
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Strategies for Data Reengineering

Henrard, Jean; Hick, Jean-Marc; Thiran, Philippe; Hainaut, Jean-Luc

Published in:
Proceedings of the 9th Working Conference on Reverse Engineering (WCRE'02)

Publication date:
2002

Link to publication
Citation for pulished version (HARVARD):
Henrard, J, Hick, J-M, Thiran, P & Hainaut, J-L 2002, Strategies for Data Reengineering. in Proceedings of the
9th Working Conference on Reverse Engineering (WCRE'02). IEEE Computer Society Press, pp. 211-220.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Apr. 2024

https://researchportal.unamur.be/en/publications/41d78e12-6556-4037-87dd-670b1a540691

���������������������������������

Jean Henrard, Jean-Marc Hick, Philippe Thiran, Jean-Luc Hainaut
���������&�����������'����	���$���	���	�
(�������
)(��	����!����*���	��������+���	

	���,	�
��������-.���#�/000�+���	���#������
12����2���������2��34������
�������
��������

���������	�
���	������
�������������	��������	�������
������	����
������������������������ �	����� �������
���
��������� ������� ��� ����
�	������ ����
�	��� ���
�����������	��������
�����
���	������������	�����������
��		����
�����	��	��������������	��	�����
�����������	
�
���������� �	���	������	��������������	���
��
����	�������
�������!��������
��
����
����	������������	������������	�

�������
� ��
������ �
� ������	���
� ��� ���� ����	���� ��
�"#"$��������������%$�
��������

�	
����������

Brodie and Stonebraker [4] define legacy information sys-
tem (IS) as large and old programs built around legacy
database (IMS, CODASYL, ...) or using primitive DMS1

(like COBOL file system, ISAM, ...). Legacy IS are also
independent in that they do not interface with other appli-
cations. Moreover, they have proved critical to the business
of organizations. To keep being competitive, organizations
must improve their IS and invest in advanced technologies.
In this context, the claimed 50-80 percent cost of legacy
systems maintenance (w.r.t. total cost) is considered pro-
hibitive [18].

A popular solution of the legacy systems evolution
problems is the migration, i.e. moving the applications and
the databases to new platform and technologies. Migration
also is an expensive and complex process. But it greatly
increases the IS control and evolution to meet future busi-
ness requirements. The scientific literature ([3], [4]) mainly
identifies two migration strategies: rewriting the legacy IS
from scratch or migrating by small incremental steps. The
incremental strategy allows the migration projects to be
more controllable and predictable in terms of deadline and
budget. The difficulty lies in the determination of the
migration steps.

Legacy system migration is concerned with implement-
ing a new system that preserves the functionalities and data
of the original system. The data assets stored in a database
are a critical part of legacy systems. A modern DMS can
increase data control, performance and independence. In
this context, an important step into the incremental strategy
commonly is the data (structures and instances) migration.

To make the discussion more concrete, we base it on the
most popular problem pattern, that is, the conversion of a
legacy COBOL program, using standard indexed files, into
an equivalent COBOL program working on a relational
database. The discussion is to a large extend valid for other
languages and other DMS. This paper presents a practical
approach to data-intensive application reengineering based
on two independent dimensions. The first one relates to the
quality of the target database and the second one describes
the way the application programs are altered, so that six
strategies can be derived. We will describe and discuss
three of them.

Legacy IS migration is a major research domain. Some
general migration methods are available. For example, [16]
discusses current issues and trends in legacy system reengi-
neering from several perspectives (engineering, system,
software, managerial, evolutionary, and maintenance). The
authors propose a framework to place reengineering in the
context of evolutionary systems. The butterfly methodol-
ogy [19] provides a migration methodology and a generic
toolkit for the methodology to aid engineers in the process
of migrating legacy systems. Different from the incremen-
tal strategy, this methodology eliminates the need of
interoperability between the legacy and target systems.
Renaissance is an ongoing ESPRIT project that develops a
method for system evolution and reengineering. It provides
technical guidelines [14] for the migration of legacy sys-
tems to distributed client/server architectures.

Closer to our data-centered approach, the Varlet project
[6] adopts a process that consists in two phases. In the first
one, the different parts of the original database are ana-
lyzed to obtain a logical schema for the implemented phys-
ical schema. In the second phase, this logical schema is
transformed into a conceptual one, which is the basis for

1 Data Management System.

modification or migration activities. The approach of Jeus-
feld [7] is divided into three parts: mapping of the original
schema into a meta model, rearrangement of the intermedi-
ate representation and production of the target schema.

Some works also address the migration between two
specific systems. Among those, Menhoudj and Ou-Halima
[12] present a method to migrate the data of legacy system
into a relational database management system. Behm and
al. [2] describe a general approach to migrate relational
database to object technology.

The reminder of the paper is organized as following.
Section 2 specifies the problem, describes six strategies of
data reengineering and a CASE support. Section 3 presents
an environment to support the migration process. Section 4
develops the data migration strategies. Section 5 analyzes
the programs modifications generated by the data reengi-
neering and section 6 compares the analyzed strategies and
concludes this paper.

�	 �����������������

Data reengineering consists in deriving a new database
from a legacy database and in adapting the software com-
ponents accordingly [4]. It comprises three main steps: (1)
schema conversion, (2) data conversion and (3) program
conversion.

