
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Implementation of a presence and instant messaging system using SIP with mobility
support

Le Kim, David

Award date:
2005

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/454c7183-c990-4971-8ea1-7e97a6a8bd16

Facultés Universitaires Notre-Dame de la Paix, Namur
Institut d’Informatique

Année Académique 2004 - 2005

Implementation of a presence and
instant messaging system using SIP

with mobility support

David Le Kim

Mémoire présenté en vue de l’obtention du grade de Mâıtre en
Informatique

Abstract

This master thesis proposes an implementation of a SIP client offering pres-

ence and instant messaging functions, under the assumption that SIP prox-

ies are not presence-enabled.

This implementation relies on SIMPLE, a SIP-based protocol, whose pur-

pose is to resolve interoperability issues among various SIP clients. Our

client has also been enhanced with mobility support without continuous

connectivity at application-layer level. Throughout this paper, we provide

an introduction to SIP, presence, instant messaging and mobility support.

Résumé

Ce mémoire de mâıtrise propose une implémentation d’un client SIP offrant

des fonctionnalités de présence et de messagerie instantanée avec l’hypothèse

selon laquelle les proxy SIP ne possèdent pas de fonctions de présence.

Cette implémentation repose sur SIMPLE, un protocol basé sur SIP, dont

le but est de résoudre les problèmes d’interopérabilité parmi les clients SIP.

Notre client a également été conçu de manière à supporter la mobilité sans

connexion permanente au niveau de la couche applicative. Dans ce mémoire,

nous proposons une introduction à SIP, aux fonctionnalités de présence et

de messagerie instantanée ainsi qu’au support de la mobilité.

Acknowledgements

First and foremost, I wish to thank my supervisor, Professor

Laurent Schumacher, for his guidance and valuable advices through-

out the various revisions of this master thesis.

I am also grateful to Professors Jean-Marie Bonnin and Xavier

Lagrange for giving me the opportunity to work within the

Réseaux et Services Multimédias department at Ecole Nationale

Supérieure des Télécommunications de Bretagne in Rennes, France.

I wish to express my gratitude to Bruno Deniaud for all kinds

of support he provided me during my internship.

I acknowledge the help of Emil Ivov for his technical support on

Sip Communicator.

I also wish to express my appreciation to all those people who

brought a significant contribution to this thesis and the work

carried out during my internship.

Finally, I would like to thank my parents for their love, encour-

agement and confidence in me throughout these past five years.

Contents

1 Introduction 1

2 SIP - Session Initiation Protocol 3

2.1 The Origins of SIP . 3

2.2 Overview of SIP Functionalities 4

2.3 SIP Entities . 5

2.3.1 User Agent . 6

2.3.2 Server . 6

2.4 Encapsulation and Layer Structure 7

2.4.1 RTP/RTCP . 8

2.4.2 RSVP . 9

2.4.3 RTSP . 10

2.4.4 SAP . 10

2.5 SIP Messages . 10

2.5.1 Requests and Response Codes 10

2.5.2 SIP Address Format 12

2.5.3 Message Structure 12

2.6 Entity Interaction . 15

2.6.1 Session Establishment 15

SDP - Session Description Protocol 16

2.6.2 Registration . 18

2.7 Security . 19

2.7.1 Hop-by-Hop encryption 20

2.7.2 Authentication and Authorization 20

2.7.3 Privacy, Integrity and Confidentiality 20

i

CONTENTS

2.7.4 Transport and Network Layer Security 21

2.8 SIP vs H.323 . 21

3 Presence Service 23

3.1 Standards and Protocols . 24

3.1.1 IMPP . 24

3.1.2 SIMPLE . 25

3.1.3 XMPP . 25

3.2 Concepts and Model . 26

3.3 Presence with SIP . 28

3.3.1 Architecture . 28

3.3.2 PIDF . 30

3.3.3 Presence Publication 31

3.3.4 Presence Subscription and Notification 33

4 Instant Messaging Service 35

4.1 Proprietary Instant Messaging Systems 36

4.1.1 ICQ . 36

4.1.2 AOL Instant Messenger 37

4.1.3 Yahoo! Messenger . 37

4.1.4 Microsoft MSN Messenger 37

4.2 Standards and Protocols . 38

4.3 Concepts and Model . 38

4.4 Instant Messaging with SIP 40

4.4.1 Pager-mode Instant Messaging 40

4.4.2 Session-based Instant Messaging with MSRP 42

5 Mobility Support 47

5.1 Types of Mobility . 48

5.2 Mobile IP . 48

5.2.1 Architecture . 48

Triangular Routing 50

Agent Discovery . 51

Registration . 52

ii

CONTENTS

5.2.2 Limitations . 52

5.2.3 Mobile IPv6 . 53

5.3 Mobility Support Using SIP 54

5.3.1 Mobile Node Registration 54

5.3.2 Pre-Call Mobilty . 55

5.3.3 Mid-Call Mobilty . 56

5.3.4 SIP Mobility Support with Mobile IP 57

6 Analysis of Application Requirements 59

6.1 Requirements . 59

6.1.1 Audio/Video Sessions 60

6.1.2 Edge Presence Server 60

6.1.3 Buddy List . 60

6.1.4 Instant Messaging System 60

6.1.5 Mobility Support . 60

6.1.6 Operating System Independence 61

6.2 Choice of a SIP client . 61

6.2.1 Windows Messenger 5.0 61

6.2.2 KPhone 3 . 61

6.2.3 Sip Communicator 61

6.2.4 Comparison . 64

6.2.5 Conclusion . 64

6.3 The Environment . 65

6.4 Utility Tools . 66

6.4.1 Java 2 Platform, Standard Edition 1.4.2 (J2SE) . . . 66

6.4.2 JAIN SIP stack 1.1 66

6.4.3 IntelliJ IDEA 4.5 . 67

6.4.4 Apache Ant 1.6.2 . 67

6.4.5 SIP Express Router (SER) 67

iii

CONTENTS

7 Implementation 69

7.1 Architecture . 69

7.2 Application flow . 73

7.3 Presence . 74

7.3.1 Buddy List . 75

7.3.2 Watcher . 75

Subscription Sending 75

Notification Processing 75

7.3.3 Presence Agent . 76

Subscription Processing 76

Notification Sending 76

Mutual Subscription 76

7.4 Instant Messaging . 77

7.4.1 MESSAGE Request Processing 77

7.4.2 MESSAGE Request Sending 78

7.5 Mobility . 79

7.5.1 Session Modification 79

7.5.2 Mobile Host Registration 81

7.5.3 Pre-Call Mobility . 81

7.5.4 Mid-Call Mobility . 81

8 Results and Discussion 83

8.1 Results . 84

8.1.1 Presence . 84

Scenario A.1 : Mutual subscription between Sip Com-

municator and Windows Messenger/KPhone 84

Scenario A.2 : Mutual subscription between Sip Com-

municator and Windows Messenger/KPhone 85

Scenario A.3 : Mutual subscription between two Sip

Communicator’s 86

Scenario A.4 : Presence notification between two do-

mains . 86

8.1.2 Instant Messaging . 87

iv

CONTENTS

Scenario B.1 : Instant Messaging between Sip Com-

municator and Windows Messenger/KPhone

within one domain 87

Scenario B.2 : Instant Messaging between two domains 87

8.1.3 Mobility . 89

Scenario C.1 : Pre-call mobility - Mobile Host moves

in the same subnet 89

Scenario C.2 : Mid-call mobility - Mobile Host moves

to different subnet 90

8.2 Fulfillment of the Requirements 91

8.2.1 Audio/Video Sessions 91

8.2.2 Edge Presence Server 91

8.2.3 Buddy List . 91

8.2.4 Instant Messaging System 92

8.2.5 Mobility Support . 92

8.2.6 Operating System Independence 93

8.3 Critical Review . 93

8.3.1 Pushing Presence Service to the Edges 93

8.3.2 JAIN SIP Stack Destruction 95

8.4 Future work . 96

8.4.1 Automatic Session Modification 96

8.4.2 Enhanced Mid-Call Mobility 96

9 Conclusions 99

A JAIN SIP stack 101

A.1 Introduction . 101

A.2 Responsibilities of JAIN SIP 102

A.3 JAIN SIP Object Architecture 102

A.3.1 SipStack Interface . 102

A.3.2 Architecture . 103

A.3.3 SipStack Creation . 104

A.3.4 Retransmissions . 104

v

CONTENTS

A.3.5 SipProvider Interface 104

A.3.6 Architecture . 105

A.3.7 SipListener Interface 105

A.4 JAIN SIP Messaging Architecture 105

A.4.1 Responsibilities of the Application 106

A.5 Packages . 106

A.6 Factories . 107

A.7 Headers . 107

A.8 Messages . 108

A.9 Generic SIP Application Structure 108

A.9.1 Transaction Support 108

A.9.2 Dialog Support . 109

Bibliography 115

vi

List of Figures

2.1 Encapsulation and Layer Structure 7

2.2 Successful SIP Session Establishment 16

2.3 SIP Registration . 19

3.1 Overview of Presence Service 27

3.2 Type of Watchers . 28

3.3 Example of SIP Presence Architecture. Source : [15] 29

3.4 Publication of Presence Information 32

3.5 Subscription and Notification of Presence Information 33

4.1 Growth of IM users. Source : IDC 35

4.2 Overview of Instant Message Service 39

4.3 Pager-mode Instant Message Flow 41

4.4 Successful Establishment of Instant Message Session 43

5.1 Mobile IP Architecture. Source : [24] 49

5.2 Triangular Routing. Source : [24] 51

5.3 Mobile Host Registration. Source : [17] 55

5.4 Pre-Call Mobility with SIP. Source : [17] 56

5.5 Mid-Call Mobility with SIP. Source : [17] 57

6.1 Windows Messenger . 62

6.2 KPhone . 62

6.3 Sip Communicator . 63

6.4 SIP Testbed . 65

7.1 Sip Communicator Architecture 70

vii

LIST OF FIGURES

7.2 Sip Communicator Application Flow 73

7.3 Presence End-to-End Model 74

7.4 Mutual Subscription . 77

7.5 Activity Diagram : Reception of a MESSAGE request 78

7.6 Session Modification . 80

8.1 Scenario A.1 . 84

8.2 Scenario A.2 . 85

8.3 Scenario A.3 . 86

8.4 Scenario A.4 . 87

8.5 Scenario B.1 . 88

8.6 Scenario B.2 . 88

8.7 Scenario C.1 . 89

8.8 Scenario C.2 . 90

8.9 Buddy List . 91

8.10 Chat Frame . 92

8.11 Presence Server Model . 94

8.12 Mid-Call Mobility with Continuous Connectivity 97

A.1 JAIN SIP Architecture . 103

A.2 JAIN SIP Messaging Architecture 106

A.3 Generic SIP Application Structure 109

viii

List of Tables

2.1 Some Audio Payload Types Supported by RTP 9

2.2 Some Video Payload Types Supported by RTP 9

2.3 Main SIP methods . 11

2.4 SIP Response Code Classes 11

2.5 Example of SIP INVITE request 13

2.6 SIP INVITE request and line by line description 14

2.7 Example of SIP INVITE response 15

2.8 Example of SDP Content . 17

2.9 SDP Content and Line By Line Description 18

2.10 Example of SIP REGISTER request 19

3.1 Example of PIDF content 30

3.2 Line by Line Description of PIDF Content 31

3.3 Example of SIP PUBLISH request 32

3.4 Example of SIP SUBSCRIBE request 34

3.5 Example of SIP NOTIFY request 34

4.1 Example of SIP MESSAGE request 42

4.2 Example of SDP Content with MSRP media 44

4.3 Example of MSRP SEND request 44

4.4 MSRP Content and Line By Line Description 45

5.1 Example of mobile routing table. Source : [17] 58

6.1 Comparison of Features . 64

8.1 Traffic Load Comparison . 94

ix

List of Abbreviations
3GPP Third Generation Partnership Project

APEX Application Exchange

CGI Common Gateway Interface

CH Correspondent Host

CN Correspondent Node

CPIM Common Profile for Instant Messaging

CPP Common Profile for Presence

FA Foreign Agent

GPRS General Packet Radio Service

GPL General Public License

GRE Generic Routing Encapsulation

GUI Graphical User Interface

HA Home Agent

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IM Instant Messaging

IMPP Instant Messaging and Presence Protocol

IP Internet Protocol

IPSec IP Security

ITU International Telecommunications Union

JAIN Java API for Integrated Networks

JMF Java Media Framework

LAN Local Area Network

MIME Multipurpose Internet Mail Extensions

MH Mobile Host

MN Mobile Node

MSRP Message Session Relay Protocol

OS Operating System

PA Presence Agent

xi

PIDF Presence Information Data Format

PRIM PResence and Instant Messaging

PSTN Public Switched Telephone Network

PUA Presence User Agent

QoS Quality of Service

RFC Request For Comments

RPID Rich Presence Information Data Format

RSVP Resource ReserVation Protocol

RTCP RTP Control Protocol

RTP Real-time Transport Protocol

RTSP Real-Time Streaming Protocol

SAP Session Announcement Protocol

SCTP Stream Control Transmission Protocol

SDP Session Description Protocol

SIMPLE SIP for Instant Messaging and Leveraging Extensions

SIP Session Initiation Protocol

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

URI Uniform Resource Identifier

VoIP Voice over IP

XML eXtensible Markup Language

XMPP eXtensible Messaging and Presence Protocol

xii

Chapter 1

Introduction

Presence and instant messaging, the functions that enable a user to check

people’s status online and send them real-time messages, has proved to be

one of the most popular applications on the Internet. Since the revolution

of Internet, presence and instant messaging systems have been gathering

hundreds of millions of users who stay connected for very long periods of

time. With the introduction of wireless technologies like Wi-Fi and UMTS,

we expect a similar phenomenon in such networks. Paradoxically, presence

and instant messaging services seem to be one of the most difficult Internet

applications to standardize as each of them uses its own protocol.

The purpose of this work is to implement a SIP (Session Initiation Protocol)

client which combines presence awareness and real-time instant messaging

based on an IETF protocol called SIMPLE (SIP for Instant Messaging and

Leveraging Extensions), under the assumption that SIP proxies are not

presence-enabled. As its name suggests, SIMPLE is a SIP-based protocol

and has been designed to offer interoperability among SIP-based applica-

tions. As of today, SIP, to be discussed in Chapter 2, is currently the leading

signaling protocol for Voice over IP gradually replacing H.323 in this role.

Our SIP client is meant to be used on mobile terminals. Enabling terminal

mobility in IP-based networks can be achieved through a variety of means.

Mobile IP, to be discussed in Chapter 5, is one of them. However, due to its

1

limitations and high complexity, SIP-based solutions coming from university

research have been proposed to provide mobility support at application-layer

level. In order to support mobility management, our SIP client has been

designed from one of those solutions.

This work was carried out within the framework of the project SIPMOB

during a four-month internship at Ecole Nationale Supérieure des Télécom-

munications de Bretagne under the supervision of Professor J.M. Bonnin.

This thesis is structured as follows. Chapter 2 will introduce the SIP pro-

tocol. This chapter will describe how SIP works, its entities, the structure

of its messages, etc. Chapters 3 and 4 will respectively describe the concept

of presence and instant messaging and present the existing solutions on In-

ternet. Following these two chapters, Chapter 5 will introduce the mobility

support with Mobile IP and SIP. Chapter 6 will present the application

analysis and requirements that our application should fulfill. Chapter 7

will describe the design and the implementation of our application. Chap-

ter 8 will introduce the results, discuss the proposed solution and present

the future work that can be performed. Finally, Chapter 9 will present

the conclusions that can be drawn from this thesis work. Readers familiar

with SIP, presence, instant messaging and Mobile IP can safely skip reading

chapters 2, 3, 4 and 5.

2

Chapter 2

SIP - Session Initiation
Protocol

Session Initiation Protocol (SIP) is an application-layer signaling protocol

for establishing, modifying and terminating multimedia sessions [25]. In

other words, it provides a way to establish audio, video and messaging

communications between devices over a network, i.e. the Internet. SIP’s

conception of networks matches that used in the Internet : smart end-

points or devices exchange data with each other over a simple transport

infrastructure. This contrasts with the traditional telephone network which

uses dumb endpoints over an intelligent network. This difference makes

the core network work more efficiently as intelligence is placed where it is

needed the most.

2.1 The Origins of SIP

SIP was originally developed around 1996 from an academic project lead by

Henning Schulzrinne, Associate Professor of the Department of Computer

Science at Columbia University. His intent within the Multi-Party Multi-

media Working Group was to define a mechanism which allows voice, video

and data to be integrated over the same network. In 1999, the Internet En-

gineering Task Force (IETF) issued the first SIP specification, RFC 2543.

During the following years, new SIP’s functions were rapidly developed and

extended for use in instant messaging and presence for example, so a new

3

2.2 Overview of SIP Functionalities

set of standards based on RFC 3261 was released in 2002. Nowadays, many

companies are offering an increasing number of SIP-based applications and

services.

2.2 Overview of SIP Functionalities

Here are the five facets SIP is supporting for establishing and terminating

multimedia sessions [25] :

• User location : d̄etermines the end system to be used for communi-

cation.

• User availability : determines if the called party wants to engage in

communications.

• User capabilities : determines the media and media parameters to

be used during the session.

• Session setup : establishes the session parameters at both called

and calling party.

• Session management : includes transfer and termination of ses-

sions, modifies sessions parameters and invokes services.

Functionalities of SIP include the following capabilities as described in [10] :

• Mobility : no matter where it is, a SIP client can dynamically register

to its home location and access services it asks for. Thanks to its

unique identifier, which is similar to an email address, all its calls

would be forwarded to it. Multiple devices can be associated with this

identifier, calls will be routed to them simultaneously or sequentially,

according to the user policy.

