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Cosmic acceleration with cosmological soft phonons

J. Rekier1, 2, ∗ and A. Füzfa†1, ‡

1Namur Center for Complex Systems (naXys), University of Namur, Belgium
2FNRS Research Fellow
(Dated: July 19, 2012)

The dark energy scalar field is here presented as a mean-field effect arising from the collective
motion of interacting structures on an expanding lattice. This cosmological analogue to solid-state
soft phonons in an unstable crystal network is shown to produce cosmic acceleration while mimicking
phantom equation of state. From an analysis of the Hubble diagram of type Ia supernovae, we
present constraints on the parameters of the cosmic Lagrange chain, as well as on time-variation
of the soft phonon equation of state, before we conclude on new phenomenology associated to this
interpretation.

I. INTRODUCTION

Thanks to many independent observations, including
type-Ia supernovae Hubble diagram [1, 2], angular fluc-
tuations of the Cosmic Microwave Background [3] and
many others based on large-scale structures properties,
Baryon acoustic oscillation [4] and galaxy redshift dis-
tortion [5], it is now a well-established experimental fact
that the expansion of the Universe is currently acceler-
ating. What causes this cosmic acceleration is still un-
known, since this observation requires modifications to
either the matter-energy content of the universe and/or
to the gravitational physics of the large-scales (through
general relativity and the cosmological principle). One
can still account fairly for various observations with the
help of the famous Einstein’s cosmological constant Λ but
the so-called fine-tuning and coincidence problems [6] as-
sociated to it appear so intricate that numerous alterna-
tive explanations have arisen in the past decade. More
generally, explaining cosmic acceleration without modi-
fying gravitation requires the inclusion of a new variety
of energy in the Universe, dubbed Dark Energy (DE),
whose peculiar properties modify the background cos-
mological expansion. The cosmological constant corre-
sponds to perfectly frozen DE, with absolutely no space-
time variations, which is often meant as an ideal case.

Among the models of DE proposed, the hypothesis of
quintessence provides an exciting framework in which DE
is modeled by a scalar field.[7–9] While those theories al-
ready have achieved some success, they often lack to pro-
vide a sensible interpretation of the nature of this scalar
field.

In this work, we develop an interpretation of the dark
energy scalar field as a cosmological analogue of the
phonon in solid-state physics. While the phonon is an
effective scalar field describing the collective motion of
atoms in a crystal, a possible cosmological analogue has
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to be investigated in the physics of the deformation net-
work of large-scale cosmic structures, under the action of
gravitational interactions and background cosmic expan-
sion. A crystal and the large-scale universe are consti-
tuted by a large number of constitutive elements (atoms
or structures) undertaking long-ranged interactions that
can be approximated in the continuous medium approx-
imation with an effective potential energy resulting from
all interactions.

However, cosmic structure formation in an expand-
ing universe is a very complex non-linear mechanism,
in which the study of an analogue of the phonon as a
mean-field behaviour for averaged quantities constitutes
an intricate technical challenge. Rather, we propose here
a heuristic approach by deriving a toy model for the cos-
mological phonon in terms of an effective field theory
in a Friedman-Lemaitre-Robertson-Walker (FLRW) uni-
verse. This will allow us to derive a simple model for a
cosmological phonon as a massive scalar degree of free-
dom with very different cosmological dynamics than the
one of quintessence. The reason for that is because the
cosmological phonon comes from an effective field theory
in which cosmic expansion directly changes the phonon
mass and velocity. We also show that this simple model
can provide cosmic acceleration as well as a phantom
equation of state.

In the next section, we derive the toy-model for the
cosmological phonon and its dynamics in a homogeneous
and isotropic space-time background from an effective la-
grangian approach. Differences with usual massive scalar
field are emphasized and discussed. In section III, it is
shown how cosmic acceleration can be explained with
soft phonons and constraints on model parameters are
obtained through the Hubble diagram of far-away su-
pernovae. Finally, we review in section V the interest
and possible limitations of the model, as well as we pro-
pose lines of investigation for additional predictions of
the model with large-scale structure physics.

http://arxiv.org/abs/1205.3350v3
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II. A TOY-MODEL OF THE COSMOLOGICAL

PHONON

A. Effective lagrangian

To establish the toy-model of the cosmological phonon,
we start with a very simple heuristic approach. Let us
consider the lagrangian describing a set of masses ma

undergoing long-ranged interactions in such a way that
each mass is locally affected by the potential V gener-
ated by the whole network. By limiting ourselves to the
quadratic term we are left with:

L =
∑

a

1

2
maq̇a

2 −
∑

a,b

1

2
kab(qa − qb)

