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Reverse engineering a piece of software consists, among
others, in recovering or reconstructing its functional and
technical specifications, starting mainly from the source
text of the programs.  Recovering these specifications is
generally intended to redocument, convert, restructure,
maintain or extend legacy applications.

In information systems, or data-oriented applications,
i.e., in applications the central component of which is a
database or a set of permanent files, the complexity can be
broken down by considering that the files or database can
be reverse engineered (almost) independently of the proce-
dural parts as such, through a process called �������	����
�
��
����
� (DBRE in short).

This proposition to split the problem in this way can be
supported by the following arguments.
� The semantic distance between the so-called conceptual

specifications and the physical implementation is most
often narrower for data than for procedural parts.

� The permanent data structures are generally the most
stable part of applications.

� Even in very old applications, the semantic structures
that underlie the file structures are mainly procedure-
independent (though their physical structures may be
highly procedure-dependent).

� Reverse engineering the procedural part of an applica-
tion is much easier when the semantic structure of the
data has been elicited.

Therefore, concentrating on reverse engineering the appli-
cation data components first can be much more efficient
than trying to cope with the whole application.

Even if reverse engineering the data structure is ������
than recovering the specification of the application as a
whole, it still is a complex and long task, especially when
attempting to recover the implicit constructs, i.e., the data
properties that hold in the database without being explicitly
declared in the DBMS1 schema. 

One kind of constructs that are interesting to recover are
the data dependencies, i.e., relations that exist between
fields of the database.  Foreign keys and redundant/derived
fields are some examples of such relations.  Most data
dependencies are difficult to discover because they are not
explicitly declared (except for foreign keys in modern rela-
tional database).  Instead, evidence of their existence is
buried in the code of the application, and can only be found
by analyzing this code.  On the other hand, these data
dependencies generally translate business rules, so that
their elicitation is essential to produce a high quality con-
ceptual schema.

Discovering data dependency in the source code
requires powerful program understanding techniques and
tools, especially for real size projects that can score several
millions LOC and several hundreds files and records.
Those tools discover potential dependencies that need to be
validated (check if the dependency really exists) and quali-
fied (which kind of dependency, foreign key, redundancy)
by the analyst.

None of these techniques are perfect.  On the contrary,
they generate noise (they detect dependencies that does not
stand) and silence (they does not detect dependencies that
hold).  The noise and silence have a cost.  For the noise, it

1 DataBase Management System.
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is the time needed to detect that the proposed dependency
does not exist.  The silence cost is more difficult to evalu-
ate: it is the organizational cost of the incompleteness of
the schema.  If an incomplete schema is used to migrate
data or to write a new application, it can lead to incorrect
result that may have high cost.  It can also be the cost of an
application giving wrong answers and lacking the func-
tions expected by the users.

This paper is organized as follows.  Section 2 is a syn-
thesis of a generic DBMS-independent DBRE methodol-

ogy.  Section 3 explains what is data dependency and why
it must be elicited.  Section 4 presents different program
understanding techniques.  In section 5, those techniques
are specialized to data dependency elicitation.  Section 6
presents the DB-MAIN CASE tool that implements these
techniques.  Experiences gained by using these techniques
on real projects are described in section 7.  Section 8 shows
the economic challenge of data dependency elicitation
techniques.

�	 ����������������������������������
�������������������

The reference DBRE methodology [5] is divided into three
major processes, namely ����������
, ����� ���������
�#�������
 and ����� ���������� ��
��������)����
� (figure 1,
left).  The preparation process is not exactly a DBRE pro-
cess, but its purpose mainly is to gather and to evaluate the
relevance of the necessary information sources and for the
analyst to get acquainted with the domain (interviews,
demonstrations,...). The last two processes, that will be
developed in the following, address the recovery of two
different schemas and require different concepts, reasoning
and tools.  In addition, they grossly appear as the reverse of
the physical and logical design usually considered in data-
base design methodologies [1].

�	�	 ���������������� ��������

The data structure extraction process consists in recovering
the complete DMS schema, called the �������� ������,
including all the explicit and implicit structures and con-
straints.

It is interesting to note that this schema is the document
the programmer must consult to fully understand all the
properties of the data structures (s)he intends to work on.
In some cases, merely recovering this schema is the main
objective of the programmer, who will find the conceptual
schema itself useless.

