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The 4DVAR approach to data assimilation The context

Data assimilation in earth sciences

The state of the atmosphere or the ocean (the system) is characterized by
state variables that are classically designated as fields:

velocity components

pressure

density

temperature

salinity

A dynamical model predicts the state of the system at a time given the
state of the ocean at a earlier time. We address here this estimation
problem. Applications are found in climate, meteorology, ocean, neutronic,
hydrology, seismic,... (forecasting) problems. Involving large computers
and nearly real-time computations.
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The 4DVAR approach to data assimilation The context

Data assimilation in weather forecasting (2)

Data: température, wind, pression, . . . everywhere and at all times !

May involve more than 1.000.000.000 variables!
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The 4DVAR approach to data assimilation The context

Data assimilation in weather forecasting (3)

The principle:
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The 4DVAR approach to data assimilation The context

Data assimilation in weather forecasting (3)

The principle:

Minimize the error between model and past observations
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The 4DVAR approach to data assimilation The context

Data assimilation in weather forecasting (3)

The principle:

Minimize the error between model and past observations
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The 4DVAR approach to data assimilation The formulation and algorithmic approach

Four-Dimensional Variational (4D-Var) formulation

→ Very large-scale nonlinear weighted least-squares problem:

min
x∈Rn

f (x) =
1

2
||x − xb||2B−1 +

1

2

N∑
j=0

||Hj(Mj(x))− yj ||2R−1
j

where:

Size of real (operational) problems: x , xb ∈ R109 , yj ∈ R105

The observations yj and the background xb are noisy

Mj are model operators (nonlinear)

Hj are observation operators (nonlinear)

B is the covariance background error matrix

Rj are covariance observation error matrices
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The 4DVAR approach to data assimilation The formulation and algorithmic approach

Incremental 4D-Var

Rewrite the problem as:

min
x∈Rn

f (x) =
1

2
||ρ(x)||22

Incremental 4D-Var = inexact/truncated Gauss-Newton algorithm

Linearize ρ around the current iterate x̃ and solve

min
x∈Rn

1

2
‖ρ(x̃) + J(x̃)(x − x̃)‖22

where J(x̃) is the Jacobian of ρ(x) at x̃

Solve a sequence of linear systems (normal equations)

JT (x̃)J(x̃)(x − x̃) = −JT (x̃)ρ(x̃)

where the matrix is symmetric positive definite and varies along the
iterations
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The 4DVAR approach to data assimilation The formulation and algorithmic approach

Inner minimization

Ignoring superscripts, minimizing

J(δx0) =
1

2
‖δx0 − [xb − x0]‖2B−1 +

1

2
‖Hδx0 − d‖2R−1

amounts to iteratively solve

(B−1 + HTR−1H)δx0 = B−1(xb − x0) + HTR−1d .

whose exact solution is

xb − x0 +
(
B−1 + HTR−1H

)−1
HTR−1 (d − H(xb − x0)) ,

or equivalently (using the Sherman-Morrison-Woodbury formula)

xb − x0 + BHT
(
R + HBHT

)−1
(d − H(xb − x0)) .
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The 4DVAR approach to data assimilation The formulation and algorithmic approach

Solving the 4D-VAR subproblem

That is:

(I + BHTR−1H)x = BHTR−1d

In pratice:

use Conjugate Gradients
(or other Krylov space solver – more later on this)

for a (very) limited number of level-2 iterations

(with preconditioning – more later on this)

⇒ need products of the type

(I + BHTR−1H)v for a number of vectors v

Focus now on how to compute Bv (B large)
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The 4DVAR approach to data assimilation Using the background covariance

Modelling covariance

A widely used approach (Derber + Rosati, 1989, Weaver + Courtier, 2001):

Spatial background correlation ≈ diffusion process

i.e.