�����������	��� is the translation of the legacy data-
base structure, or schema, into an equivalent database
structure expressed in the new technology. Both schemas
must convey the same semantics, i.e., all the source data
should be losslessly stored into the target database2. Most
generally, the transformation of a source schema to a target
schema is made up of two processes. The first one, called
database reverse engineering (DBRE) [8], aims to recover
the conceptual schema that expresses the semantics of the
source data structure. The second process is standard and
consists in deriving the target physical schema from this
conceptual specification.

����� ����	��� is the migration of the data instance
from the legacy database to the new one. This migration
involves data transformations that materialize the schema
transformations described above.

5	��	�������	���, in the context of data reengineer-
ing, is the modification of the program so that it now
accesses the migrated database instead of the legacy data.
The functionalities of the program are left unchanged, as
well as its programming language and its user interface
(they can migrate too, but this is another problem). Pro-
gram conversion can be a complex process in that it relies

on the rules used to transform the legacy schema into the
target schema.

�	�	 ����������

As already mentioned, we consider two dimensions,
namely the database conversion and the program conver-
sion.

��������	�������������������
����������������������	

���� �������� ��������. We consider two extreme
database conversion strategies leading to different levels of
quality of the transformed database. The first strategy
(5�������� ����	��� or D1) consists in translating each
construct of the source database into the closest constructs
of the target DMS without attempting any semantic inter-
pretation. The process is quite cheap, but it leads to poor
quality databases with no added value. The second strategy
(��������������	��� or D2) consists in recovering the
precise semantic description (i.e., its conceptual schema) of
the source database first, through reverse engineering tech-
niques, then in developing the target database from this
schema through a standard database methodology. The tar-
get database is of high quality according to the new DMS
expressiveness and is fully documented, but the process is
more expensive.
��������������������. Once the database has been

converted, several approaches to application programs
modification can be followed. We identify three strategies.
The first one (�	����	� or P1) relies on �	����	� that
encapsulate the new database to provide the application
programs with the legacy data access logic, so that these
programs keep reading and writing records in (now fictive)
indexed files, possibly through program calls instead of
through native file statements. The second strategy (������
����	��	���� or P2) consists in rewriting the access state-
ments in order to make them process the new data through
the new DMS-DML3. For instance, a READ COBOL state-
ment is replaced with a select-from-where (SFW) or a
fetch SQL statement. In these two first strategies, the pro-
gram logic is neither elicited nor changed. According to the

2 The concept of VHPDQWLFV�SUHVHUYDWLRQ is more complex, but this defi-
nition is sufficient in this context. 3 DML: Data Manipulation Language.

�

�

conceptual

logic

physical

statementswrappers

<D2,P1>

<D1,P1>

<D2,P2>

<D1,P2>

<D2,P3>

<D1,P3>

third strategy ($����� 	��	���� or P3), the program is
rewritten in order to use the new DMS-DML at its full
power. It requires a deep understanding of the program
logic, since the latter will generally be changed.
These dimensions define six information system migration
strategies (Figure 1). Due to the limited scope of this paper,
we will discuss three of them, namely <D2,P1>, <D1,P2>
and <D2,P3>.

�	�	 �������!

The following discussion is based on a case study in which
the legacy system comprises a small COBOL program
(300 lines of code) and three files. This program records
and displays information about customers that place orders.
The objective of the case study is to convert the legacy files
into a new relational database and to transform the applica-
tion program into a new COBOL program, with the same
business functions, but that accesses the new database.

�	"	 ��#��������

Though this paper mainly focuses on strategy and method-
ology, we would like to suggest some requirements and to
report on experience in IS conversion support. Real-size
reengineering projects require powerful techniques and
computer-aided tools. Such tools have been developed as
customized plug-ins of DB-MAIN4, a general-purpose
database engineering CASE and meta-CASE environment
that offers sophisticated engineering toolsets. Its purpose is
to help the analyst in the design, reverse engineering,
reengineering, maintenance and evolution of database
applications. DB-MAIN includes several processors spe-
cific to the DBRE process [11], such as DDL extractors, a
foreign key as������, and program analysis tools (a.o., for
pattern matching, variable dependency analysis and pro-
gram slicing).

One thing we learnt is that two similar reengineering
projects never exist. Hence the need for programmable,
extensible and customizable tools. DB-MAIN (and more
specifically its meta functions) includes features to extend
its repository and its functions. In particular, it includes a
4GL (6�����	-) that allows analysts to develop their own
customized processors [8].

"	 ����������$������

The schema conversion process analyzes the legacy appli-
cation to extract the source physical schema of the underly-
ing database (SPS) and transforms it into a target physical

schema (TPS) for the target DMS. The TPS is used to gen-
erate the DDL code of the new database. In this section, we
present two transformation strategies. The first strategy
(Figure 2.a), the 5�������������������	���, merely simu-
lates the structure of the legacy database into the target
DMS. According to the second one (Figure 2.b), the ���
�������������������	���, the complete semantics of the
legacy database is retrieved and represented into the con-
ceptual schema (CS). Then CS is used to develop the new
database.

��������	������%������������$�����������������	

"	�	 ��!���������$��������������!�&��'

"	�	�	�����������
According to this strategy (Figure 2.a) each explicit data
structure of the legacy database is directly translated into a
similar structure of the target database (e.g., each record
type becomes a table and each top-level field becomes a
column). As opposed to the second strategy, no conceptual
schema is built, so that the semantics of the data is ignored.

