the sub systems within
level 1) of the context model of the future system, there should be
a corresponding line in the use case diagram for the future system
indicating involvement of the relevant actor in the relevant use case.

These data flows of the future context model do not have corresponding
use cases in the use case diagram:

Comments from City Comments from others

BUS INFORMATION
sent by: [’AVL SYSTEM’]
received by: [’ROUTE
CONTROLLER’]

TRAFFIC INFORMATION
sent by: [’AVL SYSTEM’]
received by: [’ROUTE
CONTROLLER’]

BUS INFORMATION
sent by: [’AVL SYSTEM’]
received by: [’DISPLAY’]

BUS ROUTE
sent by: [’DRIVER’]
received by: [’ON-BOARD
BUS SYSTEM’]

BUS SIGNAL
sent by: [’ON-BOARD BUS
SYSTEM’]
received by: [’GPS’]

Table 6.9: Results of the check 1.9 for the Countdown system.

6.1.10 Check 1.10

Once again, for the same reason as for check 1.5, we give the statement of
the check in the MS Word document presenting the results of the checks
obtained by running the QROSS-Checker.

Check 1.10
Services and functions related to use cases in the use case diagram for the
future system should map to system level requirements, i.e. high level
functional and non functional requirements in the requirements database.

Table 6.10: Statement of the check 1.10 (not implemented).

6.2. Second phase of synchronisation checks 89

6.2 Second phase of synchronisation checks

6.2.1 Check 2.1

This check compares the external actors from the i* SD model for the current
system (see figure 3.5 on page 24) with the actors from use case descriptions
for the current system (see tables 3.1 and 3.2 on pages 25 and 26). The
external actors (i.e. those not marked by a “*”) in the SD model for the
current system are:

• Comms System;

• Passenger;

• Road-side beacon;

• London Transport.

The actors found in the only description we have are:

• Indicator;

• Passenger;

• AVL System.

We can thus conclude that the results provided in the table 6.11 obtained
by running the QROSS-Checker on documents produced for the Countdown
system are those expected.

Check 2.1
All external actors in the i* SD model of the current system should
correspond to actors in the use case descriptions for the current system.

These external actors in the Strategic dependency model for the current
system are not present in the use case descriptions:

Comments from City Comments from others

ROAD-SIDE BEACON

LONDON TRANSPORT

COMMS SYSTEM

Table 6.11: Results of the check 2.1 for the Countdown system.

6.2.2 Check 2.2

Here, we check whether each external actor in the current SD model (see
figure 3.5 on page 24) is present in some shape or form in the SD model for
the future system (see figure 3.6 on page 27), i.e. we check no actors we
know about in the current system had been forgotten about in the model
of the future system. The list of external actors in the SD model for the
current system is given in section 6.2.1. The actors in the SD model are:

90 Chapter 6. Application to the case study

• Comms System;

• Driver;

• Passenger;

• GPS;

• Route Controller;

• On-board Bus System;

• London Transport;

• AVL System;

• Countdown Display.

Thus, we should find in the table presenting the result that the external
actor “Road-Side Beacon” from the SD model for the current system is not
represented among the actors of the SD model for the future system, and
that the actors Driver, GPS, Route Controller, On-board Bus System, AVL
System and Countdown Display are not represented among external actors
in the SD model for the current system. We can thus conclude that the
results provided by the QROSS-Checker shown in table 6.12 are those we
expected.

Check 2.2
All external actors in the i* SD model of the current system are candidate
actors for the i* SD model of the future system.

Do you want to remove these external actors from the SD model to create
the new system?

Comments from City Comments from others

ROAD-SIDE BEACON

Do you want to add these actors to create the new system?

Comments from City Comments from others

DRIVER

AVL SYSTEM

ROUTE CONTROLLER

COUNTDOWN DISPLAY

ON-BOARD BUS SYSTEM

GPS

Table 6.12: Results of the check 2.2 for the Countdown system.

6.2. Second phase of synchronisation checks 91

6.2.3 Check 2.3

This check compares the dependencies from the i* SD model for the current
system (see figure 3.5 on page 24) with the dependencies from the i* SD
model for the future system (see figure 3.6 on page 27). From the i* SD
model for the current system, we collect the following dependencies:

C1. Driver depends on Comms System for the goal “emergency reported”;

C2. Driver depends on Comms System for the soft-goal “communication
doesn’t cause danger”;

C3. Driver depends on Route Controller for the goal “route changes be re-
ceived”;

C4. Driver depends on Route Controller for the soft-goal “response received
quickly”;

C5. Driver depends on On-Board Bus System for the soft-goal “be easy to
use”;

C6. Driver depends on On-Board Bus System for the soft-goal “operate with-
out error”;

C7. Driver depends on On-Board Bus System for the goal “destination and
user ID be input”;

C8. Driver depends on On-Board Bus System for the resource “time card”;

C9. Passenger depends on Driver for the goal “get to destination”;

C10. Passenger depends on Countdown Indicator for the soft-goal “indicator
be readable”;

C11. Passenger depends on Countdown Indicator for the soft-goal “informa-
tion be reliable”;

C12. Passenger depends on Countdown Indicator for the soft-goal “informa-
tion be accurate”;

C13. Passenger depends on Countdown Indicator for the task “make travel
decisions”;

C14. Passenger depends on Countdown Indicator for the resource “bus arrival
information”;

C15. Countdown Indicator depends on AVL System for the soft-goal “infor-
mation be reliable”;

C16. Countdown Indicator depends on AVL System for the resource “bus
information”;

C17. Countdown Indicator depends on AVL System for the task “display bus
information”;

C18. Countdown Indicator depends on AVL System for the soft-goal “infor-
mation be up-to-date”;

92 Chapter 6. Application to the case study

C19. AVL System depends on On-Board Bus System for the task “calculate
arrival times”;

C20. AVL System depends on On-Board Bus System for the soft-goal “bus
locations be up-to-date”;

C21. AVL System depends on On-Board Bus System for the goal “buses
located”;

C22. On-Board Bus System depends on Road-Side Beacon for the goal “buses
located”;

C23. London Transport depends on Route Controller for the goal “bus infor-
mation monitored”;

C24. London Transport depends on Route Controller for the goal “traffic be
updated”;

C25. Route Controller depends on Comms System for the goal “driver con-
tacted”;

C26. Route Controller depends on Comms System for the soft-goal “system
be available”;

C27. Route Controller depends on Comms System for the soft-goal “commu-
nication be understandable”;

C28. Route Controller depends on AVL System for the goal “bus location
monitored”;

C29. Route Controller depends on AVL System for the soft-goal “information
be accurate”;

C30. Route Controller depends on AVL System for the goal “route changes
decided”;

C31. Route Controller depends on AVL System for the soft-goal “manage
routes effectively”;

C32. Route Controller depends on AVL System for the goal “current bus
information received”;

C33. Route Controller depends on AVL System for the soft-goal “information
be reliable”.

From the i* SD model for the future system, we collect these dependencies:

F1. Driver depends on Comms System for the goal “emergency reported”;

F2. Driver depends on Comms System for the soft-goal “communication
doesn’t cause danger”;

F3. Driver depends on Route Controller for the goal “route changes be re-
ceived”;

6.2. Second phase of synchronisation checks 93

F4. Driver depends on Route Controller for the soft-goal “response received
quickly”;

F5. Driver depends on On-Board Bus System for the soft-goal “be easy to
use”;

F6. Driver depends on On-Board Bus System for the soft-goal “operate with-
out error”;

F7. Driver depends on On-Board Bus System for the goal “destination and
user ID be input”;

F8. Driver depends on On-Board Bus System for the resource “time card”;

F9. Passenger depends on Driver for the goal “get to destination”;

F10. Passenger depends on Countdown Display for the soft-goal “display be
readable”;

F11. Passenger depends on Countdown Display for the soft-goal “information
be reliable”;

F12. Passenger depends on Countdown Display for the soft-goal “information
be accurate”;

F13. Passenger depends on Countdown Display for the task “make travel
decisions”;

F14. Passenger depends on Countdown Display for the resource “bus arrival
information”;

F15. Countdown Display depends on AVL System for the soft-goal “informa-
tion be reliable”;

F16. Countdown Display depends on AVL System for the resource “bus in-
formation”;

F17. Countdown Display depends on AVL System for the task “display bus
information”;

F18. Countdown Display depends on AVL System for the soft-goal “informa-
tion be up-to-date”;

F19. AVL System depends on On-Board Bus System for the task “calculate
arrival times”;

F20. AVL System depends on On-Board Bus System for the soft-goal “bus
locations be up-to-date”;

F21. AVL System depends on On-Board Bus System for the goal “buses
located”;

F22. On-Board Bus System depends on GPS for the goal “buses located”;

F23. GPS depends on On-Board Bus System for the resource “GPS receiver”;

F24. London Transport depends on Route Controller for the goal “bus infor-
mation monitored”;

94 Chapter 6. Application to the case study

F25. London Transport depends on Route Controller for the goal “traffic be
updated”;

F26. Route Controller depends on Comms System for the goal “driver con-
tacted”;

F27. Route Controller depends on Comms System for the soft-goal “system
be available”;

F28. Route Controller depends on Comms System for the soft-goal “commu-
nication be understandable”;

F29. Route Controller depends on AVL System for the goal “bus location
monitored”;

F30. Route Controller depends on AVL System for the soft-goal “information
be accurate”;

F31. Route Controller depends on AVL System for the goal “route changes
decided”;

F32. Route Controller depends on AVL System for the soft-goal “manage
routes effectively”;

F33. Route Controller depends on AVL System for the goal “current bus
information received”;

F34. Route Controller depends on AVL System for the soft-goal “information
be reliable”.

The dependencies 1–9 and 19–21 are the same in both lists and do not appear
in the table containing the results of the check, as well as dependencies C23–
C33 in the first list and F24–F34 in the second list.
Dependencies 10–18 and 22 are similar in both lists, except that the name of
the actors “Countdown Indicator” and “Road-Side Beacon” in the first list
become “Countdown Display” and “GPS” respectively in the second list.
These dependencies appear thus in the tables 6.13 and 6.14 presenting the
results.
The dependency F23 in the second list does not have a correspondence in
the first one and so appears in the table 6.14 presenting the results.

6.2. Second phase of synchronisation checks 95

Check 2.3
All dependencies in the i* SD model of the current system are candidate
dependencies for the i* SD model of the future system.

Do you want to remove these dependencies to create the new system?

