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Mining the Meaningful Compound Terms from
Materialized Faceted Taxonomies
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Abstract. A materialized faceted taxonomy is an information source
where the objects of interest are indexed according to a faceted taxon-
omy. This paper shows how from a materialized faceted taxonomy, we
can mine an expression of the Compound Term Composition Algebra that
specifies exactly those compound terms that have non-empty interpre-
tation. The mined expressions can be used for encoding compactly (and
subsequently reusing) the domain knowledge that is stored in existing
materialized faceted taxonomies. Furthermore, expression mining is very
crucial for reorganizing taxonomy-based sources which were not initially
designed according to a clear faceted approach (like the directories of
Google and Yahoo!), so as to have a semantically clear, and compact
faceted structure. We analyze this problem and we give an analytical
description of all algorithms needed for expression mining.
Keywords : Materialized faceted taxonomies, knowledge extraction and
reuse, algorithms

1 Introduction

Assume that we want to build a Catalog of hotel Web pages and suppose that we
want to provide access to these pages according to the Location of the hotels, the
Sports that are possible in these hotels, and the Facilities they offer. For doing
so, we can design a faceted taxonomy, i.e. a set of taxonomies, each describing
the domain from a different aspect, or facet, like the one shown in Figure 1. Now
each object (here Web page) can be indexed using a compound term, i.e., a set of
terms from the different facets. For example, a hotel in Rethimno providing sea
ski and wind-surfing sports can be indexed by assigning to it the compound term
{Rethimno, SeaSki, Windsurfing}. We shall use the term materialized faceted
taxonomy to refer to a faceted taxonomy accompanied by a set of object indices.

However, one can easily see that several compound terms over this faceted
taxonomy are meaningless (or invalid), in the sense they cannot be applied to
any object of the domain. For instance, we cannot do any winter sport in the
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Fig. 1. A faceted taxonomy for indexing hotel Web pages

Greek islands (Crete and Cefalonia) as they never have enough snow, and we
cannot do any sea sport in Olympus because Olympus is a mountain. For the
sake of this example, suppose that only in Cefalonia there exists a hotel that
has a casino, and that this hotel also offers sea ski and wind-surfing sports.
According to this assumption, the partition of compound terms to the set of
valid (meaningful) compound terms and invalid (meaningless) compound terms
is shown in Table 2 (found in Appendix A).

The availability of such a partition would be very useful during the construc-
tion of a materialized faceted taxonomy. It could be exploited in the indexing
process for preventing indexing errors, i.e. for allowing only meaningful com-
pound terms to be assigned to objects. In particular, knowing this partition, it is
possible to generate a ”complete” navigation tree, whose dynamically generated
nodes correspond to all possible valid compound terms [19]. Such a navigation
tree can aid the indexer to select the desired compound term for indexing, by
browsing only the meaningful compound terms. This kind of ”quality control”
or ”indexing aid” is especially important in cases where the indexing is done by
many people who are not domain experts. For example, the indexing of Web
pages in the Open Directory (which is used by Google and several other search
engines) is done by more than 20.000 volunteer human editors (indexers). Apart
from the indexer, the final user is also aided during his/her navigation and search
by browsing only the meaningful compound terms.

However, even from this toy example, it is obvious that the definition of such
a partition would be a formidably laborious task for the designer. Fortunately,
the recently emerged Compound Term Composition Algebra (CTCA) [19] (which
is recalled in Section 2.2) can significantly reduce the required effort. According
to that approach the designer can use an algebraic expression to define the valid
compound terms by declaring only a small set of valid or invalid compound
terms from which other (valid or invalid) compound terms are then inferred. For
instance, the partition shown in Table 2, can be defined using the expression:

e = (LocationªN Sports)⊕P Facilities

with the following P and N parameters:

N = {{Crete, WinterSports},
{Cefalonia, WinterSports}}

P = {{Cefalonia, SeaSki, Casino},
{Cefalonia, Windsurfing, Casino}}
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In this paper we study the inverse problem, i.e. how we can derive an alge-
braic expression e (like the above) that specifies exactly those compound terms
that are extensionally valid (i.e. have non-empty interpretation) in an existing
materialized faceted taxonomy. This problem, which we shall hereafter call ex-
pression mining or expression extraction, has several applications. For instance,
it can be applied to materialized faceted taxonomies (which were not defined
using the CTCA) in order to encode compactly and subsequently reuse the set
of compound terms that are extensionally valid (e.g. the set of valid compound
terms in Table 2). For example, suppose that we have in our disposal a very
large medical file which stores medical incidents classified according to various
aspects (like disease, symptoms, treatment, duration of treatment, patient’s age,
genre, weight, smoking habits, patient’s profession, etc.), each one having a form
of a hierarchy. In this scenario, expression mining can be used for extracting in a
very compact form the set of all different combinations that have been recorded
so far.

Moreover, it can be exploited for reorganizing single-hierarchical (non-faceted)
materialized taxonomies (like the directories of Yahoo! or Google), so as to give
them a clear faceted structure but without loosing the knowledge encoded in
their taxonomy. Such a reorganization would certainly facilitate their manage-
ment, extension, and reuse. Furthermore, it would allow the dynamic derivation
of ”complete” and meaningful navigational trees for this kind of sources (as
described in detail in [19]), which unlike the existing navigational trees of the
single-hierarchical taxonomies, do not present the problem of missing terms or
missing relationships (for more about this problem see [5]). For example, for
reusing the taxonomy of the Google directory, we now have to copy its entire
taxonomy which currently consists of more than 450.000 terms and whose RDF
representation5 is a compressed file of 46 MBytes! According to our approach,
we only have to partition their terminologies to a set of facets, using languages
like the one proposed in [17] (we will not elaborate this problem in this pa-
per), and then use the algorithms presented in this paper for expression mining.
One important remark that we have to mention here is that the closed world
assumptions of the algebraic operations of the CTCA (described in [18]) lead
us to a remarkably high ”compression ratio”. Apart from smaller storage space
requirements, the resulted faceted taxonomy can be modified/customized in a
more flexible and efficient manner. Furthermore, a semantically clear, faceted
structure can aid the manual or automatic construction of the inter-taxonomy
mappings [20], which are needed in order to build mediators or peer-to-peer sys-
tems over this kind of sources [21]. Figure 2 illustrates graphically our problem
and its context. Other applications of expression mining are presented in the
concluding section.

Note that here ”mining” does not have the classical statistical nature, i.e.
we are not trying to mine statistically justified associations or rules [7]. Instead,
from an object base we are trying to mine the associations of the elements of

5 Available at http://rdf.dmoz.org/
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Fig. 2. The application context of expression mining

the schema (here of the terms of the faceted taxonomy) that capture informa-
tion about the knowledge domain and were never expressed explicitly. Now, as
the number of associations of this kind can be very big, we employ CTCA for
encoding and representing them compactly.