4

2.3 SIP Entities

• Separation of signaling and media : with SIP, signaling paths are

totally independent from media’s ones. Signaling and media may be

routed through different locations on different physical networks. SIP

does not define the type of session that is being established but rather

how it should be managed.

• Flexible message structure : SIP messages are text-encoded, present

a simple structure thus are easy to read, understand and debug. De-

velopers can easily and quickly create applications using popular pro-

gramming languages such as Java.

• Media negotiation : SIP allows clients to negotiate media parame-

ters and protocols to be used during a session. For example, a SIP

client would be able to choose a more suitable media while moving to

a network with a smaller bandwidth.

• Transport layer independent : SIP uses User Datagram Protocol

(UDP) as well as Transmission Control Protocol (TCP) to connect

users between them no matter what the underlying infrastructure is.

SIP can work both with IPv4 and IPv6.

• Multi-devices support : If a SIP device establish an audio/video

session, audio can still be transmitted to other SIP endpoints even if

they are non-video enabled. Also different media parameters can be

used for transmitting and receiving video/audio streams.

2.3 SIP Entities

SIP is based on the client/server transaction model. A SIP client sends out

a request. A SIP server responds to that request by generating a response.

During a session, a SIP entity can participate in SIP sessions as a client, as

a server, or as both.

We can find two types of logical SIP entities :

5

2.3 SIP Entities

2.3.1 User Agent

In a SIP network, a User Agent (UA) is an endpoint device which initiates

and terminates media sessions by exchanging requests and responses. A

SIP UA can be a SIP phone as well as a SIP software or even a telephony

gateway. As defined in [25], a UA is a logical entity that can act both as a

User Agent Client (UAC) and User Agent Server (UAS).

• User Agent Client : logical entity that creates new request

• User Agent Server : logical entity that generates responses to re-

ceived SIP requests

This is different from the classic client/server model as a SIP entity can play

both the role of server and client during the course of a same session.

2.3.2 Server

SIP server is part of the SIP-enabled network. It helps UA to set up sessions

and assists them in other functions. There are four types of SIP servers :

proxy, redirect server, registrar and UAS which has been previously intro-

duced.

• Proxy : logical intermediary entity that plays the role of forwarding

SIP messages to another SIP entity as close as possible to the targeted

user. A proxy acts both as a client and server, it can rewrite some

parts, i.e. headers, of a SIP message before routing it to its destination.

A proxy also ensures that a user is allowed to make a call and has the

appropriate authentication.

• Redirect Server : logical intermediary entity that receives requests

from UAC or another proxy and returns a response, redirecting the

UAC to another location.

• Registrar : logical entity that receives SIP registration requests and

updates databases containing the location of all UAs within a domain.

As those servers are logical, a same physical box can play both the role, for

example, of proxy and registrar at the same time.

6

2.4 Encapsulation and Layer Structure

2.4 Encapsulation and Layer Structure

Figure 2.1: Encapsulation and Layer Structure

Figure 2.1 represents SIP messages encapsulation. SIP messages may carry

a Session Description Protocol (SDP), which will be fully detailed in Sec-

tion 2.6.1, or MIME content i.e. text. SIP’s body may also contain other

content types defined by the IETF. As mentioned in Section 2.2, SIP mes-

sages are totally transport layer independent and have their own built-in

reliability mechanisms. The application itself determines the appropriate

protocol for the communication. As UDP session management is more

straightforward compared to any other transport protocols, most of SIP

clients and SIP phones use UDP. Therefore TCP is rather used when a

longer and more permanent connection is required.

As a signaling protocol, SIP does not manage multimedia sessions neither

exercise control on media transmitted. However, SIP works in conjunction

with RTP/RTCP (Real-time Transport Protocol/RTP Control Protocol)

7

Chapter1/Chapter1Figs/EPS/layers.eps

2.4 Encapsulation and Layer Structure

for transporting real-time data, RSVP (Resource ReSerVation Protocol) for

reserving resources, RTSP (Real-Time Streaming Protocol) for controlling

streams delivery and SAP (Session Announcement Protocol) for announcing

multimedia sessions [36]. All these protocols are application layer protocols

[26].

2.4.1 RTP/RTCP

The Real-time Transport Protocol (RTP) was designed to support end-to-

end transport of real-time media. Common formats like PCM, GSM and

MP3 for sound and MPEG and H.263 for video can be conveyed using RTP.

RTP is also often used in conjunction with Internet telephony standards

such as SIP and H.323. RTP’s header has four main fields : sequence num-

ber, timestamp, synchronization source identifier (SSRC) and payload type.

The sequence number allows receiver to detect packet loss and reorder pack-

ets on arrival. Each packet is identified by a unique sequence number, so if

there is a gap in the RTP stream between sequence numbers 15 and 18, the

receiver understands that packet number 16 and 17 are missing.

Due to random queuing delays in the routers, the time between the genera-

tion of a packet at its source and the reception of this packet at the sink may

strongly vary from packet to packet. This phenomenon is known as jitter.

The timestamp field aims at removing packet jitter by using buffers at the

destination location and allows the stream to be synchronously played out.

The synchronization source identifier (SSRC) purpose is to identify the

source of the packet stream. Each stream in a RTP session is associated

with only one SSRC.

Each RTP stream may be encoded following different audio and video for-

mats. The payload type specifies the type of audio or video encoding used

8

2.4 Encapsulation and Layer Structure

during the RTP session. Thanks to this field, the sender may change the en-

coding during a same session to increase the audio/video quality or decrease

the stream bit rate according to the bandwidth availability. We should em-

phasize that RTP does not guarantee any Quality of Service (QoS) at all,

that is the reason why other protocols such as RTCP and RSVP should

work in conjunction with [26]. Table 2.1 and 2.2 shows some audio and

video payload types supported by RTP.

Payload Type Number Audio Format

0 PCM µ-law

3 GSM

9 G.722

14 MPEG Audio

Table 2.1: Some Audio Payload Types Supported by RTP

Payload Type Number Video Format

26 JPEG

31 H.261

32 MPEG1 Video

33 MPEG2 Video

Table 2.2: Some Video Payload Types Supported by RTP

The RTP Control Protocol (RTCP) provides feedback information, for ex-

ample, to modify the transmission rate, to all the participants of a RTP

session. The feedback information is about the quality of the data trans-

mission or long-term statistical data. RTCP can also perform fault diagnosis

to determine whether problems are local, regional, or global [26].

2.4.2 RSVP

The purpose of the Resource ReSerVation Protocol (RSVP) is to reserve

network resource1 for transmitting real-time data flows. RSVP is considered

1We assume here that the word resource is synonymous to bandwidth.

9

2.5 SIP Messages

rather as a signaling protocol than a routing protocol due to the fact that it

does not specify the paths where reservations should be made. Applications

will send RSVP requests to routers which provide the reserved resource to

data streams [26].

2.4.3 RTSP

The Real-Time Streaming Protocol (RTSP) allows users to replay various

media across the Internet. Users will be able to control playback as they

wish i.e. rewinding, forwarding, pausing, ... RTSP provides a framework

to control audio/video streams, it does not deliver the media streams itself.

RTSP is likely to be used with RTP but they can also work independently

[26].

2.4.4 SAP

Session Announcement Protocol (SAP) is a multicast session announcement

protocol which consists in advertising multicast conferences and communi-

cating specific multicast address and time information to prospective par-

ticipants. SAP carries a payload that describes the session i.e. Session

Description Protocol (SDP) explained in Section 2.6.1 [8].

2.5 SIP Messages

2.5.1 Requests and Response Codes

A SIP request is a SIP message sent from a client to a server. A SIP re-

sponse is a SIP message sent from a server to a client. SIP is based on a

request/response transaction model analogous to HTTP2. A transaction is

a two-part process : a request invoking a method on the server and at least

one response.

2Although SIP’s message and header field are similar to HTTP, SIP is not an exten-

sion of HTTP.

10

2.5 SIP Messages

METHOD DESCRIPTION

INVITE Session setup
ACK Acknowledgment of final response to INVITE

BYE Session termination
CANCEL Pending session cancellation
REGISTER Registration of users
SUBSCRIBE Request notification of an event
UNSUBSCRIBE Cancel notification of an event
NOTIFY Transport of subscribed event notification
MESSAGE Transport of an instant message body
UPDATE Update of the session parameters
REFER Transfer user to a URL
INFO Midcall signaling transport

Table 2.3: Main SIP methods

Table 2.3 shows the main SIP methods. The five first methods are the basic

ones described in RFC 3261 [25], the others are SIP extensions : the INFO

method (RFC 2976 [12]), Event Notification Framework (RFC 3265 [41]),

the UPDATE method (RFC 3311 [42]), the MESSAGE method (RFC 3428 [5])

defined for instant messaging and the REFER method (RFC 3515 [46]). In

order to add new functionalities to the SIP protocol, many new methods

are frequently developed and proposed as Internet drafts.

CLASS DESCRIPTION

1xx
Provisional or informational : Request in progress
but not complete

2xx Success : Request has completed successfully

3xx
Redirection : Request should be tried at another
location

4xx
Client error : Request not completed due to error
in request, can be retried when corrected

5xx
Server error : Request not completed due to error
in request, can be retried at another location

6xx
Global failure : Request has failed and should not
be retried

Table 2.4: SIP Response Code Classes

11

2.5 SIP Messages

SIP responses are identified by a Status-Code. A Status-Code is a three-

digit integer result code as shown in Table 2.4. Many of them come from

HTTP, i.e. 404 Not Found. The first digit defines the class which the

response belongs to. Thus, any response with Status-Code ranging from

100 to 199 is referred to as a 1xx response.

2.5.2 SIP Address Format

Each SIP user is uniquely identified by a Uniform Resource Identifier (URI).

A SIP URI can also identify a communication resource such as a mailbox

on a messaging system, a PSTN number at a gateway service, a group in

an organization, etc. It has a similar format to e-mail address and can be

placed on web pages as a hyperlink or in e-mail messages. A SIP URI has

the following format :

sip:dlekim@enst-bretagne.fr

sip:dlekim@134.138.228.102

where dlekim is the username and enst-bretagne.fr the hostname. It

can also take a phone number format as shown here :

sip:+32-484-21-19-50@enst-bretagne.fr;user=phone

user=phone specifies that the user is using a SIP phone for establishing his

call. SIP messages may be secured and encrypted (namely TLS3) during

transport from the caller domain to the callee’s one, this can be achieved

with SIPS URI.

sips:dlekim@enst-bretagne.fr

2.5.3 Message Structure

Here is an example of a SIP INVITE request (Table 2.5) followed by a line

by line description (Table 2.6).

3TLS, short for Transport Layer Security, is a protocol providing transport layer

security mechanisms between two communicating applications. Refer to Section 2.7.4 for

more information.

12

2.5 SIP Messages

INVITE sip:bob@info.be SIP/2.0

Via: SIP/2.0/UDP 192.108.119.243:5060

To: bob <sip:bob@info.be>

From: alice <sip:alice@info.be>

Call-ID: 123456789

CSeq: 1 INVITE

Contact: <sip:alice@192.108.119.210>

Content-Length: 408

Table 2.5: Example of SIP INVITE request

This is the minimum required set of headers a SIP application needs to

handle a SIP message. Many other headers may be added for the use of

other functionalities which will be stated in further sections.

13

2.5 SIP Messages

LINE DESCRIPTION

INVITE sip:bob@info.be

SIP/2.0

The request line starts with the name of
the method, followed by the destination
SIP URI and SIP version.

Via: SIP/2.0/UDP

192.108.119.243:5060

The Via header contains SIP version, the
transport protocol, the sender’s IP ad-
dress and the port number (5060 is SIP’s
dedicated port number). SIP servers will
add to the Via header their own address
before forwarding SIP messages.

To: alice

<sip:bob@info.be>

The To header contains the display name
followed by the SIP URI of the destination
of the SIP message.

From: bob

<sip:alice@info.be>

The From header contains the display
name followed by the SIP URI of the orig-
inator of the SIP message.

Call-ID: 123456789

The Call-ID header contains a unique
identifier for this session. It is made up of
a random identifier sometimes followed by
”@” and the hostname or IP address. All
requests and responses within this same
session must use the same Call-ID.

CSeq: 1 INVITE

The CSeq (Command Sequence number)
header contains an integer followed by the
request method. This is incremented for
each request with the same method within
the same session. Both caller and callee
parties maintain their own CSeq counts.

Contact:

<sip:alice@192.108.119.210>

The Contact header contains sender’s re-
turn address.

Table 2.6: SIP INVITE request and line by line description

Table 2.7 shows an example of a SIP INVITE response matching the previ-

ous request. The description is analogous to the request’s one. Most of the

time, SIP INVITE requests and responses carry a SDP body. This will be

introduced in the following section.

14

2.6 Entity Interaction

SIP/2.0 200 OK

Via: SIP/2.0/UDP 192.108.119.243:5060

To: bob <sip:bob@info.be>

From: alice <sip:alice@info.be>

Call-ID: 123456789

CSeq: 1 INVITE

Contact: <sip:bob@136.146.128.9>

Table 2.7: Example of SIP INVITE response

2.6 Entity Interaction

This section describes different interactions between SIP entities.

2.6.1 Session Establishment

Session setup is the primary function of SIP. A user agent client (UAC)

sends an INVITE request to a user agent server (UAS) to set up a session.

The INVITE message may contain a body which is a description of the type

of the session the user agent client wishes to establish. A SIP user agent

initializes the To, From and Call-ID headers at the start of the session.

Tags may be added to the To and From headers otherwise these headers

(To, From and Call-ID) are never modified during a session and are used

to uniquely identify the session referred to as a SIP call leg4. All SIP mes-

sages which are sent within the same call leg follow the same path. This

set of headers and other media description are the minimum amount of call

state that a user agent must maintain.

Figure 2.2 shows a successful SIP session establishment. The SIP session

establishment is a three-way handshake. The UAC sends an INVITE request,

receives a 200 OK response, then sends an ACK request. A request failure

will result in a REQUEST/4xx or 5xx or 6xxx/ACK message exchange. Zero

or more provisional 1xx responses can be sent prior to a final response 200

OK. Once a session is set up, a media session goes on indefinitely without

4Another name for a SIP call leg is SIP dialog

15

2.6 Entity Interaction

requiring further SIP signaling message exchange. The media session is

an end-to-end communication between the two UAs without involving the

proxy server. Session termination happens when one of the user agents

sends a BYE referencing a call leg and receives an ACK.

Figure 2.2: Successful SIP Session Establishment

SDP - Session Description Protocol

SIP itself does not provide media negotiation but makes it possible between

two endpoints by using Session Description Protocol (SDP). SDP is not

considered as a true protocol but rather a text-based description language,

which is described in RFC 2327 [30]. The negotiation is an offer-response

model in which the caller proposes one or more media types and the other

user agent accepts or declines each media session in a response. The offer is

16

Chapter1/Chapter1Figs/EPS/session_setup.eps

2.6 Entity Interaction

made in the initial INVITE message and the response is received in the 200

OK. The callee party may make his offer inside the 200 OK response then

the caller responds by sending an ACK. The SDP content encapsulated in

the SIP body message contains the media type, IP address, port and codec

to use with each media streams. More than one codec can be specified for

each media type. For each of these codecs proposed, the user agent should

be prepared to receive media for the duration of the session.

Here is an example of SDP content (Table 2.8) followed by a line by line

description (Table 2.9) :

v=0

o=dlekim 0 0 IN IP4 192.108.119.210

s=

c=IN IP4 192.108.119.210

t=

m=video 22222 RTP/AVP 26 20 31

m=audio 22224 RTP/AVP 0 3 4 5 6 8 15 18

a=rtpmap:26 JPEG/9000

a=rtpmap:0 PCMU/8000

Table 2.8: Example of SDP Content

A set of headers are added to SIP messages to provide information about

the body such as :

Content-Type : application/sdp

Content-Length : 358

The Content-Type header indicates the type of body and the Content-

Length header contains the length of the SIP’s message body in bytes. A

Content-Length of 0 means there is no message body. We should stress

here that SIP is totally session description format independent. Although

SDP is the most common format for session description, SIP may use other

formats as well.

17

2.6 Entity Interaction

LINE DESCRIPTION

v=0
Current version number of SDP - Not used
by SIP

o=dlekim 0 0 IN IP4

192.108.119.210
Origin - Not used by SIP

s= Subject - Not used by SIP

c=IN IP4 192.108.119.210
Connection - network, address type and
address

t=
Time - start and stop time - Not used by
SIP

m=video 22222 RTP/AVP 26 20

31

Media - media type (video), port, type and
payload type number (Section 2.4.1)

m=audio 22224 RTP/AVP 0 3 4

5 6 8 15 18

Media - media type (audio), port, type
and payload type number (Section 2.4.1)

a=rtpmap:26 JPEG/9000

Attribute - rtpmap lists attribute of
RTP/AVP video profile including codec
and sampling rate

a=rtpmap:0 PCMU/8000

Attribute - rtpmap lists attribute of
RTP/AVP audio profile including codec
and sampling rate

Table 2.9: SDP Content and Line By Line Description

2.6.2 Registration

In order to call a UAS from its SIP URI, a UAC need to register first to

a registrar server of its domain. Its role is to maintain mapping between

SIP URI and IP address provided by the Contact field. This information

is kept within a location server which updates its database in the case of a

new registration or in the case of a SIP URI that has been mapped with a

new IP address (Figure 2.3). Thus, any SIP user can always contact any

other registered SIP user wherever he is.