Comments from City Comments from others

Goal dependency ’BUS
LOCATED’
- depender: ON-BOARD BUS
SYSTEM
- dependees: ROAD-SIDE
BEACON

Resource dependency ’BUS
INFORMATION
- depender: COUNTDOWN
INDICATOR
- dependees: AVL SYSTEM*

SoftGoal dependency
’INFORMATION BE RELIABLE’
- depender: COUNTDOWN
INDICATOR
- dependees: AVL SYSTEM*

SoftGoal dependency
’INFORMATION BE
UP-TO-DATE’
- depender: COUNTDOWN
INDICATOR
- dependees: AVL SYSTEM*

Resource dependency ’BUS
ARRIVAL INFORMATION’
- depender: PASSENGER
- dependees: COUNTDOWN
INDICATOR

SoftGoal dependency
’INFORMATION BE RELIABLE’
- depender: PASSENGER
- dependees: COUNTDOWN
INDICATOR

SoftGoal dependency
’INFORMATION BE ACCURATE’
- depender: PASSENGER
- dependees: COUNTDOWN
INDICATOR

Task dependency ’MAKE
TRAVEL DECISIONS’
- depender: PASSENGER
- dependees: COUNTDOWN
INDICATOR

Task dependency ’DISPLAY BUS
INFORMATION’
- depender: COUNTDOWN
INDICATOR
- dependees: AVL SYSTEM*

SoftGoal dependency
’INDICATOR BE READABLE’
- depender: PASSENGER
- dependees: COUNTDOWN
INDICATOR

Table 6.13: Results of the check 2.3 for the Countdown system (Part 1).

96 Chapter 6. Application to the case study

Do you want to add these dependencies to create the new system?

Comments from City Comments from others

Resource dependency ’GPS
RECEIVER’
- depender: GPS
- dependees: ON-BOARD BUS
SYSTEM

Goal dependency ’BUS
LOCATED’
- depender: ON-BOARD BUS
SYSTEM
- dependees: GPS

Resource dependency ’BUS
INFORMATION’
- depender: COUNTDOWN
DISPLAY
- dependees: AVL SYSTEM*

SoftGoal dependency
’INFORMATION BE RELIABLE’
- depender: COUNTDOWN
DISPLAY
- dependees: AVL SYSTEM*

SoftGoal dependency
’INFORMATION BE
UP-TO-DATE’
- depender: COUNTDOWN
DISPLAY
- dependees: AVL SYSTEM*

Resource dependency ’BUS
ARRIVAL INFORMATION’
- depender: PASSENGER
- dependees: COUNTDOWN
DISPLAY

SoftGoal dependency
’INFORMATION BE RELIABLE’
- depender: PASSENGER
- dependees: COUNTDOWN
DISPLAY

SoftGoal dependency
’INFORMATION BE ACCURATE’
- depender: PASSENGER
- dependees: COUNTDOWN
DISPLAY

Task dependency ’MAKE
TRAVEL DECISIONS’
- depender: PASSENGER
- dependees: COUNTDOWN
DISPLAY

Task dependency ’DISPLAY BUS
INFORMATION’
- depender: COUNTDOWN
DISPLAY
- dependees: AVL SYSTEM*

SoftGoal dependency ’DISPLAY
BE READABLE’
- depender: PASSENGER
- dependees: COUNTDOWN
DISPLAY

Table 6.14: Results of the check 2.3 for the Countdown system (Part 2).

6.2. Second phase of synchronisation checks 97

6.2.4 Check 2.4

This check compares the use case actions from the current use case descrip-
tions (see tables 3.1 and 3.2 on pages 25 and 26) with the use case actions
coming from the RequisitePro database. The current use case actions are:

C1. The passenger seeks bus information from the Countdown indicator;

C2. The Countdown indicator shows the bus information for the relevant
route(s);

C3. The passenger reads bus information from the Countdown indicator;

C4. The passenger recognises which route number(s) will take them the clos-
est to their destination;

C5. The passenger remembers expected arrival time(s) for bus(es) on route(s)
of interest;

C6. The passenger uses the bus information to make decisions about their
journey;

C7. Every 30 seconds the AVL system updates the Countdown indicator;

C8. The passenger occasionally checks his/her decision when information on
the indicator is updated.

The future use case actions are:

F1. The passenger looks at the Countdown display;

F2. The Countdown display shows the bus information for the relevant
route(s);

F3. The passenger recognises which route number(s) will take them the clos-
est to their destination;

F4. The passenger remembers expected arrival time(s) for bus(es) on route(s)
of interest;

F5. The passenger decides which bus route to use;

F6. Every 30 seconds the AVL system transmits updated bus information
to the Countdown display;

F7. Include (Determine bus location and arrival time);

F8. The passenger occasionally checks decision when information on the
indicator is updated.

The actions from the first list which do not match one in the second list are
actions C1, C3 and C6. Even though C1 and C6 could be considered by the
reader as similar to F1 and F5 respectively, the words used in the sentences
are not equivalent enough to allow the QROSS-Checker to consider these as
matches. In the second list, the actions F1, F5 and F7 do not match any

98 Chapter 6. Application to the case study

action in the first list for the same reasons. But the QROSS-Checker also
tells us that the action F6 has no correspondence in the first list. This is due
to the fact that when it compares the action F6 from the second list with
the action C7 in the first one, it finds a percentage of only 53 of identical
words, compared to the total number of words in the sentence describing
the action 6. To considered them as equivalent, this percentage should be
at least 65. However, we did not decrease this threshold not to be likely to
match actions which, actually, are not equivalent.

Check 2.4
All actions in use case descriptions for the current system are candidate
actions for use case descriptions of the future system.

Do you want to remove these actions to create the new system?

Comments from City Comments from others

1. The passenger seeks bus
information from the
Countdown indicator

3. The passenger recognises
which route number(s) will
take them the closest to
their destination

6. The passenger uses the
bus information to make
decisions about their
journey

Do you want to add these actions to create the new system?

Comments from City Comments from others

1. The passenger looks at
the Countdown display

5. The passenger decides
which bus route to use

6. Every 30 seconds the
AVL system transmits
updated bus information to
the Countdown display

7. Include (Determine bus
location and arrival time)

Table 6.15: Results of the check 2.4 for the Countdown system.

6.2. Second phase of synchronisation checks 99

6.2.5 Check 2.5

This check is similar to the previous one, except that it compares use case
variations instead of actions. The use case variations found in the current
use case descriptions (see tables 3.1 and 3.2 on pages 25 and 26) are:

1. If passenger has a mobility restriction, then passenger seeks information
about mobility buses from the Countdown indicator (relative to action
C1 in section 6.2.4);

2. If wet weather, then passenger may decide not to use a bus if expected
waiting time is too long (relative to action C6 in section 6.2.4);

3. If night, then passenger may decide not to use a bus if expected waiting
time is too long (relative to action C6 in section 6.2.4).

The use case variations present in the RequisitePro database are:

1. If the passenger has poor eyesight, then he can seek information from the
Countdown display in an audible way (relative to action F1 in section
6.2.4);

2. If the AVL system does not update the various Countdown displays with
the new expected arrival times, then a passenger message is displayed
on the Countdown displays (relative to action F6 in section 6.2.4).

We can easily notice that no correspondence can be found between these two
lists. The table provided by the QROSS-Checker thus gives us the expected
results.

100 Chapter 6. Application to the case study

Check 2.5
All variations in use case descriptions for the current system are candidate
variations or use cases for the future system.

Do you want to remove these variations to create the new system?

Comments from City Comments from others

1. If passenger has a
mobility restriction, then
passenger seeks information
about mobility buses from
the Countdown indicator

6. If wet weather, then
passenger may decide not
to use a bus if expected
waiting time is too long

6. If night, then passenger
may decide not to use a bus
if expected waiting time is
too long

Do you want to add these variations to create the new system?

Comments from City Comments from others

1. If the passenger has poor
eyesight, then he can seek
information from the
Countdown display in an
audible way

6. If the AVL system does
not update the various
Countdown displays with
the new expected arrival
times, then a passenger
message is displayed on the
Countdown displays

Table 6.16: Results of the check 2.5 for the Countdown system.

6.2.6 Check 2.6

This check compares the external actors from the future SD model (see figure
3.6 on page 27) with the actors present in the use case description for the
future system (see table 3.3 on page 28). In the use case description, the field
“Actors” is empty. A line in the table providing the results announce that
all the fields corresponding to actors are empty in the use case descriptions.

6.2. Second phase of synchronisation checks 101

Check 2.6
All external actors in the i* SD model of the future system should
correspond to actors in the use case descriptions for the future system.

All actors fields are empty in the use case descriptions.

These external actors in the Strategic Dependency model for the current
system are not present in the use case descriptions:

Comments from City Comments from others

PASSENGER

GPS

LONDON TRANSPORT

COMMS SYSTEM

Table 6.17: Results of the check 2.6 for the Countdown system.

6.2.7 Check 2.7

Remember that this check is not implemented according to its statement.
Indeed, it provides the list of task dependencies found in the future SD
model. These dependencies are represented by hexagons on figure 3.6 on
page 27.

Check 2.7
For all task dependencies identified in the i* SD model of the future system,
which represent tasks carried out by actors in the use case diagram, there
should be a part of a use case description which describes how those tasks
are carried out.

Here is a list of the task dependencies in the SD Model for the future system:

Comments from City Comments from others

’CALCULATE ARRIVAL
TIMES’
- depender:
AVL SYSTEM*
- dependees:
ON-BOARD BUS SYSTEM

’MAKE TRAVEL
DECISIONS’
- depender:
PASSENGER
- dependees:
COUNTDOWN DISPLAY

’DISPLAY BUS
INFORMATION’
- depender:
COUNTDOW DISPLAY
- dependees:
AVL SYSTEM*

Table 6.18: Results of the check 2.7 for the Countdown system.

102 Chapter 6. Application to the case study

6.2.8 Check 2.8

Once again, for the same reason as for check 1.5, we give the statement of
the check in the MS Word document presenting the results of the checks
obtained by running the QROSS-Checker.

Check 2.8
All requirements associated with use cases using the RESCUE use case
template should be stored in the requirements database.

Table 6.19: Statement of the check 2.8 (not implemented).

Chapter 7

Evaluation and future works

7.1 Evaluation

The work we did brings contributions to several levels.