In this reference methodology, the main processes of
data structure extraction are the following (figure 1, right):

!�������	�"���#�$�������������������������������%���#����������&����'��������������#������������������������
� �����������������&�����'	
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� ��;1�������
������: parsing the data structure declara-
tion statements to extract the explicit constructs and
constraints, thus providing a �������������������.  

� <���������
��������
: when more than one DDL source
has been processed, several schemas can be extracted.
All these schemas are integrated into one global schema.
The resulting schema (�����
���� ��������� ������)
must include the specifications of all these partial views.

!�������	�� �#�����������������#���#���������#������
��������(������#������������������		

� �����������
���
�: the most challenging problem of the
data structure extraction phase is to discover and to
make explicit the structures and constraints that were
either implicitly implemented (figure 2) or merely dis-
carded during the development process.  The physical
schema is enriched with implicit constructs made
explicit, thus providing the ������������������������.  

� �����������
�
�: once all the implicit constructs have
been elicited, technical constructs such as indexes or
clusters are no longer needed and can be discarded in
order to get the ����������������������� (or simply the
logical schema).

The final product of this phase is the complete logical
schema, that includes both explicit and implicit structures
and constraints.  Generally, this schema is no longer
DBMS-compliant since the complete logical schema is the
result of the refinement process, that enhances the schema
with recovered implicit constraints, that are not necessarily
DBMS compliant.

�	�	 ���������������)����������*�����

The third phase addresses the conceptual interpretation of
the logical schema.  Its goal is to propose a conceptual
schema, of which the logical schema obtained so far could
be a correct implementation. It consists in detecting and
transforming (or discarding) non-conceptual structures,
reducing redundancies, detecting and interpreting technical
optimization and DBMS-dependent constructs and finally

in replacing the DBMS constructs with their abstract
equivalent in the target conceptual model (ERA, UML,
ORM, ���.). 

The final product of this phase is the conceptual schema
of the persistent data of the application. This process is out-
side the scope of this paper and will not be discussed fur-
ther. Detail can be found in [3].

+	 �������������������������

One kind of implicit constraints that need to be found dur-
ing the ����
���
������� is made up of the ����
��
����
������
� ������ (of the same record or not).  The most
important classes of data dependencies certainly are for-
eign keys, redundant fields and existence dependencies.

A ������
�"�� is a set of  fields that is used to reference
records in another file (or in the same file).  As a conse-
quence, at any time, for each source record, the value of the
foreign key must be that of the identifier of a record in the
target file. A ����
��
�� ����� has a value that is derived
from source data that are part of the database itself.  Such a
field can be a copy of another field, or  can be derived by a
computation that takes other fields of the record (or of an
other record) as input.  An �#����
��� ����
��
�� holds
when the interpretation of the value of a field depends of
the value of the other one.

Redundancy (computational) and existence dependen-
cies are very frequent in legacy databases that are the result
of different migration, integration, long evolution and
maintenance.  Due to lack of time and money, program-
mers are obliged to modify as quickly as possible the pro-
grams and the databases to follow the business evolution.
This fast evolution forces them to modify the data structure
and program without any concern about future evolution
and the coherence of the database.  So each modification
increases the degree of denormalisation of the database.

Data dependencies are not supported (explicitly
declared) by the DBMS, except foreign keys that can be
controlled by modern relational DBMS.  Since one of the
goals of the conceptualization process is to translate,
reduce or discard all those redundancies and dependencies,
it is very important to discover them during the extraction
phase. This explains the importance of their comprehensive
elicitation to obtain a good conceptual schema.  

Most often, undeclared data dependencies  are checked
and implemented in the procedural code of the applications
that use the data.  One of the ������� places where those
constraints are, at least, verified is in the section of the code
that precedes the record storage or modification.  Indeed,
before storing or updating of a record, the program has to
verify that the new data comply with all the integrity con-
straints attached to the record type.

1 Data Description Language.

select customer....
record key is c-num.

select ordre... .
fd customer.
01 cus.
02 c-num.
...

fd order.
01 ord.
...
02 o-cus.

ask-ord.
accept c-num.
read customer
invalid key 
display “error”
go to ask-ord.

move c-num to o-cus.
...
write ord.
3 18/2/2002



For instance, to check a dependency constraint between
fields of two records, the first record has to be read to
check the constraint before the storage of the second
record.  Therefore, the control flow that ends with the �����
or ������ statement should include a ���� statement. 