Table 2.10 shows a SIP REGISTER request. The first line contains the domain

of the registrar the user wish to register to. Max-Forwards indicates the

maximum number of hops a request can pass through to reach its final

destination. The Expires header contains the time in seconds after which

the message expires.

18

2.7 Security

Figure 2.3: SIP Registration

REGISTER sip:info.be SIP/2.0

Via: SIP/2.0/UDP 192.108.119.243:5060

Max-Forwards: 70

From: alice <sip:alice@info.be>

To: alice <sip:alice@info.be>

Call-ID: 123456789

CSeq: 1 REGISTER

Contact: <sip:alice@192.108.119.210>

Expires: 3600

Content-Length: 0

Table 2.10: Example of SIP REGISTER request

2.7 Security

SIP’s use of intermediaries and its end-to-end user operation make it difficult

to secure. In order to meet these needs, SIP provides many different security

mechanisms and hop-by-hop encryption. Instead of inventing new security

19

Chapter1/Chapter1Figs/EPS/register.eps

2.7 Security

mechanisms specific to SIP, SIP reuses existing security measures taken from

HTTP and SMTP. Here are some of these security measures.

2.7.1 Hop-by-Hop encryption

We know that end-to-end encryption message is the best way to preserve

confidentiality and integrity. However, we cannot apply this scheme to SIP

as SIP headers should be read and even modified by proxy servers. There-

fore endpoints should first require authentication of proxy servers before

sending their requests. Thus low-layer security mechanisms for SIP are

recommended, which will be detailed in Section 2.7.4.

2.7.2 Authentication and Authorization

Before processing any SIP requests, a proxy server may require the initiator

to authenticate itself and vice versa. This authentication procedure is also

applicable when a UAS receives a request from a UAC. Once the initiator

provides assurance of its identity, the recipient of the request may check

whether it has the authorization for the services it requests for. SIP defines a

header field called Authorizationwhich contains authentication credentials

of a user agent. SIP also defines the Proxy-Authorization header field

allowing a user agent to identify itself to a proxy [25].

2.7.3 Privacy, Integrity and Confidentiality

MIME bodies are carried within SIP messages. The MIME standard pro-

vides securing mechanisms called S/MIME. S/MIME provides the following

cryptographic security services for electronic messaging applications : au-

thentication, message integrity and non-repudiation of origin using digital

signature, and privacy and data security using encryption [7]. S/MIME

can provide some degree of end-to-end security through tunneling. The SIP

tunneling consists in encapsulating the whole SIP message within a MIME

body and then apply the MIME security mechanism as the same way as typ-

ical SIP bodies [25]. This would give supplementary processing for proxy

servers which have to decapsulate S/MIME bodies before routing them.

20

2.8 SIP vs H.323

2.7.4 Transport and Network Layer Security

Transport Layer Security (TSL) and IP Security (IPSec) protocols provide

respectively transport and network layer security guaranteeing message con-

fidentiality and integrity.

TLS is a protocol providing security mechanisms between two communi-

cating applications. TLS is mainly used over TCP and is specified as the

desired protocol within the SIP Via header or through the sips URI. TLS

is designed for hop-by-hop application model. Hence, if a user agent sends

a request using TLS to a proxy server, it will have no guarantee that its

request will be sent end-to-end [25].

IPSec is a set of protocols that provides security at the network layer pro-

tocol. SIP specification on security mechanisms does not give IPSec profile

to be used in SIP-based network but just recommend IPSec for securing the

network layer.

2.8 SIP vs H.323

H.323 is a popular standard defined by ITU (International Telecommunica-

tions Union) whereas SIP is defined by IETF. H.323 is not considered as a

protocol by itself but rather specifies how to use components, protocols and

procedures to implement multimedia conferences on a Local Area Network

(LAN) [1]. H.323 and SIP are direct competitors even if H.323 has a larger

piece in the current VoIP market due to its longer presence. We highlight

here the most important differences between SIP and H.323 :

• H.323 has a higher complexity level than SIP : H.323 specifies hun-

dreds of elements while SIP defines only 37 headers, with each a small

number of values and parameters.

21

2.8 SIP vs H.323

• H.323 is vertically integrated : H.323 provides a complete set of pro-

tocols for multimedia conferencing such as signaling, registration, ad-

mission control, transport and codecs while SIP only provides session

initiation and management, and should rely on other protocols to offer

services.

• H.323 is not very scalable : As H.323 has been designed to work within

a single LAN, it has scalability problems for large numbers of domains.

• Message format : H.323 uses binary representation for its messages

while SIP uses simple text encoded messages which are much easier

to implement and debug.

Because of its manageability, reliability and interoperability with PSTN,

H.323 is still widely used in the enterprise market and will continue to

exist for some time. Many serious implementers propose a SIP to H.323

interworking function/gateway as a solution to the interoperability problem.

22

Chapter 3

Presence Service

Presence service basically known as ”buddy list” indicating a user’s status

is continuously widely used in instant messaging (IM) softwares like AOL,

MSN Messenger, Yahoo!, ICQ,... and will reach more than 229 million regis-

tered users in the world by 2005 (Source : IDC). The use of presence service

will continue to increase with the Internet growth and is likely to become

omnipresent in the future. On the one hand, presence service allows a set

of users to receive a customized amount of information. On the other hand,

it allows third-party to exploit the presence information and customize the

service according to the user’s needs and preferences defined in the presence

information [15]. Nowadays, most of these technologies are based on pro-

prietary protocols and are unable to interoperate between different service

providers.

Thanks to its design, SIP is particularly well suited as a presence protocol.

Indeed, presence information is already contained in SIP location services

in the form of registrations and SIP messages can be routed from any user

in the network to the server which handles the registration state of a par-

ticular user [43]. For those reasons, a new SIP extension known as SIP

for Instant Messaging and Presence Leveraging Extensions (SIMPLE) has

been specified by the IETF in order to provide a common standard among

instant messaging and presence services [13].

23

3.1 Standards and Protocols

3.1 Standards and Protocols

Since it became obvious that presence and instant messaging solutions based

on proprietary protocols would be unable to communicate with each other,

the IETF has been working on a standardized solution. We present here

the standards resulting from different working groups [44] :

3.1.1 IMPP

In 1999, a new working group called Instant Messaging and Presence Proto-

col (IMPP) was formed by the IETF. Its purpose was to define requirements

and a general framework for presence and instant messaging systems. The

IMPP working group met many difficulties in defining a common standard

and therefore, preferred to let the market decide. Three new working groups

were formed with each their own protocol : Application Exchange (APEX),

Presence and Instant Messaging Protocol (PRIM) and SIMPLE (SIP for

Instant Messaging and Presence Leveraging Extensions). PRIM was an

early proposal and was discontinued because it was obsolete. APEX was a

XML-based protocol but is no longer used today. Most of the proponents

of APEX give their support on eXtensible Messaging and Presence Proto-

col (XMPP) which is also based on XML technology. SIMPLE and XMPP

remain the two protocols being developed within IETF for presence and

instant messaging applications.

Although IMPP working group failed to reach a consensus, it kept working

on standard solutions to enable interoperability between instant messaging

systems. IMPP released several RFCs :

• RFC 3859 : A common profile for presence (CPP)

• RFC 3860 : A common profile for instant messaging (CPIM)

• RFC 3862 : A common extensible instant message format (message/cpim)

• RFC 3863 : A common extensible presence information data format

(PIDF)

24

3.1 Standards and Protocols

The Common Profiles for Instant Messaging (CPIM) and Presence (CPP)

specifications define a set of operations and parameters to achieve interop-

erability between different Instant Messaging and Presence protocols which

meet Instant Messaging / Presence Protocol Requirements [27]. We outline

that CPIM and CPP specify the semantics and not the syntax. The MIME

content-type message/cpim is the common message format for CPIM-com-

pliant messaging protocols while PIDF is the common message format for

CPP-compliant presence protocols. An application is IMPP-compliant if it

meets both CPIM and CPP requirements defined in [27].

3.1.2 SIMPLE

As the name indicates, SIMPLE (SIP for Instant Messaging and Presence

Leveraging Extensions) is a SIP-based protocol. The SIMPLE working

group aims at developing an open standard and IMPP-compliant protocol

which adds presence and instant messaging functionalities to SIP. SIMPLE

propose the usage of SIP as a presence protocol, this can be accomplished

through an instantiation of the general event notification framework defined

for SIP [41]. Today, many industry leaders, such as Microsoft and IBM, have

strongly embraced both SIP and SIMPLE, using them in respectively Win-

dows Messenger and Lotus IM. The 3GPP has also decided to use SIMPLE

to give mobile devices presence capabilities.

3.1.3 XMPP

The eXtensible Messaging and Presence Protocol (XMPP) is chartered by

IETF since 2002. According to [39], ”XMPP core is a protocol for streaming

eXtensible Markup Language (XML) elements in order to exchange struc-

tured information in close to real time between any two network endpoints.

While XMPP provides a generalized, extensible framework for exchanging

XML data, it is used mainly for the purpose of building instant messaging

and presence applications that meet the requirements of [27].”

25

3.2 Concepts and Model

XMPP has been originally designed from the Jabber protocol which is an

open and standard XML-based protocol designed by the Jabber Software

Foundation. Its goal is to produce a protocol based on XML technologies

that enables any two entities on the Internet to exchange messages, pres-

ence, and other structured information in close to real time [14].

Today, softwares based on Jabber protocol are widely spread over thousands

of Internet servers and are mainly used in information systems within big-

name companies, such as Hewlett-Packard and Intel, and administrations for

data exchange between applications. There is clearly no doubt that XMPP

is today the strongest SIMPLE’s competitor. But, according to industry

analysts, SIMPLE has yet to hit the ground with large-scale, real-world

deployments [33].

3.2 Concepts and Model

RFC 2778 [28] was produced by the IMPP to provide a common vocabulary

and present an abstract model for presence and instant messaging. This

model aims at developing an open standard, interoperable and protocol in-

dependent. We will introduce the IMPP presence service model here and

the instant messaging service model will be explained in the following chap-

ter.

Presence is the service that allows a user to be informed about

the reachability, availability, and willingness of communication

of another user [15].

In other words, the presence service allows users to indicate their current

status such as online, busy, away, ... but also allows users to provide in-

formation about their communication means, for example, whether they

can use audio, video or instant messaging capabilities. Figure 3.1 shows an

overview of a presence service.

26

3.2 Concepts and Model

Figure 3.1: Overview of Presence Service

The presence service model is composed of two types of logical entities :

• Presentity (Presence entity) : logical entity that provides presence

information called notification to the presence service

• Watcher : logical entity that receives presence information about

presentities from the presence service

We emphasize that these two types of logical entities and their functional-

ities may be combined in an implementation but should be managed sepa-

rately. The presence service’s role is to store and distribute presence infor-

mation to the presentities or watchers that request it. Watchers are divided

into two distinct sets as displayed in Figure 3.2, called the fetchers and sub-

scribers. A fetcher asks for presence information, but has not subscribed

to the presence service. Thus, the presence service does not send notifica-

tion to fetchers, presence information are only sent when requested by the

fetcher. A particular type of fetcher is a poller. A poller asks for pres-

ence information to the presence service on a regular basis. A subscriber

is a watcher that asks the presence service to be notified of all current and

future changes about one or more presentities [20].

27

Chapter2/Chapter2Figs/presence_model.eps

3.3 Presence with SIP

Figure 3.2: Type of Watchers

3.3 Presence with SIP

We will develop and explain the presence part of SIMPLE in this section

referred to as A Presence Event Package for the Session Initiation Protocol

[43].

3.3.1 Architecture

Before describing the presence architecture, we may define two new con-

cepts : Presence User Agent (PUA) and Presence Agent (PA).

• Presence User Agent (PUA) : A PUA provides presence informa-

tion about a presentity. This can be done implicitly through a side

effect such as a REGISTER request or explicitly through the publication

of presence information. For a given presentity, there may be several

PUAs assigned to it. Thus, a user may have multiple devices (such as

PDA and laptop), each of them supplying a part of the overall presence

information for a presentity. A PUA provides presence information to

a presence system but remains outside of it, therefore, a PUA does

not subscribe neither send notifications to a presence service.

• Presence Agent (PA) : A PA is a SIP User Agent able to receive

subscriptions, respond to them and generate notifications containing

presence information. A PA must have access to presence information

manipulated by PUAs for the presentity. This can be done by co-

locating the PA with the proxy/registrar or by co-locating a PA with

28

Chapter2/Chapter2Figs/watcher.eps

3.3 Presence with SIP

the PUA of the presentity. However, there are no recommendations

about the location of PA functions since these specifications are one

of the possibilities among many others.

Figure 3.3 presents an example of SIP presence architecture. There is a

presentity named Alice. Three PUAs (PDA, laptop and desktop) provide

a part of the presence information about Alice. For example, the laptop as

well as the desktop know if Alice is logged or not. And if Alice is logged,

we know what type of communication she is using. Each of these three

PUAs send their part of information to the PA which collects it and ob-

tains a global view about Alice’s presence. Bob and Cynthia are watchers

thus, they request presence information from the PA about a presentity or

either another watcher. The watcher should first subscribe to the PA via a

SIP SUBSCRIBE method and receive a notification containing the requested

information from the PA via a SIP NOTIFY method.

Figure 3.3: Example of SIP Presence Architecture. Source : [15]

29

Chapter2/Chapter2Figs/presence_arch.eps

3.3 Presence with SIP

3.3.2 PIDF

The Presence Information Data Format (PIDF) is a common presence data

format for CPP-compliant presence protocols specified by IETF in [21]. In

other words, it allows presence information to be transferred among applica-

tions based on CPP-compliant presence protocols without any modification.

In that way, PIDF has been designed from a minimal model for a maximum

interoperability but PIDF can also be extended to obtain a more accu-

rate information about the presence information of a presentity. PIDF is

a XML-encoded data format that can be encapsulated within SIP PUBLISH

request and SIP presence NOTIFY requests. The PIDF defines a new MIME

media type application/pidf+xml indicating the media and encoding [15].

<?xml version="1.0" encoding="UTF-8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

entity="pres:someone@example.com">

<tuple id="sg89ae">

<status>

<basic>open</basic>

</status>

<contact priority="0.8">tel:+09012345678</contact>

</tuple>

</presence>

Table 3.1: Example of PIDF content

Table 3.1 represents the presence information about a presentity identified

as pres:someone@example.com. Table 3.2 shows a line by line description

of the PIDF content.

As PIDF provides a minimal set of presence information about a presentity,

other extensions have been developed in order to supply more complete

information. For example, the Rich Presence Information Data Format

(RPID) aims at providing richer and more detailed presence information

[19]. Another extension called User agent capability extension to PIDF

30

3.3 Presence with SIP

TAG DESCRIPTION

?xml Contains the version of XML and encoding charset
presence Contains a XML namespace and its URI associated

tuple
Contains a number of elements representing the presence
information

status Contains one optional basic element

basic

Indicates the user’s availability. Its values are open or
closed, meaning online and offline respectively. Other
statuses such as away, busy, on the phone, etc. may
be defined

contact

Contains a URL of the contact address with an optional
priority attribute. Its value indicates the priority level
of this contact address over the others. The value of the
attribute must be a decimal number between 0 and 1

Table 3.2: Line by Line Description of PIDF Content

provides information about the capabilities supported by a user agent. For

instance, if Alice knows that Bob’s device does not support text but well

audio/video media, Alice will initiate an audio/video session instead of an

instant messaging session [31].

3.3.3 Presence Publication

We know that the REGISTER method can implicitly supply presence infor-

mation. For instance, when a user is registered to a SIP registrar, the PA

sets its presence to ”online”and when a user is not registered, the PA sets its

presence to ”offline”. As described in Section 2.3, REGISTER method’s role is

to maintain a mapping between the SIP URI and the IP address. Therefore,

using REGISTER method for presence publication is not appropriate. The

IETF solved this problem by defining a new SIP method called PUBLISH

[2]. The purpose of this new extension to SIP is to publish event state used

within the SIP specific event notification framework [41]. Thus, the PUB-

LISH mechanism can be used for supporting publication of any event for

which it exists an appropriate event package. However, the first application

of this extension is for the publication of presence information.

31

3.3 Presence with SIP

Figure 3.4: Publication of Presence Information

Figure 3.4 shows a typical flow used to publish presence information. The

PUA sends a PUBLISH request to the PA containing a PIDF payload in order

to update it with new presence information and the PA acknowledges with

a 200 OK response. Table 3.3 shows an example of SIP PUBLISH request.

The Expires header field indicates the suggested duration for this event.

PUBLISH sip:presentity@example.com SIP/2.0

Via: SIP/2.0/UDP pua.example.com

To: <sip:presentity@example.com>

From: <sip:presentity@example.com>

Call-ID: 98798798@pua.example.com

CSeq: 1 PUBLISH

Max-Forwards: 70

Expires: 3600

Event: presence

Content-Length: 646

Table 3.3: Example of SIP PUBLISH request

32

Chapter2/Chapter2Figs/publish2.eps

3.3 Presence with SIP

3.3.4 Presence Subscription and Notification

As mentioned in Section 3.2, a watcher can fetch the presence information

which means the watcher only asks for the current presence information and

does not want to receive further notification. A watcher can also subscribe

to the presence information, in this case the watcher will be informed of any

change of the presentity’s presence information. In both cases, it is imple-

mented with a SIP SUBSCRIBE request and notifications are made through

a SIP NOTIFY request. A SUBSCRIBE request contains an Expires header.

The expires value indicates the duration of the subscription. At any time

a subscription expires, another SUBSCRIBE message is renewed prior to its

expiration.