On the one hand, we can note some contributions on the level of the
RESCUE process.
We provide a prototype for tool support needed in the RESCUE process.
Indeed, doing the checks “manually” is a great time spending. Moreover, it
is possible that human beings make mistakes, and the automation can avoid
that.
By redefining the way models and templates had to be built, we have har-
monized the use of tools in the RESCUE process. We gave a step-by-step
user guide to use these tools, making it easier and avoiding variations in
notations, which could otherwise be prone to misunderstanding.
During the development of the QROSS-Checker, we had to make the defini-
tions of the checks clear, to make sure they were implemented the right way.
We had to make tacit knowledge such as the meaning of “to be candidate”
or “external actors”, explicit. We also provided meta models of the various
notations. This helped to formalize some parts of the process, and make it
more accessible to anyone.

On the other hand, the work we did by extending QROSS was useful to
test and debug it. Indeed, we collaborated with the QROSS team at the
CETIC, reporting any problem found and consequently improve the tool.
Contributions have mainly been brought to the OCL parser and to the met-
ric engine.
Moreover, our work extends the usage and application domain initially in-
tended for QROSS, that is computing metrics on source code.

103

104 Chapter 7. Evaluation and future works

So, the development of our tool gives evidence of feasibility and useful-
ness of tool support in the RESCUE process. However, we can enumerate
several limitations:

• it is not complete, as some checks have not been implemented;

• it is not very user-friendly. Indeed, we had to constrain users on the
way they draw their models, or the sentences they use in use case and
requirements templates. Moreover, the use of the tool is a little cum-
bersome at times, since it is necessary to record the files of the models
and the templates under specific formats and to make copies of sev-
eral tables of RequisitePro’s database. It is not really constraining for
small projects, but for projects of greater scale, the workload could be
consequently weighed down;

• it is not generic: the various parsers and meta models for each type of
RESCUE model needed to be implemented by hand in Python;

• the implementation of our QROSS-Checker was tried out only on a
small post-mortem case study. It was sufficient for demonstrating and
illustrating the purpose of the prototype, but the next improvements of
the tool will necessitate more accurate validation, both on projects of
larger scale, and undergoing development;

• for checks, where we need to compare two sentences, mainly related to
use case and requirements templates (such as the check 1.10), the imple-
mentation of the comparisons is approximative and limits the reliability
of some results.

7.2 Future Works

Several improvements could thus be considered to overcome these difficulties:

• the first and more obvious improvement would be to implement all the
checks for each phase of the RESCUE process;

• to improve the handling of natural language, two kinds of solution can
be considered:

• On the one hand, if we do not want to constraint the users of the
RESCUE process, we could chose to use a natural language ana-
lyzer. A tool of this type, as the name says, is able to analyze
natural language and to extract semantic information out of it. So,
it should be able to determine if two sentences used in different re-
quirements templates have the same meaning or not. However, to
be really effective, analyzers must possess domain knowledge.

• On the other hand, if the option to constrain the users can be con-
sidered, controlled natural languages could be used.

7.2. Future Works 105

“Controlled Natural Languages are subsets of natural languages
whose grammars and dictionaries have been restricted in order to
reduce or eliminate both ambiguity and complexity. Traditionally,
controlled languages fall into two major categories: those that im-
prove readability for human readers, particularly non-native speak-
ers, and those that improve computational processing of the text.”
[Schw]
The use of such a language could help in several ways. First, if the
project developed involves people speaking different languages, it
could ease the understanding between people. It could also force
the users to formalize their requirements and thus it can be a new
way to make the requirements even better at an early stage. Ob-
viously, it also makes it easier to compare sentences one with the
other.
There are, in the literature, recommendations prescribing to write
the contents of the scenarios, use cases and so on in a very simple
way, close to a Controlled Natural Language, e. g. [Cock 00].

Bibliography

[Alex 04] I. Alexander and N. Maiden, Eds. Scenarios, stories, use
cases: Through the Systems development Life-Cycle. John Wi-
ley&Sons, Ltd., 2004.

[Boeh 81] B. W. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[Bray 02] I. K. Bray. An introduction to requirements engineering. Pearson
Education, 2002.

[Cock 00] A. Cockburn. Writing Effective Use Cases. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[Heym 01] P. Heymans. Animating Albert II specifications. PhD thesis,
University of Namur, dec 2001.

[Jone 04] S. Jones and N. Maiden. “RESCUE: An Integrated Method
for Specifying Requirements for Complex Socio- Technical Sys-
tems”. 2004. to appear in: Requirements Engineering for So-
ciotechnical Systems, J.L. Mate and A. Silva (eds), Idea Group
Inc., 2004.

[Maid 03] N. A. M. Maiden, S. Jones, and M. Flynn. “Innovative Require-
ments Engineering Applied to ATM”. In: ATM’2003 Confer-
ence, 2003.

[Maid 04a] N. A. M. Maiden, S. Manning, S. Jones, and J. Greenwood. “To-
wards Pattern-Based Generation of Requirements from systems
models”. In: International Workshop on Requirements Engi-
neering – Foundations for Software Quality, 2004.

[Maid 04b] N. Maiden and S. Jones. “An integrated user-centred require-
ments engineering process”. Tech. Rep. VERSION 5, Centre
for Human-Computer Interaction, City University, sep 2004. for
National Air Traffic services Ltd (NATS).

107

108 BIBLIOGRAPHY

[Maid 04c] N. Maiden and S. Jones. “RESCUE Process: Examples.”. Tech.
Rep. 3, Centre for Human-Computer Interaction, City Univer-
sity, sep 2004. for National Ait Traffic services Ltd (NATS).

[Maid 04d] N. A. M. Maiden, S. V. Jones, S. Manning, J. Greenwood, and
L. Renou. “Model-Driven Requirements Engineering: Synchro-
nising Models in an Air Traffic Management Case Study.”. In:
CAiSE, pp. 368–383, 2004.

[Maid 05a] N. Maiden. Requirements Engineering (Module
IN3015/INM311), Chap. 4, p. 21. City University, 2004-
2005.

[Maid 05b] N. Maiden and S. Robertson. “Developing use cases and sce-
narios in the requirements process”. In: ICSE ’05: Proceedings
of the 27th international conference on Software engineering,
pp. 561–570, ACM Press, New York, NY, USA, 2005.

[Maid 05c] N. Maiden and S. Robertson. “Integrating Creativity into Re-
quirements Processes: Experiences with an Air Traffic Manage-
ment System”. In: to appear in: 13th IEEE International Con-
ference on Requirements Engineering (RE 2005), IEEE Com-
puter Society, 2005.

[Robe 99] S. Robertson and J. Robertson. Mastering the Requirements
Process. Addison-Wesley, 1999.

[Rumb 99] J. Rumbaugh, I. Jacobson, and G. Booch, Eds. The Unified
Modeling Language reference manual. Addison-Wesley Longman
Ltd., Essex, UK, UK, 1999.

[Schw] R. Schwitter. “Controlled Natural Languages.”.
http://www.ics.mq.edu.au/˜rolfs/controlled-natural-
languages/. Centre for Language Technology, Macquarie
University’s.

[Sutc 02] A. Sutcliffe. User-Centred requirements engineering: Theory and
practice. Springer, 2002.

[Sutc 98] A. G. Sutcliffe, N. A. M. Maiden, S. Minocha, and D. Manuel.
“Supporting Scenario-Based Requirements Engineering.”. IEEE
Trans. Software Eng., Vol. 24, No. 12, pp. 1072–1088, 1998.

[Vice 99] K. Vicente. Cognitive work analysis. Lawrence Erlbaum Asso-
ciates, 1999.

[Yu 94] E. S. K. Yu and J. Mylopoulos. “Understanding “Why” in
Software Process Modelling, Analysis, and Design.”. In: ICSE,
pp. 159–168, 1994.

BIBLIOGRAPHY 109

[Yu 96] E. S.-K. Yu. Modelling strategic relationships for process reengi-
neering. PhD thesis, University of Toronto, Toronto, Ont.,
Canada, Canada, 1996.

[Yu 97] E. S. K. Yu. “Towards Modeling and Reasoning Support for
Early-Phase Requirements Engineering.”. In: RE, pp. 226–235,
1997.

Appendix A

Statements of the checks

Check 1.1 Every actor in the context model for the current system is a
candidate actor for the context model of the future system.

Check 1.2 Every data flow in the context model for the current system is
a candidate data flow for the context model of the future system.

Check 1.3 Every use case in the use case diagram for the current system is
a candidate for a use case in the use case diagram of the future system.

Check 1.4 Every adjacent actor which communicates directly with the tech-
nical system (level 1) in the context model for the current system is a
candidate actor for the use case diagram of the current system.

Check 1.5 The system boundary in the use case model for the current
system should be the same as the boundary between level 1 and 2 in
the context model for the current system.

Check 1.6 For every data flow from or to level 1 (or one of the sub systems
within level 1) of the context model of the current system, there should
be a corresponding line in the use case diagram for the current system
indicating involvement of the relevant actor in the relevant use case.

Check 1.7 Every adjacent actor (at level 2, 3 or 4) which communicates
directly with the technical system (level 1) in the context model for
the future system is a candidate actor for the use case diagram for the
future system.

Check 1.8 The system boundary in the use case model for the future system
should be the same as the boundary between level 1 and 2 in the
context model for the future system.

Check 1.9 For every data flow from or to level 1 (or one of the sub systems
within level 1) of the context model for the future system, there should

111

112 Chapter A. Statements of the checks

be a corresponding line in the use case diagram for the future system
indicating involvement of the relevant actor in the relevant use case.

Check 1.10 Services and functions related to use cases in the use case dia-
gram for the future system should map to system level requirements,
i.e. high level functional and non functional requirements in the re-
quirements database.

Check 2.1 All external actors in the i* SD model of the current system
should correspond to actors in the use case descriptions for the current
system.

Check 2.2 All external actors in the i* SD model of the current system are
candidate actors for the i* SD model for the future system.

Check 2.3 All dependencies in the i* SD model of the current system are
candidate dependencies for the i* SD model for the future system.

Check 2.4 All actions in the use case descriptions for the current system are
candidate actions for the use case descriptions for the future system.

Check 2.5 All variations in the use case descriptions for the current system
are candidate variations or use cases for the future system.

Check 2.6 All external actors in the i* SD model of the future system should
correspond to actors in the use case descriptions for the future system.

Check 2.7 For all task dependencies identified in the i* SD model of the
future system, which represent tasks carried out by actors in the use
case diagram, there should be a part of a use case description which
describes how those tasks are carried out.

Check 2.8 All requirements associated with use cases using the RESCUE
use case template should be stored in the requirements database.

Check 4.1 Ensure that each requirement is either a system level requirement
or is linked to a use case, use case action, or alternative course.