2 +
∑

a

kq2a (1)

where the qa’s are the displacement of the masses ma

from their unstable equilibrium point. The couplings kab
and k represent respectively the harmonic coupling of the
point masses a and b to one another and the self-coupling
of a single mass, namelly:

kab = −
(

∂2V

∂qa∂qb

)

(2)

k = −
(

∂2V

∂q2a

)

. (3)

The function (1) can be expressed in term of a scalar field
by going to the continuous limit:

qa → φ(x) (4)
∑

a

→ 1

l3

∫

d3x.

where l denotes the mean distance between two struc-
tures and the integral is to be taken over the whole (pos-
sibly infinite) volume of the network. By going through
the whole process, one can easily find (see e.g [10]) that
the effective lagrangian takes the form:

L =

∫

d3x
1

2

{

1

v2

(

∂ψ

∂t

)2

− [~∇ψ]2 +M2ψ2

}

. (5)

The new parameters of this expression can easily be ex-
pressed in term of the network parameters:

v2 =
kabl

2

m
, M2 = 2

k

kabl2
, (6)

which can both be either negative or positive depend-
ing on the signs of the network parameters. For more
convenience, we also have rescaled the field from (4) as

ψ =
√

kab

l
φ.

We will now try to write this lagrangian in a form that
is suitable for cosmology. First, in accordance with the
cosmological principle, we can drop the term proportional

to ~∇ψ in (5). This is equivalent to considering only the
spatially averaged scalar field

ψ(t) =< ψ(~x, t) > .

To go any further, the key observation is to interprete
(5) as the lagrangian in the frame comoving with the
cosmic expansion. Therefore, physical quantities will be
affected by cosmic expansions through the dependency of
the chain parameters to the scale factor. By looking at
(6) and considering the fact that the comoving distance
scales as l ∼ a(t)l0, one can easily obtain:

1

v2
∼ 1

a2
, M2 ∼ 1

a2
. (7)

This rescaling of the lagrange chain parameters will have
tremendous impact on the cosmological dynamics of the
phonon, differencing it from the usual quintessence scalar
field. To write down the dynamical evolution of the Uni-
verse in presence of our new field ψ we have to consider
the total action consisting in the time integral of the la-
grangian (5) plus the usual Einstein-Hilbert action. The
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric
being

ds2 = −N2(t)dt2 + a2(t)δijdx
idxj , (8)

we proceed by writing the total action as the integral of
an effective 1D lagrangian (see [11]):

L = − 3

κ

ȧ2a

N
+

1

2v2
aψ̇2

N
−Na

M2ψ2

2
. (9)

As a matter of comparison, the reduced lagrangian
for ordinary minimally coupled scalar field Φ such as
quintessence writes down

L = − 3

κ

ȧ2a

N
+

1

2c2
a3Φ̇2

N
−Na3

M2Φ2

2
(10)

where the quintessence potential has be taken as a mass

term V (Φ) = M2Φ2

2
for the sake of example. While

quintessence scalar field comes from a fundamental field
approach, the cosmological phonon is an effective scalar
field whose mass and velocity are not constant but rather
rescaled by cosmic expansion (see Eq. (7)). As a conse-
quence, the cosmological dynamics of both fields will be
very different, as one shall see below.

B. Cosmological dynamics

By varying Eq. (9) with respect to the generalised co-
ordinates (a, N , ψ) and then specifying to the conformal
gauge (N=a), we get the following equations (taking into
account the contribution of matter and radiation):

a′2

a2
=
κ

3

(

1

2v2
ψ′2

a2
+
M2

2
ψ2

)

+H2
0

(

Ω0
m

a
+

Ω0
rad

a2

)

a′′

a
=
κ

6
M2ψ2 +

H2
0

2

(

Ω0
m

a

)

(11)

ψ′′ = −a2v2M2ψ.
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Where the primed quantities are to be interpreted as
derivatives with respect to conformal time η (given in
terms of the synchronous time by dt = a(t)dη) and
with κ = 8πG in natural units. The zero-indiced
symbols represent the present values of these quanti-
ties (we took Ω0

m = 0.25, Ω0
rad = 7.97 × 10−5, H0 =

71km/s/Mpc)[2, 3]. Defining

Ωψ(a) =
κ

3a2H2

(

1

2v2
ψ′2

a2
+
M2

2
ψ2

)

, (12)

the Friedmann equation can be put under the form:

a′2

a2
=

H2
0

(1− Ωψ(a))

(

Ω0
m

a
+

Ω0
rad

a2

)

. (13)