Dependency elicitation methods check if there exists a
data or/and control flow between a read and a write instruc-
tions in a possible execution path of the program.  If such a
path exists, this mean that there exists a dependency
between the two records.  It is possible to refine the result
by a closer analysis of the data flow between the two
records to discover which fields are in relation.

To apply this method to real size projects, we need pro-
gram understanding tools that discover automatically the
fields in relation.  In the next section, we will present three
different techniques, namely variable dependency graph,
system dependency graph and program slicing, that can be
used to elicit data dependencies.

,	 -�����#�������������������.���

,	�	 /����������������������

The 	������������
��
��������, VDG, is a weak - easy to
compute - version of dataflow diagram.   In this graph,
each variable of a program is represented by a node, while
an  arc (directed or not) represents a direct relation (assign-
ment, comparison, etc.) between two variables.  To con-
struct this graph, we only need to search the program for
definite statement patterns without worrying to write a
complete parser that analyzes the whole program.  Figure
3.b illustrates the variable dependency graph of the pro-
gram fragment of figure 3.a.  If there is a path from vari-
able A to variable $ in the graph, then there is, in the
program, a sequence of statements such that the value of =
is in relation with the value of $.  

!������+	�"��������������������������	

The very meaning of this relation between the variables is
defined by the analyst depending on the pattern used to
construct the graph.  The interpretation of A being in rela-
tion with C can be one of the following:  the structure of
one variable is a variant of the other one, the variables
share the same values, they denote the same real world
object, ���.

,	�	 -�����#��������

The ����� (or backward slicing) of a program with respect
to program point � and variable # consists of all statements
and predicates of the program that might affect the value of
# at point �.  This concept, originally discussed by M.
Weiser in [9], can be used to debug programs, maintain
programs, understand programs behaviour [4].  In Weiser’s
terminology, a �����
����������
 is a pair <�!>>, where � is a
program point and > is a subset of the program’s variables.

Horwitz and al. [7] introduce a new kind of graph to
represent programs, called a system dependency graph,
which extends previous dependency representations to
incorporate collections of procedure, with procedure calls.
They also give an algorithm for interprocedural slicing that
uses the system dependency graph.  We extend this graph
construction algorithm to add arbitrary control flow (Go
To’s) as presented by Ball and Horwitz in [2].

In their approach, they represent a program by a graph
(the system dependency graph) and the slicing problem is
simply a node-reachability problem, so that slices can be
computed in a linear time.

!������ ,	���� � �#���� ������#� ��� ���� ������������
���	

The �����������
��
�������� (SDG) for program P is a
direct graph whose nodes are connected by several kinds of
arcs.  The nodes represent the assignment statements, con-
trol predicates, procedure calls and parameters passed to
and from procedures (on the calling side and in the called
procedure).  The arcs represent dependencies among pro-
gram components.  An arc represents either a control
dependency or a data dependency.  A control dependency
arc from node  	� to node 	� means that, during execution,

...
MOVE A TO B.
...
MOVE B TO C.
...
IF (C = D )
...

a) The COBOL Fragment.

A B

C D

b) The VDG.

0 PDLQ.
1 A = 1.
2 call P(A,B).

3 if(B = 2)
4 print B.

else
5 call P(B,C).
6 print C.

7 3(X,Y).
8 Y = X.

0

1 2 63

4 5x_in=A B=y_out

x_in=B C=y_out

7

X=x_in y_out=Y

8
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the component 	� can be executed/evaluated only if 	� has
been executed/evaluated1.

 Intuitively, a data dependency arc from node 	� to node
	� means that the state of objects used in 	� can be defined/
changed by the evaluation of 	�.  As a consequence, pro-
gram computation might be changed if the relative order of
the component represented by 	� and 	� were reversed.

Figure 4 shows a program and its corresponding system
dependency graph.  Control dependencies are represented
using plain arrows and data dependencies are represented
using dashed arrows.  On the calling side, information
transfer is represented by a set of nodes (#?�
@=, �@�?���,
#?�
@� and $@�?���) that are control dependent on the
call-side.  Similarly, information transfer in the called pro-
cedure is represented by a set of node (A@#?�
 and
�?���@B) that are control dependent on the procedure entry
node.  The bold arrows represent the transitive data depen-
dencies due to the procedure call on the calling side.  The
presence of such edges permits the slicing operation to
move “across” a call without having to descent into it.