Check 4.2 Check whether each use case action is linked with require-
ments of the right types using simple heuristics based on action- and
requirement- types, for example do human-computer interaction ac-
tions have candidate functional, usability, look-and-feel, training and
performance requirements specified for them?

Check 4.3 For all except system-level requirements, check that requirement
fit criteria are grounded in the use cases to which requirements are
linked.

113

Check 5.1 Ensure that all impact consequences are recorded in the require-
ments database.

Check 5.2 Ensure that change requests are generated for all impact conse-
quences recorded in the requirements database.

Appendix B

How to correctly use the
QROSS-Checker

B.1 Creating a Context Model

To create this model, you have to use Microsoft Visio. Here is how to draw
each of the elements of the context model:

• Domain borders: use the rectangle shape, from the toolbar

• Agents: use the “state” shape of the UML Statecharts you will find
on the left of the visio window, and give a name to the shape created

• System (or technical) agents: use the ellipse shape, from the toolbar,
and give a name to the shape created

• Information: use the “message” arrow of the UML Sequence, and give
it a name. Be careful that a red rectangle appears around the actors
you want to connect to each other, when you bring one of the ends of
the arrow in it. If several informations are transmitted between the
same actors, separate the name of each information by a “/” when you
give a name to the arrow (cfr “Instructions/status” on figure B.1).

B.2 Creating a Use Case Diagram

Once again, you have to use Microsoft Visio to create this diagram. Here is
the method to do it:

• Use case Actor: use the “actor” shape of the UML Use case tool, and
give it a name.

• Connections between an actor and a use case: use the “communica-
tion” arrow from the UML Use Case tool.

115

116 Chapter B. Using the QROSS-Checker

On-Board Bus
System

AVL System
Bus locations

Bus information/route information / traffic information

Route controller

Driver

Indicator

Bus route

Bus information

Passenger
Road-side Beacon

Communication system London Transport

Instructions / status
Instructions/status Traffic information

Traffic Information

Bus Information

Beacon ID

Figure B.1: Context Model example

• Borders: use the System boundary from the UML Use Case tool.

• Extends relationships: use the ’extends’ arrow from the UML Use Case
tool.

When connecting an actor and a use case with a communication arrow, or
two use cases with an extend arrow, be careful that a red rectangle appears
around the elements you’re connecting.

B.3 Creating a Strategic Dependency Model

Here, you have to use the Redepend tool. When you create a dependency,
you have to be careful: on each actor shape, you will find several connection
points; to each connection point, only one dependency can be connected. If
you need more connection points than the number available for an actor,
you have to “duplicate” this actor, i.e. create a new actor, with exactly the
same name. Let us be careful as well to the fact that the connection point
becomes red each time you connect a dependency to it. To differentiate the
“internal” (i.e. non external) actors in the schema, put a “*” in the name
of these. Do not use the character “*” in others actor’s names.

B.4 Using the QROSS-Checker to do the synchro-
nization checks

First, in “˜\qross\data\import” (where ˜ is the root file where you have
installed the qross files), you will find a “public” file. In this file, to make

B.4. Using the QROSS-Checker 117

Strategic
Decision
Makers

Operational

Decision
Makers

Operational
Level

Effectors

full picture

optimal
 tempo

minimal
collateral
damage

minimal
friendly

casualties

achieve

strategic
goal

command
intent

strategic
level plans

available
resource

information

progress
against

plan

specification

of desired
effects

deliver
effects

effectively

achieve

operational
goals

Operational
Decision
Makers

Figure B.2: Strategic dependency model example

the task easier, create another file which you name with the name of your
project, let us say “MyProject”. Then, save your context model in visio as
an XML Drawing file (“.vdx”). The name you give to it must contain, at
least “ContextModel”. If it is the context model for the current system, the
name has to contain the word ’Current’, and if it’s for the future system,
the name has to contain the word ’Future’. For instance, if your project
is named BusDriver, the file containing the context model for the current
system can be named “BusDriverCurrentContextModel.vdx”. Save it in the
’public’ subfile of qross, “MyProject”. Follow the same process for your Use
Case Diagram and your Strategic Dependency Model, but the parts which
have to be present in the names are “UseCase” and “SDModel”, respectively.
Then, save the word documents containing the use case descritpions as web
pages (“.htm”) in the public file “MyProject”. And finally, here is the pro-
cedure to give to qross the access to the requirements of your project. Go
to your “Control Panel”, then double click on “administration tools”, then
on “data sources (ODBC)”, add a “Microsoft Access Driver (*.mdb)”, give
it the name you want and select the database containing the requirements
of your project. Open the database in Microsoft Access, and copy the ta-
bles “RqRequirements”, “RqRequirementTypes”, “RqUserDefinedFields”,
“RqUserDefinedFieldValues”, “RqPackages” and “RqPackageElement” by
following this method:

• Right click on the name of the table, and choose “save as”;

118 Chapter B. Using the QROSS-Checker

• The name of the copy of the table will be the same as the former one,
just add a “2” at the end (“RqRequirements” will become “RqRequire-
ments2”);

• Click on “ok”.

Finally, in the public file “MyProject”, create a text file named “Require-
ments.txt”. Write the name you have given to the ODBC data source,
nothing else, and with exactly the same orthography.

B.4.1 Launching the QROSS-Checker

• Each time you use the QROSS-Checker, you have to delete the four
“zodb” files in “˜\qross\data\db” before starting the application;

• Go in “˜\qross\run” and dubble click on each of the ’.bat’ files;

• Start your internet browser and enter the adress “http://localhost:9081/

• Click on “project”;

• Log in with “admin” as a login and “admin” as a password;

• Click on “new”, enter a name for your project on the right place, click
on the file icon near “public”;

• Select the file of your project and click on “create”;

• You’ll find the result of the synchronization checks in
“˜\qross\data\projects\Myproject\result\SynchronizationChecks.doc”.

Appendix C

Requirements types

Requirement type Types of units of measure

FR - Functional requirement Requirements state predicted outcomes from functions, therefore test
for accurate completion of function within standard.

AS - Applicable standards Identified standard that is applied to the future system and its devel-
opment.

AR - Availability requirements Periods of time to be available, percentage of permitted downtime
in a period, maximum allowed duration of a downtime, numbers of
separate unavailable times. May be supplemented by definition of
what is unavailability of a system or product.

DR - Device requirements Adherence to some external standard, normally tested by 3rd party
expert combined with observation of the product.

IOR - Interoperability requirements Other systems to operate with for particular functions.

LFR - Look and Feel requirements Adherence to some external standard, normally tested by 3rd party
expert.

MR - Maintenance requirements Time needed to maintain, resources needed to maintain, levels or types
of maintenance to support.

OR Organisational requirements Organisational structures such as reporting hierarchies or lines of com-
munication.

PR - Performance requirements Speed measured using response-times or times to complete an action,
and throughput measured as actions or functions undertaken within
a time period.

PCR Political/cultural
requirements

Customs or cultural norms within which the system must operate.

PTR - Portability requirements Platforms that the system needs to operate on.

RCR - Recoverability requirements Mean-time to recover, likelihood to recover.

RR - Reliability requirements Mean-time between failures.

SFR - Safety requirements Number of injuries/risk of injuries total or over time.

SR - Security requirements Access functions, mean-time between breaches.

TR - Training requirements Extent, length and nature of user training needed, and measure of
success of the training.

UR - Usability requirements Task-completion times, error-rates, usage rates.

Table C.1: Measures for different requirement types from [Maid 04a]

119

Appendix D

Code for parsers

D.1 Parsers: general methods

General Parser Class ——————————————————-
Contains the methods shared by all the parsers ———————–
————————————————————————————
class Parser:

def init (self):
pass

def ParseMaster(self, line, file):
masters =
while line.find(’</Masters>’) == -1:

if line.find(’</Masters>’) == -1:
if line.find(’<Master ’) == -1:

line = self. Find(’<Master ’, file)
id = self. GetValueOf(’ID=\”, line, ’\’ NameU=’)
name = self. GetValueOf(’NameU=\”, line, ’\”)
masters[id] = name
line = self. Find(’</Master>’, file)
line = file.readline()

else: break
return masters

def Find(self, arg, file):
l = file.readline()
while l.find(arg)==-1:

l = file.readline()
return l

def GetValueOf(self, arg, string, endCharacter):

121

122 Chapter D. Code for parsers

arg = part of the string which precedes the value to get
string = string in which searching
endCharacter = character following the value to get
return the value
i = string.find(arg, 0, len(string))+len(arg)
if i == -1+len(arg):

return ’error in GetValueOf’
else:

j = string.find(endCharacter, i, len(string))
if j ==-1:

return ’error in GetValueOf’
else:

return string [i:j]

def GetValueOf2(self, arg, string, endCharacter, f):
arg = part of the string which precedes the value to get
string = string in which searching
endCharacter = character following the value to get
return the value
i = string.find(arg, 0, len(string))+len(arg)
if i == -1+len(arg):

return ’error in GetValueOf’
else:

j = string.find(endCharacter, i, len(string))
while j ==-1:

string = string + f.readline()
j = string.find(endCharacter, i, len(string))

else:
return string [i:j]

def SearchInLine(self, line, file):
i = 0 # counter for line
j = 0 # counter for res
k = 0 # number of ’<’ characters, unclosed
res = ”
num = None
bool = 0
while i != len(line)+1:

if i == len(line):
line = line + file.readline()
d = line.find(’<![if !supportLists]>’)
if d!=-1:

c = 1
while c==1:

D.1. Parsers: general methods 123

line = line + file.readline()
f = line.find(’<![endif]>’)
if f!=-1:

c = 0
num = self. SearchInLine(line, file)
line = line[:d]+line[f+10:]

if line[i] == ’<’:
if res == ”:

bool = 1
k = k+1

else:
break

elif line[i] == ’>’:
k = k-1

elif (line[i] == ’\n’) & (res != ”) & (k == 0):
res = res + ’ ’
j=j+1

else:
if (k == 0) & (line[i] != ’<’) & (bool == 1):

if (res !=”):
if (res[j-1] == ’ ’) & (line[i] == ’ ’):

pass
else:

res = res + line[i]
j = j+1

else:
res = res + line[i]
j = j+1

i = i+1
if num!=None:

return num+’ ’+res
else:

return res

124 Chapter D. Code for parsers

D.2 Parser for context models

#——————————————————————————————–
Class parsing an XML file, which contains the description of a context
model schema
Imports
from qross.shared.ContextModelElement import *
from qross.shared.Constants import GC
from qross.project server.Parser import *
import os

class ContextParser(Parser):
def init (self, filepath):