To get insight about which values the parameters v2

and M2 should take, one may look at the asymptotic
behaviour of the model.
From the cosmological equations (11) written in the

synchronous gauge one can easily guess the ratio of the
pressure over the energy density of the field ψ to be

wψ =
1

3

(

ψ̇2

v2a2
−M2ψ2

)

(

ψ̇2

v2a2
+M2ψ2

) . (14)

This equation of state for the effective field ψ has re-
markable properties. Indeed, it interpolates between

wψ = −1/3 when the field is frozen ( ψ̇2

v2a2
≪M2ψ2) and

a cosmological constant wψ = −1 in the far future (a≫ 1
; de Sitter Universe). To show this is an asymptotic so-
lution, we start from the condition wψ = −1, which can
be readily integrated for the asymptotic behaviour of ψ
from (14) as

ψ = ψ0 exp

(
√

|v
2M2

2
|(t− t0)

)

, (15)

with ψ0 the present-day value of the field. Inserting this
result into the acceleration equation and solving for a,
we find

a =

√

κ

6

ψ0
√

|v2|
exp

(
√

∣

∣

∣

∣

v2M2

2

∣

∣

∣

∣

(t− t0)

)

. (16)

From a suitable choice of ψ0 and
√

|v2|, we can always

make
√

κ
6

ψ0√
|v2|

≈ a0. The result (16) is then to be

compared with the usual de Sitter asymptotic solution

a = a0 exp
(
√

Λ
3
c(t− t0)

)

, showing that the asymptotic

state is a de Sitter universe (see also Fig. 1).
Therefore, the cosmological dynamics of the phonon

effective field is completely different than that of a mas-
sive scalar field (quintessence with quadratic potential)
for which w → −1 when the field is frozen and w be-
ing zero on average (and the field behaving as pressure-
less matter) asymptotically. The reason for this is the
rescaling of the phonon physical parameters with cosmic
expansion, which is not the case for quintessence.

III. COSMIC ACCELERATION WITH

LARGE-SCALE STRUCTURE SOFT PHONONS

Let us now constrain the model parameters with the
Hubble diagram of type Ia supernovae.

From Eq.16, it is straightforward to identify the quan-
tity representing the effective cosmological constant of
our model to be:

Λeff =
3

2

|v2M2|
c2

. (17)

That is, if we measure the value of the cosmological con-
stant on the Supernovae data, then any two values of
the parameters v2 and M2 satisfying the constraint (17)
should reproduce the same asymptotic behaviour.

A condition for the asymptotic solution of Eqs.11 to be
de Sitter is that the arbitrary real parameter we wrote
v2 has to be negative (hence the need for the absolute
value in 15). The physical meaning of this can be un-
derstood easily by looking at the third equation of (11).
Positive values of v2 would imply oscillations of the field
through time while negative values describe an inelas-
tic deformation. The later case is more suited to de-
scribe the instabilities in the interplay of the large scale
structures through gravitational interactions in a dynam-
ical Universe. This case of facts is to be understood as
the analogue of the concept of soft phonon in solid state
physics[12], which represent fastly growing inelastic de-
formations when a crystal departs from an unstable equi-
librium state.

The dynamics of the system (11) can be investigated
numerically. We start the integration at the point ai =
10−3, corresponding to the beginning of the process of
large-scale structure formation through gravitational col-
lapse. Before that time, acoustic oscillations in the pri-
mordial plasma does not correspond to the inelastic de-
formation of a soft phonon. We also had to impose initial
conditions on the values of Ωiψ and ψ′

i at this very point.

While we chose to start at rest ψ′
i ≈ 0, Ωiψ is a free pa-

rameter found to be less than 1% (see below).

We chose to integrate the second and the third equa-
tion of (11) and then check the solution by injecting our
result in the Friedmann equation (13). Everytime, the
constraint is verified up to the machine precision. The in-
tegration has been carried out for several values of v2 and
M2. The model fits the SNIa data[2] with χ̄2 = 1.0018
(in the simile, χ̄2

ΛCDM = 0.99 for the same data set).

Fig. 1 shows the compared evolution of the acceler-
ation parameter (q = äa

ȧ2
). We see that the phonon

model predicts a stronger yet smoother acceleration than
ΛCDM. The fact that the acceleration is stronger at all
times for ψCDM should have impact on the physics of
large-scale structure formations.
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FIG. 1: Evolution of the acceleration parameter (q = äa
ȧ2
)

for the cosmological phonon model (ψ CDM) as com-
pared to ΛCDM.