The program slicing is computed by the traversal of the
SDG. The computation is performed in two phases.  Both
Phases 1 and 2 traverse the system dependency graph to
find the set of nodes that can reach a given set of nodes
along certain kinds of arcs.  Phase 1 identifies nodes that
can reach �, and are either in < itself or in a procedure that
calls < (either directly or transitively).  Phase 2 identifies
nodes that can reach � from procedures (transitively) called
by < or from procedures called by procedures that (transi-
tively) call <.

0	 -�����#����������������������������
��������������������

In this section the different program understanding tech-
niques described in the previous section will be specialized
to data dependency elicitation.  At the end of the section,
the quality of the results obtained by each technique will be
compared to show the strength and weakness of each of
them.  One of the criteria to compare two techniques is to
compare the silence and noise generated by both of them.
����
�� is a constraint that exists but is not discovered.  On
the other hand, 
���� is a constraint that is suggested by a
technique but does not exists.

Every technique presented finds couples of fields that
are possibly in relation, through source code analysis.  The
analyst has to check manually each couple to validate the
result.  If (s)he decides that the couple is a valid depen-
dency, (s)he has to qualify it (as foreign key, redun-

dancy,...) and adds this dependency to the database schema.
In a comprehensive schema refinement process, other
sources must be used as well, such as schema analysis and
data analysis.  These additional techniques can help finding
and qualifying the dependencies [5].

0	�	 /����������������������

If a data flow exists between two fields of the database, we
need to construct the variable dependency graph where the
arcs represent assignments (move) between two variables.
A dependency between two fields is identified whenever a
path exists between the two fields in the graph.

The usage of this graph can lead to three kinds of silence
and to two kinds of noise.

!������ 0	� � �#���� ��� �������� ��� ��������� ��������
�����	

The ������source�of silence lies in the relations that are
represented by the arcs.  If we use assignment statements
only, then all the other instructions that contribute to the
dataflow (compute, multiply, string,...) are ignored.  This
kind of silence can be reduced by increasing the number of
statements we are looking for.

The ����
� source of silence is that the graph is not
aware of the structure of the variables.  Figure 5 gives an
example where such silence appears.  The decomposition
of � in �/ and �. is not represented, so that the path
between (=/!�=.) and $ remains undetected.

!������ 1	� "��� ��������� ���2���� 
��� ��� ��� ��
�#���#������������������&��'	

C�
����, ignoring control flow can also generate silence.
For example in figure 6, the result of the test on =%( (��=%(
@�D'E�) is necessary to discover the dependency (a com-
puted dependency) between =%( and �%F.  The correspond-1 The definition is slightly different for calling arcs, but this does not

change the principle.

01 A1 PIC X(10).
01 A2 PIC X(10).
01 B.
  02 B1 PIC X(10).
  02 B2 PIC X(10).
01 C  PIC X(20).
MOVE A1 TO B1.
MOVE A2 TO B2.
MOVE B TO C.

A1 A2

B1 B2

B C

??

fd A.
01 REC-A.
...
02 A-I... .

fd B.
01 REC-B.
...
02 B-J... .

0 Main.
1 read A
2 if(A-I = “T”)
3 move “c1” to B-J

else
4 move “c2” to B-J.
5 write REC-B.
5 18/2/2002



ing VDG is empty because there is no assignment between
variables in this examples, but there is a dependency.  The
last two kinds of silence are very difficult to address with
this technique.

!������3	�� �#������������������������������������	

Noise can be generated because the graph only repre-
sents dataflow and not the control flow.  There exist vari-
ables that are connected by a path in the graph though they
are not in relation at execution time. As show in figure 7, if
a path exists between two variables in the graph, that does
not mean that there exists a corresponding valid execution
path in the program.

The second source of noise is that if a variable repre-
sents a record field, it does not necessarily contain a value
that appears in the database.  Let us consider the tricky pro-
gram :

read A.
move “cst” to A1.
move A1 to B1.
write B.