Figure 3.5: Subscription and Notification of Presence Information

Figure 3.5 shows a typical flow of messages for subscription and notification

of presence information. A SUBSCRIBE request (1) is sent from the watcher

33

Chapter2/Chapter2Figs/subscribe.eps

3.3 Presence with SIP

to the PA. The PA authenticates the watcher and checks whether it has

the necessary authorization and responds with a 200 OK (2), followed by a

NOTIFY request (3) containing a PIDF document. The watcher replies with

a 200 OK response (4). If there is any change of the presentity’s presence

information, the PA sends to the watcher another NOTIFY request (5) with

a new PIDF document. The watcher responds with a 200 OK (6).

Tables 3.4 and 3.5 shows an example of a SIP SUBSCRIBE and NOTIFY re-

quest. We notice the Event header which indicates the event package used

for subscription and notification. In our case, we use the Presence package.

SUBSCRIBE sip:pa@example.com SIP/2.0

Via: SIP/2.0/UDP watcher.example.com

To: <sip:pa@example.com>

From: <sip:user@example.com>

Call-ID: 123456789@watcher.example.com

CSeq: 1 SUBSCRIBE

Event : Presence

Accept : application/pidf+xml

Expires: 600

Content-Length: 0

Table 3.4: Example of SIP SUBSCRIBE request

NOTIFY sip:user@example.com SIP/2.0

Via: SIP/2.0/UDP watcher.example.com

To: <sip:user@example.com>

From: <sip:pa@example.com>

Call-ID: 123456789@watcher.example.com

CSeq: 1 NOTIFY

Event : Presence

Subscription-state: active; expires: 600

Content-Type : application/pidf+xml

Content-Length: 584

Table 3.5: Example of SIP NOTIFY request

34

Chapter 4

Instant Messaging Service

Instant Messaging (IM) is the fastest growing business communication me-

dium ever. Gartner Inc. predicts that by 2005, at least 60% of businesses

will rely on IM to interact with consumers. Figure 4.1 shows the growth of

IM users.

Figure 4.1: Growth of IM users. Source : IDC

Forecaster IDC estimates that about 200 million corporate users worldwide

were hooked to IM by 2004, up from 5.5 million in 2000 [4]. A question

we should ask is : why do people want instant messaging? People answer

that IM is the immediacy of the telephone with the power of written words

without the expense of long-distance phone calls. IM softwares such as AOL

IM, MSN Messenger, ICQ, and Yahoo! Messenger offer online presence

awareness as explained in Chapter 3 and allow users to talk in a private

dialog or either conference with multi-users. We should also outline the

35

Chapter3/Chapter3Figs/im_users.eps

4.1 Proprietary Instant Messaging Systems

fabulous growth of the popular Short Message Service (SMS) on mobile

phones which can be considered as a kind of IM [9]. As of today, many

Internet messaging services allow messages to be delivered from computers

to mobile phones and the inverse is also true. But like presence services, IM

services suffer from lack of interoperability among them. Each IM service

is based on its own protocol which involves that users have to agree with

their contacts on which services to use or they have to subscribe to several

services in order to keep in touch with all their contacts.

4.1 Proprietary Instant Messaging Systems

We will present in this section several IM systems based on proprietary

protocols. The three biggest companies, America Online, Microsoft and

Yahoo represent the largest part of the market. They offer almost the

same functionalities and from the viewpoint of IM, they have no differences.

Regarding open instant messaging systems, Jabber is the most popular and

has been previously described in Section 3.1.3.

4.1.1 ICQ

ICQ (I Seek You) was founded in July 1996 by a young Israeli company

named Mirabilis. At that time, the founders observed the mounting pop-

ularity of surfing and browsing with the exponential growth of users inter-

acting with web servers. They realized that all these users were connected

to the hugest world wide network, the Internet, but not interconnected.

They solved the problem by proposing a new technology that would enable

online users to contact each other through a peer-to-peer connection in a

very straightforward and easy way. ICQ was born. ICQ was the first ap-

plication to offer buddy list, presence awareness and IM functionalities. In

1998, Mirabilis’s assets were acquired by AOL and about 12 million users

are communicating with ICQ today [22].

36

4.1 Proprietary Instant Messaging Systems

4.1.2 AOL Instant Messenger

In May 1997, America Online (AOL) launched AOL Instant Messenger

(AIM) freely distributed to anyone on Internet. AIM became very pop-

ular in the USA and started to struggle with its main competitor, ICQ.

The competition between ICQ and AIM ended in 1998 when AOL bought

Mirabilis, the company that designed ICQ. AIM offers classic services such

as presence awareness, privacy controls, file transfer and chat but its par-

ticularity is that AIM is available on multiple platforms (PC, Mac, Linux,

Java on Web). AIM can be accessed through PDAs and mobile phones and

devices. Today, the AIM community is the world’s largest instant messag-

ing base with more than 100 million users whose 35 million are considered

as active users [3].

4.1.3 Yahoo! Messenger

In June 1999, one of the world’s most popular search engine, Yahoo, launched

a new instant messenger called Yahoo! Messenger. Yahoo! Messenger is

more than just an application to ”page” each other, it also offers voice chat,

voice conferencing, news, sports scores, and several types of alerts [23].

Nowadays, the number of Yahoo! Messenger’s users reaches 36 million.

4.1.4 Microsoft MSN Messenger

In July 1999, Microsoft’s answer to America Online’s popular AIM and

ICQ saw its first daylight under the name of MSN Messenger Service v1.0.

MSN Messenger Service reaches over 700,000 people in its first six days of

availability. At its start, MSN Messenger Service allowed access to AIM

service but two days after its release, AOL modified their servers to block

MSN Messenger’s users. In order to build a large user base and offer a more

complete range of services, MSN Messenger Service was coupled with Hot-

mail and Microsoft Windows. Today, we should distinguish two Microsoft

instant messengers : MSN Messenger and Windows Messenger. Windows

Messenger is more business focused and provides support for SIMPLE and

the Exchange IM Server. However these two clients remain interoperable

37

4.2 Standards and Protocols

because they keep using the same instant messaging network. In June 2004,

MSN Messenger counted over 130 million users through the world whose

2,2 million in Belgium which is more than half of the Belgian Internet pop-

ulation [32].

4.2 Standards and Protocols

Instant messaging model has been developed simultaneously with the pres-

ence model by the same IETF working groups described in Section 3.1. As

outlined in Section 3.1, the current presence and instant messaging sys-

tems are solutions based on proprietary protocols which were detailed in

the previous section. The IETF works on standardized solutions to provide

interoperability among instant messaging systems. XMPP and SIMPLE

remain the two standard solutions proposed by the IETF.

4.3 Concepts and Model

We will introduce here the IMPP instant messaging model defined in RFC

2778 [28] referred to as A Model for Presence and Instant Messaging. As

mentioned in Section 3.2, this model aims at developing an open standard,

interoperable and protocol independent for presence and IM services.

According to [15], Instant messaging (IM) is the service that allows

a user to send some content to another user in near-real time.

Due to real time characteristics of instant messages the content

is typically not stored in network nodes, like it often happens

with other service like e-mail.

Many other definitions include presence service in instant messaging system.

In this thesis, we will maintain the previously mentioned definition. Thus,

IM and presence service are two distinct services which can be perfectly

combined together. For instance, users may be able to send instant mes-

sages to their contacts if they are aware of their availability and start some

38

4.3 Concepts and Model

interactive conversations. Instant messages will typically transport a text

message but can also convey a HTML page, a picture, an audio/video file

or any other files. In comparison with e-mail service, IM service is different

in common usage in that the communication consists of numerous messages

sent back and forth. These messages are grouped together into brief live

conversation. Figure 4.2 shows an overview of the instant message service.

Figure 4.2: Overview of Instant Message Service

The instant message service is composed of two types of logical entities :

• Sender : logical entity that provides instant messages to the instant

message service

• Instant Inbox : logical entity that receives the instant message from

the instant service

Each instant message is addressed to a particular instant inbox address,

and the instant message service attempt to deliver the message to a corre-

sponding instant inbox. Typically, the instant inbox may reside at the client

application although it is not recommended by the IMPP specification. The

instant message service does not require a distinct server i.e the instant mes-

sage service may be implemented as a direct communication between the

sender and the instant inbox. The instant message service may require

authentication of senders and/or instant inboxes while receiving/delivering

instant messages [28].

39

Chapter3/Chapter3Figs/im_model.eps

4.4 Instant Messaging with SIP

4.4 Instant Messaging with SIP

We will develop and explain the instant messaging part of SIMPLE in this

section. We may distinguish two types of model for instant message ser-

vice, depending whether there is no explicit association between messages

or whether there is an explicit conversation with a clear beginning and end.

We refer to a pager-mode model when each instant message stands alone

having no relation with previous or future instant messages. This model

is referred to as pager-mode because the way of sending instant messages

uses a metaphor similar to that of a two-way pager or SMS (Short Message

Service) in cellular networks.

We refer to a session model when each instant message is sent within a ses-

sion, typically initiated by a SIP INVITE request and terminated by a SIP

BYE request [15].

Most current IM clients offers both implementations. The pager model is

used when the user needs to send a small number of instant messages to

a single contact while the session model is used when the user joins chat

groups or invite one or more contacts in a conversation.

Both models have their own implementation as their requirements and con-

straints are different. The implementation of the pager model is specified in

RFC 3428 referred to as Session Initiation Protocol Extension for Instant

Messaging [5] while the implementation of the session model uses a new

protocol defined in the Internet-Draft The Message Session Relay Protocol

[6]. The following sections describe the implementation of both models.

4.4.1 Pager-mode Instant Messaging

The IETF proposed a new method called MESSAGE, an extension to SIP

that allows the transfer of instant messages between two user agents. The

MESSAGE request is able to carry any type of MIME content as payload in

40

4.4 Instant Messaging with SIP

the body of the message. As each instant message stands alone in the pager

model, MESSAGE requests do not initiate themselves a SIP call leg.

An example message flow is shown in Figure 4.3 between Alice and Bob,

both are in the same domain info.be. Alice sends an initial MESSAGE re-

quest through the proxy server (1). The proxy forwards the MESSAGE request

(2) like any other SIP request, even if the proxy does not support or un-

derstand the SIP MESSAGE method. Eventually, Bob will receive it (3) and

answer by a 200 OK response (4) that is forwarded to Alice through the

proxy. Then Bob may send another MESSAGE request replying to Alice’s

initial message (5-6-7-8). Here, Alice and Bob play both the role of UAC

and UAS. When Alice sends her first MESSAGE request, she is the UAC and

Bob is the UAS. When Bob replies to Alice’s message, he is the UAC and

Alice is the UAS [15].

Figure 4.3: Pager-mode Instant Message Flow

41

Chapter3/Chapter3Figs/im_pager.eps

4.4 Instant Messaging with SIP

When a UAC receives a 200 OK response, it may assume that its MESSAGE

request has been delivered to its final destination but it must not assume

that the recipient has actually read or understood the instant message.

If the UAC receives a 202 Accepted response, it must not assume that

its MESSAGE request has been delivered to its final destination but it may

assume that its message has reached a gateway or an intermediary server

that may eventually deliver the message [5]. Table 4.1 shows the detailed

content of a SIP MESSAGE request.

MESSAGE sip:bob@info.be SIP/2.0

Via: SIP/2.0/UDP 192.108.119.243:5060

To: alice <sip:alice@info.be>

From: bob <sip:bob@alice.be>

Call-ID: 123456789

CSeq: 1 MESSAGE

Content-Type: text/plain;charset=UTF-8

Content-Length: 6

Hello!

Table 4.1: Example of SIP MESSAGE request

4.4.2 Session-based Instant Messaging with MSRP

The session model is based on the Message Session Relay Protocol (MSRP).

MSRP is a text-based protocol for exchanging MIME content, especially in-

stant messages whose main feature is that it works only with protocols

which offer end-to-end congestion control such as TCP and SCTP. There-

fore MSRP does not run over UDP and does not place a limit on the size of

instant messages. Session-based instant message mode uses the SIP INVITE

request the same way an audio/video session is set up. For instance, Alice

wishes to communicate with Bob but she does not know whether Bob has

his phone or his IM client handy. Alice sends an INVITE request that con-

tains a SDP body offering both voice and IM sessions with MPEG audio

codec and MSRP respectively as media. As one of the SIP purposes is to

separate the signaling part from the media part, MSRP will not go through

42

4.4 Instant Messaging with SIP

SIP proxies but should be handled from end-to-end or through MSRP re-

lays. This is a non negligible advantage as SIP proxies does not deal with

large instant messages [6] [15].

Figure 4.4 shows a successful establishment of an instant message session.

Figure 4.4: Successful Establishment of Instant Message Session

Alice, a SIP UA, sends to Bob, another SIP UA, a SIP invitation contain-

ing a SDP payload (1-2) which indicates MSRP as the media. Table 4.2

shows an example of SDP body with MSRP media. Refer to Table 2.9 (Sec-

tion 2.6.1) for a line by line description. Bob accepts and replies with a 200

OK response which includes his media choice in a SDP body (3-2). Alice

acknowledges by sending an ACK (5-6). Alice opens a direct communication

43

Chapter3/Chapter3Figs/im_session.eps

4.4 Instant Messaging with SIP

between her and Bob by sending a MSRP SEND request with her initial

instant message (7). MSRP SEND requests are used to deliver a complete

message or a chunk. Table 4.3 shows an example of MSRP SEND request

followed by a line by line description (Table 4.4). Bob answers with a MSRP

200 OK (8). Alice may want to end the IM session by sending to Bob a SIP

BYE request (9-10) and Bob answers with a SIP 200 OK (11-12).

MSRP uses its own URLs to address MSRP resources : msrp and msrps.

msrps is different from msrp in that it uses secure TLS connection over

TCP. a MSRP URL has the following format where bob.info.be is the

username, 8888 the host port and 9di4ea the resource [15] :

msrp://bob.info.be:8888/9di4ea

v=0

o=alice 2890844557 2890844559 IN IP4 alicepc.info.be

s=

c=IN IP4 alicepc.info.be

t=0 0

m=message 7777 msrp/tcp *

a=accept-types:text/plain

Table 4.2: Example of SDP Content with MSRP media

MSRP d93kswow SEND

To-Path:msrp://bob.info.be:8888/9di4ea;tcp

From-Path:msrp://alicepc.info.be:7777/iau39;tcp

Message-ID: 12339sdqwer

Content-Type: text/plain

Table 4.3: Example of MSRP SEND request

44

4.4 Instant Messaging with SIP

LINE DESCRIPTION

MSRP d93kswow SEND

The request line starts with MSRP fol-
lowed by a transaction identifier and
the name of the method

To-Path :

msrp://bob.info.be:8888/

9di4ea;tcp

The To-Path header contains the path
of URLs to the destination

From-Path :

msrp://alicepc.info.be:7777/

iau39;tcp

The From-Path header contains the
path of the URL’s originator

Message-ID : 12339sdqwer

The Message-ID header contains a
unique identifier used to correlate re-
sponses and status reports with the
original message

Table 4.4: MSRP Content and Line By Line Description

45

Chapter 5

Mobility Support

As of today, we are living in a world where Internet is omnipresent and

becomes more than essential in our every day life. The diversity and usage

of Internet technologies going from the most simple ones like web browsing

and e-mailing to real time multimedia applications are far from what we ex-

pected a few years ago. Due to this fast exponential growth, improvements

such as introduction and development of QoS (Quality of Service) have been

made. Furthermore, Internet users are demanding to be reachable anywhere

at any time. The increasing mobile computer usage introduces high require-

ments from the future Internet network to provide mobility support.

But mobility does not only mean being available anywhere but also means

that a user should be able to get access to the services he subscribed to, no

matter where he is. Mobility also means that a user should be able to main-

tain his session while moving between networks without being interrupted.

Direct applications of mobility management in packet switched networks

are used in standards such as General Packet Radio Service (GPRS) and

more recently, Universal Mobile Telecommunication System (UMTS).

This chapter aims at explaining the different types of mobility and intro-

ducing two solutions. The first one is Mobile IP and the second one is based

on SIP.

47

5.1 Types of Mobility

5.1 Types of Mobility

As stated in [18], there exist four modes of mobility :

• Terminal mobility : allows a device to move between IP subnets,

while continuing to be reachable for incoming requests and maintain-

ing sessions across subnet changes.

• Session mobility : allows a user to maintain a media session even

while changing terminals.

• Personal mobility : allows to address a single user located at dif-

ferent terminals by the same logical address.

• Service mobility : allow a user to maintain access to his services

even while moving or changing devices and network service providers.

5.2 Mobile IP

In order to solve mobility issues in IP-based networks, the IETF chartered

a new working group called Mobile IP. Mobile IP handles the mobility at

the network layer level and is considered as the de facto standard for ter-

minal macro-mobility which refers to movement between networks while

micro-mobility refers to the case where the user moves within the same ad-

ministrative domain. Mobile IP makes mobility transparent to the higher

layers and allows the maintenance of ongoing applications by enabling users

to keep the same IP address while roaming between networks [34]. The

following section will give an overview of Mobile IPv4 architecture.

5.2.1 Architecture

IP packets are routed from a source endpoint to a destination through

routers which forward them from incoming network interfaces to outbound

network interfaces. Routers rely on routing tables which contains the out-

bound interface for each destination IP address. Thus, the IP address of a

packet specifies the IP node’s point of attachment to the network. On the

48

5.2 Mobile IP

one hand, transport layer connections should be maintained while node is

moving. But as TCP connections are identified by IP addresses and port

numbers of both source and sink, changing any of them would result in a

disconnection. In the other hand, a packet can be delivered to the correct

Mobile Node’s point of attachment if the network number contained inside

the mobile node’s IP address is corresponding to the new point of attach-

ment. To solve this problem, Mobile IP assigns two IP addresses to the

Mobile Node : a fixed home address and a care-of address that changes at

each new point of attachment [40].