"	�	�	��(��������!
The ��$� ������� parses the DDL code to retrieve the
physical schema of the legacy database (SPS). This schema
includes all the data structures and constraints explicitly
declared into the DDL code (Figure 2.a/left). This schema
is then converted into its target DMS equivalent (TPS)
through a straightforward �������� mapping and finally
coded.

4 www.db-main.be.

DDL analysis

Sch. refinement

Source DMS-DDL code

D
B

R
E

Target DMS-DDL

Source DMS-DDL Target DMS-DDL

b) Conceptual schema conversion.

a) Physical schema conversion.

SPS

CS

TPS

SPS TPS

DB design

Coding

Conceptualization

DDL analysis

Coding

Sch. convertion

data

�������"	�#������������!����������������$������	

"	�	"	���������
This strategy uses simple tools only, such as a DDL parser
(to extract the SPS), an elementary schema converter (to
transform the SPS into the TPS) and a DDL generator.
Complex analyzers are not required.

"	�)	��
�����������
The analysis of the files and records declarations produces
the SPS (Figure 3.a). Each COBOL record type is trans-
lated into a SQL table. The compound field CUS-DESCR
cannot be expressed in SQL, so we transform it into an
unstructured column with the same total length. Some
names need to be changed to comply with the SQL syntax
(Figure 3.b).

"	�	 �������������$��������������!�&��'

"	�	�	�����������
The physical schema of the legacy database (SPS) is
extracted and transformed into a conceptual schema (CS),
through a DBRE process. Then CS is transformed into the
physical schema of the target system (TPS) through stan-
dard database development techniques.

"	�	�	��(��������!
Figure 2.b/left depicts a simplified version of the method-
ology used to perform DBRE. A complete presentation of
this methodology can be found in [8].

The ��$�������� parses the DDL code to retrieve the
physical schema (SPS).

In the �������	������� process, the schema is refined
through an in-depth inspection of the way the program uses
and manages the data. Through this process, additional
structures and constraints are identified, which were not
explicitly declared but expressed in the procedural code.
The existing data can also be analyzed, either to detect con-

straints, or to confirm or discard hypotheses on the exist-
ence of constraints.

The final DBRE step is the
������	����	������������
������ that interprets the physical schema into the concep-
tual schema (CS). Both schemas have the same semantics.

The physical schema of the new database (TPS) is
derived from CS through standard database techniques
(Figure 2.b/right). TPS is then used to generate the DDL of
the target database.

"	�	"	���������
Extracting SPS and storing it in the CASE tool repository
is done through a DDL extractor (SQL, COBOL, IMS,
CODASYL, RPG) from the parser library.

Schema refinement requires schema and program ana-
lyzers as described in Section 2.3.

Data structure conceptualization and database design
are based on schema transformation. Code generators pro-
duce the DDL code of the new database according to the
specifications of TPS.

"	�)	��
�����������

�������)	�#���������� ��������������������$������	

The DDL code analysis reads the files and records dec-
larations to retrieve the SPS (Figure 4.a).

Through the analysis of the variable dependency graph,
or program slices and of the names and structure patterns
of the schema, fields such as ORD-DETAIL are refined, for-
eign keys are discovered and constraints on multivalued
fields are elicited. During the data structure conceptualiza-
tion, the physical constructs (indexes, files) are removed
and the implementation objects (record types, fields, for-
eign keys, arrays,...) are transformed into their conceptual
equivalent (Figure 4.b). The detail of this DBRE case study
has been described in [10].

PROD
PROD-CODE
PROD-NAME
PROD-LEVEL
id: PROD-CODE

acc

ORD
ORD-CODE
ORD-CUSTOMER
ORD-DETAIL
id: ORD-CODE

acc
acc: ORD-CUSTOMER

CUS
CUS-CODE
CUS-DESCR

NAME
ADDR
FUNCT
REC-DATE

id: CUS-CODE
acc

CUSTOMER

CUS

ORDERS

ORD

PRODUCT

PROD

a) SPS.

b) TPS.

PROD
PROD_CODE
PROD_NAME
PROD_LEVEL
id: PROD_CODE

acc

ORD

ORD_CODE
ORD_CUSTOMER
ORD_DETAIL

id: ORD_CODE
acc

acc: ORD_CUSTOMER

CUS
CUS_CODE
CUS_DESCR
id: CUS_CODE

acc

PRODUCT
CODE
NAME
LEVEL
id: CODE

acc

ORDER
CODE
CUS_CODE
id: CODE

acc
ref: CUS_CODE

acc

DETAIL
ORD_CODE
PROD_CODE
ORD_QTY
id: PROD_CODE

ORD_CODE
acc

ref: PROD_CODE
ref: ORD_CODE

acc

CUSTOMER
CODE
NAME
ADDR
FUNCT
REC_DATE
id: CODE

acc

PROD
PROD-CODE
PROD-NAME
PROD-LEVEL
id: PROD-CODE

acc

ORD
ORD-CODE
ORD-CUSTOMER
ORD-DETAIL
id: ORD-CODE

acc
acc: ORD-CUSTOMER

CUS
CUS-CODE
CUS-DESCR

NAME
ADDR
FUNCT
REC-DATE

id: CUS-CODE
acc

CUSTOMER

CUS

ORDERS

ORD

PRODUCT

PROD

a) SPS.

b) CS

c) TPS.