Computing Bv
≈

integrating a diffusion equation starting from the state v .

use p steps of an implicit integration scheme

(level-3 iteration, each involving a solve with B!!!)
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The 4DVAR approach to data assimilation Using the background covariance

The integration iteration

Define

Θh = I +
L
2p

∆h

(∆h is the discrete Laplacian, L is the correlation length).
For each integration (z and p given)

1 u0 =
(
diag(Θ−ph

)−1/2
z (diagonal scaling)

2 u` = Θ−1h u`−1 (` = 1, . . . , p)

3 Bz =
(
diag(Θ−ph

)−1/2
up (diagonal scaling)

Our question: how to solve Θhu` = u`−1 ?
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The 4DVAR approach to data assimilation Using the background covariance

The integration iteration

An (pratically important) question: how to solve Θhu` = u`−1 ?

Carrier + Ngodock (2010):

Implicit integration + CG is ≈ 5 times faster than explicit integration!

But:

What about multigrid ??

Is an approximate solution of the system (CG or MG) altering the
spatial properties of the correlation?

Inexact solves ?
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The 4DVAR approach to data assimilation Using the background covariance

Approximately diffusing a Dirac pulse

Compare the diffusion of a Dirac pulse using approximate linear solvers
and exact factorization, as a function of correlation length:
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Note: cost(1 MG V-cycle) ≈ cost(4 CG iterations)
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The 4DVAR approach to data assimilation Using the background covariance

Comparing the computational costs of CG vs MG

Consider a complete data assimilation exercize on a 2D shallow-water
system (3 level-1 iterations, 15 level-2 iterations, p = 6, tol = 10−4)

Number of “normalized” matrix-vectors products as a function of problem size

MG is a interesting alternative to CG in the integration loop
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The 4DVAR approach to data assimilation Range-space iterative solvers

Solving the Gauss-Newton model: PSAS

System matrix (after level 1 preconditioning) =
low (???) rank perturbation of the identity

1 Very popular when few observations compared to model variables.
Stimulated a lots of discussion e.g. in the Ocean and Atmosphere
communities (cfr P. Gauthier)

2 Relies on

xb − x0 + BHT
(
R + HBHT

)−1
(d − H(xb − x0))

3 Iteratively solve(
I + R−1HBHT

)
w = R−1(d − H(xb − x0)) for w

4 Set
δx0 = xb − x0 + BHTw
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The 4DVAR approach to data assimilation Range-space iterative solvers

Experiments
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The 4DVAR approach to data assimilation Range-space iterative solvers

Motivation : PSAS and CG-like algorithm

1 CG minimizes the Incremental 4D-Var function during its iterations.
It minimizes a quadratic approximation of the non quadratic function
using Gauss-Newton in the model space.

2 PSAS does not minimize the Incremental 4D-Var function during its
iterations but works in the observation space.

Our goal : combine the advantages of both approaches:

the variational property: enforce sufficient descent even when
iterations are truncated.

computational efficiency: work in the (dual) observation space
whenever the number of observations is significantly smaller than the
size of the state vector

Preserve global convergence in the observation space !
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The 4DVAR approach to data assimilation Range-space iterative solvers

Range space reformulation

Use conjugate-gradients (CG) to solve the step computation

min
x0

J(s)
def
= 1

2
(xs +s−xb)TB−1(xs +s−xb)+ 1

2
(Hs−d)TR−1(Hs−d)

Reformulate as a constrained problem:

min
x0

J(s)
def
= 1

2
(xs + s − xb)TB−1(xs + s − xb) + 1

2
aTR−1a

such that a = Hs − d

Write KKT conditions of this problem (for xs = xb, wlog)

(R + HBHT )λ = d , s = BHTλ, a = −Rλ

Precondition (1rst level) by R, forget a:

(I + R−1HBHT )λ = R−1d , s = BHTλ,

Solve system using (preconditioned) CG in the HTBH inner product

⇒ RPCG (Gratton, Tshimanga, 2009)
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The 4DVAR approach to data assimilation Range-space iterative solvers

RPCG and preconditoning

Features of RPCG:

algorithm form comparable to PCG (additional products)

only uses vector of size = number of observations
⇒ suitable for reorthogonalization (if useful)

sequence of iterates identical to that generated by PCG on primal
⇒ good descent properties on J(s) !

numerically stable for range-space perturbations

any (2nd level) preconditioner F for the primal PCG translates to a
preconditioner G for the range-space formulation iff

FHT = BHTG

Note: works for limited memory preconditioners
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The 4DVAR approach to data assimilation Range-space iterative solvers

Numerical performance on ocean data assimilation ?