... where =/ is a field of record = and �/ of record �.  The
graph shows a relation between =/ and �/, so we can con-
clude erroneously that there is a dependency between =/
and �/.

0	�	 -�����#��������

There are several usage of the program slicing tech-
niques and its underlying SDG to detect dependencies in a
program.  This section presents three different SDG query-
ing techniques: program slicing, dataflow program slicing
and dataflow program slicing with variable follow-up.

-�����#��������	
The first program slicing application, that is to detect

dependencies between fields, requires the computation of
the slice with respect to a ����� instruction and the written
record (������ �).  If the slice contains a ���� instruction
(�����=), then there exists at least one execution path such
that the read instruction influences (is in the slice computed
with respect to) the write instruction.  The result is not very
precise because we do not know which fields of = influ-
ence which fields of��.  This technique generates noise:  =
�
����
��
�� � does not imply that there is a dependency
between = and �.  

!������4	�"��������#��������������
�������������2	�	�	������
�	��5�2����6������������������������������2��������
������	

Figure 8 shows such an example where a first loop
reads each record of =.  This first loop is followed by a sec-
tion that writes �, the computation of the value of � does
not rely on reading =.  The �����= appears in the slice w.r.t.
������� because all the records of = need to be read before
the execution of the second loop but there is no depen-
dency between the fields of = and �.

Program slicing is one example of SDG querying.  It is
possible to query it differently to extract other information.

�������2�������#��������	
A ����������������������
� can be defined as the pro-

gram slicing where only the data dependency arcs are used
and not the control arcs.  If a dataflow program slice, com-
puted with respect to a write instruction, contains a read, it
means that there is a dataflow between some fields of the
read to the fields of the write.  As in the first program slic-
ing usage, the result is not very precise because we do not
know which part of the records are in relation.  This tech-
nique does not generate noise, but it misses all the depen-
dencies that rely on control such as instruction ��.  Figure 9
presents the SDG corresponding to figure 6 program.  The
dependency implemented in this program is not detected
by the dataflow program slicing.  The path that needs to be
followed to detect the dependency between ����� = and
������� are shaded and we notice that it contains control
arcs.

!������ 7	� "��� �����#� ��������� ������ ��� ������� 1
������#	

MOVE A TO B
..............
MOVE B TO C
..............
MOVE E TO B
..............
MOVE B TO D

A E

B

C D

L1.
 ....
 read next A
   at end go to L2.
 ...
 go to L1.

L2.
 * the computation of B
 * does not use A
 ...
 write B.

0

1 2 5

3 4
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�������2�������#���������2������������������28��	
To increase the precision of this technique, when there

exists a path (based on data dependency only) between a
read and a write, it is possible to analyze each instruction to
determine which parts of the records are used.  This is
called ����������������������
�������	��������������%��.

Figure 10 shows how this can be done on an example.
After each instruction, we adjust the part of the read record
(=) that is used.  When the write instruction is reached we
know which part of = influences which part of �.

!������ �9	� !���� ��������� ��������� ������ ������2
������#��������	

However, as in the previous technique, this one only
finds dependencies that are implemented using dataflow
between fields.

0	+	 �������������������������������.��

Figure 11 is a comparison of the source of noise and
silence of each technique presented in the previous section.
In this comparison, without surprise, the techniques using
the SDG are better than those that use VDG.  They generate
less silence, less noise and the noise and silence are
included in those generated by the VDG.

A noise is a couple of fields detected but for which there
is no dependency.  Silence is a dependency between two
fields that is checked or implemented in the analyzed code
but that is not detected.  Other kinds of silence may be due
to an incomplete analysis of the code of the application or
to the fact that they have not been controlled by program
code though they could be elicited through data analysis.

The techniques using the SDG are immune from the
silence generated by VDG due to the incomplete knowl-
edge of the data structure and to the consideration of only
some kinds of statements.  Because the SDG computation
does the complete parsing of the program and has the
knowledge of the data structure.  

VDG and dataflow program slicing do not analyze con-
trol flow, so that none of these techniques discover con-
straints implemented by control flow.  Discovering such
constraints requires control flow program slicing.

The VDG can generate noise because only the assign-
ments between variables are analyzed, so when an assign-
ment refers to a field, this field may not contain a valid
value.  The SDG techniques do not generate this kind of
noise because, they only analyze paths that start at a ����
and end by a �����.  In this way, we are sure that all the ref-
erenced variables receive their value from the ����
(directly or indirectly).