1-1

0-N

passe
0-N

0-N
detail

ORD-QTY

PRODUCT
CODE
NAME
LEVEL
id: CODE

ORDER
CODE
id: CODE

CUSTOMER
CODE
NAME
ADDR
FUNCT
REC-DATE
id: CODE

The database design process transforms the entity types,
the attributes and the relationship types into relational con-
structs such as tables, columns, keys and constraints.
Finally physical constructs (indexes and storage spaces) are
defined (Figure 4.c) and the code of the new database is
generated.

"	"	 (����������������

A careful analysis of the processes that have been
described in Sections 3.1 and 3.2 shows that deriving a
schema from another one is performed through techniques
such as renaming, translating, conceptualizing, which basi-
cally are schema transformations. Most database engineer-
ing processes can be formalized as a chain of schema
transformations as demonstrated in [9].

"	"	�	�����������������������
Roughly speaking, a schema transformation consists in
deriving a target schema S’ from a source schema S by
replacing construct C (possibly empty) in S with a new
construct C’ (possibly empty). Adding an attribute to an
entity type, replacing a relationship type with an equivalent
entity type or with a foreign key are three examples of
schema transformations.

More formally, a transformation � is defined as a couple
of mappings <T,t> such as: ��� �� ���� and �7�8��9�:�
where c is any instance of C and c’ the corresponding
instance of C’�

��	����	��� ������ T explains how to modify the
schema while ������������� t states how to compute
the instance set of C’ from the instances of C.

�������*	��
��������������� ����� ��������� ���������� ��� %���� �����!
�!���#��	

Any transformation � can be given an inverse transfor-
mation �� = <Ti,ti> such as Ti(T(C))=C. If, in addi-
tion, we also have: ti(t(c))=c, then � (and ��) are said
semantics-preserving.

"	"	�	�� ���������������������
A compound transformation �� � �� � �� is obtained
by applying �� on the database that results from the appli-
cation of �� [9].

An important conclusion of the transformation-based
analysis of database engineering processes is that most of

them, including reverse engineering and database design,
can be modelled through semantics-preserving transforma-
tions. For instance, transforming CS into TPS can be mod-
elled as a compound semantics-preserving transformation
��	
�	��� = <CS-to-TPS, cs-to-tps> in such a
way that: TPS = CS-to-TPS(CS). This transformation
has an inverse: ���	
�	�� = <TPS-to-CS,tps-to-

cs> such as: CS = TPS-to-CS(TPS).

"	"	"	�����������������������!
The �����	� of an engineering process is the formal trace of
its chain of transformations. In a history, a transformation
is entirely specified by its signature, which specifies the
name of the transformation, the name of the objects con-
cerned in the source schema and the name of the new
objects in the target schema. More precisely, the history of
a compound transformation contains the signatures of each
transformation according to their order in the chain. For
example, the signature of the transformations represented
in Figure 5 is:

T:(EA2,R)←ATTRIBUTE-to-ET/instance(A,A2)
Ti:(A2)←ET-to-ATTRIBUTE(EA2)
The first expression can be read as follows: by applica-

tion of the ATTRIBUTE-to-ET/instance transformation
on attribute A2 of entity type A, a new entity type EA2 and a
new relationship type R are created. To simplify, certain
objects implied in the transformation are not specified in
the signature. This is the case for the relationship type R
which disappears when one applies ET-to-ATTRIBUTE.

"	")	���������������������!��������������
The mappings between the source and target physical sche-
mas are modelled through a transformation history. Two
transformation histories can be defined according to the
nature of schema transformation (physical or conceptual).
The history for the physical schema strategy is modelled by
a compound transformation: ���	
�	��� in such a way
that TPS = SPS-to-TPS(SPS). On the other hand, the
history for the conceptual schema strategy is defined by the
complex compound transformation: ���	
�	��	
�	���
�����	
�	�������	
�	��� in such a way that TPS =
CS-to-TPS(SPS-to-CS(SPS)).

)	 ��������$������

)	�	 ���������

Schema conversion is concerned with the conversion of
data format and not of its content [1]. Data conversion is
taken in charge by a software called the ����	��	, or
' �	�����	����	��$��
 processor (see Figure 6), which
transforms the data from the data source to the format
defined by the target schema. A converter has three main

$

A1
A2[0-N]
A3

1-10-N R

($�

A2
id: R.A

A2

$

A1
A3

�

��

functions. Firstly, it performs the extraction of the source
data. Then, it converts these data in such a way that their
structures match the target (new) format. Finally, it writes
legacy data in the target format.

������� +	� ����� ���������� ������������,� ���$������ ��
���������������������	

A converter relies on the mappings between the source
and target physical schemas. More precisely, this mapping
is made up of the instance mappings (t) of the source-to-
target transformations stored in the history.

The conceptual schema conversion strategy (D2) recov-
ers the conceptual schema (CS) and the target physical
schema (TPS) implements all the constraints of this
schema. It is important to notice that the legacy data often
violate some constraints of CS discovered during the
schema refinement. Thus the data migration is impossible
if the legacy data are not conformed to the CS constraints.
So the erroneous data must be corrected before the data
migration process. This correction step is a tedious task
that is generally not automatized. The systematic approach
of the physical schema conversion strategy (D1) does not
require this data cleaning step. Indeed, the only known
constraints are recovered by the DDL analysis and they are
verified by the legacy DMS. In this context, TPS only con-
tains the same constraints thus the erroneous data can be
propagated in the target database.