Figure 5.1: Mobile IP Architecture. Source : [24]

As shown in Figure 5.1, a Mobile IP enabled network is composed of four

basic entities :

1. The Mobile Node (MN)

2. The Foreign Agent (FA)

3. The Home Agent (HA)

4. The Correspondent Node (CN)

49

Chapter4/Chapter4Figs/mobileip_arch.eps

5.2 Mobile IP

Mobile IP introduces two new entities called the Home Agent and the For-

eign Agent. If considering that the Mobile Node remains within the home

network, the Home Agent just needs to route the packets to the Mobile

Node’s point of attachment. Whenever the Mobile Node leaves its point

of attachment, it registers its new care-of address with its Home Agent.

Then using the new care-of address, the Home Agent will route the traffic

directed to the Mobile Node, which is now attached to a foreign network, to

a Foreign Agent. Every packet header destined to the Mobile Node should

be modified/extended by the Home Agent so that the destination header

indicates the new care-of address. This modification of the packet header is

sometimes called redirection. When the packet, forwarded by the Foreign

Agent, arrives at the Mobile Node, the reverse transformation is performed

so that the packet destination IP address contains the home address.

The redirection is achieved by encapsulating the original data packet into

a new IP packet with the care-of address as destination IP address. This

encapsulation is better known under the name of tunneling in the way that

the original packet is hidden by the new headers while the encapsulated IP

header is totally ignored during the redirection. Once the Foreign Agent

receives the encapsulated packet, it takes out the original packet and routes

it to the Mobile Node where it will be processed properly by TCP or others

higher layer level protocols. Tunneling may be accomplished using IP-IP

encapsulation or Generic Routing Encapsulation (GRE) [24].

Triangular Routing

Mobile IP is based on a triangular routing model as shown in Figure 5.2.

Triangular routing means that packets take different paths depending on

whether they are routed from or to the Mobile Node. When coming from

the Correspondent Node and directed to the Mobile Node attached to a

foreign network, packets are routed through the Home Agent. The Home

Agent will then encapsulate the packets and sends them through the Mobile

IP tunnel to the Foreign Agent. Once received by the Foreign Agent, the

50

5.2 Mobile IP

Figure 5.2: Triangular Routing. Source : [24]

original data packets are extracted and sent to the Mobile Node.

When packets are coming from the Mobile Node and directed to the Corre-

spondent Node, there is no need to use tunneling. Since the Correspondent

Node is supposed to have a public IP address, packets sent from the Mobile

Node may be directly routed to the Correspondent Node, bypassing the

Home Agent [24].

Agent Discovery

Home Agents and Foreign Agents regularly broadcast agent advertisements.

These agent advertisements carry information about default routers, just as

before, but also information about one or more care-of addresses. But an

agent advertisement can also performed other functions as defined in [40] :

• allows the detection of Mobile Nodes

• informs the Mobile Node about special features provided by Foreign

Agents, for instance, other encapsulation techniques

• lets Mobile Nodes determine whether they are in home network or

foreign network

51

Chapter4/Chapter4Figs/triangular.eps

5.2 Mobile IP

• lets Mobile Nodes determine the network number and status of their

link to Internet

If a Mobile Node is visiting a foreign network and need to get a new care-of

address without waiting for the periodic agent advertisements broadcast, it

can broadcast itself a request that is answered by a Foreign Agent.

Registration

Once a Mobile Node receives a new care-of address from the Foreign Agent,

it has to inform its Home Agent. The registration procedure starts when the

Mobile Node sends to its Home Agent a registration request containing the

care-of address. When the Home Agent receives and approves the request,

it updates its routing tables and sends back a registration reply to the

Mobile Node. The update process also called binding update consists in

maintaining a mapping between the home address and the care-of address

of the Mobile Node before the registration life-time expires.

5.2.2 Limitations

Due to its triangular routing model, Mobile IP adds traffic delay for pack-

ets directed to Mobile Node but not from the Mobile Node. This would

considerably increase the latency which is not acceptable for delay sensitive

multimedia applications but also place a heavy load on the Home Agent

which has to forward all packets sent by the Correspondent Node to the

Foreign Agent. Another issue is that Mobile IP encapsulation typically

adds 20 bytes of overhead to each packet. Furthermore tunneling hides QoS

information within the original packet and therefore decreases routing effi-

ciency [18].

Some Internet routers and firewalls expect packets originating from a topo-

logically correct subnet to use the care-of address. Thus a Foreign Agent

is unable to send directly packets to a Correspondent Node as the source

IP address contains the home address. This phenomena is known as ingress

filtering. The reverse tunneling technique has been proposed to solve this

52

5.2 Mobile IP

problem which means that the Foreign Agent sends back the packets to

the Home Agent via the tunneling mechanism and keeps using the care-of

address as source IP address [45]. However this also adds delay in traffic

and the Home Agent and Foreign Agent are likely to become bottlenecks as

reverse tunneling implies heavy load on these two agents.

5.2.3 Mobile IPv6

Mobile IPv6 has been designed to overcome Mobile IPv4 inefficiencies and

take advantage of IPv6. Here is the list of some improvements made for

Mobile IPv6 [11] :

• IPv6 structure allows a larger space of addresses.

• Mobile IPv6 does not implement Foreign Agents anymore as it should

work in any location without support required from the local router.

• Route optimization is now fully integrated and fundamental part of

Mobile IPv6 rather than an extension like in Mobile IPv4. Each Cor-

respondent Node is equipped with a binding cache and every time a

Mobile Node detects that a Correspondent Node is not aware of its

location, it sends a binding update. When receipting the new bind-

ing update, the Correspondent Node updates its binding cache and

the next time it has to send packets to the Mobile Node, it will use

directly the care-of address instead of the home address avoiding the

triangular routing.

• Encapsulation is not applied anymore in Mobile IPv6. Packets sent

to a Mobile Node away of its home network use IPv6 routing header

which contains, in addition of its home address, the Mobile Node’s

care-of address. This reduces the overhead due to IP encapsulation

and thereby no tunneling is needed anymore.

• Mobile IPv6 provides support for Mobile Nodes to coexist with ingress

filtering firewalls.

• Mobile IPv6 provide security mechanism using IPSec.

53

5.3 Mobility Support Using SIP

5.3 Mobility Support Using SIP

We already know that SIP supports personal mobility as it allows users with

multiple devices to be identified by a unique SIP URI. A user may have a

PDA, laptop or a wireless device that he can use at the same time or in

alternation. Thanks to forking proxies, the user may be reachable indepen-

dently of the device he is currently using. His choice remains transparent

to the calling parties.

We present here a SIP based solution proposed in [18] and [17] which han-

dles the terminal mobility at the application layer level. The advantages is

that application layer mobility does not imply changes neither at the op-

erating system nor at the lower layers for any of the users or entities and

therefore can be widely deployed in an easier way than Mobile IP.

5.3.1 Mobile Node Registration

We assume that the Mobile Host5 belongs to a home network where a SIP

server, for instance, a registrar co-located with a redirect server, receives all

registration requests each time the Mobile Host acquires a new IP address

(Figure 5.3). Thus, the Mobile Host sends a SIP re-REGISTER request. This

is similar to the Home Agent registration procedure in Mobile IP.

5Node is synonymous with Host

54

5.3 Mobility Support Using SIP

Figure 5.3: Mobile Host Registration. Source : [17]

5.3.2 Pre-Call Mobilty

Once the Mobile Host updates its registration at the registrar, every SIP

INVITE request (1) sent from the Correspondent Host to the Mobile Host

is received by the redirect server which knows the Mobile Host’s current

location. The redirect server sends back to the Correspondent Host a SIP

302 MOVED TEMPORARILY response (2) with the Mobile Host’s current IP

address in the Contact header. The Correspondent Host will then redirect

its SIP INVITE request (3) using the Mobile Host’s current IP address. The

Mobile Host answers with a SIP 200 OK response then data may eventually

be transferred (5). Figure 5.4 illustrates the pre-call mobility with SIP.

55

Chapter4/Chapter4Figs/regist_mob.eps

5.3 Mobility Support Using SIP

Figure 5.4: Pre-Call Mobility with SIP. Source : [17]

5.3.3 Mid-Call Mobilty

The most difficult part of SIP mobility is the mid-call mobility where the

Mobile Host changes location during an active session. Figure 5.5 illustrates

the mid-call mobility with SIP. When the Mobile Host moves during a ses-

sion, it must send a SIP INVITE request (1) to the Correspondent Host with

a new session description and it must also specify in the Contact header

its new IP address. Depending on the capacity of the link, the Mobile Host

may preferred to use, for instance, a more appropriate codec that it in-

dicates in the SDP body. Once the Correspondent Host receives the SIP

INVITE request and has updated its routing tables with the Mobile Host’s

new IP address, it replies with a SIP 200 OK (2). Then a session may be

re-established between the Mobile Host and the Correspondent Host (3).

In the case we have a wideband access, the hand-off delay is equal to the

propagation delay plus a few milliseconds. But in the case of a narrowband

access, the hand-off delay may be of several tens of milliseconds. A RTP

translator can be used during the hand-off in order to avoid disruption in

the media session. To perform this, the Mobile Host indicates the RTP

translator’s IP address as destination in the SDP content. Hence the Cor-

56

Chapter4/Chapter4Figs/precall.eps

5.3 Mobility Support Using SIP

Figure 5.5: Mid-Call Mobility with SIP. Source : [17]

respondent Host will send packets through the RTP translator which will

redirect them to the Mobile Host’s current location. Any duplicate packets

are handled by RTP. The RTP translator can also buffer media packets and

transmit them to the Mobile Host’s new location once the hand-off is over.

5.3.4 SIP Mobility Support with Mobile IP

As TCP uses IP addresses and ports from both source and sink to main-

tain connections between two endpoints, SIP mobility is not suitable for

TCP connections. The best solution to offer maximal mobility support is

to combine both SIP and Mobile IP [17]. SIP provides mobility support

for real-time communication over UDP while Mobile IP would be used for

long-lived TCP connections such as telnet or FTP (File Transfer Proto-

col). The Mobile Host will be given the choice to use its home address or

care-of address. When establishing UDP connections such as RTP multime-

dia streams, the Mobile Host will use its care-of address and when setting

up long-lived TCP connections like telnet, ftp, irc, ..., it will use its home

address and the traffic should be directed to its Home Agent. Table 5.1

57

Chapter4/Chapter4Figs/midcall.eps

5.3 Mobility Support Using SIP

illustrates an example of mobile routing table using SIP mobility support

with Mobile IP. In this table,

dest. addr. netmask port mobile IP Comment
0.0.0.0 0.0.0.0 23 yes all telnet traffic should use mobile IP
0.0.0.0 0.0.0.0 21 yes all ftp traffic should use mobile IP
0.0.0.0 0.0.0.0 0 no all other traffic does not use mobile IP

Table 5.1: Example of mobile routing table. Source : [17]

58

Chapter 6

Analysis of Application
Requirements

This chapter aims at providing an application analysis of the SIP client we

want to implement. We also define the environment in which the application

should work and the tools needed to develop it. This work was carried out

within the framework of the project SIPMOB during a four-month intern-

ship at Ecole Nationale Supérieure des Télécommunications de Bretagne

under the supervision of Professor J.M. Bonnin.

6.1 Requirements

The SIP client application should offer these functionalities :

• Audio/Video Sessions

• Edge Presence Server

• Buddy List

• Instant Messaging (IM) System

• Mobility Support

• Operating System (OS) Independence

59

6.1 Requirements

6.1.1 Audio/Video Sessions

The application should allow the user to establish an audio and/or a video

session with another user using a SIP client. A microphone and a webcam

are required for that functionality.

6.1.2 Edge Presence Server

The application should allow the user to display its status and be notified

of his buddies presence information. The presence service should be compli-

ant with the CPP specifications as described in Section 3.2 and should used

PIDF for presence information in order to ensure interoperability between

different SIP presence clients.

As the presence agent module of our SIP server was still under development

and as the SIP PUBLISH method was only released as a RFC in October

2004, we assume that the proxy server is not presence enabled and therefore

presence information should be processed at the client side only.

6.1.3 Buddy List

The application GUI should include a buddy list. For each buddy of the

list, presence status should be displayed. The GUI should allow the user to

add or remove a buddy from the list.

6.1.4 Instant Messaging System

The application should allow the user to send an instant message to one

of his buddies. This functionality will be based on the pager-mode model

and should be compliant with the CPIM specifications as described in Sec-

tion 4.3.

6.1.5 Mobility Support

The application should allow the user to change the codec used for an au-

dio/video session while changing network. Some codecs require fewer band-

60

6.2 Choice of a SIP client

width availability and thus are more appropriate in some networks. The

application should also provide pre-call and mid-call mobility as described

in Section 5.3.

6.1.6 Operating System Independence

The application should at least run on Windows and Linux/Unix platform.

6.2 Choice of a SIP client

As the primary purpose of this work was to study the SIP signaling mech-

anism within SIMPLE and mobility support, we decided not to start from

scratch but we preferred to extend an existing application which covers the

requirements the best. For that purpose, we analyzed three SIP clients :

Windows Messenger 5.0 , KPhone 3 and Sip Communicator.

6.2.1 Windows Messenger 5.0

Windows Messenger is the Windows XP’s instant messaging service. It

allows users to establish an instant messaging, audio and video session.

Windows Messenger also offers a file transferring service. The latest versions

of Windows Messenger, 4.7 and 5.0, provide SIP support for audio, video

and instant messaging sessions.

6.2.2 KPhone 3

KPhone is a SIP user agent for Linux which can initiate VoIP connections

over the Internet. It supports presence and instant messaging, and to some

extent also video calls between two hosts.

6.2.3 Sip Communicator

Sip Communicator is a pure Java SIP user agent built on top of the JAIN

SIP 1.1 stack (See Appendix A) and Java Media Framework (JMF) which

makes it 100% portable (tested on Windows XP and Linux, and should work

under Solaris). Currently Sip Communicator supports audio/video sessions

61

6.2 Choice of a SIP client

Figure 6.1: Windows Messenger

Figure 6.2: KPhone

62

Chapter5/Chapter5Figs/messenger.eps
Chapter5/Chapter5Figs/kphone.eps

6.2 Choice of a SIP client

over IPv4 and IPv6. Sip communicator is released under Apache Software

License and is available at the following URL : https://sip-communicator.

dev.java.net/. Sip Communicator project is lead by Emil Ivov from the

Network Research Team, Louis Pasteur University, Strasbourg, France.

Figure 6.3: Sip Communicator

63

https://sip-communicator.dev.java.net/
https://sip-communicator.dev.java.net/
Chapter5/Chapter5Figs/sipcom.eps

6.2 Choice of a SIP client

6.2.4 Comparison

Table 6.1 shows the features offered by each of the three SIP clients.

Clients Windows Messenger KPhone Sip Communicator

Audio Session Yes Yes Yes
Video Session Yes Yes Yes
Presence Yes Yes No
Instant Messaging Yes Yes No
Mobility Support No No No
License Proprietary GPL Apache
OS Windows Linux All
Programming Language C++, .net C++ Java
Available Support No Yes Yes

Table 6.1: Comparison of Features

6.2.5 Conclusion

Windows Messenger would certainly not be the SIP client we would ex-

tend as this software is not Open Source nor OS independent. Regarding

KPhone, it offers presence and instant messaging services and was released

under the GPL license which are great advantages. However KPhone is

especially designed for Linux systems and would not be able to run on any

other OS. The third client, Sip Communicator, seems to be the best one

although it does not offer presence and instant messaging services. Sip

Communicator has been developed in Java and released under Apache Li-

cense. We tested it under Linux and Windows and it works perfectly well.

The Sip Communicator project seems to be popular and active within the

Java development community as we noticed it on the mailing list which

would provide us with a great support in case of troubles. We decided thus

to choose Sip Communicator and add presence, instant messaging and mo-

bility support. Windows Messenger and KPhone would be used for testing

interoperability between them.

64

6.3 The Environment

6.3 The Environment

Figure 6.4: SIP Testbed

Figure 6.4 shows the environment provided by ENST Bretagne to implement

and test the application. It was composed of :

1. SIP Express Router (SER) : Free SIP server installed under Linux

2.6 and configured to act as proxy and registrar.

2. Pentium processor laptop under Windows XP : Used to im-

plement and test the application. We chose IntelliJ IDE 4.5 as Java

environment for development with Java J2SE 1.4.6 and Apache Ant

1.6.2.

3. HP Compaq Tablet PC tc1100 under Windows XP : Runs

Microsoft Windows Messenger 5.0 able to act as a SIP user agent sup-

porting audio/video sessions, presence and instant messaging services.

4. HP Compaq Tablet PC tc1100 under Linux 2.6 : Runs KPhone

v3, a Linux SIP user agent supporting audio/video sessions, presence

and instant messaging services.

The platform works over a IPv4 based network as Microsoft Windows Mes-

senger 5.0 and KPhone v3 are not able to communicate over IPv6.