Another departure from ΛCDM is to be found in the
evolution of the equation of state parameter wψ which is
represented on fig. 2. This shows that the energy den-
sity of the phonon interpolates between a Nambu-Goto
string gas (wψ = −1/3) at early times and a cosmo-
logical constant asymptotically (as found earlier). Quite
remarkably, this model evolves with a phantom equation
of state (w < −1) around today. This is done in spite of
the minimal coupling because this model is not covari-
ant since this effective scalar field does not behave like
a irreducible representation of the Poincare group: its
(squared) propagation velocity is |v2| instead of c2, and it
does not behave like an usual scalar field under conformal
transformations for instance. In addition, the rescaling of
the network parameters with respect to cosmic expansion
(see 7) achieves to give to this scalar field unusual features
that allowed him to reproduce cosmic acceleration. One
should emphasize that the non-covariance of the present
model does not induce any violation of Lorentz invariance
at the fundamental level since the concept of phonon is
only present on large scales where it accounts for col-
lective motions. This field is an effective one and not a
fundamental one, and thus cannot be used to invalidate
Lorentz invariance on local scales since it has no exis-
tence below the cosmic lattice characteristic length. In
addition, the large-scale homogeneous universe is not in-
variant under global Lorentz transformations, just in the
same way a crystal is not either Lorentz invariant. In
fact, the solid-state physics phonon itself is not a true
scalar field due to the same arguments.
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FIG. 2: Evolution of wψ from the CMB to the far future.

The dotted line of fig. 2 represents the linear ap-
proximation of the curve around a = 1 : wψ(a) =
w0+wa(1−a) [13] with w0 = wψ(a0). On fig. 3 are shown
the confidence regions at 1σ and 2σ level in the plane of
parameters (w0,Ω

0
m). We see that, amongst the com-

patible models, one recovers a model similar to ΛCDM
(w0 = −1) at the limit of 1σ level only for lower values
of Ω0

m.

w
0
=−1

Ω
m,0

w
0

0 0.05 0.1 0.15 0.2 0.25 0.3

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

FIG. 3: 1σ and 2σ level confidence regions in the plane of
parameters (w0,Ω

0
m) (data from [2]) (H0 = 71km/s/Mpc)

In table 1, we sum up the best-fitted values of the
various cosmological parameters of our model and the
boundaries of the first confidence region (1σ level). The
value of the best-fit for Ω0

m is small compared to the
estimation from [2]. Still the usual constraints on Ω0

m of
order 0.25 are compatible with other predictions to 1σ
level (see e.g. [14]) .
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Parameter best-fit ±1σ

Ω0
m 0.14+0.13

−0.14

Ω0
ψ 0.86+0.14

−0.13

q0 0.66+0.19
−0.14

w0 −0.90+0.22
−0.33

wa 0.77+0.36
−0.31

TABLE I: Best-fit of the cosmological parameters

IV. CONCLUSIONS AND PERSPECTIVES

The preceding results show that the phonon model
could be a nice alternative to ΛCDM with no more than
two free parameters: the initial amount of energy in ψ
and the self-coupling parameter M2 (the v2 parameter
being constrained by (17)). It reproduces a de Sitter
Universe for a ≫ 1 and provides an interesting interpre-
tation of the nature of DE without involving any specu-
lative physics. A direct test of the present model could
be provided by direct measurements on the equation of
state and its time variation. Future directions would
include a detailed study of the implication of the cos-
mological phonon on cosmic structure mobility, higher
order-coupling of Dark Matter to the phonon field or
other solid-state phonon-inspired observables, instability
wavefronts and large-scale collective motions. Another
important issue would be to derive the preceding model
from conventional cosmological perturbation and statis-
tical analysis in inhomogeneous cosmology. Challenges
for numerical N-body simulations of large-scale structure
formation would be to estimate the network parameters

from the overall potential energy generated by the inho-
mogeneous density field. Once this has been done, one
can then check whether they can fall in the range pre-
dicted by the SNe Ia analysis. Such numerical studies will
also allow one to compute the structure network potential
energy and the related solid-state phonon-inspired ob-
servables. Another interesting question to be addressed
by N-body simulations would be to investigate whether
collective motions corresponding to the propagation of a
soft phonon on large scales can be reproduced.

We would also like to point out the fact that the use of
a lattice of structure to model the behaviour of the Uni-
verse on large scales has recently been made in [15] in
which the authors solve the Einstein equations perturba-
tively in the presence of a perfect network of structures.
An interesting continuation of this work would be to in-
vestigate how our soft phonon description might emerge
from the introduction of some defects or perturbations in
the model of [15]. This further work might provide the
tensorial description that our present model is currently
lacking.
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