The rest of this paper is organized as follows: Section 2 describes the required
background and Section 3 states the problem. Section 4 describes straightforward
methods for extracting an algebraic expression that specifies the valid compound
terms of a materialized faceted taxonomy. Section 5 describes the method and
the algorithms for finding the shortest, i.e. most compact and efficient expression.
Additionally, it gives a demonstrating example. Finally, Section 6 concludes the
paper and identifies issues for further research. A table of symbols is given in
Appendix B.

2 Background

For self-containment, in the following two subsections, we briefly recall tax-
onomies, faceted taxonomies, compound taxonomies, and the Compound Term
Composition Algebra. For more information and examples please refer to [19,
18]. In subsection 2.3, we define materialized faceted taxonomies.

2.1 Taxonomies, Faceted Taxonomies, and Compound Taxonomies

A taxonomy is a pair (T ,≤), where T is a terminology and ≤ is a reflexive and
transitive relation over T , called subsumption.

A compound term over T is any subset of T . For example, the following
sets of terms are compound terms over the taxonomy Sports of Figure 1: s1 =
{SeaSki, Windsurfing}, s2 = {SeaSports, WinterSports}, s3 = {Sports},
and s4 = ∅. We denote by P (T ) the set of all compound terms over T (i.e.
the powerset of T ).
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A compound terminology S over T is any set of compound terms that contains
the compound term ∅.

The set of all compound terms over T can be ordered using an ordering
relation that is derived from ≤. Specifically, the compound ordering over T is
defined as follows: if s, s′ are compound terms over T , then s ¹ s′ iff ∀t′ ∈
s′ ∃t ∈ s such that t ≤ t′. That is, s ¹ s′ iff s contains a narrower term for
every term of s′. In addition, s may contain terms not present in s′. Roughly,
s ¹ s′ means that s carries more specific indexing information than s′. Figure
3(a) shows the compound ordering over the compound terms of our previous
example. Note that s1 ¹ s3, as s1 contains SeaSki which is a term narrower
than the unique term Sports of s3. On the other hand, s1 6¹ s2, as s1 does not
contain a term narrower than WinterSports. Finally, s2 ¹ s3 and s3 ¹ ∅. In
fact, s ¹ ∅, for every compound term s.

{Sports}

(b)(a)

s2
{SeaSports, WinterSports}

s1

s3

{SeaSports}

{Sports}
{Greece}

{Greece,SeaSports}

{Greece,Sports}
{SeaSki, Windsurfing}

Fig. 3. Two examples of compound taxonomies

A compound taxonomy over T is a pair (S,¹), where S is a compound termi-
nology over T , and ¹ is the compound ordering over T restricted to S. Clearly,
(P (T ),¹) is a compound taxonomy over T .

The broader and the narrower compound terms of a compound term s are
defined as follows: Br(s) = {s′ ∈ P (T ) | s ¹ s′} and Nr(s) = {s′ ∈ P (T ) | s′ ¹
s}. The broader and the narrower compound terms of a compound terminology S
are defined as follows: Br(S) = ∪{Br(s) | s ∈ S} and Nr(S) = ∪{Nr(s) | s ∈ S}.

Let {F1, ..., Fk} be a finite set of taxonomies, where Fi = (T i,≤i), and assume
that the terminologies T 1, ..., T k are pairwise disjoint. Then, the pair F = (T ,≤
), where T = ∪k

i=1T i and ≤ = ∪k
i=1 ≤i, is a taxonomy, which we shall call the

faceted taxonomy generated by {F1, ..., Fk}. We call the taxonomies F1, ..., Fk the
facets of F .

Clearly, all definitions introduced so far apply also to faceted taxonomies.
In particular, compound terms can be derived from a faceted taxonomy. For
example, the set S = {{Greece}, {Sports}, {SeaSports}, {Greece, Sports},
{Greece, SeaSports}, ∅} is a compound terminology over the terminology T of
the faceted taxonomy shown in Figure 1. The set S together with the compound
ordering of T (restricted to S) is a compound taxonomy over T . This compound
taxonomy is shown in Figure 3.(b). For reasons of brevity, hereafter we shall
omit the term ∅ from the compound terminologies of our examples and figures.
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2.2 The Compound Term Composition Algebra

Here we present in brief the Compound Term Composition Algebra (CTCA),
an algebra for specifying the valid compound terms of a faceted taxonomy (for
further details see [19, 18]).

Let F = (T ,≤) be a faceted taxonomy generated by a set of facets {F1, ..., Fk},
where Fi = (T i,≤i). The basic compound terminology of a terminology T i is de-
fined as follows:

Ti = {{t} | t ∈ T i} ∪ {∅}
Note that each basic compound terminology is a compound terminology over

T . The basic compound terminologies {T1, ..., Tk} are the initial operands of the
algebraic operations of CTCA.

The algebra includes four operations which allow combining terms from dif-
ferent facets, but also terms from the same facet. Two auxiliary product opera-
tions, one n-ary (⊕) and one unary (

∗⊕), are defined to generate all combinations
of terms from different facets and from one facet, respectively. Since not all
term combinations are valid, more general operations are defined that include
positive or negative modifiers, which are sets of known valid or known invalid
compound terms. The unmodified product and self-product operations turn out
to be special cases with the modifiers at certain extreme values. Specifically,
the four basic operations of the algebra are: plus-product (⊕P ), minus-product

(ªN ), plus-self-product (
∗⊕P ), and minus-self-product (

∗ªN ), where P denotes a
set of valid compound terms and N denotes a set of invalid compound terms.
The definition of each operation is given in Table 1.

Operation e Se

product S1 ⊕ ...⊕ Sn { s1 ∪ ... ∪ sn | si ∈ Si}
plus-product ⊕P (S1, ...Sn) S1 ∪ ... ∪ Sn ∪ Br(P )

minus-product ªN (S1, ...Sn) S1 ⊕ ...⊕ Sn −Nr(N)

self-product
∗⊕ (Ti) P (T i)

plus-self-product
∗⊕P (Ti) Ti ∪Br(P )

minus-self-product
∗ªN (Ti)

∗⊕ (Ti)−Nr(N)
Table 1. The operations of the Compound Term Composition Algebra

For example, consider the compound terminologies S = {{Greece}, {Islands}}
and S′ = {{Sports}, {SeaSports}}. The compound taxonomy corresponding to
S ⊕ S′ is shown in Figure 4, and consists of 8 terms.