)	�	 (��������!

Data conversion involves three main tasks. Firstly, the tar-
get physical schema (TPS) must be implemented in the new
DMS. Secondly, the mapping between the source and tar-
get physical schemas must be defined as sequences of
schema transformations according to one of the two strate-
gies described in Section 3. Finally, these mappings must
be implemented in the converter for translating the legacy
data according to the format defined in TPS.

Since each transformation is formally defined (<T,t>),
the instance mapping sps-to-tps is automatically
derived from the chain SPS-to-TPS forming the history of
the process that builds TPS from SPS. The converter is
based on the structural mappings (SPS-to-TPS or SPS-

to-CS-to-TPS) to write the extraction and insertion
requests, and on the instance mappings (sps-to-tps or
sps-to-cs-to-tps) for the data conversion.

)	"	 �������

Writing data converters manually is an expensive task, par-
ticularly for complex mappings (for simple mappings para-
metric converters are quite sufficient). The DB-MAIN
CASE tool includes specific history analyzers and con-
verter generators that have been described in [5].

*	 �����������$������

When the structure of the database changes, the application
programs and more specifically the access statements must
be changed accordingly. This section analyzes the three
program modification strategies specified in Figure 1. Each
strategy is presented in the framework of a schema conver-
sion strategy. The first one relies on the ����������������
����	������	������9�-: and on �	����	 technology (P1)
to map the access primitives onto the new database (DMS-
DML statements are replaced with calls to the wrapper).
The second strategy (P2) relies on the 5�������� ������
����	������	����� (D1) that allows merely replacing each
statement with its equivalent in the new DMS-DML.
According to the third strategy <D2,P3>, the access logic is
rewritten to comply to the new DMS-DML. In the last two
strategies, the access statements are expressed into the
DML of the new DMS.

*	�	 -��������������!�.��/��0

*	�	�	�����������
The wrapper migration attempts to keep the legacy pro-
grams logic and to map it on the new DMS technology [4].
A
��� �	����	 is a
������
�������	��� component that
is called by the application program to carry out operations
on the database. Its goal is generally to provide application
programs with a modern interface to a legacy database
(e.g., allowing Java programs to access COBOL files). In
the present context, the wrapper is to transform the reno-
vated data into the legacy format, e.g., to allow COBOL
programs to 	��
, �	���, 	��	��� records that are built from
rows extracted from a relational database.

In this way, the application program invokes the wrap-
per instead of the legacy DMS. If the wrapper simulates the
modeling paradigm of the legacy DB and its interface, the
alteration of the legacy code is minimal. It consists in
replacing the DML statements with wrapper invocations.

The wrapper converts all legacy DMS requests from
legacy applications into requests against the new DMS that
now manages the data. Conversely, it captures results from

SPS TPS

Source Target

SQL DDLConverter
Extraction Loading

SPS-to-TPS
or SPS-to-CS-to-TPS

Mappings

the new DMS, possibly converts them to the appropriate
legacy format [13] (Figure 7) and delivers them to the
application program.

Some legacy DMS, such as MicroFocus COBOL, pro-
vide an elegant way to interface wrappers with the legacy
code. They allow programmers to replace the standard
DMS library with customized library. In this case, the leg-
acy code needs not be altered at all.

������� 1	� -������2����� ���������� ������������,� �
%�����������%������������������!�����%��(�������
������������!����������!���������	

*	�	�	��(��������!
As part of the InterDB project, we have developed a tech-
nology for the automated production of hard-coded wrap-
pers for data systems. In [15], we have shown that the code
of a wrapper dedicated to a couple of DMS families, per-
forms the structural and instance mappings and that these
mappings can be modelled through semantics-preserving
transformations. For a consultation query, the structural
mapping explains how to translate the query while the
instance mapping explains how to form the result
instances. Consequently the SPS-to-TPS (or SPS-to-

CS-to-TPS) mapping and its instance counterpart sps-
to-tps (sps-to-cs-to-tps) provide the necessary and
sufficient information to produce the procedural code of a
specific wrapper and to build a common generator of wrap-
pers for a specific couple of source and target DMS.

*	�	"	���������
As explained above, a wrapper generator needs the descrip-
tion of the source and target physical schemas as well as
the history of their derivation. To simplify, the wrapper
generation in the DB-MAIN environment is performed in
two steps, namely the history analysis and the wrapper
encoding. The history analyzer parses the schema transfor-
mation history in order to yield functional specifications
from which the target/source physical schemas are
enriched with source/target physical correspondences. The
end product of this phase is target/source physical schemas

that include, for each construct, the way it has been
mapped onto the other physical schema constructs. In this
way, each schema holds all the information required by the
generator. From the TPS (or the SPS), the wrapper encoder
produces the procedural code of the specific wrapper and a
documentation for the programmers.

*	�)	��
�����������
To illustrate the way data wrappers are used, let us consider
the following statements of the legacy Cobol program:
 READ PRODUCT KEY IS PROD-CODE
 INVALID KEY GO TO ERR-123.
 DELETE PRODUCT END-DELETE.

Each primitive is replaced by the calling of the wrapper
to ask it to carry out a similar function. This substitution
yields the following piece of code:
 CALL WR-ORD-MNGMT
 USING "READKEY","PRODUCT","PROD-CODE",
 PRODUCT,WR-STATE.
 IF STATUS OF WR-STATE NOT = 0 THEN
 GO TO ERR-123.