Parser. init (self)
self.schemaName = filepath.split(os.sep)[-1].split(’.’)[0]
self.positions =
dictionary: Key = Agent, values = [PinX, PinY, Heigth, weight]
self.domains =
dictionary: Key = domain, values = [PinX, PinY, Heigth, weight]
self.connections =
dictionnary: Key = Connection between 2 Agents,
values = single right, single left or double
self.agents =
dictionary: Key = id of an Agent, values = name of the Agent
self.agentsTypes =
self.elements =
dictionary: key: id, values: ContextModelElement
self.objects =
dictionary: Key = id of the object, Values = object in the repository
self.objectsTypes =
dictionary: Key = id of the object, Values = type of UserNeedElement
f = file(filepath,’r’)
self.parse(f)
f.close()

def parse(self, f):
#l = Parser. Find(self, ’<Title>’, f)
We have find the name of the schema
–¿ creation of a schema :)
#self.schemaName = Parser. GetValueOf(self, ’<Title>’, l, ’<’)
if self.schemaName.upper().find(’CURRENT’) != -1:

self.schemaName = ’CurrentContextModel’
elif self.schemaName.upper().find(’FUTURE’) != -1:

self.schemaName = ’FutureContextModel’

D.2. Parser for context models 125

else:
print ’ERROR in ContextModel file Name’
print ’maybe you forgot to name it with ContextModel in it’
print ’or maybe you forgot to put Current or Future in the file\’s name’

schema = ContextSchema(self.schemaName)
self.objects[’schema’] = schema
self.objectsTypes[’schema’] = GC.ART UNE SCHEMA
l= Parser. Find(self, ’<Masters>’, f)
self.masters = Parser.ParseMaster(self, l, f)
l = Parser. Find(self, ’<Shapes>’, f)
l = f.readline()
Threatement of the shapes
i=0
while l.find(’</Shapes>’) == -1:

if l.find(’<Shape’)==-1:
l = f.readline()

if l.find(’</Shapes>’) != -1:
break

if l.find(’<Shape’)!=-1:
id = Parser. GetValueOf(self,’ID=’, l, ’ ’)
if self.schemaName == ’FutureContextModel’:

id = ’F’+ id
if l.find(’Master=\’18\”) != -1:

type = ’18’
else:

type = Parser. GetValueOf(self, ’Master=\”, l, ’\”)
if type == ’error in GetValueOf’:

l = self.Shape(l, id, f, self.domains, schema)
elif self.masters[type].find(’Message’)!=-1:

l = self.Information(l, id, f, self.connections, schema)
elif self.masters[type].find(’State’)!=-1:

l = self.Agent(l, id, f, self.positions, self.objects, schema)
else:

pass
j = 1
if ((type != ’error in GetValueOf’)and

(self.masters[type].find(’State’)!=-1)):
l = f.readline()

if l.find(’</Shape>’) != -1:
j=j-1

if l.find(’<Shape ’) !=-1:
l = f.readline()

while j != 0:
l = f.readline()

126 Chapter D. Code for parsers

if l.find(’<Shape ’)!=-1:
j = j+1

elif l.find(’</Shape>’) != -1:
j = j-1

i = i+1
self.ComputeDomains()
self.ComputePositions()
l = Parser. Find(self, ’<Connects>’, f)
l = f.readline()
while l.find(’</Connects>’) == -1:

self.Connection(l, self.connections, f)
l = f.readline()

def Shape(self, line, id, file, domains, schema):
l= Parser. Find(self, ’<PinX>’, file)
x = float(self. GetValueOf(’<PinX>’, l, ’¡’))
l =Parser. Find(self, ’<PinY>’, file)
y = float(self. GetValueOf(’<PinY>’, l, ’¡’))
l = Parser. Find(self, ’<Width>’, file)
width = float(self. GetValueOf(’<Width>’, l, ’¡’))
l = Parser. Find(self, ’<Height>’, file)
height =float(self. GetValueOf(’<Height>’, l, ’<’))
name = ”
while l.find(’</Shape>’) == -1:

if l.find(’<Text>’) == -1:
l=file.readline()

else:
creation of a TechnicalAgent which the name is get in this line
if l.find(’><’)==-1:

name = Parser. SearchInLine(self, l, file)
else:

name = Parser. SearchInLine(self, l, file)
object = ContextTechnicalAgent(id, name.upper())
object.SetSchema(self.objects[’schema’])
self.elements[id] = object
self.objects[id] = object
self.objectsTypes[id] = GC.ART UNE SCHEMAPIECE
break

if name == ”:
if domains.has key(’first’):

if domains.has key(’second’):
domains[’third’] = (x,y,width, height)

else:
domains[’second’] = (x, y, width, height)

D.2. Parser for context models 127

else:
domains[’first’] = (x, y, width, height)

else:
self.agentsTypes[id] = ’TechnicalAgent’

return l

def Information(self, line, id, file, connections, schema):
l = Parser. Find(self, ’<Line>’, file)
i = ’0’
j=’0’
while l.find(’</Line>’)==-1:

while l.find(’<BeginArrow’)==-1:
l = file.readline()

i = Parser. GetValueOf(self, ’>’, l, ’</’)
l = file.readline()
j = Parser. GetValueOf(self, ’>’, l, ’</’)
break

if (i == ’0’) & (j != ’0’):
connections[id] = ’singleright’

elif (i != ’0’) & (j == ’0’):
connections[id] = ’singleleft’

elif (i != ’0’) & (j != ’0’):
connections[id] = ’double’

elif (i == ’0’) & (j == ’0’):
print ’problem in Information’

l = Parser. Find(self, ’<Text>’, file)
information = Parser. SearchInLine(self, l, file)
creation of an object ’ContextInformation’
object = ContextInformation(information.upper(), id, schema)
object.SetSchema(self.objects[’schema’])
self.elements[id] = object
self.objects[id] = object
self.objectsTypes[id] = GC.ART UNE SCHEMAPIECE
return l

def Agent(self, line, id, file, positions, objects, schema):
l = Parser. Find(self, ’<PinX>’, file)
x = float(self. GetValueOf(’<PinX>’, l, ’¡’))
l =Parser. Find(self, ’<PinY>’, file)
y = float(self. GetValueOf(’<PinY>’, l, ’<’))
l = Parser. Find(self, ’<Width ’, file)
width = float((self. GetValueOf(’<Width ’, l, ’<’).split(’>’)[1]).split(’<’)[0])
l = Parser. Find(self, ’<Height Unit=\’MM\’ F=\’Inh\’>’, file)
height = float(self. GetValueOf(’<Height Unit=\’MM\’ F=\’Inh\’>’, l, ’<’))

128 Chapter D. Code for parsers

l = Parser. Find(self, ’<Shapes>’, file)
i = 0
while i != 3:

l = Parser. Find(self, ’<Shape’, file)
i = i+1

l = Parser. Find(self, ’<Text>’, file)
nameAgent = Parser. SearchInLine(self, l, file)
self.agents[id] = nameAgent.upper()
self.positions[id]=[x, y, width, height]
l = Parser. Find(self, ’</Shapes>’, file)
return l

def Connection(self, line, connections, file):
id = Parser. GetValueOf(self, ’FromSheet=’, line, ’ F’)
sender = Parser. GetValueOf(self, ’ToSheet=’, line, ’ T’).upper()
line = file.readline()
receiver = Parser. GetValueOf(self, ’ToSheet=’, line, ’ T’).upper()
if self.schemaName == ’FutureContextModel’:

id = ’F’+ id
sender = ’F’ + sender
receiver = ’F’ + receiver

direction = connections[id]
if direction == ’singleright’:

create a ’send’ relationship between the ContextAgent sender and
the ContextInformation id
sender = self.objects[sender]
information = self.objects[id]
sender.AddSentInformation(information)
information.AddSender(sender)
#create a ’receive’ relationship between the ContextInformation id
and the ContextAgent receiver
receiver = self.objects[receiver]
information.AddReceiver(receiver)

elif direction == ’singleleft’:
create a ’send’ relationship between the ContextAgent receiver and
the ContextInformation id
sender = self.objects[receiver]
information = self.objects[id]
sender.AddSentInformation(information)
information.AddSender(sender)
create a ’receive’ relationship between the ContextInformation id
and the ContextAgent sender
receiver = self.objects[sender]
information.AddReceiver(receiver)

D.2. Parser for context models 129

else:
bidirectional relationship
sender = self.objects[sender]
information = self.objects[id]
receiver = self.objects[receiver]
sender.AddSentInformation(information)
information.AddSender(sender)
information.AddReceiver(receiver)
receiver.AddSentInformation(information)
information.AddSender(receiver)
information.AddReceiver(sender)

def ComputeDomains(self):
if self.domains.has key(’first’) & self.domains.has key(’second’):

a=self.domains[’first’]
b=self.domains[’second’]
c=[]
if self.domains.has key(’third’):

c = self.domains[’third’]
if (a[2] < b[2]) & (a[3] < b[3]):

if c != []:
if (c[2] < b[2]):

if (c[2] < a[2]):
self.domains[’third’]=b
self.domains[’second’]=a
self.domains[’first’]=c

else:
self.domains[’third’]=c
self.domains[’second’]=b

else:
domains were well ordered
pass

if c == []:
domains were well ordered
pass

else:
if c != []:

if (c[2] < a[2]):
if c[2] < b[2]:

self.domains[’third’]=a
self.domains[’second’]=b
self.domains[’first’]=c

else:
self.domains[’third’]=a

130 Chapter D. Code for parsers

self.domains[’second’]=c
self.domains[’first’]=b

else:
self.domains[’third’]=b
self.domains[’second’]=a
self.domains[’first’]=c

else:
self.domains[’second’]=a
self.domains[’first’]=b

else:
print ’error in domains @ComputeDomains’

def ComputePositions(self):
for key in self.agents.keys():

if self.Include(self.positions[key], self.domains[’first’]):
self.agentsTypes[key] = ’TechnicalAgent’
agent = ContextTechnicalAgent(key, self.agents[key])
agent.SetSchema(self.objects[’schema’])
self.objects[key] = agent
self.objectsTypes[key] = GC.ART UNE SCHEMAPIECE

elif self.Include(self.positions[key], self.domains[’second’]):
self.agentsTypes[key] = ’SocioTechnicalAgent’
agent = ContextSocioTechnicalAgent(key, self.agents[key])
agent.SetSchema(self.objects[’schema’])
self.objects[key] = agent
self.objectsTypes[key] = GC.ART UNE SCHEMAPIECE

elif self.domains.has key(’third’):
if self.Include(self.positions[key], self.domains[’third’]):

self.agentsTypes[key] = ’UncontrolledAgent’
agent = ContextUncontrolledSystemAgent(key, self.agents[key])
agent.SetSchema(self.objects[’schema’])
self.objects[key] = agent
self.objectsTypes[key] = GC.ART UNE SCHEMAPIECE

else:
self.agentsTypes[key] = ’OutsideAgent’
agent = ContextOutsideAgent(key, self.agents[key])
agent.SetSchema(self.objects[’schema’])
self.objects[key] = agent
self.objectsTypes[key] = GC.ART UNE SCHEMAPIECE

else:
self.agentsTypes[key] = ’OutsideAgent’
agent = ContextOutsideAgent(key, self.agents[key])
agent.SetSchema(self.objects[’schema’])
self.objects[key] = agent