Now consider the compound terminologies S and S′ shown in the left part
of Figure 5, and suppose that we want to define a compound terminology that
does not contain the compound terms {Islands, WinterSports} and {Islands,
SnowSki}, because they are invalid. For this purpose instead of using a product,
we have to use either a plus-product or a minus-product operation.
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{Sports}

{SeaSports}

S S’

{SeaSports}

{Sports}

S S’

{Islands}

{Islands,Sports}

{Greece,Sports}

{Greece}{Greece}

{Islands}

{Greece,SeaSports}

{Islands,SeaSports}

Fig. 4. An example of a product ⊕ operation

Specifically, we can use a plus-product, ⊕P (S, S′), where P = {{Islands,
Seasports}, {Greece, SnowSki}}. The compound taxonomy defined by this op-
eration is shown in the right part of Figure 5. In this figure we enclose in squares
the elements of P . We see that the compound terminology ⊕P (S, S′) contains the
compound term s = {Greece, Sports}, as s ∈ Br({Islands, SeaSports}). How-
ever, it does not contain the compound terms {Islands, WinterSports} and
{Islands, SnowSki} as they do not belong to S ∪S′ ∪Br(P ) (see the definition
of plus-product in Table 1).

P
{Greece, SnowSki}}

 ={{Islands,SeaSports},
P
(S,S’)

{Greece,Sports}

{Greece} {Sports}

{WinterSports}

{Greece,SeaSports}{Islands,Sports} {Greece,WinterSports}

{Greece,SnowSki}{Islands,SeaSports}

{SeaSports}{Islands}

{SnowSki}

{WinterSports}

{SeaSports}

{SnowSki}

{Sports}

S’

{Greece}

{Islands}

S

Fig. 5. An example of a plus-product, ⊕P , operation

Alternatively, we can obtain the compound taxonomy shown at the right
part of Figure 5 by using a minus-product operation, i.e. ªN (S, S′), with N =
{{Islands, WinterSports}}. The result does not contain the compound terms
{Islands, WinterSports} and {Islands, SnowSki}, as they are elements of
Nr(N) (see the definition of minus-product in Table 1).

An expression e over F is defined according to the following grammar (i =
1, ..., k):

e ::= ⊕P (e, ..., e) | ªN (e, ..., e) | ∗⊕P Ti |
∗ªN Ti | Ti,

where the parameters P and N denote sets of valid and invalid compound
terms, respectively. The outcome of the evaluation of an expression e is denoted
by Se, and is called the compound terminology of e. In addition, (Se,¹) is called
the compound taxonomy of e. According to our semantics, all compound terms
in Se are valid, and the rest in P (T )− Se are invalid [18].
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To proceed we need to distinguish what we shall call genuine compound terms.
Intuitively, a genuine compound term combines non-empty compound terms
from more than one compound terminologies. Specifically, the set of genuine
compound terms over a set of compound terminologies S1, ..., Sn is defined as
follows:

GS1,...,Sn
= S1 ⊕ ...⊕ Sn − ∪n

i=1Si

For example, if S1 = {{Greece}, {Islands}}, S2 = {{Sports}, {WinterSports}},
and S3 = {{Pensions}, {Hotels}} then {Greece, WinterSports,Hotels} ∈
GS1,S2,S3 , {WinterSports, Hotels} ∈ GS1,S2,S3 , but {Hotels} 6∈ GS1,S2,S3 .

Additionally, the set of genuine compound terms over a basic compound ter-
minology Ti, i = 1, ..., k, is defined as follows: GTi

=
∗⊕ (Ti)− Ti.

The sets of genuine compound terms are used to define a well-formed alge-
braic expression.

An expression e is well-formed iff:
(i) each basic compound terminology Ti appears at most once in e,
(ii) each parameter P that appears in e, is a subset of the associated set of
genuine compound terms, e.g. if e = ⊕P (e1, e2) then it should be P ⊆ GSe1 ,Se2

,
and
(iii) each parameter N that appears in e, is a subset of the associated set of

genuine compound terms, e.g. if e =
∗ªN (Ti) then it should be N ⊆ GTi .

For example, the expression6 (T1 ⊕P T2) ªN T1 is not well-formed, as T1

appears twice in the expression. Constraints (i), (ii), and (iii) ensure that the
evaluation of an expression is monotonic, meaning that the valid and invalid com-
pound terms of an expression e increase as the length of e increases. For example,
if we omit constraint (i) then an invalid compound term according to an expres-
sion T1⊕P T2 could be valid according to a larger expression (T1⊕P T2)⊕P ′ T1.
If we omit constraint (ii) then an invalid compound term according to an expres-
sion T1⊕P1 T2 could be valid according to a larger expression (T1⊕P1 T2)⊕P2 T3.
Additionally, if we omit constraint (iii) then a valid compound term accord-
ing to an expression T1 ⊕P T2 could be invalid according to a larger expression
(T1 ⊕P T2)ªN T3.

In the rest of the paper, we consider only well-formed expressions. In [19],
we presented the algorithm IsV alid(e, s) that takes as input a (well-formed)
expression e and a compound term s, and checks whether s ∈ Se. This algorithm
has polynomial time complexity, specifically O(|T |2 ∗ |s| ∗ |P ∪ N |), where P
denotes the union of all P parameters of e, and N denotes the union of all N
parameters of e.

Additionally, [18] defines the semantics of CTCA and shows why we cannot
use Description Logics [8] to represent the compound term composition algebra.
At last we should mention that a system that supports the design of faceted tax-
onomies and the interactive formulation of CTCA expressions has already been

6 For binary operations, we also use the infix notation.
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implemented by VTT and Helsinki University of Technology (HUT) under the
name FASTAXON [3]. The system is currently under experimental evaluation.

2.3 Materialized Faceted Taxonomies

Let Obj denote the set of all objects of our domain, e.g. the set of all hotel Web
pages. An interpretation of a set of terms T over Obj is any (total) function
I : T → P (Obj).

A materialized faceted taxonomy M is a pair (F , I), where F= (T ,≤) is a
faceted taxonomy, and I is an interpretation of T .

An example of a materialized faceted taxonomy is given in Figure 6, where
the objects are denoted by natural numbers. This will be the running example
of our paper.

1

SeaSki Windsurfing

SeaSports WinterSports

SnowSki

3 42

Sports

Sports

Mainland

Olympus Crete

Islands

Greece

Cefalonia

Location

Fig. 6. A materialized faceted taxonomy

Apart from browsing, we can also query a materialized faceted taxonomy. A
simple query language is introduced next. A query over T is any string derived
by the following grammar: q ::= t | q ∧ q′ | q ∨ q′ | q ∧ ¬q′ | (q) | ε, where t is a
term of T . Now let QT denote the set of all queries over T . Any interpretation
I of T can be extended to an interpretation Î of QT as follows: Î(t) = I(t),
Î(q∧ q′) = Î(q)∩ Î(q′), Î(q∨ q′) = Î(q)∪ Î(q′), Î(q∧¬q′) = Î(q)\ Î(q′). One can
easily see that a compound term {t1, ..., tk} actually corresponds to a conjunction
t1 ∧ ... ∧ tk. However, in order for answers to make sense, the interpretation used
for answering queries must respect the structure of the faceted taxonomy in
the following intuitive sense: if t ≤ t′ then I(t) ⊆ I(t′). The notion of model,
introduced next, captures well-behaved interpretations. An interpretation I is a
model of a taxonomy (T ,≤) if for all t, t′ in T , if t ≤ t′ then I(t) ⊆ I(t′).