 CALL WR-ORD-MNGMT
 USING "DELETE","PRODUCT","",
 PRODUCT,WR-STATE.

Though describing the wrapper interface in detail is
beyond the scope of this paper, we will only mention that
the wrapper is stateless, in that it keeps no information on
the application program activities. The state of the program
is stored in the state block WR-STATE which records,
among others, the current key, the current record ID and the
status of the last primitive (STATUS). The wrapper executes
each legacy primitive as a sequence of SQL operations that
retrieve the rows forming the data record or that delete the
components of this record. This translation is based on the
transformation history and the source and target physical
schemas. For instance, in the ���������� �����������	�
���� strategy, the wrapper builds the ORDER record by
joining the identified ORDER table row with the dependent
DETAIL rows (Figure 4).

*	�	 ������������%��������������!�.��/��0

*	�	�	�����������
This program modification technique depends on the Phys-
ical schema conversion strategy. It consists in replacing the
legacy DMS-DML statements with DML statements of the
new DMS. For example, every file access in a COBOL
program must be replaced by a relational SFW statement.
Due to the simple SPS-TPS mapping this process can be
largely automated.

*	�	�	��(��������!
The program modification process is fairly simple and
needs no elaborated methodology. Each DML statement

TPS

RDB

Legacy
Cobol Programs

SQL DDLWrapper
SPS

SQL DDLRDBMS

must be located, its parameters must be identified and the
new DML statement sequence must be defined and
inserted in the code. The main point is how to translate iter-
ative accesses in a systematic way. For instance, in the
most popular �"#"$�����%$ conversion, there are several
techniques to express the typical ���	�;	��
�� � loop with
SFW statements. The task may be complex due to loosely
structured programs and the use of dynamic DML state-
ments. For instance, a COBOL READ NEXT statement can
follow a statically unidentified START initial statement,
making impossible the identification of the record key
used. A description of a specific technique that solves this
problem will be found in section 5.2.4.

*	�	"	���������
This technique requires program analyzers and text substi-
tution engines. Several program migration �����	��� are
proposed by software companies. Most of them comply
with the Statement rewriting strategy.

*	�)	��
�����������
The change of paradigm when moving from standard files
to relational database induces problems such as the identi-
fication of the sequence scan. COBOL allows the program-
mer to start a sequence based on an indexed key (START-
KEY and READ-KEY), then to go on in this sequence through
READ-NEXT primitives. The most obvious SQL translation
is through a cursor-based loop. However, the READ-NEXT
statements can be scattered throughout the program, so that
the identification of the initiating START statement is only
possible through complex static analysis of the program
data and control flows.
The technique illustrated below is based on state registers,
such as ORD-SEQ, that specify the current key of each
record type, and consequently the matching SQL cursor. A
cursor is declared for each kind of record key usage
(EQUAL, GREATER, NOT LESS) in the program. For
instance, the table ORD gives at most six cursors (combina-
tion of two record keys and three key usages).

����������	

������
 MOVE CUS-CODE TO ORD-CUSTOMER.
 START ORDER KEY >= ORD-CUSTOMER. [

 MOVE 0 TO END-FILE.
 PERFORM READ-ORD UNTIL END-FILE = 1.
READ-ORD SECTION.
BEG-ORD.
 READ ORDER NEXT \

 AT END MOVE 1 TO END-FILE GO TO EXIT-ORD.]

 <<processing current ORD record>>
EXIT-ORD.
 EXIT.

��������	

������
 EXEC SQL declare cursor ORD_GE_K1 for
 select ORD_CODE,ORD_CUSTOMER,ORD_DETAIL
 from ORDER where ORD_CODE >= :ORD-CODE

 order by ORD_CODE END-EXEC.
 . . .
 EXEC SQL declare cursor ORD_GE_K2 for [

 select ORD_CODE,ORD_CUSTOMER,ORD_DETAIL [

 from ORDER where ORD_CUSTOMER >= :ORD-CUSTOMER [
 ORDER BY ORD_CUSTOMER END-EXEC. [

 ...
 MOVE CUS-CODE TO ORD-CUSTOMER.
 EXEC SQL open ORD_GE_K2 END-EXEC. [

 MOVE "ORD_GE_K2" to ORD-SEQ. [

 MOVE 0 TO END-FILE.
 PERFORM READ-ORD UNTIL END-FILE = 1.
READ-ORD SECTION.
BEG-ORD.
 IF ORD-SEQ = "ORD_GE_K1" \

 THEN \

 EXEC SQL fetch ORD_GE_K1 into :ORD-CODE, \

 :ORD-CUSTOMER,:ORD-DETAIL END-EXEC \

 ELSE IF ORD-SEQ = "ORD_GE_K2" \

 THEN \

 EXEC SQL fetch ORD_GE_K2 into :ORD-CODE, \

 :ORD-CUSTOMER,:ORD-DETAIL END-EXEC \

 ELSE IF ... \

 END-IF. \

 IF SQLCODE NOT = 0 THEN]

 MOVE 1 TO END-FILE GO TO NO-ORD.]

 <<processing current ORD record>>
EXIT-ORD.
 EXIT.