Ignoring the control flow generates noise in the VDG,
i.e. paths between two variables that are never followed in
the execution of the program are impossible in the program
slicing and dataflow, because, by construction, the SDG
only represents valid execution paths.

This proves that techniques based on the SDG give bet-
ter results that the VDG one.

One big advantage of dataflow program slicing with
variable follow-up is that it gives more precise results than
pure program slicing and dataflow program slicing.  It
gives exactly which fields are in relation while the others
only give the records.

1	 "����%8��
:�)��������

DB-MAIN is a general-purpose database engineering
CASE environment that offers sophisticated reverse engi-

fd A.
01 REC-A
...
03 AI.
04 AI1 X(10).
04 AI2 X(10).

fd B.
01 REC-B.
...
03 BJ X(10).

01 W1.
02 W10 X(10).
02 W11 X(10).

01 W2 X(10).

Main.
read A.
...
move AI to W1.
...
move W11 to W2
move W10 to W3
...
move W2 to BJ.
...
write B.

The dataflow

A

W1

W2

B

AI

W11

BJ

AI1

The program

"�����.���
��#�

���������
�����

����������
�������

variable depen-
dency graph

ignores 
control flow;

does not verify 
that DB fields 
contain valid 
value

ignores 
control flow;

ignores
data structure;

depends on the 
instruction we 
are looking for

program slicing control depen-
dency between 
records does not 
mean data 
dependency

none

dataflow pro-
gram slicing

none only dataflow 
dependency

dataflow + vari-
ables follow-up

none only dataflow 
dependency

!������ ��	� :����� ��� �������� ��������� ��� ����
������.��	
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neering tool-sets.  DB-MAIN is one of the results of a
R&D project started in 1993 by the Database Engineering
Laboratory of the University of Namur (Belgium).  Its pur-
pose is to help the analyst in the design, reverse engineer-
ing, migration, maintenance and evolution of database
applications.  

DB-MAIN offers the usual CASE functions, such as
database schema creation, management, visualization, vali-
dation, transformation, as well as code and report genera-
tion.  It also includes a programming language that can
manipulate the objects of the repository and allows the user
to develop his (her) own functions.  Further detail can be
found in [3] and [5].

DB-MAIN also offers several functions that are specific
to the data structure extraction process [6].  The �#��������
extract automatically the data structures declared in a
source text. Extractors read the declaration part of the
source text and create corresponding abstractions in the
repository. The ������
� "��� �������
� is used during the
Refinement phase to find the possible foreign keys of a
schema.
<��������
������ tools include three specific program

understanding processors.  
� A ������
�������
� engine searches a source text for a

definite pattern.  Patterns are defined into a powerful
pattern description language (PDL), through which hier-
archical patterns can be defined.

� DB-MAIN offers a 	�������� ����
��
��� ����� tool.
The relation between two variables is defined by a pat-
tern.

� The �������� �����
� tool computes the program slice
with respect to the selected line of the source text and
one of the variables, or component thereof, referenced at
that line.  There exists also a command line version of
this tool that allows users to execute complex analysis in
a batch mode (without user interaction), to query the
SDG and to save the result for further analyzis.
One of the lessons we (sometimes painfully) learned is

that they are no two similar DBRE projects.  Hence the
need for easily programmable, extensible and customizable
tools.  The DB-MAIN CASE tool (and more specifically its
meta functions) includes sophisticated features to extend
its repository and its functions.  In particular, it offers a
4GL language (>������.) through which analysts can
develop their own customized functions.

3	 )���������;�� ���������

This section will present some industrial projects together
with facts we learned during the application of the program
analysis techniques described in this paper.  The applica-
tions analyzed are COBOL programs using files and/or

databases.  We have restricted our study to COBOL pro-
grams due to the cost of the development of program slic-
ing for other language.

To compare the number of possible dependencies dis-
covered by the variable dependency graph and the dataflow
program slicing with variable follow-up (dataflow for
short), we have tried both techniques on two quite different
applications.  The first one is a small COBOL program
(1600 LOC) that acts as a gateway between two sub-sche-
mas of an IDMS database.  It copies records of one sub-
schema into the other one with some filtering and reorgani-
zation of the records.  The second one is an application that
manages a warehouse. It is composed of 13 COBOL pro-
grams, totaling 41151 LOC and uses only files to store
data.