Given an interpretation I of T , the model of (T ,≤) generated by I, denoted
Ī, is given by: Ī(t) = ∪{I(t′) | t′ ≤ t}. Now the answer of a query q is the
set of objects ˆ̄I(q). For instance, in our running example we have ˆ̄I(Islands) =
{2, 3, 4}, ˆ̄I({Crete, SeaSki}) = {2}, and ˆ̄I({SeaSki,Windsurfing}) = {4}.
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3 Problem Statement

The set of valid compound terms of a materialized faceted taxonomy M = (F , I)
is defined as:

V (M) = {s ∈ P (T ) | ˆ̄I(s) 6= ∅}
where Ī is the model of (T ,≤) generated by I.7

The following table indicates the valid compound terms of the materialized
faceted taxonomy shown in Figure 6, that contain exactly one term from each
facet.

Greece Mainl. Olymp. Islands Crete Cefal.

Sports
√ √ √ √ √ √

SeaSports
√ √ √ √

SeaSki
√ √ √ √

Windsurf.
√ √ √ √

WinterSp.
√ √ √

SnowSki
√ √ √

Our initial problem of expression mining is formulated as follows:

Problem 1: Given a materialized faceted taxonomy M = (F , I), find
an expression e over F such that Se = V (M).

Let us define the size of an expression e as follows: size(e) = |P ∪ N |,
where P denotes the union of all P parameters of e, and N denotes the union
of all N parameters of e. Among the expressions e that satisfy Se = V (M),
we are more interested in finding the shortest expression. This is because, in
addition to smaller space requirements, the time needed for checking compound
term validity according to the mined expression e is reduced8. Reducing the
time needed for checking compound term validity, improves the performance of
several on-line tasks associated with knowledge reuse. Indeed, as it was shown
in [19], the algorithm IsV alid(e, s) is called during the dynamic construction of
the navigation tree that guides the indexer and the final user through his/her
(valid) compound term selection. Though, shortest expression mining is a costly
operation, it is not a routine task. Therefore, we consider that reducing the size
of the mined expression is more important than reducing the time needed for its
extraction. In particular, we are interested in the following problem:

Problem 2: Given a materialized faceted taxonomy M = (F , I), find
the shortest expression e over F such that Se = V (M).

One important remark is that solving the above problem allow us to solve
also the following:
7 As all single terms of a faceted taxonomy are meaningful, we assume that V (M)

contains all singleton compound terms.
8 Recall that the time complexity of Alg. IsV alid(e, s) [19] is proportional to size(e) =
|P ∪ N|.
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Problem 3: Given an expression e′, find the shortest expression e such
that Se = Se′ .

One can easily see that the same algorithms can be used for solving both
Problem 2 and Problem 3. The only difference is that, in the second problem we
have to consider that V (M) is the set Se′ . Note that this kind of ”optimization”
could be very useful even during the design process, i.e. a designer can use sev-
eral times the above ”optimizer” during the process of formulating an algebraic
expression.

For simplicity, in this paper we do not consider self-product operations. Their
inclusion is a trivial extension of the presented methods. Therefore, from V (M)
we consider only the compound terms that contain at most one term from each
facet.

4 Mining an Expression

One straightforward method to solve Problem 1 is to find an expression e
with only one plus-product operation over the basic compound terminologies
T1, ..., Tk, i.e. an expression of the form: e = ⊕P (T1, ..., Tk).

We can compute the parameter P of this operation in two steps:

1. P ′ := V (M) ∩GT1,...,Tk

2. P := minimal(P ′).

The first step computes all valid compound terms that (a) contain at most one
term from each facet, and (b) do not belong to basic compound terminologies,
i.e. are not singletons. One can easily see that S⊕P ′ (T1,...,Tk) = V (M). The
second step is optional and aims at reducing the size of the mined expression.
Specifically, it eliminates the redundant compound terms of the parameter P ′,
i.e. those compound terms that are not minimal (w.r.t. ¹). This is because, it
holds:

⊕P ′(T1, ..., Tk) = ⊕minimal(P ′)(T1, ..., Tk)

Thus, if P contains the minimal elements of P ′, then it is evident that again it
holds S⊕P (T1,...,Tk) = V (M). By applying the above two-step algorithm to our
current example we get that:

P = {{Olympus, SnowSki}, {Crete, SeaSki},
{Crete, Windsurfing}, {Cefalonia, SeaSki},
{Cefalonia, Windsurfing}}

Analogously, we can find an expression e with only one minus-product oper-
ation over the basic compound terminologies T1, ..., Tk, i.e. an expression of the
form: e = ªN (T1, ..., Tk).

We can compute the parameter N of this operation in two steps:
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1. N ′ := GT1,...,Tk
\ V (M)

2. N := maximal(N ′)

The first step computes all invalid compound terms that contain at most one
term from each facet. One can easily see that SªN′ (T1,...,Tk) = V (M). Again, the
second step is optional and aims at reducing the size of the mined expression.
Specifically, it eliminates the redundant compound terms, i.e. compound terms
that are not maximal (w.r.t. ¹). This is because, it holds:

ªN ′(T1, ..., Tk) = ªmaximal(N ′)(T1, ..., Tk)

Thus, if N contains the maximal elements of N ′, then it is evident that again it
holds SªN (T1,...,Tk) = V (M). By applying the above two-step algorithm to our
current example we get that:

N = {{Mainland, SeaSports}, {Islands, WinterSports}}
Notice that here the size of the minus-product expression is smaller than

that of the plus-product expression (the parameter N contains only 2 compound
terms, while P contains 5).

5 Mining the Shortest Expression

Let us now turn our attention to Problem 2, i.e. on finding the shortest expression
e over a given a materialized faceted taxonomy M = (F , I), such that Se =
V (M).

At first notice that since our running example has only two facets, the shortest
expression is either a plus-product or a minus-product operation. However, in
the general case where we have several facets, finding the shortest expression is
more complicated because there are several forms that an expression can have.