65

Chapter5/Chapter5Figs/lab.eps

6.4 Utility Tools

6.4 Utility Tools

6.4.1 Java 2 Platform, Standard Edition 1.4.2 (J2SE)

Java 2 Platform, Standard Edition (J2SE) provides a complete environment

for applications development on desktops and servers and for deployment

in embedded environments. Java is a simple and easy to use oriented-

programming language when compared to the popular programming lan-

guage, C++. The reason is that Java uses automatic memory allocation

and garbage collection where C++ requires the programmer to allocate

memory and to collect garbage. Another great advantage of Java is its

portability which is required for our application. Indeed, the Java programs

are compiled into Java Virtual Machine code called bytecode. The bytecode

is machine independent and is able to run on any machine that has a Java

interpreter especially designed for this type of platform. Java is dynamic

and is able to adapt to an evolving environment. New methods and prop-

erties can be added freely in a class without affecting other classes. This

will particularly concern our application as we did not start from scratch

but had chosen to extend Sip Communicator which has been developed in

Java. Java also offers a large number of libraries such as Swing for graphical

interfaces and Java Media Framework for processing multimedia content.

6.4.2 JAIN SIP stack 1.1

SIP is an IETF (Internet Engineering Task Force) standard specification

adopted by the communication industry. As a developer we are free to

implement the protocol in any programming language and define our own

interface for accessing the defined behavior of the protocol as outlined by

the IETF standard. This standard ensures the interoperability between

SIP stacks but does not guarantee the interoperability between applications

based on different stacks. JAIN (Java API for Integrated Networks) SIP has

been designed to satisfy this need using the Java programming language in

the way, it ensures interoperability between stacks but also the interoper-

ability of applications across stacks, referred to as application portability.

66

6.4 Utility Tools

Sip Communicator has been built on the top of the JAIN SIP stack and we

will keep using it to implement presence, instant messaging service as well

as mobility support. A fully detailed description of the stack may be found

in Appendix A.

6.4.3 IntelliJ IDEA 4.5

IntelliJ IDEA is an intelligent Java IDE intensely focused on developer pro-

ductivity. It supplies an intelligent Java editor, coding assistance, advanced

code automation tools and project management which enables Java pro-

grammers to boost their productivity while reducing routine time consum-

ing tasks.

6.4.4 Apache Ant 1.6.2

Apache Ant is a Java-based build tool. It is analogous to the Make from

the C language. Instead of writing shell commands like with Make, the

configuration files are XML-based, calling out a target tree where various

tasks get executed. Each task is run by an object that implements a par-

ticular task interface. In Sip Communicator, Apache Ant allows the user to

compile source codes, generate and launch different binary packages which

are ready to be executed on Windows, Linux or Solaris. It also allows to

generate a Sip Communicator applet which might be used directly from a

web page.

6.4.5 SIP Express Router (SER)

SIP Express Router (SER) is a high-performance, configurable, free SIP

server. It can act as SIP registrar, proxy or redirect server. SER fea-

tures an application-server interface, presence support, SMS gateway, SIM-

PLE2Jabber gateway, server status monitoring, etc. SER is written in C

and ported to Linux, BSD and Solaris. It also provides support for both

IPv4 and IPv6.

67

Chapter 7

Implementation

This chapter presents the implementation part of the work. It includes the

architecture and design of the newly implemented functionalities. These

functionalities should respect the requirements defined in the application

analysis.

7.1 Architecture

Figure 7.1 shows Sip Communicator components and their dependencies.

Components in blue are part of the original Sip Communicator while those

in red have been added to implement the new functionalities.

Packages :

- net.java.sip.communicator :

- SipCommunicator : It is the Sip Communicator’s main com-

ponent. SipCommunicator deals with GuiManager, SipManager

and MediaManager, initializes them and manages interactions be-

tween them.

69

7.1 Architecture

Figure 7.1: Sip Communicator Architecture

- net.java.sip.communicator.sip :

- SipManager : This component implements SipListener in that,

it defines the methods required to receive and process events that

are emitted by the SipProvider.

- RegisterProcessing : This component processes REGISTER re-

70

Chapter6/Chapter6Figs/sipcom_arch.eps

7.1 Architecture

quests and responses for registration and un-registration. It en-

sures retransmission when REGISTER request time out expires.

- CallProcessing : This component processes call request i.e IN-

VITE and BYE, and response i.e 180 RINGING. It ensures users

authentication before processing INVITE request.

- IMMessageProcessing : This component processes MESSAGE re-

quest and response which is then transmitted to the ChatSes-

sionManager.

- net.java.sip.communicator.media :

- MediaManager : This component relies on the Java Media Frame-

work (JMF) which enables audio, video and other time-based

media to be added to applications built on Java technology. Me-

diaManager initializes and configures JMF processors. It also

detects and initializes capture devices i.e webcams, processes au-

dio/video flows for transmission/reception

- net.java.sip.communicator.gui :

- GuiManager : This component relies on the Java Swing graphical

package. It manages all graphical user interfaces and interactions

with users. These interfaces allow users to configure the applica-

tion, enter a user’s URI to make calls and display video sessions.

- net.java.sip.communicator.sip.simple :

- Watcher : This component is in charge of sending SUBSCRIBE

request to every buddy on the list at the start of the application

or when a new buddy is added. The Watcher component also

processes NOTIFY requests and responses when notification is sent

from SIP clients.

- PresenceAgent : The PresenceAgent processes SUBSCRIBE re-

quests coming from SIP clients and sends back NOTIFY request

71

7.1 Architecture

with the current presence status. The PresenceAgent also sends

NOTIFY request every time presence status is updated.

- net.java.sip.instantmessaging :

- ChatSessionManager : This component manages all ChatSes-

sions. The ChatSessionManager is created when launching Sip

Communicator. When receiving a MESSAGE request, the Chat-

SessionManager forwards it to the right ChatSession.

- ChatSession : A ChatSession represents a chat dialog between

a user and one of its buddies. A ChatSession is created for every

chat conversation initiated by the user himself or by one of its

buddies.

- ChatFrame : A ChatFrame is a frame where sent and received

texts are displayed. The ChatFrame also allows the user to type

his message and send it. Each ChatFrame is associated with one

ChatSession.

- javax.sip :

- SipFactory : This component contains the main interfaces that

model the JAIN SIP architecture : SipStack, ClientTransac-

tion, ServerTransaction, SipProvider and SipListener.

- MessageFactory : This component provides factory methods

that allow an application to create request and response mes-

sages.

- HeaderFactory : This component provides factory methods that

allow an application to create Header object.

- AddressFactory : This component provides factory methods

that allow an application to create Address objects and SIP URIs.

- sip-communicator.xml : XML file that contains Sip Communicator

settings such as registrar port and IP address, preferred audio and

video encoding, ports used for audio and video transmission, etc.

72

7.2 Application flow

7.2 Application flow

Figure 7.2 displays the Sip Communicator application flow.

Figure 7.2: Sip Communicator Application Flow

After a successful log in, the main Sip Communicator frame will be shown

to the user. The interface contains the user’s buddy list which has been

uploaded from a XML file. A subscription has been sent for each buddy of

the list after registration to the registrar. From that interface, the user will

be able to add or remove a buddy, make a call, accept or reject incoming calls

73

Chapter6/Chapter6Figs/appflow.eps

7.3 Presence

and send instant messages to his buddies. As soon as he receives an instant

message, a frame is displayed with the corresponding text. The user also

has the possibility to change its presence status or to exit the application at

anytime. The buddy list will be updated with presence status every time a

notification is sent from any buddy present on his list.

7.3 Presence

As we assume our proxy server was not presence enabled, we implemented

the presence service only at the client side. We assume that each presentity

has only one device and enough bandwidth. Therefore the PA and PUA

are co-located in Sip Communicator which means that subscriptions and

notifications are sent to and from this client directly. Such architecture is

called edge presence server. In this model (Figure 7.3), a presentity must

send subscription/notification request to every presentity/watcher.

Figure 7.3: Presence End-to-End Model

74

Chapter6/Chapter6Figs/subscribe.eps

7.3 Presence

7.3.1 Buddy List

A buddy list contains all the presentities that a user wants to subscribe to.

The buddy list we implemented enables a user to :

- Add a presentity to the list

- Remove a presentity from the list

- Know presentities status (online, offline, away, busy, on the phone,

gone to lunch)

- Initiate a call or send an instant message to a presentity by a simple

click on its username on the list.

All the presentities from the buddy list are saved within buddies.xml when

closing the application. When launching Sip Communicator, it parses this

file and uploads all the presentities in the buddy list. From the mobility

viewpoint, this file may be uploaded to a server when closing the application

and downloaded from the server when starting it.

7.3.2 Watcher

Subscription Sending

As we are based on the SUBSCRIBE/NOTIFY model, our watcher is a sub-

scriber. SUBSCRIBE requests are sent in two cases. In the first case, immedi-

ately after the registration process has been achieved and buddies.xml has

been uploaded, the Watcher sends a SUBSCRIBE to every presentity present

in the buddy list. In the second case, a SUBSCRIBE request is sent to a new

presentity just after being added in the buddy list. Before adding a new

contact, we check whether this presentity is present on the list.

Notification Processing

When a watcher sends a SUBSCRIBE request, it should expect presence infor-

mation notification from the PA. Then NOTIFY requests are sent from the PA

every time the presentity changes its presence information. The first thing a

75

7.3 Presence

watcher does when receiving a NOTIFY is to answer to the subscriber with a

200 OK response. Afterward, the watcher extracts the presence information

contained in a PIDF document within the NOTIFY body. It parses it and

takes out the relevant information in order to update presence status on the

buddy list.

7.3.3 Presence Agent

Subscription Processing

Once a PA receives a SUBSCRIBE request, it is first transmitted to the Sip-

Manager. The SipManager calls the PresenceAgent to process the new

request by replying with a 200 OK then stores it and sends a NOTIFY re-

quest with the presence information the watcher queried.

Notification Sending

A combo box, containing the statuses a user may choose, is displayed on

the main interface. Every time the presentity changes its status, a NOTIFY

request containing a PIDF body with the presence information is sent to

watchers that have subscribed to. All NOTIFY requests sent to a same pre-

sentity must have the same CallID. Hence we have to store the CallID

of the first NOTIFY request and use it back when future notifications are

needed.

Mutual Subscription

As we assume that the server cannot support advanced features like pres-

ence, our application has to buffer subscription requests while the presen-

tities are offline. When a Watcher sends out a SUBSCRIBE request and

receives a 404 Not Found response, it temporarily stores the SUBSCRIBE re-

quest. Then, when receiving a SUBSCRIBE request, the Watcher first checks

whether it is subscribed to the new subscriber. If not, it will send back the

temporarily stored SUBSCRIBE request. In that way, both clients are sub-

scribed to each other and can have access to presence information of each

other. Figure 7.4 illustrates the mutual subscription.

76

7.4 Instant Messaging

Figure 7.4: Mutual Subscription

7.4 Instant Messaging

As the Message Session Relay Protocol (MSRP) is still under development

at IETF, none of the current SIP clients are multi-users chat enabled. For

that reason, our instant messaging implementation is based on the pager-

mode model as described in Section 4.4.1. Although MESSAGE requests may

carry any type of MIME content, we will restrict it to text content.

7.4.1 MESSAGE Request Processing

After going through the JAIN SIP stack, the MESSAGE request will be trans-

mitted to the SipManager which will invoke the IMMessageProcessing to

process it. The MESSAGE request processing is composed of two parts. The

first part consists in replying to the originator of the request with a 200 OK.

The second part consists in displaying the text in a ChatFrame. Figure 7.5

shows the activity diagram when the ChatSessionManager is called by the

IMMessageProcessing. The ChatSessionManager checks whether there is

a ChatSession on the run between the user and the message initiator. If it

is the case, it then checks if a ChatFrame exists. If so, it will directly display

77

Chapter6/Chapter6Figs/buffer.eps

7.4 Instant Messaging

the message in the ChatFrame. If not, it will create a new ChatFrame that

will display the new message. If a ChatSession does not exist, the Chat-

SessionManager will create one with a new ChatFrame and the message

will appear inside of it. A ChatSession remains active even if a user closes

the ChatFrame.

Figure 7.5: Activity Diagram : Reception of a MESSAGE request

7.4.2 MESSAGE Request Sending

The user types his message in a text area within the ChatFrame then clicks

on the Send button. The message is transmitted to the SipManager which

queries the IMMessageProcessing. Afterward, the IMMessageProcessing

processes the MESSAGE request sending and encapsulates the text-encoded

message in a SIP request by invoking JAIN SIP factories. Eventually the

78

Chapter6/Chapter6Figs/ad_im.eps

7.5 Mobility

MESSAGE request is sent to its destination. Once the user receives the 200 OK

response from the recipient, its own message is displayed in the ChatFrame.

7.5 Mobility

7.5.1 Session Modification

While moving between subnets, change in bandwidth availability may ap-

pear. Therefore, multimedia sessions should use more appropriate audio and

video encoding techniques depending on bandwidth availability. We have

implemented session modification which enables a user to change audio and

video encoding techniques during an ongoing session. Our implementation

is based on the re-INVITE scheme as shown on Figure 7.6.

79

7.5 Mobility

Figure 7.6: Session Modification

The first part, until the media session establishment, has been explained in

Section 2.6.1. Once the media session has been set up between Bob and

Alice, it can be modified with a second INVITE request called re-INVITE

(10-11) with a new SDP content. The re-INVITE may be sent by either

Bob or Alice. In our case, Alice wants to modify the media session. Bob

answers with a 200 OK response (13-14) containing its own SDP content.

Alice replies with an ACK (15-16) and a new media session is set up based on

the second INVITE request. We implemented a GUI frame where the user

is allowed to choose among several audio and video codecs. Once the user

80

Chapter6/Chapter6Figs/reinv.eps

7.5 Mobility

has confirmed its choice, a new SDP content is generated then encapsulated

within an INVITE request and sent to the recipient. At this time, the re-

INVITE request initiator closes the media streams, so does the recipient at

the reception of the re-INVITE request. The JMF processors at both sides

need to be initialized with the new codecs which implies the closure of both

media streams. When the re-INVITE request initiator has sent its ACK, the

session is re-established using the new codecs. We invoke the same methods

as for a first INVITE request. The re-INVITE request differs from an INVITE

request in that it contains a new SDP content.

7.5.2 Mobile Host Registration

When a MH leaves its home network and acquires a new IP address in a

foreign network, it triggers a fresh REGISTER request to its home registrar.

The detection of the new IP address is achieved through a thread whose job

consists in comparing the initial IP address with a possible newly detected

IP address every 10 ms. As soon as the thread finds out a new IP address, a

new REGISTER request containing this address in the Contact field is created

through the JAIN SIP stack and then sent to the home registrar. As the

JAIN SIP stack is created on the basis of the IP address, the stack should

be destroyed and re-built up with the new IP address. This operation is

quickly achieved and takes a few ms.

7.5.3 Pre-Call Mobility

Pre-call mobility has been implemented by processing the 302 MOVED TEM-

PORARILY response. When receiving a 302 MOVED TEMPORARILY response,

the Mobile Host’s new IP address is extracted from the Contact header

which is then used as To header in the INVITE request. The INVITE request

can now be redirected to the Mobile Host.

7.5.4 Mid-Call Mobility

We implement the mid-call mobility without keeping the session ongoing

and by restricting it to VoIP. Once the Mobile Host arrives in a foreign

81

7.5 Mobility

network, the media session is disrupted as media packets sent from the Cor-

respondent Host do not find the recipient IP address. As soon as the Mobile

Host acquires a new IP address and has registered to its home registrar, it

sends back a new INVITE request to the Correspondent Host in order to

re-establish the session. The Mobile Host puts the new IP address in the

Contact field which indicates the Correspondent Host where it wants to

receive future SIP messages. The Mobile Host also indicates its new IP

address in the c= (connection) field of the SDP content in order to redirect

the media flow to its new location.

82

Chapter 8

Results and Discussion

In this chapter, we presents the results of our work. We will also present a

critical review of the application. The last part of this chapter will take into

account the future work that could be achieved to improve the application.

83

8.1 Results

8.1 Results

We will present here experiments we have performed in order to test whether

our newly implemented application fulfilled the requirements.

8.1.1 Presence

Scenario A.1 : Mutual subscription between Sip Communicator
and Windows Messenger/KPhone

Figure 8.1: Scenario A.1

We tested here if there was a mutual subscription between our application

and Windows Messenger or KPhone. As the result is the same for Windows

Messenger as for KPhone, we will only mention Windows Messenger in our

example. We assume here that Alice and Bob are within the same domain

and that Alice is present on Bob’s buddy list and the opposite is also true.

As shown on Figure 8.1, we first started Windows Messenger with Bob’s

SIP URI (sip:bob@info.be). It sends a subscription request to Alice and

84

Chapter7/Chapter7Figs/test01.eps

8.1 Results

received a 404 Not Found response as Alice is not registered yet. Then,

Alice started Sip Communicator using her SIP URI (sip:alice@info.be),

she sends a subscription request to Bob and immediately receives presence

notification from Bob. As Bob’s user agent is not taking in charge mutual

subscription, Bob will never be notified of Alice’s change of status as his

earlier subscription has been rejected. This problem has been noticed on

many SIP clients and may be solved by enabling presence feature on SIP

server.

Scenario A.2 : Mutual subscription between Sip Communicator
and Windows Messenger/KPhone

Figure 8.2: Scenario A.2

We have made the same assumptions as in Scenario A.1. The difference

here is that we first launched Sip Communicator with Alice’s username.

On Figure 8.2, Alice sends a subscription to Bob and receives a 404 Not

Found response as Bob is offline. Then, Bob appears online and sends

85

Chapter7/Chapter7Figs/test02.eps

8.1 Results

a subscription request to Alice. From her side, Alice also sends back a

subscription request to Bob. From that moment, both will be notified of

status change of each other. We conclude that our application may process

mutual subscription.