1 NEMOVAR: Global 3D-Var system
−→ seasonal forecasting −→ ocean reanalysis

2 ROMS California Current Ocean Modeling: Regional 4D-Var system
−→ coastal applications

Implementation details:

m ≈ 105 and n ≈ 106

The model variables: temperature, height, salinity and velocity.

1 outer loop of Gauss-Newton (k = 1), 40 inner loops

Gürol, Weaver, Moore, Piacentini, Arango, Gratton, 2013. Quarterly Journal of the Royal Meteorological Society. In press.

good numerical performance

reorthogonalization sometimes necessary

Philippe Toint (naXys) Oxford, December 2015 21 / 45



The 4DVAR approach to data assimilation Impact of nonlinearity

In the nonlinear setting

When solving the general 4DVAR problem. . .

Several (outer) Gauss-Newton iterations
using a (range-space) trust-region framework

Question: Can one reuse the range-space preconditioner from previous
iteration?

??? Fk−1H
T
k = BHT

k Gk−1 ???

In general: No!
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The 4DVAR approach to data assimilation Impact of nonlinearity

Some fixes

The old preconditioner is no longer symmetric in the new metric!

How to get around this problem:

1 avoid (2nd level) preconditioning ???
(last resort decision)

2 recompute the preconditioner in the new metric ??
(possible with limited memory preconditioners, but costly)

3 ignore the problem and take one’s chances ?
(only reasonable if convergence can still be guaranteed)
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The 4DVAR approach to data assimilation Impact of nonlinearity

Taking measured risks. . .

A simple proposal for computing the step:

1 compute the Cauchy step (1rst step of RPCG)

2 if negative curvature, recompute a complete step without 2nd level
preconditioner

3 otherwise, use equivalence with primal to check simple decrease of f
at the Cauchy point

4 if no decrease, then unsuccessful TR outer iteration

5 otherwise, continue RPCG with old preconditioner

6 if unsuccessful, go back to Cauchy point

Can be interpreted as a TR “magical step”

S. Gratton, S. Gürol and Ph. L. Toint, 2013. Preconditioning and globalizing conjugate-gradients in dual space for
quadratically penalized nonlinear-least squares problems. Computational Optimization and Applications 54: 1-25
S. Gürol, PhD thesis, 2013
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The 4DVAR approach to data assimilation Impact of nonlinearity

Does it work? (1)

Numerical experiment with a nonlinear heat equation

f (x) = exp[1x ] f (x) = exp[2x ]
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The 4DVAR approach to data assimilation Impact of nonlinearity

Does it work? (2)

f (x) = exp[3x ] f (x) = exp[3x ]

−→ The global convergence is ensured by using the “risky” trust-region algorithm.
−→ This algorithm requires an additional function evaluation at the Cauchy point for
each outer loop.
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The 4DVAR approach to data assimilation Conclusions for Section 1

Conclusions for Section 1

Multigrid approach useful for gandling background covariance matrix

Range-space approach efficient in some data assimilation problems

Suitable 2nd level preconditioners can be built

Potential symmetry problem solved without compromising convergence

Already in use in real operational systems
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Data thinning Observation hierarchy

Observation thinning

In many applications,

too many observations in some parts of the domain!

observations can be considered into a nested hierarchy {Oi}ri=0 with

Oi ⊂ Oi+1 i = 0, . . . r − 1.

(coarse vs fine)

Can we exploit this for reducing computations?
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Data thinning Observation hierarchy

The coarse and fine subproblems

The fine (sub)problem:

min
s

1
2
‖ x + sf − xb ‖B−1 + 1

2
‖Hf s − df ‖2R−1

f

The coarse (sub)problem:

min
s

1
2
‖ x + sc − xb ‖B−1 + 1

2
‖ Γf (Hf s − df ) ‖2

R−1
c

where Γf is the restriction from fine to coarse observations.
Moreover

fine problem formulation =⇒ fine multiplier λf

coarse problem formulation =⇒ coarse multiplier λc
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Data thinning Observation hierarchy

A useful error bound

Question: what is the difference between fine and coarse multipliers ?