Below we present the algorithm FindShortestExpression( F , V ) (Alg. 51)
which takes as input a faceted taxonomy F and a set of compound terms V ,
and returns the shortest expression e over F such that Se = V . It is an ex-
haustive algorithm, in the sense that it investigates all forms that an expression
over F may have. We use the term expression form to refer to an algebraic ex-
pression whose P and N parameters are undefined (unspecified). Note that an
expression form can be represented as a parse tree. Specifically, the procedure
ParseTrees({F1, ..., Fn}) (which is described in detail in subsection 5.1) takes
as input a set of facets {F1, ..., Fn} and returns all possible parse trees of the
expressions over {F1, ..., Fn}.

Now the procedure SpecifyParams(e, V ) (which is described in detail in
subsection 5.2) takes as input a parse tree e and a set of compound terms V ⊆
P (T ), and specifies the parameters P and N of e such that Se = V .

The procedure GetSize(e) takes as input an expression e and returns the
size of e, i.e. |P ∪ N |.9
9 We could also employ a more refined measure for the size of an expression, namely the

exact number of terms that appear in the parameter sets, i.e. size(e) =
P

s∈P∪N |s|
where |s| denotes the number of terms of the compound term s.
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Finally, the algorithm FindShortestExpression(F ,V ) returns the shortest
expression e such that Se = V . Summarizing, FindShortestExpression(F ,V (M))
returns the solution to Problem 2.

Algorithm 51 FindShortestExpression(F , V )
Input: A faceted taxonomy F generated by {F1, ..., Fk}, and a set of compound terms
V
Output: The shorthest expression e such that Se = V

minSize := MAXINT;
shortestExpr := ””;
For each e in ParseTrees({F1, ..., Fk}) do

e′ := SpecifyParams(e, V );
size := GetSize(e′);
If size < minSize then

minSize := size;
shortestExpr := e′;

EndIf
EndFor
return (shortestExpr)

5.1 Deriving all Possible Parse Trees

In this subsection, we describe how we can compute the parse trees of all possi-
ble expressions over a set of facets {F1, ..., Fn}. Recall that the parse tree of an
expression is a tree structure that describes a derivation of the expression ac-
cording to the rules of the grammar. A depth-first-search traversal of the parse
tree of an expression e can be used to obtain the prefix form of the expres-
sion e. In our case, the terminal (leaf) nodes of a parse tree are always facet
names10. Additionally, the internal nodes of a parse tree are named ”+” or ”-”,
corresponding to a plus-product (⊕P ) or a minus-product (ªN ) operation, re-
spectively. For example, Figure 7(c) displays all different parse trees for the set
of facets {A,B,C}. Note that every facet appears just once in a parse tree, as
we consider only well-formed expressions.

Algorithm ParseTrees({F1, ..., Fn}) (Alg. 52) takes as input a set of facet
names {F1, ..., Fn} and returns all possible parse trees for {F1, ..., Fn}. We will
first exemplify the algorithm and its reasoning through a small example.

Consider the facets {A,B, C} of our current example. We will use a recursive
method for computing the parse trees for {A,B, C}. At first, we find the parse
trees for {A}. Clearly, there is only one parse tree for {A}, and it consists of a
single node with name A (see Figure 7(a)). Subsequently, we find the parse trees
10 Specifically, a terminal node with name Fi corresponds to the basic compound ter-

minology Ti.
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Fig. 7. All possible parse trees for {A}, {A, B}, and {A, B, C}

of {A,B}. There are two ways for extending the parse tree for {A} with the new
facet B: (i) by creating a ”+” node with children A and B, and (ii) by creating a
”-” node with children A and B. Thus, we can create two parse trees for {A,B},
named tr1 and tr2 (see Figure 7(b)). In other words, ParseTrees({A,B}) =
{tr1, tr2}, where the parse tree tr1 corresponds to ⊕(A,B), and the parse tree
tr2 corresponds to ª(A,B).

Now, we can find the parse trees of {A,B, C}, by extending each node of each
parse tree in ParseTrees({A,B}) with the new facet C. For doing so, initially
we visit the parse tree tr1. At first we visit the internal node n1 of tr1 and we
extend it in three different ways (all other nodes of tr1 remain the same):

1. by adding C to the children of n1. Now n1 corresponds to the operation
⊕(A,B, C), and this extension results to the parse tree tr3.

2. by creating a new ”+” node with children the nodes n1 and C. The new
node corresponds to ⊕(⊕(A,B), C), and this extension results to the parse
tree tr4.

3. by creating a new ”-” node with children the nodes n1 and C. The new node
corresponds to ª(⊕(A,B), C), and this extension results to the parse tree
tr5.

Now, we visit the terminal node n2 of tr1 and we extend it in two different ways:

1. by creating a new ”+” node with children the nodes n2 and C. The new
node corresponds to the operation ⊕(A,C), and this extension results to the
parse tree tr6.

2. by creating a new ”-” node with children the nodes n2 and C. The new node
corresponds to the operation ª(A,C), and this extension results to the parse
tree tr7.
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Finally, we visit the terminal node n3 of tr1 and we extend it in two different
ways, similarly to node n2. These extensions result to the parse trees tr8 and
tr9.

After finishing with tr1, we visit tr2 and we extend each node of tr2 with the
new facet C, similarly to tr1. Figure 7(c) gives all the parse trees for {A, B,C}.
Generally, the above process is repeated recursively until all the facets of a
faceted taxonomy have been considered.

Algorithm 52 ParseTrees({F1, ..., Fn})
Input: A set {F1, ..., Fn} of facet names
Ouptut: All possible parse trees for {F1, ..., Fn}
(1) If n = 1 then return({CreateNode(F1)});
(2) allP trees := {};
(3) For each ptree ∈ ParseTrees({F1, ..., Fn−1}) do
(4) allP trees := allP trees∪ ExtendedTrees(ptree, ptree, Fn);
(5) return(allP trees)

Below we will describe in detail the algorithms needed for deriving all possible
parse trees. Given a node n we shall use n.Parent to refer to the parent of n, and
Children(n) to the children of node n. We shall also use the following auxiliary
routines: CreateNode(nm) a function that creates and returns a new node with
name nm, and IsTerminal(n) a function that returns true if n is a terminal
node, and false otherwise.

Let us now describe in detail the algorithm ParseTrees( {F1, ..., Fn}) (Alg.
52). The procedure ParseTrees({F1, ..., Fn}) calls ParseTrees({F1, ..., Fn−1}).
Then, for each parse tree ptree returned by ParseTrees({F1, ..., Fn−1}), it issues
the call ExtendedTrees(ptree, ptree, Fn).