Figure 12 shows the number of valid and false depen-
dencies generated by each technique and the total number
of dependencies implemented in the analyzed applications.
The valid dependencies columns contain the number of
proposed dependencies that are effectively implemented.
The false dependencies columns is the number of proposed
dependencies that do not exist (noise).  The relative perfor-
mance of the different techniques heavily depends on the
size of the program, the complexity of the algorithm and
the programming style used.  In the first program, the VDG
find almost as many dependencies as the dataflow (77%).
This can be explain by the relative simple algorithms used:
it reads one record and stores its values into 2 or 3 other
records after some simple tests and mainly uses ��	�
instructions to transfer value from one record to the other.
None of the techniques discover three dependencies that
are implemented using control flow.

The results obtained for the second application are quite
different.  This application is a lot more complex: there is a
huge amount of ratio computation, tests and ����*�. This
explains why the VDG gives very poor results, i.e., much
noise and even more silence (it only discover 631 valid
dependencies for 1627 discovered by the dataflow program
slicing with variable follow-up).  Paths in the VDG that are
impossible during a valid execution of the program gener-
ate the majority of the noise.  The silence came mainly
from the VDG construction, where we only use the ��	�

/�� ������2
�����
��	�����

��	
������
��	

�����
��	

������
��	

����2�� 10 3 13 0 16

2���8
�����  631 381 1627 0 n/a

!��������	�"�����#�������������������������������
����� ��� /��� ��� ������2� 2���� ��������� �����28��
�����2��������������	
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instruction.  We do not know the exact total number of
dependencies in this application because its analysis is still
in process and a complete manual analysis of the code
would be too expensive.

When the tools give a list of possible dependencies, the
manual part of the job only start.  For each couple proposed
by the tools, the analyst has to validate and to qualify the
dependency.  This job is very tedious, specially for large
projects and time consuming due to the large number of
couples to checks.  This effort can be greatly reduced, if it
is done with the help of a local programmer/analyst that
has a very good domain and application knowledge.
Indeed, (s)he can quickly validate most of the dependen-
cies without the need to look at the code or data.

4	 "��������#������������

As shows in the previous section, the dataflow technique
gives better results than the VDG.  But its initial cost is
very high, because the construction of the SDG requires a
code parser and the transformation of the syntactical graph
of the program into the SDG.  This is a very expensive job,
since the parser and the graph transformation are language
dependent, so they need to be done for each new language
and to be adjusted to each new version of the language.

On the other hand, variable dependency graph is easy to
implement.  For each instruction we are looking for there is
only one pattern to write.

Another aspect of the cost of data dependency detection
is the evaluation of the noise and of the silence.  Noise cost
is easy to evaluate: it is the time needed to validate a pro-
posed dependency by code or data analysis or by user inter-
view.  The difficulty to evaluate the silence cost, is that by
definition the silence is not materialized and it is very diffi-
cult to know how much dependencies have been missed.
The cost of the silence will not appear in the extraction but
they will appear during the conceptualization and even
later when the conceptual schema is used as an input for a
data migration, datawarehouse or reengineering project.  It
can lead to incorrect results that may have high cost.  The
later the silence will be detected, the more expensive it will
be to correct it.

7	 )���������

In this paper, we have presented data dependency elicita-
tion, why such constraints are important to be discovered
and how some program understanding techniques and tools
can help to discover them.

Those techniques generate noise (they detect false con-
straints) and silence (they miss existing constraints). Each

technique quality has been evaluated to find the one that
gives the best results.

Cost evaluation shows fair but disappointing results: the
more precise is the result, the higher is the price. However,
getting a satisfying cost model still needs considerable
research and experiments.

We have developed specific analyzers that are included
in the DB-MAIN CASE tool.  Information about the DB-
MAIN project can be found at http://
www.info.fundp.ac.be/~dbm.

�9	 ��(��2���#���

This paper is the “formalized” result of several DBRE
projects.  We would like to thanks all the persons who
patiently answer all our tedious questions about their appli-
cations, business domain, technical environment, program-
ming practices and who validated our results.
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