D.2. Parser for context models 131

self.objectsTypes[key] = GC.ART UNE SCHEMAPIECE

def Include(self, object, domain):
domainX = domain[0]
domainY = domain[1]
domainWidth = domain[2]
domainHeight = domain[3]
objectX = object[0]
objectY = object[1]
if ((domainX - domainWidth/2) < objectX) &

(objectX < (domainX + domainWidth/2)) &
((domainY - domainHeight/2) < objectY) &
(objectY < (domainY + domainHeight/2)):

return 1
else:

return 0

Appendix E

Code for the checks

#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Requests to implement the Synchronisation checks
Check 1.1 **
Every actor in the context model for the current system is a candidate
actor for the context model of the future system ***********
CurrentContextAgents = currentContextModel.pieces
→select(agent:ContextAgent|agent.type = ’agent’).GetName2()

FutureContextAgents = futureContextModel.pieces
→select(agent:ContextAgent | agent.type = ’agent’).GetName2()

Check 1 1 Part1 = CurrentContextAgents
→select(actor|not FutureContextAgents→includes(actor))

Check 1 1 Part2 = FutureContextAgent
→select(actor|not CurrentContextAgents→includes(actor))

Check 1.2 **
Every Data flow in the context model for the current system is a candidate
data flow for the context model of the future system ***********
CurrentDataFlow = currentContextModel.pieces
→select(info:ContextInformation|info.type = ’info’).GetCompleteInfo()

FutureDataFlow = futureContextModel.pieces
→select(info:ContextInformation|info.type = ’info’).GetCompleteInfo()

Check 1 2 Part1 = CurrentDataFlow
→select(info|not FutureDataFlow→includes(info))

Check 1 2 Part2 = FutureDataFlow
→select(info|not CurrentDataFlow→includes(info))

Check 1.3 **
Every use case in the use case diagram for the current system is a candidate
for a use case in the use case diagram for the future system ****
CurrentUseCases = currentUseCaseDiagram.pieces
→select(uc:UseCase | uc. class . name = ’UseCase’).GetName2()

FutureUseCases = futureUseCaseDiagram.pieces

133

134 Chapter E. Code for the checks

→select(uc:UseCase | uc. class . name = ’UseCase’).GetName2()
Check 1 3 Part1 = CurrentUseCases
→select(uc|not FutureUseCases→includes(uc))

Check 1 3 Part2 = FutureUseCases
→select(uc|not CurrentUseCases→includes(uc))

Check 1.4 **
Every adjacent actor which communicates directly with the technical system
(level 1) in the context model for the current system is a candidate
actor for the use case diagram for the current system *********
CurrentLevel1 = currentContextModel.pieces
→select(actor | actor. class . name = ’ContextTechnicalAgent’)

CurrentLevel234 = currentContextModel.pieces
→select(actor | actor.type = ’agent’ and
not CurrentLevel1→includes(actor)).GetName2()

CurrentUseCaseActors = currentUseCaseDiagram.pieces
→select(actor | actor. class . name = ’UseCaseActor’).GetName2()

CurrentDataFlows = currentContextModel.pieces
→select(df | df. class . name = ’ContextInformation’)

CurrentAdjDataFlows = CurrentDataFlows→select(df|
((CurrentLevel1→includes(df.GetFirstSender()) and
(not CurrentLevel1→includes(df.GetFirstReceiver()))) or
(CurrentLevel1→includes(df.GetFirstReceiver()) and
(not CurrentLevel1→includes(df.GetFirstSender())))))

CurrentAdjActors = CurrentAdjDataFlows.GetAllSenders().GetName2()
→union(CurrentAdjDataFlows.GetAllReceivers().GetName2())
→select(actor|CurrentLevel234→includes(actor))→asSet()

Check 1 4 Part1 = CurrentAdjActors
→select(actor|not CurrentUseCaseActors→includes(actor))

Check 1 4 Part2 = CurrentUseCaseActors
→select(actor|not CurrentAdjActors→includes(actor))

Check 1.5 **
The system boundary in the use case model for the current system model
should be the same as the boundary between levels 1 & 2 in the context
model for the current system ***********************************

Non implemented
Check 1.6 **
For every data flow from or to level 1 (or one of the sub systems within
level 1) of the context model of the current system there should be a
corresponding line in the use case diagram for the current system indicating
involvement of the relevant actor in the relevant use case ****
CurrentUseCaseInfo = currentUseCaseDiagram.pieces
→select(actor:UseCaseActor | actor.type = ’actor’).GetCompleteInfo()

CurrentAdjDataFlowsInfo = CurrentAdjDataFlows.GetCompleteInfo()
Check 1.7 **

135

Every adjacent actor (at level 2 3 or 4) which communicates directly
with the technical system (level 1) in the context model for the future
system is a candidate actor for the use case diagram for the future system*
FutureLevel1 = futureContextModel.pieces
→select(actor | actor. class . name = ’ContextTechnicalAgent’)

FutureLevel234 = futureContextModel.pieces
→select(actor | actor.type = ’agent’ and
not FutureLevel1→includes(actor)).GetName2()

FutureUseCaseActors = futureUseCaseDiagram.pieces
→select(actor:UseCaseActor | actor.type = ’actor’).GetName2()

FutureDataFlows = futureContextModel.pieces
→select(df | df. class . name = ’ContextInformation’)

FutureAdjDataFlows = FutureDataFlows→select(df|
((FutureLevel1→includes(df.GetFirstSender()) and
(not FutureLevel1→includes(df.GetFirstReceiver()))) or
(FutureLevel1→includes(df.GetFirstReceiver()) and
(not FutureLevel1→includes(df.GetFirstSender())))))

FutureAdjActors = FutureAdjDataFlows.GetAllSenders().GetName2()
→union(FutureAdjDataFlows.GetAllReceivers().GetName2())
→select(actor|FutureLevel234→includes(actor))→asSet()

Check 1 7 Part1 = FutureAdjActors
→select(actor|not FutureUseCaseActors→includes(actor))

Check 1 7 Part2 = FutureUseCaseActors
→select(actor|not FutureAdjActors→includes(actor))

Check 1.8 **
The system boundary in the use case model for the future system should
be the same as the boundary between levels 1 & 2 in the context model
for the future system **

Non implemented
Check 1.9 **
For every data flow from or to level 1 (or one of the sub systems
within level 1) of the context model of the future system there
should be a corresponding line in the use case diagram for the future
system indicating involvement of the relevant actor in the relevant
use case **
FutureUseCaseInfo = futureUseCaseDiagram.pieces
→select(actor:UseCaseActor | actor.type = ’actor’).GetCompleteInfo()

FutureAdjDataFlowsInfo = FutureAdjDataFlows.GetCompleteInfo()
Check 1.10 **
services and functions related to use cases in the use case diagram for
the future system should map to system level requirements i.e. high level
functional and non functional requirements in the requirements database *

not implemented
Check 2.1**

136 Chapter E. Code for the checks

All external actors in the i* SD model of the current system should
correspond to actors in the use case descriptions for the current
system ***
CurrentExternalSDActors = currentSDModel.pieces
→select(actor | actor. class . name = ’SDActor’)
→select(actor | actor.IsExternal()¡¿0).GetName2()

CurrentUseCaseDescrActors = currentUseCaseDiagram.pieces
→select(useCase:UseCase | useCase.type = ’useCase’).GetActors()→asSet()

Check 2 1 = CurrentExternalSDActors
→select(act|not CurrentUseCaseDescrActors→includes(act))

Check 2.2 **
All external actors in the i* SD model of the current system are candidate
actors for the i* SD model of the future system *********************
FutureSDActors = futureSDModel.pieces
→select(actor | actor. class . name = ’SDActor’).GetName2()

Check 2 2 Part1 = CurrentExternalSDActors
→select(act|not FutureSDActors→includes(act))

Check 2 2 Part2 = FutureSDActors
→select(act|not CurrentExternalSDActors→includes(act))

Check 2.3 **
All dependencies in the i* SD model of the current system are candidate
dependencies for the i* SD model of the future system ****************
CurrentSDDependency = currentSDModel.pieces
→select(dep:SDDependency | dep. class . name = ’SDResourceDependency’
or dep. class . name = ’SDTaskDependency’ or dep. class . name =
’SDGoalDependency’ or dep. class . name = ’SDSoftGoalDependency’)
.GetCompleteInfo()

FutureSDDependency = futureSDModel.pieces
→select(dep:SDDependency | dep. class . name = ’SDResourceDependency’
or dep. class . name = ’SDTaskDependency’ or dep. class . name =
’SDGoalDependency’ or dep. class . name = ’SDSoftGoalDependency’)
.GetCompleteInfo()

Check 2 3 Part1 = CurrentSDDependency
→select(dep|not FutureSDDependency→includes(dep))

Check 2 3 Part2 = FutureSDDependency
→select(dep|not CurrentSDDependency→includes(dep))

Check 2.4 **
All actions in use case descriptions for the current system are
candidate actions for use case descriptions of the future system *******
CurrentUseCaseActions = currentUseCaseDiagram.pieces
→select(uc:UseCase | uc. class . name = ’UseCase’).GetActions()

FutureUseCaseActions = futureUseCaseTable.pieces
→select(uc:UseCase | uc. class . name = ’UseCase’).GetActions()

Check 2.5 **

137

All variations in use case descriptions for the current system are
candidate variations or use cases for the future system ************
CurrentUseCaseVariations = currentUseCaseDiagram.pieces
→select(uc:UseCase | uc. class . name = ’UseCase’).GetVariations()

FutureUseCaseVariations = futureUseCaseTable.pieces
→select(uc:UseCase | uc. class . name = ’UseCase’).GetVariations()