Let us now see what ExtendedTrees(ptree, extNode, Fn) (Alg. 53) does. The
procedure takes as input a parse tree ptree, a node extNode11 of the ptree, and
a facet name Fn. It returns a set of parse trees that correspond to the extension
of ptree with the new facet name Fn, at the node extNode. Now the way the
extension is performed depends on the kind of the node extNode (i.e. terminal
or internal). Specifically, there are two cases:

C1: extNode is a terminal node (say Fi).
In this case the lines (3)-(6) produce two copies of the ptree (called ptree+

and ptree−, respectively), and call the routine ExtendTreeNode that does
that actual extension. After the execution of these lines,
ptree+ corresponds to the extension ⊕(Fi, Fn), and
ptree− corresponds to the extension ª(Fi, Fn).
The exact algorithm for ExtendTreeNode is presented below in this section
(Alg. 54). The function TreeCopy(ptree) takes as input a parse tree ptree

11 It is named extNode, because the operation corresponding to that node will be
extended with the new facet name Fn.
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and returns a copy, say ptree copy, of ptree. Notice that according to line
(1), ptree keeps a pointer ExtNode to the node extNode. After the call of
TreeCopy(ptree), ptree copy.ExtNode points to the copy of the extNode in
the ptree copy.

C2: extNode is an internal node (i.e. either ”+” or ”-”).
This means that extNode corresponds to either a⊕(e1, ..., ei) or aª(e1, ..., ei)
operation. Below we shall write ¯(e1, ..., ei) to denote any of the above two
operations.
In this case the routine ExtendTreeNode is called three times (lines (10)-
(14)): These calls produce three copies of ptree, namely ptreein, ptree+, and
ptree−, where:
ptreein corresponds to the extension ¯(e1, ..., ei, Tn),
ptree+ corresponds to the extension ⊕(¯(e1, ..., ei), Tn), and
ptree− corresponds to the extension ª(¯(e1, ..., ei), Tn).
At last, the routine ExtendedTrees(ptree, extNode, Fn) calls itself
(ExtendedTrees(ptree, childNode, Fn)), for each child childNode of the
node extNode.

Algorithm 53 ExtendedTrees(ptree, extNode, Fn)
Input: a parse tree ptree, a node extNode of ptree, and a facet name Fn
Output: a set of parse trees that correspond to the extension of ptree with the new
facet name Fn, at the node extNode

(1) ptree.ExtNode := extNode;
(2) If IsTerminal(extNode) then
(3) ptree+ := TreeCopy(ptree);
(4) ExtendTreeNode(ptree+.ExtNode, ”+”, Fn);
(5) ptree− := TreeCopy(ptree);
(6) ExtendTreeNode(ptree−.ExtNode, ”-”, Fn);
(7) return({ptree+, ptree−})
(8) Else // extNode is an internal node
(9) ptree+ := TreeCopy(ptree);
(10) ExtendTreeNode(ptree+.ExtNode, ”+”, Fn);
(11) ptree− := TreeCopy(ptree);
(12) ExtendTreeNode(ptree−.ExtNode, ”-”, Fn);
(13) ptreein := TreeCopy(ptree);
(14) ExtendTreeNode(ptreein.ExtNode, ”in”, Fn);
(15) extendedTrees :={ptreein, ptree+, ptree−};
(16) For each childNode ∈ Children(extNode) do
(17) extendedTrees := extendedTrees ∪

ExtendedTrees(ptree, childNode, Fn) ;
(18) return(extendedTrees)
(19)End if
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Algorithm 54 ExtendTreeNode(extNode, flag, Fn)
Input: a node extNode of a parse tree, a flag flag that denotes the type of the extension
with the new facet name Fn, and a facet name Fn
Output: the parse tree extended with Fn at the extNode, according to flag

(1) FnNode :=CreateNode(Fn) ;

(2) If flag =”in” then
(3) FnNode.Parent := extNode ;

(4) If flag=”+” or flag=”-” then
(5) newOpNode :=CreateNode(flag);
(6) FnNode.Parent := newOpNode ;
(7) InsertBetween(extNode.Parent, extNode, newOpNode);
(8) End if

Notice that Alg. 54 uses the function InsertBetween(nUp, nDown, new).
This function inserts the node new between the nodes nUp and nDown. This
means that after this call, it holds nDown.Parent = new and new.Parent =
nUp. Clearly, if nUp is nil then new becomes root node.

As an example, Figure 7(b) shows the output of ParseTrees({A, B}). Figure
7(c) shows the output of ParseTrees({A, B, C}). The first row of the parse trees
in Figure 7(c) corresponds to the parse trees returned by ExtendedTrees(tr1, tr1, C)
and the second row corresponds to the parse trees returned by ExtendedTrees(tr2,
tr2, C).

As a final comment note that some parse trees returned by ParseTrees({F1, ...,
Fk}) can been eliminated before SpecifyParams(e, V ) is called by algorithm
FindShortestExpression(F , V ) (Alg. 51), for setting up the parameters. This
is because, these parse trees cannot yield to the shortest expression. For example,
consider the parse trees tr3 and tr4 of Figure 7(c). The parse tree tr4 can be elim-
inated, because tr4 can never yield to an expression with size less than that of tr3.
Actually, more than half of the parse trees returned by ParseTrees({F1, ..., Fk})
are redundant, and thus can be ignored. For example, from the 162 parse trees
returned by ParseTrees({A,B, C,D}) only 64 are good candidates for yielding
the shortest expression.

5.2 Specifying the Parameters

This section describes the algorithm SpecifyParams(e, V ) (Alg. 55), i.e. an
algorithm that takes as input the parse tree of an expression e (with undefined
P and N parameters) and a set of compound terms V ⊆ P (T ), and returns
the same parse tree that is now enriched with P and N parameters that satisfy
the condition Se = V . Of course, this is possible only if Br(V ) = V (note that
Br(V (M)) = V (M)).
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Algorithm 55 SpecifyParams(e, V )
Input: The parse tree of an expression e, and a set of compound terms V ⊆ P (T )
Output: The parse tree of e enriched with P and N parameters, such that Se = V

(1) case(e) {
(2) ⊕P (e1, ..., en): For i := 1, ..., n do
(3) ei := SpecifyParams(ei, V ) ;
(4) P ′:= GSe1 ,...,Sen

∩ V ;
(5) e.P := minimal(P ′) ;
(6) return(e)
(7) ªN (e1, ..., en): For i := 1, ..., n do
(8) ei := SpecifyParams(ei, V ) ;
(9) N ′:= GSe1 ,...,Sen

\ V ;
(10) e.N := maximal(N ′) ;
(11) return(e)
(12) Ti: return(e)
(13)}

Suppose that the current node is an internal node that corresponds to a plus-
product operation ⊕P (e1, ..., en). For setting the parameter P of this operation
we must first define the parameters of all subexpressions ei, for all i = 1, ..., n.
Therefore, the procedure SpecifyParams(ei, V ) is called recursively, for all i =
1, ..., n. Subsequently, the statement P ′:= GSe1 ,...,Sen

∩ V computes and stores
in P ′ those elements of V that also belong to GSe1 ,...,Sen

(recall constraint (ii)
of a well-formed expression). Finally, P is set equal to the minimal compound
terms of P ′ (for the reasons described in Section 4).