*	"	 3�������%��������������!�.��/�"0

*	"	�	�����������
The program is rewritten to explicitly access the new data
structures and take advantage of the new data system fea-
tures. This rewriting task is a complex conversion process
that requires an in-depth understanding of program logic.
For example, the processing code of a COBOL record type
may be replaced by a code section that copes with several
SQL tables or a COBOL loop may be replaced with a sin-
gle SQL join.

 The complexity of the problem prevents the complete
automation of the conversion process. Tools can be devel-
oped to find the statements to be modified by the program-
mer and to give hints on how to rewrite them. However,
actually modifying the code is up to the programmer.

*	"	�	��(��������!
This strategy is much more complex than the previous one
since every part of the program may be influenced by the
schema transformation.

The most obvious method consists in (1) identifying the
file access statements, (2) identifying the statements and
the data objects that depend on these access statements and
(3) rewriting these statements and redefining these data
objects.

*	"	"	���������
The identification tasks 1 and 2 relate to the program
understanding realm, where such techniques as searching
for �����<�, variable dependency analysis and program slic-
ing ([11], [17] for information) often are favorite weapons.
The supporting tools must include engines for these activi-
ties.

*	")	��
�����������
We illustrate this strategy by rewriting two code sections
from the COBOL program mentioned so far. The first
example displays information on an order together with
some data from its customer. In the SQL program, this pat-
tern clearly suggests joining the tables ORDER and CUS-
TOMER then extracting the desired column values.

�������
����������
���
DISP-ORD.
 READ ORDER KEY IS ORD-CODE
 INVALID KEY GO TO ERR-CUS-NOT-FOUND.
 PERFORM DISP-ORD-CUS-NAME.
DISP-ORD-CUS-NAME.
 MOVE ORD-CUSTOMER TO CUS-CODE
 READ CUSTOMER INVALID KEY
 DISPLAY "ERROR : UNKOWN CUSTOMER"
 NOT INVALID KEY
 DISPLAY "ORD-CODE: " ORD-CODE NAME.

�����	�����������
���
DISP-ORD.
 EXEC SQL
 SELECT O.CODE, C.NAME INTO :ORD-CODE, :NAME
 FROM ORDER O, CUSTOMER C
 WHERE O.CUS_CODE = C.CODE
 AND O.CODE = :ORD-CODE
 END-EXEC.
 IF SQLCODE = 0 THEN
 DISPLAY "ORD-CODE: " ORD-CODE NAME
 ELSE
 GO TO ERR-CUS-NOT-FOUND.

The second example has been used in the section dealing
with the =	����	 strategy. The two-step �������� ���

����� pattern, which is typical of navigational DMS, can
be replaced with a single set expression of SQL.

�������
����������
���

 READ PRODUCT KEY IS PROD-CODE
 INVALID KEY GO TO ERR-123.
 DELETE PRODUCT END-DELETE.

�����	�����������	������
 EXEC SQL
 DELETE FROM PRODUCT WHERE CODE = :PROD-CODE
 END-EXEC.
 IF SQLCODE NOT = 0 THEN GO TO ERR-DEL-PROD.

+	 ���������

The variety in corporate requirements as far as system
reenginering is concerned naturally leads to an equally
large spectrum of migration strategies. This paper has iden-

tified two main independent lines of decision, the first one
about database conversion (schema and contents) and the
second one on program conversion. From them, it has iden-
tified and analyzed in details three representative strate-
gies.

Though comparing them would not be easy, we will try
to give some hints on their respective advantages and
drawbacks. Clearly, as far as quality is required, the best
strategy in database conversion is the ����������������
����	��� (D2), since it yields a high quality normalized
database that is no longer impaired by historical and obso-
lete decisions, and by the legacy of inadequate technolo-
gies. The data structure conversion based on the complete
reverse engineering process is complex but uses all the
expressiveness of the target DMS. Future modifications on
the new system are easier because the new data system
does not contain the physical artifacts of the legacy system
and its semantics are well known.

Clearly too, the 5�������������������	��� (D1) is the
worst decision. It does not recover the source physical
schema semantics and blindly translates the technical struc-
tures peculiar to source technology or design errors in the
target structures. However, since it is by far less expensive,
it is also the most popular. It does not require to carry out a
complete DBRE process. Only an automatic physical
schema recovering is required. The evolution of the target
structures is often complex or impossible because program
modifications require knowledges of source data system
semantics and physical artifacts.

Program conversion is a less mature domain, particu-
larly when it derives from database changes. Though many
technical and architectural approaches exist, we have found
it interesting to describe three representative strategies
through which we can identify some of the most challeng-
ing problems.

In terms of quality, the ���������	��	�����strategy (P2)
seems to degrade the program readability but is fairly inex-
pensive, while the $����� 	��	���� strategy (P3) modern-
izes the programs (their logic matches the paradigm of the
new DMS) by keeping them as clear and intuitive as their
source version. The =	����	 strategy (P1) allows the pro-
gram to be kept, with their origin qualities and problems,
while working on the new database.

In terms of programming efforts, the ���������	��	���
���strategy is achieved by an automatic processor and the
wrappers of the strategy P1 are automatically generated
from the mapping between source and target physical
structures. These strategies can be a solution within the
framework of an incremental migration. Unlike the two
others, significant programmer interventions as well as the
use of complex program comprehension tools are neces-
sary in the $����� 	��	���� strategy. The programming

effort is only interesting if the migration is limited to the
data system.

1	 ����������

[1] Aiken, P., Muntz, A., Richards, R.: "DOD Legacy Systems -
Reverse-Engineering Data Requirements", ������������
�������&��, May 1994.