Check 2.6 **
All external actors in the i* SD model of the future system should
correspond to actors in the use case descriptions for the future system *
FutureExternalSDActors = futureSDModel.pieces
→select(actor | actor. class . name = ’SDActor’)
→select(actor | actor.IsExternal()<>0).GetName2()

FutureUseCaseDescrActors = futureUseCaseDiagram.pieces
→select(useCase:UseCase | useCase.type = ’useCase’).GetActors()→asSet()

Check 2 6 = FutureExternalSDActors
→select(act|not FutureUseCaseDescrActors→includes(act))

Check 2.7 **
For all task dependencies identified in the i* SD model of the future
system which represent tasks carried out by actors in the use case diagram
there should be a part of a use case description which describes how
those tasks are carried out**************************************
FutTaskDependencies = futureSDModel.pieces
→select(dep:SDDependency | dep. class . name = ’SDTaskDependency’)
.GetCompleteInfo()

Check 2.8 **
All requirements associated with use cases using the RESCUE use case
template should be stored in the requirements database *********
ReqUCDB = futureUseCaseTable.pieces
→select(req | req. class . name = ’Requirement’).GetReq()

ReqDB = futureReqTable.pieces
→select(req | req. class . name = ’Requirement’).GetUserNeedName()

End requests to implement the Synchronisation checks
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

classgenerating the MS Word file containing the tables
presenting the results class Metriques:

def init (self, projectObjects):
self.projectObjects = projectObjects
self.testFile = HTMLFile()
self.SynchronizationChecks()
self.testFile.Close()

def SynchronizationChecks(self):

138 Chapter E. Code for the checks

project = self.projectObjects.Get(GC.ART UNE PROJECT)[0]
metrics = project.metricsValues.keys()
Check 1.1 **
title = ’Every actor in the context model for the current system ’\

’is a candidate actor for the context model of the future system.’
self.testFile.AddCheck(’Check1.1’, title)
list1 = project.metricsValues[’Check 1 1 Part1’][0]
remove = ’Do you want to remove these actors to create your new system?’
list2 = project.metricsValues[’Check 1 1 Part2’][0]
add = ’Do you want to add these actors to create your new system?’
if (list1 != None) and (list2 != None):

self.TextForm(remove, add, list1, list2)
else:

self.testFile.AddSpecial(’At least one of the context model’\
’is missing in the project.’, 1)

self.testFile.CloseTable()
Check 1.2 ***
title = ’Every Data flow in the context model for the current system ’\

’is a candidate data flow for the context model of the future system.’
self.testFile.AddCheck(’Check1.2’, title)
list1 = project.metricsValues[’Check 1 2 Part1’][0]
remove = ’Do you want to remove these data flows to create your new system?’
list2 = project.metricsValues[’Check 1 2 Part2’][0]
add = ’Do you want to add these data flows to create your new system?’
if (list1 != None) and (list2 != None):

self.TextForm2(remove, add, list1, list2)
else:

self.testFile.AddSpecial(’At least one of the context model’\
’is missing in the project.’, 1)

self.testFile.CloseTable()
Check 1.3 ***
title = ’Every use case in the use case diagram for the current’\

’system is a candidate for a use case in the use case diagram ’\
’for the future system.’

self.testFile.AddCheck(’Check1.3’, title)
list1 = project.metricsValues[’Check 1 3 Part1’][0]
remove = ’Do you want to remove these use cases to create your new system?’
list2 = project.metricsValues[’Check 1 3 Part2’][0]
add = ’Do you want to add these use cases to create your new system?’
if (list1 != None) and (list2 != None):

self.TextForm(remove, add, list1, list2)
else:

self.testFile.AddSpecial(’At least one of the use case diagram ’\
’is missing in the project.’, 1)

139

self.testFile.CloseTable()
Check 1.4 ***
title = ’Every adjacent actor which communicates directly ’\

’with the technical system (level 1) in the context model ’\
’for the current system is a candidate actor for the use ’\
’case diagram for the current system.’

self.testFile.AddCheck(’Check1.4’, title)
list1 = project.metricsValues[’Check 1 4 Part1’][0]
remove = ’These adjacent actors from the context model of the current ’\

’system are not present in the Use Case diagram of the current system:’
list2 = project.metricsValues[’Check 1 4 Part2’][0]
add = ’These actors from the Use Case diagram of the current system’\

’ are not present in the Context model of the current system:’
if (list1 != None) and (list2 != None):

self.TextForm(remove, add, list1, list2)
else:

self.testFile.AddSpecial(’The context model or the use case diagram’\
’is missing in the project.’, 1)

self.testFile.CloseTable()
Check 1.5 ***
self.testFile.AddCheck(’Check 1.5’, ’The system boundary in the use case ’\

’model for the current system model should \nbe the same as the ’\
’boundary between levels 1 & 2 in the context model for the ’\
’current system.’)

self.testFile.CloseTable()
Check 1.6 ***
self.testFile.AddCheck(’Check 1.6’, ’For every data flow from or to level 1 ’\

’(or one of the sub systems within level 1) of the context model ’\
’of the current system, there should be a corresponding line in ’\
’the use case diagram for the current system indicating ’\
’involvement of the relevant actor in the relevant use case.’)

liste = project.metricsValues[’CurrentUseCaseInfo’][0]
curAdjDataFlow = project.metricsValues[’CurrentAdjDataFlowsInfo’][0]
level234 = project.metricsValues[’CurrentLevel234’][0]

if (liste != None) and (curAdjDataFlow != []):
actorDict =
for actor in liste:

actor = actor.split($’)
actorDict[actor[0]] = actor[1:]

i = 0
line = 1
self.testFile.AddLine(’These data flows of the current context model ’\

’do not have corresponding use cases \n’\
’in the use case diagram:’, line)

140 Chapter E. Code for the checks

bidirectional = 0
while i < (len(curAdjDataFlow)):

contextInformations = curAdjDataFlow[i].split(’’)
senders = contextInformations[1].split($’)
receivers = contextInformations[2].split($’)
actor = ”
if senders[1] != ”:

bidirectional data flow
bidirectional = 1
if senders[0] in level234:

actor = senders[0]
elif senders[1] in level234:

actor = senders[1]
else:

unidirectional data flow
if senders[0] in level234:

actor = senders[0]
elif receivers[0] in level234:

actor = receivers[0]
if actorDict.has key(actor):

search for corresponding use case in those of this actor
contextInformations = contextInformations[0].split(’/’)
for info in contextInformations:

res = 0
for uc in actorDict[actor]:

res2 = self.StringCompared(info.upper(), uc.upper())
if res2 > 70:

res = res+1
if ((bidirectional==0) and(res<1)):

self.testFile.AddCell(info+’\nsent by: ’+
str(senders[0:-1])+’\nreceived by: ’ +
str(receivers[0:-1]), line)

line = line+1
elif ((bidirectional==1)and(res<2)):

if res == 0:
self.testFile.AddCell(info+’\nsent by: ’+

str(senders[0:])+’\nreceived by: ’ +
str(receivers[0:])+’\n’ +
(2 use cases missing (1 for each direction))’, line)

elif res ==1:
self.testFile.AddCell(info+’\nsent by: ’+

str(senders[0:])+’\nreceived by: ’ +
str(receivers[0:])+’\n’ +
(1 use case missing (for 1 of the directions))’, line)

141

line = line+1
else:

self.testFile.AddCell(contextInformations[0]+’\nsent by: ’+
str(senders[0:-1])+’\nreceived by: ’ + str(receivers[0:-1]) +
’\n(cause actor \“’+actor+
’\”not found in Use Case diagram)’, line)

line = line+1
bidirectional = 0
i = i+1

else:
self.testFile.AddSpecial(’Context model or use case diagram’\

’ missing in the project.’, 1)
self.testFile.CloseTable()
Check 1.7 ***
self.testFile.AddCheck(’Check 1.7’, ’Every adjacent actor (level 2, 3 or 4) ’\

’which communicates directly with the technical system (level 1) ’\
’in the context model for the future system is a candidate actor for ’\
’the use case diagram for the future system.’)

list1 = project.metricsValues[’Check 1 7 Part1’][0]
remove = ’These adjacent actors from the context model of the future ’\

’system are not present in the Use Case diagram of the future system:’
list2 = project.metricsValues[’Check 1 7 Part2’][0]
add = ’These actors from the Use Case diagram of the future system’\

’ are not present in the Context model of the future system:’
if (list1 != None) and (list2 != None):

self.TextForm(remove, add, list1, list2)
else:

self.testFile.AddSpecial(’The context model or the use case diagram ’\
’is missing in the project.’, 1)

self.testFile.CloseTable()
Check 1.8 ***
self.testFile.AddCheck(’Check 1.8’, ’The system boundary in the use case ’\

’model for the future system model should be the same as the ’\
’boundary between levels 1 & 2 in the context model for the ’\
’future system.’)

self.testFile.CloseTable()
Check 1.9 **
self.testFile.AddCheck(’Check 1.9’, ’For every data flow from or to level 1 ’\

’(or one of the sub systems within level 1) of the context model of the ’\
’future system, there should be a corresponding line in the use case ’\
’diagram for the future system indicating involvement of the ’\
’relevant actor in the relevant use case.’)

liste = project.metricsValues[’FutureUseCaseInfo’][0]
futAdjDataFlow = project.metricsValues[’FutureAdjDataFlowsInfo’][0]

142 Chapter E. Code for the checks

level234 = project.metricsValues[’FutureLevel234’][0]
if (liste != None) and (futAdjDataFlow != []):

actorDict =
for actor in liste:

actor = actor.split($’)
actorDict[actor[0]] = actor[1:]

line = 1
self.testFile.AddLine(’These data flows of the future context model ’\

’do not have corresponding use cases in the use case diagram:’, line)
i = 0
line = line + 1
while i < (len(futAdjDataFlow)):

contextInformations = futAdjDataFlow[i].split(’’)
senders = contextInformations[1].split($’)
receivers = contextInformations[2].split($’)
actor = ”
bidirectional=0
if senders[1] != ”:

bidirectional data flow
bidirectional = 1
if senders[0] in level234:

actor = senders[0]
elif senders[1] in level234:

actor = senders[1]
else:

unidirectional data flow
if senders[0] in level234:

actor = senders[0]
elif receivers[0] in level234:

actor = receivers[0]
if actorDict.has key(actor):

search for corresponding use case in those of this actor
contextInformations = str(contextInformations[0]).split(’/’)
for info in contextInformations:

res = 0
for uc in actorDict[actor]:

res2 = self.StringCompared(info.upper(), uc.upper())
if res2 > 70:

res = res + 1
if (bidirectional == 0)and(res!=1):

self.testFile.AddCell(info+’\nsent by: ’+str(senders[0:])+
’\nreceived by: ’ + str(receivers[0:]), line)

line = line+1
elif ((bidirectional==1)and(res<2)):