Scenario A.3 : Mutual subscription between two Sip Communi-
cator’s

Figure 8.3: Scenario A.3

We also tested it between two Sip Communicator’s and both user agents

were subscribed to each other (Figure 8.3).

Scenario A.4 : Presence notification between two domains

We assume now that Alice and Bob belong respectively to domain info.be

and enst.fr. They are both using Sip Communicator. In Figure 8.4, a

proxy server is assigned to each domain and plays the role of outbound

proxy for requests destined outside the domain. Bob notifies Alice that he

86

Chapter7/Chapter7Figs/test03.eps

8.1 Results

Figure 8.4: Scenario A.4

is online. Once his request reaches Bob’s proxy, it is routed through Alice’s

proxy which forwards it to her. The same pattern occurs when Bob change

his status to away.

8.1.2 Instant Messaging

Scenario B.1 : Instant Messaging between Sip Communicator and
Windows Messenger/KPhone within one domain

We assume that Alice and Bob are within the same domain and are already

subscribed to each other. Alice sends a Hello message to Bob and Bob

answers How are you?. This is illustrated on Figure 8.5. We also tested

this scenario between two Sip Communicator’s and it works perfectly well.

Scenario B.2 : Instant Messaging between two domains

As in Scenario A.4, Alice and Bob belong respectively to domain info.be

and enst.fr and they are both using Sip Communicator. Alice sends a

Hello message which is first routed to her proxy. The message request is

87

Chapter7/Chapter7Figs/test04.eps

8.1 Results

Figure 8.5: Scenario B.1

Figure 8.6: Scenario B.2

then forwarded to the Bob’s proxy and is eventually directed to Bob. Bob

answers How are you which is routed through Alice’s message reverse path.

88

Chapter7/Chapter7Figs/test05.eps
Chapter7/Chapter7Figs/test06.eps

8.1 Results

8.1.3 Mobility

Scenario C.1 : Pre-call mobility - Mobile Host moves in the same
subnet

Figure 8.7: Scenario C.1

We tested here our application through a 802.11g Wi-Fi connection. We

still assume that Alice and Bob belong respectively to domain info.be and

enst.fr and they are both using Sip Communicator. When moving within a

same subnet, a Mobile Host normally keeps its IP address (192.168.1.2). For

this experiment, we have manually changed the Mobile Host’s IP address

to 192.168.1.3. So as shown on Figure 8.7 the Mobile Host sends a re-

REGISTER request (1) to update the server info.be location database. The

Correspondent Host wants to establish a session but has not been informed

about the Mobile Host’s change of IP address. The Correspondent Host

therefore sends its INVITE request (3-4) to the old Mobile Host’s IP address.

The Mobile Host’s server sends back a 302 MOVED TEMPORARILY response

(5-6) indicating the Mobile Host’s new IP address. The Correspondent

89

Chapter7/Chapter7Figs/test07.eps

8.1 Results

Host will then redirect its INVITE request using the Mobile Host’s current

IP address (7-8-9) and then the session could be established.

Scenario C.2 : Mid-call mobility - Mobile Host moves to different
subnet

Figure 8.8: Scenario C.2

In this scenario (Figure 8.8), we assume that a media session is ongoing

between the Mobile Host and the Correspondent Host. After moving to

a foreign network, the Mobile Host does not receive any packets from the

Correspondent Host. Therefore, the connection is disrupted. Once the

Mobile Host acquires a new IP address (10.0.1.1), it sends a re-REGISTER

request (1) to the server. It then wants to re-establish the session with the

Correspondent Host. For that purpose, the Mobile Host sends an INVITE

(3-4) request which is routed through the Correspondent Host’s server then

forwarded to the Correspondent Host itself. A new session is set up between

the Mobile Host and the Correspondent Host.

90

Chapter7/Chapter7Figs/test08.eps

8.2 Fulfillment of the Requirements

8.2 Fulfillment of the Requirements

We will check here whether our application fulfill the requirements stated

in Section 6.1.

8.2.1 Audio/Video Sessions

Sip Communicator already offers users the possibility to establish audio and

video sessions with other SIP clients.

8.2.2 Edge Presence Server

Sip Communicator has been augmented with the presence function. It al-

lows users to be notified of their buddies presence information and notify

their own status. The presence function is completely CPP-compliant and

fulfills SIMPLE specifications. SIP presence messages carry PIDF content

to ensure interoperability. Many tests have been performed to test interop-

erability among several SIP clients and have been successfully passed by our

application. Presence service has been completely implemented at the client

side and therefore the application works without presence enabled server.

8.2.3 Buddy List

A buddy list has been added to the Sip Communicator GUI (Figure 8.9).

From that buddy list, a user is allowed to see his buddies status, add or

remove a buddy and initiate an audio/video session with one of his buddies.

Figure 8.9: Buddy List

91

Chapter7/Chapter7Figs/buddylist.eps

8.2 Fulfillment of the Requirements

8.2.4 Instant Messaging System

Sip Communicator has been enhanced with the instant messaging function

(Figure 8.10). It allows users to send real-time text-based message to their

buddies. The instant messaging function has been implemented following

the pager-mode model and is fully compliant with CPIM and SIMPLE speci-

fications. Our application has successfully passed interoperability tests with

other SIP clients.

Figure 8.10: Chat Frame

8.2.5 Mobility Support

Our application allows users to change codecs during an ongoing session.

This might be very useful in some networks where bandwidth is narrow.

Automatic re-registration has been implemented when Sip Communicator

is moving to a foreign network. Pre-call and mid-call mobility without con-

tinuous connectivity have been implemented following the solution proposed

in Section 5.3. Mobility with continuous connectivity may be implemented

at the server side. A solution is suggested at the end of this chapter.

92

Chapter7/Chapter7Figs/chat.eps

8.3 Critical Review

8.2.6 Operating System Independence

Our application is written in Java language and therefore should run on any

platforms. We tested it on Linux and Windows XP and concluded that this

requirement is fulfilled.

8.3 Critical Review

8.3.1 Pushing Presence Service to the Edges

If we do not consider the fact that our SIP server is not presence enabled,

what would be the advantages and drawbacks of implementing presence

function at the edge? Firstly, this model would better match SIP’s con-

ception of networks as we introduced it in Chapter 2 : ”smart endpoints in

dumb networks”. Contrary to traditional telephone network, SIP offers a

wider range of services than just making calls between two endpoints and

that is the reason why SIP features should be implemented at the edge.

Secondly, pushing presence service to the edges increases the robustness in

a peer-to-peer SIP network. Indeed, a centralized SIP presence server would

constitute a single point of failure and in case of crash, there would be dis-

astrous consequences i.e. loss of all subscription requests. In case of failure

of our application, this would only affect subscriptions addressed to that

client and would not have any incidence on the whole network. Thirdly,

due to their success, presence and instant messaging security threats are

still increasing. Bypassing presence servers would allow end-to-end encryp-

tion which is the best way to preserve message confidentiality and integrity.

But pushing presence service to the edges results in serious increase in net-

work traffic. This increase may be explained by two main reasons. The first

reason is the fact that the watcher needs to generate subscription request for

each buddy of his buddy list. And the second reason is that each change of

presence status implies notification to each watcher. The use of a presence

server (Figure 8.11) would considerably reduce the network traffic. Indeed,

presence server enables a watcher to subscribe to his whole list with only

93

8.3 Critical Review

one SUBSCRIBE request and instead of sending notifications to each buddy,

a presentity may just send a simple PUBLISH request.

Figure 8.11: Presence Server Model

We measured the traffic load related to presence service in one hand with

MSN Messenger which uses a presence server and in the other hand with

our client without using presence server. The measurement has been carried

out during one hour with ten buddies. The results are shown in Table 8.1.

We may observe that the total traffic is about 20 times greater with our

client than with MSN Messenger. This may be explained by the use of

MSN presence servers and the small packet size of the MSNMS protocol.

Protocol Packets Avg. Packet Size Total Traffic
MSN Messenger MSNMS 212 146 bytes 30950 bytes
Our SIP Client SIP 1160 643 bytes 745770 bytes

Table 8.1: Traffic Load Comparison

94

Chapter7/Chapter7Figs/pres_server.eps

8.3 Critical Review

A solution to this issue would be the combination of presence function at the

edge with SIP signaling compression mechanism called SigComp. Follow-

ing [29], if using good compressing algorithms, this could result in reduction

by half of the traffic volume but would require more processing to compress

and decompress at the endpoints. Another solution would be the use of a

throttle mechanism for limiting the rate of notifications as specified in the

Internet-Draft SIP Event Notification Extension for Notification Throttling

[35]. This mechanism enables a subscriber to set a minimum time period

between the generation of two notifications coming from a single watcher.

As a result, this would imply a decrease in the number of notifications but

also in the accuracy of the presence information depending on the throttling

value.

Another drawback is the loss of presence and instant messaging messages

while the Mobile Host is moving to a foreign network. Indeed, the Corre-

spondent Host keep sending packets to the old location and receives a 404

NOT FOUND response from the proxy. A solution would be mid-call mobility

with continuous connectivity which is detailed in Section 8.4.2.

8.3.2 JAIN SIP Stack Destruction

In Section 7.5.2, once the Mobile Host moves to a new location, the JAIN

SIP stack is destroyed then re-initialized with the new IP address. During

this short period, all incoming SIP messages would be temporarily lost as

all port listeners have been deleted. The Correspondent Host will keep re-

sending the message until it receives a 408 REQUEST TIMEOUT response after

30 seconds which is enough to the stack to be re-initialized and therefore

the reception of the message by the Mobile Host at its new location would

be possible.

95

8.4 Future work

8.4 Future work

8.4.1 Automatic Session Modification

Due to network congestion, periods of low bandwidth availability may ap-

pear. For instance, Alice has established a media session with Bob using

PCM µ-law codec. The available bandwidth suddenly drops resulting in a

poor quality call. In order to increase call quality, the session may auto-

matically adjust to a higher compression codec, i.e GSM, without users in-

tervention. As mentioned in Section 2.4.1, RTCP packets provide feedbacks

on call quality such as packet loss and jitter. Based on these reports, our

client may detect network congestion and automatically trigger re-INVITE

request using a more suitable codec to the bandwidth availability.

8.4.2 Enhanced Mid-Call Mobility

In order to provide mid-call mobility with continuous connectivity, mobility

should be handled at the server side as suggested in [16]. After moving, the

Mobile Host informs the SIP registrar about its move. The Correspondent

Host will still keep sending packets to the Mobile Host’s old IP address

which is not valid anymore. Therefore, the server must create a virtual

interface with the same IP address than the Mobile Host’s old one as soon

as it receives a new registration from the Mobile Host. From that time, the

proxy will receive all packets destined to the Mobile Host’s old IP address

and will forward them to the Mobile Host’s new IP address. To create

that interface and forward packets, a Linux tool called ipchains may be

used. The SIP registrar will implement the ipchains tool through a SIP-

CGI script. Once the Correspondent Host receives the INVITE request from

the Mobile Host’s new location, it will directly send media packets to the

Mobile Host’s new IP address. Figure 8.12 illustrates the proposed solution.

96

8.4 Future work

Figure 8.12: Mid-Call Mobility with Continuous Connectivity

97

Chapter7/Chapter7Figs/futurwork.eps

Chapter 9

Conclusions

As of today, presence and instant messaging systems are becoming part of

our daily life at home as well as at work. Each of these systems relies on its

own protocol which implies interoperability issues. Several IETF working

groups have been created whose goals are to design an open, interoperable

and standardized protocol. We focused on one of those solutions, SIMPLE,

which has been developed to extend SIP features.

Throughout this master thesis, we attempted to demonstrate the versatility

and power of SIP. SIP seems to be the key to IP-based services convergence.

SIP not only manages audio and video sessions but also offers presence and

instant messaging function through its extension, SIMPLE. Our client has

been enhanced with pre-call and mid-call mobility support without continu-

ous connectivity. In order to complete the application, full mobility support

might be implemented at the server side as described in Section 8.4.2. The

application resulting from this work allowed us to better understand SIP

signaling mechanism and the role it could play in the convergence issue.

Nowadays SIP has been widely spread through the world of enterprises and

has been adopted by 3GPP to fulfill call control and signaling function.

Many IETF working groups are still developing new functionalities to make

SIP one of the most revolutionary protocols of the Internet.

99

Appendix A

JAIN SIP stack

In this section, we present a general overview of the JAIN SIP specifications

by describing the architecture and functionalities supported and we analyze

the different interactions between JAIN SIP interface, Java interfaces and

SIP. These specifications are based on [37] and [38].

A.1 Introduction

SIP is an IETF (Internet Engineering Task Force) standard specification

adopted by the communication industry. As a developer we are free to

implement the protocol in any programming language and define our own

interface for accessing the defined behavior of the protocol as outlined by

the IETF standard. This standard ensures the interoperability between

SIP stacks but does not guarantee the interoperability between applications

based on different stacks. JAIN (Java API for Integrated Networks) SIP has

been designed to satisfy this need using the Java programming language in

the way, it ensures interoperability between stacks but also the interoper-

ability of applications across stacks, referred to as application portability.

101

A.2 Responsibilities of JAIN SIP

JSR 32 [37] (Java Specification Request) defines the JAIN SIP API specifi-

cation. It is rich semantically and on definition to the SIP protocol. JAIN

SIP offers to developers a Java-standard interface for SIP services and sup-

port for the RFC 3261 functionality and the following extensions; the INFO

method (RFC 2976), Reliability of provisional responses (RFC 3262), Event

Notification Framework (RFC 3265), the UPDATE method (RFC 3311), the

Reason Header (RFC 3326), the Message method (RFC 3428) defined for

instant messaging and the REFER method (RFC 3515).

A.2 Responsibilities of JAIN SIP

JAIN SIP aims at :

• providing methods to format SIP messages

• ensuring the ability for an application to send and receive SIP mes-

sages

• parsing incoming messages and enable application access to fields via

a standardized Java interface

• invoking appropriate application handlers

• providing transaction support

• providing dialog support

A.3 JAIN SIP Object Architecture

A.3.1 SipStack Interface

This interface represents the management interface of a SIP stack imple-

menting the JAIN SIP specification and it specifies the methods required

102

A.3 JAIN SIP Object Architecture

Figure A.1: JAIN SIP Architecture

to interact with a proprietary SIP protocol stack.

This SipStack interface defines the methods that are used by an application

implementing the SipListener interface to control the architecture and

setup of the SIP stack. These methods include :

• Creation/deletion of SipProvider’s that represent messaging objects

that can be used by an application to send request and response mes-

sages statelessly or statefully via Client and Server transactions.

• Creation/deletion of ListeningPoint’s that represent different ports

that a SipProvider can use to send and receive messages.

A.3.2 Architecture

A SipStack object is associated with a single IP address but there is a

1-N relationship between a SipStack and a SipProvider. There is a 1-N

relationship between a SipStack and a ListeningPoint.

103

Appendix1/Appendix1Figs/jainsip_architecture.eps

A.3 JAIN SIP Object Architecture

A.3.3 SipStack Creation

A SipStack object is instantiated by the SipFactory and initialized with

a property set. Following the naming convention defined in SipFactory,

the methods of the SipStack interface are implemented in SipStackImpl.

javax.sip.* properties are reserved and names are defined for stack con-

figuration properties.

A.3.4 Retransmissions

JAIN SIP provides a convenience function that ensures all retransmissions

are handled by the JAIN SIP implementation which reduces the complex-

ity for applications acting as user agents. These retransmissions can be

configured via Java properties on the SipStack interface.

A.3.5 SipProvider Interface

This interface represents the messaging entity of a SIP stack and defines

the methods that enable any application implementing the SipListener

interface to :

• Register a SipListener to the SipProvider. Once the SipListener

is registered with the SipProvider it will get notified of events repre-

senting either request, response or time out messages.

• Unregister a SipListener from the SipProvider. Once a SipLis-

tener is un-registered, it will no longer receive any events from that

SipProvider.

• Provide client and server transaction creation methods.

104

A.4 JAIN SIP Messaging Architecture

A.3.6 Architecture

There is a N-1 relationship between a SipProvider and a SipStack, a 1-

1 relationship between a SipProvider and a ListeningPoint and a N-1

relationship between a SipProvider and a SipListener.

A.3.7 SipListener Interface

This interface defines the methods required by an application to receive and

process events that are emitted by an object implementing the SipProvider

interface.

The Events accepted by a SipListener may be one of these three types :

• RequestEvent : these are request messages emitted as events by the

SipProvider. Request events encapsulate request messages i.e. IN-

VITE, that are received from the network and transmitted to the ap-

plication via the underlying stack implementation.

• ResponseEvent : these are response messages emitted as events by

the SipProvider. Response events encapsulate response messages

i.e. 2XX’s, that are received from the network to the application via

the underlying stack implementation.

• TimeoutEvent : these are time out notifications emitted as events by

the SipProvider. These time out events notify the application that

a retransmission is required or a transaction has timed out.

A.4 JAIN SIP Messaging Architecture

This architecture follows the Listener/Provider event model, which is suit-

able for applications that are unsure when the next event will arrive i.e. the

applications listen to it.

105

A.5 Packages

Figure A.2: JAIN SIP Messaging Architecture

A.4.1 Responsibilities of the Application

An application must register an instantiated SipListener object to inter-

act with the SIP stack, it also must register with the SipProvider for all

messaging capabilities with the stack. An application only sends out SIP

messages not events. The SipListener listens to events containing incom-

ing requests and responses to initiate dialogs or new incoming dialogs. The

SipProvider receives messages from the network and transfers them to the

application as events.

A.5 Packages

• javax.sip : Defines the main interfaces, the client and server trans-

action and dialog interfaces.