[2] Behm, A., Geppert, A., Dittrich, K.R.: "On the migration of
Relational Schemas and Data to Object-Oriented Database
Systems", in 5	����
�������>����������������(��	�����
�������, Klagenfurt, Austria, December 1997.

[3] Bisbal, J., Lawless, D. , Wu, B., Grimson, J.: "Legacy Infor-
mation Systems: Issues and Directions", ('''� ������	�,
September/October 1999.

[4] Brodie, M. L., Stonebraker, M.: ���	�����$�������������?
,���������(��	������@�����(�	�������&��	����, Morgan
Kaufmann, 1995.

[5] Delcroix, C., Thiran, Ph., Hainaut, J.-L.: "Approche Trans-
formationnelle de la Ré-ingénierie des Données", (�<��	��

�������A����
7(��	�����, Hermes-Sciences, Paris, Decem-
ber 2001.

[6] Jahnke, J.-H., Wadsack, J. P.: "Varlet: Human-Centered Tool
Support for Database Reengineering", in 5	����
���� ��
=�	B����� �� ������	��>������	��� 9=�>')CC:, May
1999.

[7] Jeusfeld, M. A., Johnen, U. A.: "An Executable Meta Model
for Re-Engineering of Database Schemas", in 5	����
������
����	����������'�����>�����������&��	����, Manches-
ter, December 1994.

[8] Hainaut, J.-L., Roland, D., Hick, J.-M., Henrard, J., Engle-
bert, V.: "Database Reverse Engineering: from Requirements
to CARE Tools", D��	������&�������
�������	��'����	�
��, 3(1), 1996.

[9] Hainaut, J.-L.: "Specification preservation in schema trans-
formations - Application to semantics and statistics", �����@
E����
��� '����	��, 16(1), Elsevier Science Publish,
1996.

[10] Hainaut, J.-L., Roland, D., Englebert, V., Hick, J.-M., Hen-
rard, J.: "Database Reverse Engineering - A Case Study",
=�>')CF, Amsterdam, 1997.

[11] Henrard, J., Englebert, V., Hick, J.-M., Roland, D., Hainaut,
J.-L.: "Program understanding in databases reverse engineer-
ing", �'G&)CH, Vienna, 1998.

[12] Menhoudj, K., Ou-Halima, M.: "Migrating Data-Oriented
Applications to a Relational Database Management System",
in 5	����
���� ��� ���� ���	
� (��	������� =�	B����� �
&
������ �������������
� (��	������ �������, Moscow,
1996.

[13] Papakonstantinou, Y., Gupta, A., Garcia-Molina, H., Ullman,
J.: "A Query Translation Scheme for Rapid Implementation
of Wrappers", in 5	���
�����������(��	�����������	���
����
��������
�"�2�����	����
����������, 1995.

[14] Renaissance (ESPRIT project): �����;��	��	� ���	����?
,��
������ ��	� ���	����� �	��� ���	�����
� ��� ����	�����

�������, consultancy report, 1998.

[15] Thiran, Ph., Hainaut, J.-L.: "Wrapper Development for Leg-
acy Data Reuse", in 5	����
�������=�>')0., IEEE Com-

puter Society Press, 2001.
[16] Tilley, S. R., Smith, D. B.: "Perspectives on Legacy System

Reengineering", technical report, Software Engineering
Institute, Carnegie Mellon University, 1995.

[17] Weiser, M.: "Program Slicing", ('''���', 10, pp. 352-357,
1984.

[18] Wiederhold, G.: "Modeling and System Maintenance", in
5	����
�����������(��	�����������	������"�2����"	��
���
��
�'�����>�������������
����, Berlin, 1995.

[19] Wu, B., Lawless, D., Bisbal, J., Richardson, R., Grimson, J.,
Wade, V., O'Sullivan, D.: "The Butterfly Methodology: A
Gateway-free Approach for Migrating Legacy Information
Systems", in 5	����
���� ��� ���� I	
� ('''� ����	���� �
'����	������������ ��������	��������, Italy, September
1997.

	1. Introduction
	2. Problem statement
	2.1. Strategies
	2.2. Case study
	2.3. CASE support

	3. Schema conversion
	3.1. Physical conversion strategy (D1)
	3.1.1. Principle
	3.1.2. Methodology
	3.1.3. Support
	3.1.4. Illustration

	3.2. Conceptual conversion strategy (D2)
	3.2.1. Principle
	3.2.2. Methodology
	3.2.3. Support
	3.2.4. Illustration

	3.3. Mapping definition
	3.3.1. Schema transformation
	3.3.2. Compound transformation
	3.3.3. Transformation history
	3.3.4. Source and target physical mappings

	4. Data conversion
	4.1. Principle
	4.2. Methodology
	4.3. Support

	5. Program conversion
	5.1. Wrapper strategy <D2,P1>
	5.1.1. Principle
	5.1.2. Methodology
	5.1.3. Support
	5.1.4. Illustration

	5.2. Statement rewriting strategy <D1,P2>
	5.2.1. Principle
	5.2.2. Methodology
	5.2.3. Support
	5.2.4. Illustration

	5.3. Logic rewriting strategy <D2,P3>
	5.3.1. Principle
	5.3.2. Methodology
	5.3.3. Support
	5.3.4. Illustration

	6. Conclusion
	7. References