Now suppose that the current node is an internal node that corresponds to a
minus-product operation ªN (e1, ..., en). Again, before defining N we have to de-
fine the parameters of all subexpressions ei, for all i = 1, ..., n. So, the procedure
SpecifyParams(ei, V ) is called recursively, for all i = 1, ..., n. Subsequently, the
statement N ′:= GSe1 ,...,Sen

\ V computes and stores in N ′ those elements of
GSe1 ,...,Sen

that are invalid, i.e. not in V (recall constraint (iii) of a well-formed
expression). Finally, N is set equal to the maximal compound terms of N ′ (for
the reasons described in Section 4).

For example, consider the four-faceted taxonomy F shown in Figure 8(a),
and suppose that V is the set of compound terms shown in Figure 8(b). Below
we give the trace of execution of SpecifyParams(e, V ) for the expression e =
⊕P (A,ªN (B,C, D)):

call SpecifyParams(⊕P (A,ªN (B,C, D)), V )
call SpecifyParams(ªN (B,C, D), V )

return // N is set equal to {{b2, d2}}
return // P is set equal to {{a2, b1, c2, d1}}
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So the parameters of the resulting expression e are the following:

P = {{a2, b1, c2, d1}}
N = {{b2, d2}}

5.3 An Example of Shortest Expression Mining

Let us now apply the above algorithms to the four-faceted taxonomy shown in
Figure 8(a). The set of all compound terms that consist of at most one term
from each facet are (|A|+ 1) ∗ (|B|+ 1) ∗ (|C|+ 1) ∗ (|D|+ 1) = 108. Now let us
suppose that the set of valid compound terms V (M) consists of the 48 compound
terms listed in Figure 8(b). For simplification, in that figure we do not show the
interpretation I, but directly the set V (M).
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Fig. 8. An example of expression mining

The algorithm FindShortestExpression(F , V (M)) calls the procedure
ParseTrees({A,B, C,D}), to get the parse trees of all possible expressions
over the facets {A,B,C, D} (Figure 8(c) sketches some indicative parse trees).
Then, for each parse tree e in the output, it calls the procedure SpecifyPa-
rams(e, V (M)), which assigns particular values to the parameters P and N of e
such that Se = V (M). The sizes of all derived expressions are compared to get
the shortest expression, which is the following:

e = ⊕P (A,ªN (B, C,D)), where
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P = {{a2, b1, c2, d1}}
N = {{b2, d2}}

Notice that the size of |P ∪ N | is only 2! Even from this toy example it is evident
that the expressions of the Compound Term Composition Algebra can indeed
encode very compactly the knowledge of materialized taxonomies. As we have
already mentioned, this is due to the closed world assumptions of the algebraic
operations.

6 Conclusion

Mining commonly seeks for statistically justified associations or rules. In this
paper we deal with a different kind of mining. Specifically, we show how from
an object base we can mine the associations of the elements of the schema
(here of the terms of a faceted taxonomy) that capture information about the
knowledge domain and were never expressed explicitly. Now, as the number
of associations of this kind can be very big, we employ the Compound Term
Composition Algebra (CTCA) for encoding and representing these associations
compactly.

Specifically, we confine ourselves to the case of materialized faceted tax-
onomies (for more about faceted classification see [16, 9, 22, 11, 15]). Materialized
faceted taxonomies are employed in several different domains, including Libraries
[12], Software Repositories [13, 14], Web catalogs and many others. Current in-
terest in faceted taxonomies is also indicated by several ongoing projects like
FATKS12, FACET13, FLAMENGO14, and the emergence of XFML [1] (Core-
eXchangeable Faceted Metadata Language) that aims at applying the faceted
classification paradigm on the Web.

In this paper we showed how we can find algebraic expressions of CTCA
that specify exactly those compound terms that are extensionally valid (i.e.
have non-empty interpretation) in a materialized faceted taxonomy. The size of
the resulting expressions is remarkably low. In particular, we gave two straight-
forward methods for extracting a plus-product and a minus-product expression
(possibly, none the shortest), and an exhaustive algorithm for finding the short-
est expression. The complexity of the latter is of course exponential with respect
to the number of facets. This does not reduce the benefits of our approach, as
the number of facets cannot practically be very big (we haven’t seen so far any
faceted taxonomy with more than 10 facets), and expression mining is a rare
off-line task. As explained in the paper, the time for checking compound term
validity is proportional to expression size. Thus, we considered that slow runs of
shortest expression mining can be tolerated in order to minimize the size of the
mined expression and provide efficiency for later on-line tasks, such as object
indexing and navigation.
12 http://www.ucl.ac.uk/fatks/database.htm
13 http://www.glam.ac.uk/soc/research/hypermedia/facet proj/index.php
14 http://bailando.sims.berkeley.edu/flamenco.html
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Expression mining can be exploited for encoding compactly the set of valid
compound terms of materialized faceted taxonomies. This can significantly aid
their exchange and reuse. It also worths mentioning here that the recently
emerged XFML+CAMEL [2] (Compound term composition Algebraically-
Motivated Expression Language) allows publishing and exchanging faceted tax-
onomies and CTCA expressions using an XML format.

Expression mining also allows the reorganization of single-hierarchical ma-
terialized taxonomies (such as Yahoo! and ODP), so as to give them a faceted
structure without missing the knowledge encoded in their pre-coordinated terms.
Such a reorganization would certainly facilitate their management, extension,
and reuse. Furthermore, it would allow the dynamic derivation of ”complete”
and valid navigational trees for this kind of sources [19].

Expression mining can also be exploited in language engineering. WordNet
[6] is a lexical ontology where terms are grouped into equivalence classes, called
synsets. Each synset is assigned to a lexical category i.e. noun, verb, adverb,
adjective, and synsets are linked by hypernymy/hyponymy, and antonymy rela-
tions. Clearly, by ignoring the antonymy relation, the rest can be seen as a
faceted taxonomy with the following facets: noun, verb, adverb, and adjective.
This faceted taxonomy plus any collection of indexed subphrases from a corpus
of documents is actually a materialized faceted taxonomy that contains informa-
tion about the concurrence of words (e.g. which adjectives are applied to which
nouns). This kind of knowledge might be quite useful, as it can be exploited in
several applications, e.g. for building a recommender system in a word processor
(e.g. in MS Word), an automatic cross-language translator, or an information
retrieval system (e.g. see [10]). Notice that in this scenario, the number of valid
combinations of words would be so big, that storing them explicitly would be
quite problematic. So, this scenario also indicates the need for expression mining,
in order to extract and represent compactly the valid combinations of words.