• javax.sip.address : Contains a generic URI wrapper and format

SIP URIs.

106

Appendix1/Appendix1Figs/jainsip_msg.eps

A.6 Factories

• javax.sip.header : Contains all the supported headers and exten-

sion headers interfaces.

• javax.sip.message : Contains the interfaces representing SIP mes-

sages i.e. request/response messages.

A.6 Factories

JAIN SIP defines four different factories, each with respective responsibili-

ties :

• javax.sip.SipFactory : This class defines methods to create new

Stack objects and other factory objects.

• javax.sip.address.AddressFactory : This interface provides fac-

tory methods that allow an application to create Address objects and

SIP URIs.

• javax.sip.header.HeaderFactory : This interface provides factory

methods that allow an application to create Header object.

• javax.sip.message.MessageFactory : This interface provides fac-

tory methods that allow an application to create Request and Re-

sponse messages.

A.7 Headers

javax.sip.header provides specific interfaces for each SIP header such

as fromHeader, CallIdHeader or toheader as opposed to have a generic

interface to handle all header information. This allows for each interface to

specify the headers acceptable parameters and have more protocol support

such as parsing support for each header.

107

A.8 Messages

A.8 Messages

JAIN SIP defines two types of messages as interfaces :

• Request messages which are sent from the client to the server :

ACK, BYE, CANCEL, INVITE, OPTIONS, REGISTER

• Response messages which are sent from the server to the client in

response to a request. Responses contain a status-code and a reason-

phrase, as well as headers and a possible message body.

Both messages use the basic format specified in RFC 2822. The message-

body may contain a Session Description Protocol (SDP) which is handled

by JAIN SIP as an object. This allows the body to be a string or an object

type.

A.9 Generic SIP Application Structure

A.9.1 Transaction Support

Two kinds of transactions exist within the SipStack implementation :

• ClientTransaction : A client transaction is used by a User Agent

Client application to send request messages to a User Agent Server

application. The client transaction is also used to match responses

with previously sent requests from the User Agent Server. It also fires

response events to the SipListener for a specific client transaction.

This interfaces enables an application to send a request statefully.

• ServerTransaction : A server transaction is used by a User Agent

Server application to send response messages to a User Agent Client

application. When a request arrives, the SipProvider determine

whether it is associated with a ServerTransaction. If not, the Sip-

Provider creates a new ServerTransaction. A server transaction

108

A.9 Generic SIP Application Structure

Figure A.3: Generic SIP Application Structure

also fires request events to the SipListener for a specific server trans-

action. This interfaces enables an application to send a response state-

fully.

A JAIN SIP transaction is a request sent by a client transaction to a server

transaction, along with all responses to that request sent from the server

transaction back to the client transaction.

A.9.2 Dialog Support

A dialog represents a peer-to-peer SIP relationship between two communi-

cating SIP endpoints that persists for some time. The dialog represents a

109

Appendix1/Appendix1Figs/app_arch.eps

A.9 Generic SIP Application Structure

context in which to interpret SIP messages. A dialog is used to maintain

data needed for further message transmissions within the dialog such as se-

quence number, URIs, route sets, etc. The dialog facilitates sequencing of

messages between the user agents and proper routing of requests.

110

Bibliography

[1] Sip vs. h.323, a business analysis. Wind River, 2001. 2.8

[2] Ed. A. Niemi. Session initiation protocol (sip) extension for event state

publication (rfc 3903). The Internet Society, 2004. 3.3.3

[3] America Online (AOL). Aol instant messenger (aim) service : The

world’s leading instant messaging community. Available at : http://

corp.aol.com/products/brands_aim.shtml, consulted in April 2005.

4.1.2

[4] Appliansys. Why instant messaging? Appliansys, 2004. 4

[5] J. Rosenberg H. Schulzrinne C. Huitema D. Gurle B. Campbell, Ed.

Session initiation protocol (sip) extension for instant messaging (rfc

3428). The Internet Society, 2002. 2.5.1, 4.4, 4.4.1

[6] R. Mahy Ed. C. Jennings Ed. B. Campbell, Ed. draft-ietf-simple-

message-sessions-10.txt - the message session relay protocol. The In-

ternet Society, February 2005. 4.4, 4.4.2

[7] Editor B. Ramsdell. S/mime version 3 message specification. The

Internet Society, 1999. 2.7.3

[8] Javvin Company. Sap (v1 & v2): Session announcement protocol.

Available at : http://www.javvin.com/protocolSAP.html, consulted

in March 2005. 2.4.4

[9] The International Engineering Consortium. Instant messaging. IEC. 4

111

http://corp.aol.com/products/brands_aim.shtml
http://corp.aol.com/products/brands_aim.shtml
http://www.javvin.com/protocolSAP.html

BIBLIOGRAPHY

[10] Jonathan Cumming. Sip market overview : An analysis of sip technol-

ogy and the state of sip market. Data Connection, 2003. 2.2

[11] J. Arkko D. Johnson, C. Perkins. Mobility support in ipv6 (rfc 3775).

The Internet Society, 2004. 5.2.3

[12] S. Donovan. The sip info method (rfc 2976). The Internet Society,

2000. 2.5.1

[13] DynamicSoft. Sip for presence. Available at : http://

www.dynamicsoft.com/innovation/sip4presence.php, consulted in

March 2005. 3

[14] Jabber Software Foundation. What is jabber? Available at : http://

www.jabber.org/about/overview.shtml, consulted in April 2005.

3.1.3

[15] M.A. Garcia-Matin G. Camarillo. The 3g ip multimedia subsystem.

2004. (document), 3, 3.2, 3.3, 3.3.2, 4.3, 4.4, 4.4.1, 4.4.2, 4.4.2

[16] A. Dutta H. Schulzrinne, P-Y. Hsieh. Application layer mobility

proxy for real-time communication. Department of Computer Science,

Columbia University, 2003. 8.4.2

[17] E. Wedlund H. Schulzrinne. Mobility support using sip. Department

of Computer Science, Columbia University, 1999. (document), 5.3, 5.3,

5.4, 5.5, 5.3.4, 5.1

[18] E. Wedlund H. Schulzrinne. Application-layer mobility using sip. De-

partment of Computer Science, Columbia University, 2000. 5.1, 5.2.2,

5.3

[19] P. Kyzivat J. Rosenberg H. Schulzrinne, V. Gurbani. Work in progress :

draft-ietf-simple-rpid-05 - rpid: Rich presence extensions to the pres-

ence information data format (pidf). The Internet Society, 2004. 3.3.2

[20] A.B. Johnston H. Sinnereich. Internet Communications Using SIP.

Wiley, 2001. 3.2

112

http://www.dynamicsoft.com/innovation/sip4presence.php
http://www.dynamicsoft.com/innovation/sip4presence.php
http://www.jabber.org/about/overview.shtml
http://www.jabber.org/about/overview.shtml

BIBLIOGRAPHY

[21] G. Klyne A. Bateman W. Carr J. Peterson H. Sugano, S. Fujimoto.

Presence information data format (pidf) (rfc 3863). The Internet Soci-

ety, 2004. 3.3.2

[22] ICQ Inc. The icq story. Available at : http://www.icq.com/info/

icqstory.html, consulted in April 2005. 4.1.1

[23] Yahoo Inc. Yahoo! messenger makes the world a little smaller,

more informed. Available at : http://docs.yahoo.com/docs/pr/

release331.html, consulted in April 2005. 4.1.3

[24] ipUnplugged. White paper : Mobility and mobile ip, introduction.

ipUnplugged, 2003. (document), 5.1, 5.2.1, 5.2, 5.2.1

[25] G. Camarillo A. Johnston J. Peterson R. Sparks M. Handley

E. Schooler J. Rosenberg, H. Schulzrinne. Sip: Session initiation pro-

tocol (rfc 3261). The Internet Society, 2002. 2, 2.2, 2.3.1, 2.5.1, 2.7.2,

2.7.3, 2.7.4

[26] K.W. Ross J.F. Kurose. Computer Networking, A Top-Down Approach

Featuring The Internet. Addison-Wesley, 2003. 2.4, 2.4.1, 2.4.1, 2.4.2,

2.4.3

[27] G. Mohr J. Vincent M. Day, S. Aggarwal. Instant messaging / presence

protocol requirements (rfc 2779). The Internet Society, 2004. 3.1.1,

3.1.3

[28] H. Sugano M. Day, J. Rosenberg. A model for presence and instant

messaging (rfc 2778). The Internet Society, 2000. 3.2, 4.3, 4.3

[29] Z. Sogor G. Sey M. Fidrich, V. Bilicki. Sip compression. 2003. 8.3.1

[30] V. Jacobson M. Handley. Sdp : Session description protocol (rfc 2327).

The Internet Society, 1998. 2.6.1

[31] K. Kiss M. Lonnfors. Work in progress : draft-ietf-simple-prescaps-

ext-00 - user agent capability presence status extension. The Internet

Society, 2004. 3.3.2

113

http://www.icq.com/info/icqstory.html
http://www.icq.com/info/icqstory.html
http://docs.yahoo.com/docs/pr/release331.html
http://docs.yahoo.com/docs/pr/release331.html

BIBLIOGRAPHY

[32] mess.be. Happy birthday msn messenger!!! (archive of the week of

august 01 2004). Available at : http://www.mess.be, consulted in

April 2005. 4.1.4

[33] Cathleen Moore. Xmpp vs simple: The race for messaging stan-

dards. Available at : http://www.computerworld.com.au/index.

php?id=940058663&fp=16&fpid=0, May 2003, consulted in April 2005.

3.1.3

[34] C. Politis R. Tafazolli N. Akhtar, M. Georgiades. Sip-based end system

mobility solution for all-ip infrastructures. Centre for Communication

Systems Research (CCSR), University of Surrey, UK, 2003. 5.2

[35] A. Niemi. Work in progress : draft-niemi-sipping-event-throttle-03 -

sip event notification extension for notification throttling. The Internet

Society, 2005. 8.3.1

[36] M. Sjöstedt O. Bergquist. Ip telephony, a swedish perspective. Master’s

thesis, Kungl Tekniska Högskolan, Vetenskap Och Konst, 2003. 2.4

[37] M. Ranganathan P. O’doherty. Jain sip api specification - jsr 32. Avail-

able at : Seehttp://jcp.org/en/jsr/detail?id=32, 2002. A, A.1

[38] M. Ranganathan P. O’doherty. Slides : Jain sip tutorial, serving the

developer community. Sun Microsystems, NIST, 2002. A

[39] Ed. P. Saint-Andre. Extensible messaging and presence protocol

(xmpp) : Core (rfc 3920). The Internet Society, 2000. 3.1.3

[40] C. E. Perkins. Mobile networking through mobile ip. IEEE Internet

Computing, 1998. 5.2.1, 5.2.1

[41] A. B. Roach. Session initiation protocol (sip)-specific event notification

(rfc 3265). The Internet Society, 2002. 2.5.1, 3.1.2, 3.3.3

[42] J. Rosenberg. The session initiation protocol (sip) update method (rfc

3311). The Internet Society, 2002. 2.5.1

114

http://www.mess.be
http://www.computerworld.com.au/index.php?id=940058663&fp=16&fpid=0
http://www.computerworld.com.au/index.php?id=940058663&fp=16&fpid=0
See http://jcp.org/en/jsr/detail?id=32

BIBLIOGRAPHY

[43] J. Rosenberg. A presence event package for the session initiation pro-

tocol (sip) (rfc 3856). The Internet Society, 2004. 3, 3.3

[44] P. Salin. Mobile instant messaging systems - a comparative study and

implementation. Master’s thesis, Helsinki University of Technology,

2004. 3.1

[45] L. Schumacher. Slides from the course of ”reseaux matières appro-

fondies” : Chapter08, mobility in all-ip networks. Facultés Universi-

taires Notre Dame de la Paix (FUNDP), Namur, Belgium, 2004. 5.2.2

[46] R. Sparks. The session initiation protocol (sip) refer method (rfc 3515).

The Internet Society, 2003. 2.5.1

115

	1 Introduction
	2 SIP - Session Initiation Protocol
	2.1 The Origins of SIP
	2.2 Overview of SIP Functionalities
	2.3 SIP Entities
	2.3.1 User Agent
	2.3.2 Server

	2.4 Encapsulation and Layer Structure
	2.4.1 RTP/RTCP
	2.4.2 RSVP
	2.4.3 RTSP
	2.4.4 SAP

	2.5 SIP Messages
	2.5.1 Requests and Response Codes
	2.5.2 SIP Address Format
	2.5.3 Message Structure

	2.6 Entity Interaction
	2.6.1 Session Establishment
	SDP - Session Description Protocol

	2.6.2 Registration

	2.7 Security
	2.7.1 Hop-by-Hop encryption
	2.7.2 Authentication and Authorization
	2.7.3 Privacy, Integrity and Confidentiality
	2.7.4 Transport and Network Layer Security

	2.8 SIP vs H.323

	3 Presence Service
	3.1 Standards and Protocols
	3.1.1 IMPP
	3.1.2 SIMPLE
	3.1.3 XMPP

	3.2 Concepts and Model
	3.3 Presence with SIP
	3.3.1 Architecture
	3.3.2 PIDF
	3.3.3 Presence Publication
	3.3.4 Presence Subscription and Notification

	4 Instant Messaging Service
	4.1 Proprietary Instant Messaging Systems
	4.1.1 ICQ
	4.1.2 AOL Instant Messenger
	4.1.3 Yahoo! Messenger
	4.1.4 Microsoft MSN Messenger

	4.2 Standards and Protocols
	4.3 Concepts and Model
	4.4 Instant Messaging with SIP
	4.4.1 Pager-mode Instant Messaging
	4.4.2 Session-based Instant Messaging with MSRP

	5 Mobility Support
	5.1 Types of Mobility
	5.2 Mobile IP
	5.2.1 Architecture
	Triangular Routing
	Agent Discovery
	Registration

	5.2.2 Limitations
	5.2.3 Mobile IPv6

	5.3 Mobility Support Using SIP
	5.3.1 Mobile Node Registration
	5.3.2 Pre-Call Mobilty
	5.3.3 Mid-Call Mobilty
	5.3.4 SIP Mobility Support with Mobile IP

	6 Analysis of Application Requirements
	6.1 Requirements
	6.1.1 Audio/Video Sessions
	6.1.2 Edge Presence Server
	6.1.3 Buddy List
	6.1.4 Instant Messaging System
	6.1.5 Mobility Support
	6.1.6 Operating System Independence

	6.2 Choice of a SIP client
	6.2.1 Windows Messenger 5.0
	6.2.2 KPhone 3
	6.2.3 Sip Communicator
	6.2.4 Comparison
	6.2.5 Conclusion

	6.3 The Environment
	6.4 Utility Tools
	6.4.1 Java 2 Platform, Standard Edition 1.4.2 (J2SE)
	6.4.2 JAIN SIP stack 1.1
	6.4.3 IntelliJ IDEA 4.5
	6.4.4 Apache Ant 1.6.2
	6.4.5 SIP Express Router (SER)

	7 Implementation
	7.1 Architecture
	7.2 Application flow
	7.3 Presence
	7.3.1 Buddy List
	7.3.2 Watcher
	Subscription Sending
	Notification Processing

	7.3.3 Presence Agent
	Subscription Processing
	Notification Sending
	Mutual Subscription

	7.4 Instant Messaging
	7.4.1 MESSAGE Request Processing
	7.4.2 MESSAGE Request Sending

	7.5 Mobility
	7.5.1 Session Modification
	7.5.2 Mobile Host Registration
	7.5.3 Pre-Call Mobility
	7.5.4 Mid-Call Mobility

	8 Results and Discussion
	8.1 Results
	8.1.1 Presence
	Scenario A.1 : Mutual subscription between Sip Communicator and Windows Messenger/KPhone
	Scenario A.2 : Mutual subscription between Sip Communicator and Windows Messenger/KPhone
	Scenario A.3 : Mutual subscription between two Sip Communicator's
	Scenario A.4 : Presence notification between two domains

	8.1.2 Instant Messaging
	Scenario B.1 : Instant Messaging between Sip Communicator and Windows Messenger/KPhone within one domain
	Scenario B.2 : Instant Messaging between two domains

	8.1.3 Mobility
	Scenario C.1 : Pre-call mobility - Mobile Host moves in the same subnet
	Scenario C.2 : Mid-call mobility - Mobile Host moves to different subnet

	8.2 Fulfillment of the Requirements
	8.2.1 Audio/Video Sessions
	8.2.2 Edge Presence Server
	8.2.3 Buddy List
	8.2.4 Instant Messaging System
	8.2.5 Mobility Support
	8.2.6 Operating System Independence

	8.3 Critical Review
	8.3.1 Pushing Presence Service to the Edges
	8.3.2 JAIN SIP Stack Destruction

	8.4 Future work
	8.4.1 Automatic Session Modification
	8.4.2 Enhanced Mid-Call Mobility

	9 Conclusions
	A JAIN SIP stack
	A.1 Introduction
	A.2 Responsibilities of JAIN SIP
	A.3 JAIN SIP Object Architecture
	A.3.1 SipStack Interface
	A.3.2 Architecture
	A.3.3 SipStack Creation
	A.3.4 Retransmissions
	A.3.5 SipProvider Interface
	A.3.6 Architecture
	A.3.7 SipListener Interface

	A.4 JAIN SIP Messaging Architecture
	A.4.1 Responsibilities of the Application

	A.5 Packages
	A.6 Factories
	A.7 Headers
	A.8 Messages
	A.9 Generic SIP Application Structure
	A.9.1 Transaction Support
	A.9.2 Dialog Support

	Bibliography