143

if res == 0:
self.testFile.AddCell(info+’\nsent by: ’+str(senders[0:])+

’\nreceived by: ’ + str(receivers[0:])+
’\n(2 use cases missing (1 for each direction))’, line)

elif res ==1:
self.testFile.AddCell(info+’\nsent by: ’+str(senders[0:])+

’\nreceived by: ’ + str(receivers[0:])+
’\n(1 use case missing (for 1 of the directions))’, line)

line = line+1
else:

self.testFile.AddCell(contextInformations[0]+’\nsent by: ’+
str(senders[0:])+’\nreceived by: ’ + str(receivers[0:]) +

’\n(cause actor ’̈+actor+’\”not found in Use Case diagram)’, line)
line = line+1

bidirectional = 0
i = i+1

else:
self.testFile.AddSpecial(’Contextmodel or use case diagram ’\

missing in the database.’, 1)
self.testFile.CloseTable()
Check 1.10 ***
title = ’Services and functions related to use cases in the use case diagram ’\

’for the future system should map to system level requirements, i.e. ’\
’high level functional and non functional requirements in the ’\
’requirements database.’

self.testFile.AddCheck(’Check 1.10’, title)
self.testFile.CloseTable()
Check 2.1 **
title = ’All external actors in the i* SD model of the current system should ’\

’correspond to actors in the use case descriptions for the current system.’
self.testFile.AddCheck(’Check 2.1’, title)
line = 1
liste = project.metricsValues[’Check 2 1’][0]
if (liste != None) :

self.testFile.AddLine(’These external actors in the Strategic dependency ’\
’model for the current system are not present in the use case’\
’descritpions:’, line)

line = line + 1
i=0
while i < len(liste):

self.testFile.AddCell(liste[i], line+i+1)
i = i+1

else:

144 Chapter E. Code for the checks

self.testFile.AddSpecial(’SD model or use case descriptions ’\
’missing in the project.’, 1)

self.testFile.CloseTable()
Check 2.2 **
title = ’All external actors in the i* SD model of the current system ’\

’are candidate actors for the i* SD model of the future system.’
self.testFile.AddCheck(’Check 2.2’, title)
remove = ’Do you want to remove these external actors from the SD ’\

’model to create the new system?’
list1 = project.metricsValues[’Check 2 2 Part1’][0]
add = ’Do you want to add these actors to create the new system?’
list2 = project.metricsValues[’Check 2 2 Part2’][0]
if (list1 != None) and (list2 != None):

self.TextForm(remove, add, list1, list2)
else:

self.testFile.AddSpecial(’At least one of the SD models is missing.’, line)
self.testFile.CloseTable()
Check 2.3 **
title = ’All dependencies in the i* SD model of the current system are ’\

’candidate dependencies for the i* SD model of the future system.’
self.testFile.AddCheck(’Check 2.3’, title)
line = 1
list1 = project.metricsValues[’Check 2 3 Part1’][0]
list2 = project.metricsValues[’Check 2 3 Part2’][0]
if (list1 != None) and (list2 != None):

self.testFile.AddLine(’Do you want to remove these dependencies ’\
’to create the new system?’, line)

i = 0
while i < len(list1):

info = list1[i].split($’)
type = info[0]
dep = info[1]
sender = info[2]
receivers = info[3]
self.testFile.AddCell(type + ’ dependency \” + dep+

’\’\n- depender:\n ’ +sender +
’\n- dependees:\n ’ + receivers, line)

line = line + 1
i = i+1

line = line +1
self.testFile.AddLine(’Do you want to add these dependencies ’\

’to create the new system?’, line)
i=0
while i < len(list2):

145

info = list2[i].split($’)
type = info[0]
dep = info[1]
sender = info[2]
receivers = info[3]
self.testFile.AddCell(type + ’ dependency \” + dep

+’\’\n- depender:\n ’ +
sender + ’\n- dependees:\n ’ + receivers, line)

line = line + 1
i = i+1

else:
self.testFile.AddSpecial(’At least one of the SD model is missing.’, line)

self.testFile.CloseTable()
Check 2.4 **
title = ’All actions in use case descriptions for the current system are ’\

’candidate actions for use case descriptions of the future system.’
self.testFile.AddCheck(’Check 2.4’, title)
line = 1
list1 = project.metricsValues[’CurrentUseCaseActions’][0]
remove = ’Do you want to remove these actions to create the new system?’
list2 = project.metricsValues[’FutureUseCaseActions’][0]
add = ’Do you want to add these actions to create the new system?’
if (list1 != None) and (list2 != None):

list11=[]
for a in list1:

res = 0
for a2 in list2:

r = self.StringCompared(a.upper(), a2.upper())
if r>res:

res = r
if res>65:

pass
else:

list11.append(a)
list22=[]
for a in list2:

res = 0
for a2 in list1:

r = self.StringCompared(a.upper(), a2.upper())
if r>res:

res=r
if res>65:

pass
else:

146 Chapter E. Code for the checks

list22.append(a)
self.TextForm(remove, add, list11, list22)

else:
self.testFile.AddSpecial(’At least one of the model doesn\’t have use’\

’ case descriptions including actions in the database.’, 1)
self.testFile.CloseTable()

Check 2.5 **
title = ’All variations in use case descriptions for the current system are ’\

’candidate variations or use cases for the future system.’
self.testFile.AddCheck(’Check 2.5’, title)
line = 1
list1 = project.metricsValues[’CurrentUseCaseVariations’][0]
remove = ’Do you want to remove these variations to create the ’\

’new system?’
list2 = project.metricsValues[’FutureUseCaseVariations’][0]
add = ’Do you want to add these variations or use cases to create’\

’ the new system?’
if (list1 != None) and (list2 != None):

list11=[]
for a in list1:

res = 0
for a2 in list2:

r = self.StringCompared(a.upper(), a2.upper())
if r>res:

res = r
if res>65:

pass
else:

list11.append(a)
list22=[]
for a in list2:

res = 0
for a2 in list1:

r = self.StringCompared(a.upper(), a2.upper())
if r>res:

res=r
if res>65:

pass
else:

list22.append(a)
self.TextForm(remove, add, list11, list22)

else:
self.testFile.AddSpecial(’At least one of the model doesn\’t have use’\

’ case descriptions including variations in the database.’, 1)

147

self.testFile.CloseTable()
Check 2.6 **
title = ’All external actors in the i* SD model of the future system should ’\

’correspond to actors in the use case descriptions for the future system.’
self.testFile.AddCheck(’Check 2.6’, title)
ucDescrActors = project.metricsValues[’FutureUseCaseDescrActors’][0]
if ucDescrActors == []:

self.testFile.AddSpecial(’All actors fields are empty in the use case ’\
’descriptions’, 1)

liste = project.metricsValues[’Check 2 6’][0]
line = 2
if (liste != None) :

self.testFile.AddLine(’These external actors in the Strategic dependency ’\
’model for the future system are not present in the use case ’\
’descriptions:’, line)

line = line + 1
i=0
while i < len(liste):

self.testFile.AddCell(liste[i], line+i+1)
i = i+1

else:
self.testFile.AddSpecial(’SD model or use case descriptions missing ’\

’in the project.’, 1)
self.testFile.CloseTable()
Check 2.7 **
title = ’For all task dependencies identified in the i* SD model of the ’\

’future system, which represent tasks carried out by actors in the ’\
’use case diagram, there should be a part of a use case description ’\
’which describes how those tasks are carried out.’

self.testFile.AddCheck(’Check 2.7’, title)
line = 1
list1 = project.metricsValues[’FutTaskDependencies’][0]
if list1 != None:

self.testFile.AddLine(’Here is a list of the task dependencies in ’\
’the SDModel for the future system:’, line)

i = 0
while i<len(list1):

info = list1[i].split($’)
dep = info[1]
sender = info[2]
receivers = info[3]
self.testFile.AddCell(dep +’\’\n- depender:\n ’ +

sender + ’\n- dependees:\n ’ + receivers, line)
line = line + 1

148 Chapter E. Code for the checks

i = i+1
else:

self.testFile.AddSpecial(’SD model or use case descriptions missing.’, line)
self.testFile.CloseTable()
Check 2.8 **
title = ’All requirements associated with use cases using the RESCUE ’\

’use case template should be stored in the requirements database.’
self.testFile.AddCheck(’Check 2.8’, title)
line = 1
self.testFile.AddLine(’These requirements are not described in the’\

’requirements database:’, line)
self.testFile.CloseTable()

def TextForm(self, remove, add, list1, list2):
line = 1
self.testFile.AddLine(remove, line)
i=0
while i < len(list1):

self.testFile.AddCell(list1[i], line+i+1)
i = i+1

line = i
self.testFile.AddLine(add, line)
i = 0
while i < len(list2):

self.testFile.AddCell(list2[i], line+i+1)
i = i+1

self.testFile.CloseTable()

def TextForm2(self, remove, add, list1, list2):
line =1
self.testFile.AddLine(remove, line)
i=0
while i< len(list1):

informations = list1[i].split(’’)
self.testFile.AddCell(informations[0]+’\nsent by: ’+

str(informations[1].split($’)[0:-1])+’\nreceived by: ’+
str(informations[2].split($’)[0:-1]), line+i+1)

i = i+1
line = i
self.testFile.AddLine(add, line)
i=0
while i< len(list2):

informations = list2[i].split(’’)
self.testFile.AddCell(informations[0]+’\nsent by: ’+

149

str(informations[1].split($’)[0:-1])+’\nreceived by: ’+
str(informations[2].split($’)[0:-1]), line+i+1)

i = i+1
self.testFile.CloseTable()

def StringCompared(self, string1, string2):
”’compare if two given strings are equal; case sensitive”’
words1 = string1.split(’ ’)
for w in words1:

w=self.RemoveSpace(w)
words2 = string2.split(’ ’)
for w in words2:

self.RemoveSpace(w)
i = 0
res = 0
for w in words1:

for w2 in words2:
if w == w2:

res = res+1
break

if words1[len(words1)-1]==”:
res = ((float(res)/(len(words1)-1))*100)

else:
res = ((float(res)/len(words1))*100)

return res

def RemoveSpace(self, string):
i = string.find(’ ’)
if i!=-1:

if i==len(string):
string=string[:i]

else:
string=string[:i]+string[i+1:]

string=RemoveSpace(string)
else:

return string