Another application of expression is query answering optimization. Suppose
a materialized faceted taxonomy that stores a very large number of objects at
which users can pose conjunctive queries (i.e. compound terms) in order to find
the objects of interest. The availability of the set of valid compound terms would
allow realizing efficiently whether a query has an empty or a non-empty answer.
In this way, we can avoid performing wasteful computations for queries whose
answer will be eventually empty.

Issues for further research include measuring the exact time/space complex-
ity of expression mining, designing optimal algorithms for shortest expression
mining, and investigating whether it worths employing additional indexing data
structures (e.g. labelling schemes like those mentioned in [4]) for further speed-
up.
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Appendix A: Example

In this Appendix, we present the valid and invalid compound terms of the ex-
ample of Figure 1. For simplicity, we consider only the compound terms that
contain at most one term from each facet.

Valid

Earth, AllSports Greece, AllSports
Finland, AllSports Olympus, AllSports
Crete, AllSports Cefalonia, AllSports
Rethimno, AllSports Heraklio, AllSports
Earth, SeaSports Greece, SeaSports
Finland, SeaSports Crete, SeaSports
Cefalonia, SeaSports Rethimno, SeaSports
Heraklio, SeaSports Earth, WinterSp.
Greece, WinterSp. Finland, WinterSp.
Olympus, WinterSp. Earth, SeaSki
Greece, SeaSki Finland, SeaSki
Crete, SeaSki Cefalonia, SeaSki
Rethimno, SeaSki Heraklio, SeaSki
Earth, WindSurf. Greece, WindSurf.
Finland, WindSurf. Crete, WindSurf.
Cefalonia, WindSurf. Rethimno, WindSurf.
Heraklio, WindSurf. Earth, SnowBoard
Greece, SnowBoard Finland, SnowBoard
Olympus, SnowBoard Earth, SnowSki
Greece, SnowSki Finland, SnowSki
Olympus, SnowSki Earth, AllSports, Cas.
Greece, AllSports, Cas. Cefalonia, AllSports, Cas.
AllSports, Cas. SeaSports, Cas.
SeaSki, Cas. Windsurf., Cas.
Earth, Cas. Greece, Cas.
Cefalonia, Cas. Earth, SeaSports, Cas.
Greece, SeaSports, Cas. Earth, SeaSki, Cas.
Greece, SeaSki, Cas. Cefalonia, SeaSki, Cas.
Earth, WindSurf., Cas. Greece, WindSurf., Cas.
Cefalonia, WindSurf., Cas. Cefalonia, SeaSports, Cas.

Invalid

Crete, WinterSp. Cefalonia, WinterSp.
Rethimno, WinterSp. Heraklio, WinterSp.
Olympus, SeaSki Olympus, WindSurf.
Crete, SnowBoard Cefalonia, SnowBoard
Rethimno, SnowBoard Heraklio, SnowBoard
Crete, SnowSki Cefalonia, SnowSki
Rethimno, SnowSki Heraklio, SnowSki
Finland, Cas. Olympus, Cas.
Crete, Cas. Heraklio, Cas.
Rethimno, Cas. WinterSp., Cas.
SnowBoard, Cas. SnowSki, Cas.
Olympus, SeaSports Crete, WinterSp., Cas.
Cefalonia, WinterSp., Cas. Rethimno, WinterSp., Cas.
Heraklio, WinterSp., Cas. Olympus, SeaSki, Cas.
Olympus, WindSurf., Cas. Crete, SnowBoard, Cas.
Cefalonia, SnowBoard, Cas. Rethimno, SnowBoard, Cas.
Heraklio, SnowBoard, Cas. Crete, SnowSki, Cas.
Cefalonia, SnowSki, Cas. Rethimno, SnowSki, Cas.
Heraklio, SnowSki, Cas. Olympus, AllSports, Cas.
Crete, AllSports, Cas. Rethimno, AllSports, Cas.
Heraklio, AllSports, Cas. Crete, SeaSports, Cas.
Rethimno, SeaSports, Cas. Heraklio, SeaSports, Cas.
Olympus, WinterSp., Cas. Crete, SeaSki, Cas.
Rethimno, SeaSki, Cas. Heraklio, SeaSki, Cas.
Crete, WindSurf., Cas. Rethimno, WindSurf., Cas.
Heraklio, WindSurf., Cas. Olympus, SnowBoard, Cas.
Olympus, SnowSki, Cas. Finland, AllSports, Cas.
Finland, SeaSports, Cas. Finland, WinterSp., Cas.
Finland, SeaSki, Cas. Finland, WindSurf., Cas.
Finland, SnowSki, Cas. Finland, SnowBoard, Cas.
Earth, WinterSp., Cas. Greece, WinterSp., Cas.
Earth, SnowBoard, Cas. Greece, SnowBoard, Cas.
Earth, SnowSki, Cas. Greece, SnowSki, Cas.
Olympus, SeaSports, Cas.

Table 2. The Valid and Invalid compound terms of the example of Figure 1

As the facet Location has 8 terms, the facet Sports has 7 terms, and the facet Facilities
has one term, the number of compound terms that contain at most 1 term from each facet is
9*8*2 = 144. This table contains 60 valid and 67 invalid compound terms, thus 127 in total.
By adding the (8+7+1=16) singletons (which were omitted from the column of valid) and
the empty set we reach the 144.
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Appendix B: Table of Symbols

Symbol Definition

P (.) Powerset

s ¹ s′ ∀t′ ∈ s′ ∃t ∈ s such that t ≤ t′

Ti {{t} | t ∈ T i} ∪ {∅}
S1 ⊕ ...⊕ Sn { s1 ∪ ... ∪ sn | si ∈ Si}
⊕P (S1, ...Sn) S1 ∪ ... ∪ Sn ∪ Br(P )

ªN (S1, ...Sn) S1 ⊕ ...⊕ Sn −Nr(N)
∗⊕ (Ti) P (T i)
∗⊕P (Ti) Ti ∪Br(P )
∗ªN (Ti)

∗⊕ (Ti)−Nr(N)

GS1,...,Sn S1 ⊕ ...⊕ Sn − ∪n
i=1Si

GTi

∗⊕ (Ti)− Ti

Se the evaluation of an expression e

Ī(t) ∪{I(t′) | t′ ≤ t}
ˆ̄I({t1, ..., tn}) Ī(t1) ∩ ... ∩ Ī(tn)

V (M) {s ∈ P (T ) | ˆ̄I(s) 6= ∅}
Table 3. Table of Symbols
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