If Πc = σΓf is the prolongation from the coarse observations to the fine
ones, then

‖λf − Πcλc ‖Rf +Hf BH
T
f
≤ ‖ df − Hf sc − Rf Πcλc ‖R−1

f

(proof somewhat technical. . . )

Uses df but no comptuted quantity at the fine level

Observation i useful if the i-th component of λf − Πcλc is large
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Data thinning Observation hierarchy

How to exploit this?

Idea:

Starting from the coarsest observation set, and until the finest observation
set is used:

1 solve the coarse problem for (sc , λc)

2 define a finer auxiliary problem by moving up in the hierarchy of
observation sets (i.e. consider finer auxiliary observations)

3 use theorem to estimate distances from λc to λaux = Πcλc
4 using this, select a subset of the auxiliary observations whose impacts

represents the impacts of these observations well enough (thinning)

5 redefine this selection as the next coarse observation set and loop

(needs: a more formal definition of the observations hierarchy
+ selection procedure)
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Data thinning Observation hierarchy

An example of observation sets

Coarse set Auxilary set

Selected fine set
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Data thinning Computational examples

Example 1: The Lorenz96 chaotic system (1)

Find u0, where ū is an N-equally spaced entries around a circle, obeying

duj+θ
dt

=
1

κ
(−uj+θ−2uj+θ−1 + uj+θ−1uj+θ+1 − uj+θ + F ),

(j = 1, . . . 400, θ = 1, . . . , 120)

Coordinate system Initial (u1(0), u2(0), . . . , uN(0))
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Data thinning Computational examples

Example 1: The Lorenz96 chaotic system (2)

System over space and time Window of assimilation
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Data thinning Computational examples

The Lorenz96 chaotic system (3)

Background and true initial u(0) True and computed u(0)
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Data thinning Computational examples

Example 1: The Lorenz96 chaotic system (4)

An example of transition from coarse to fine observations sets :

Oi −→ Oi+1

Philippe Toint (naXys) Oxford, December 2015 36 / 45



Data thinning Computational examples

Example 1: The Lorenz96 chaotic system (5)

Cost vs obs Cost vs flops

RMS error versus time (last iteration)
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Data thinning Computational examples

Example 2: 1D wave system with a shock (1)

Find u0(z) in

∂2

∂t2
u(z , t)− ∂2

∂z2
u(z , t) + f (u) = 0,

u(0, t) = u(1, t) = 0,

u(z , 0) = u0(z), ∂
∂t u(z , 0) = 0,

0 ≤ t ≤ T , 0 ≤ z ≤ 1,

where f (u) = µeηu

(360 grid points, ∆x ≈ 2.8 · 10−3, T = 1 and ∆t = 1
64).

Philippe Toint (naXys) Oxford, December 2015 38 / 45



Data thinning Computational examples

Example 2: 1D wave system with a shock (2)

Initial x0 = u0(z) System over space and time

Philippe Toint (naXys) Oxford, December 2015 39 / 45



Data thinning Computational examples

Example 2: 1D wave system with a shock (3)

Background and true initial u(0) True and computed u(0)
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Data thinning Computational examples

Example 2: 1D wave system with a shock (4)

An example of transition from coarse to fine observations sets :

Oi −→ Oi+1
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Data thinning Computational examples

Example 1: 1D wave system with a shock (5)

Cost vs obs Cost vs flops

RMS error versus time
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Data thinning Conclusions for Section 2

Conclusions for Section 2

Combining the advantages of the dual approach with adaptive observation
thinning is possible

Observation thinning can produce faster solutions

Observation thinning can produce more accurate solutions

Reuse of selected data sets along the nonlinear optimization?

Use this idea for the design of observations campaigns?
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Final comments and some references

Final comments

large number of algorithmic challenges in 4DVar data assimilation
(also true for other approaches such as ensemble methods)

working in the (possibly thinned) dual space can be very advantageous

some numerical analysis expertise truly useful

dialog with practioners not always easy (requires use of real models)

from-scratch rexamination of the computational chain necessary?

Thank you for your attention!
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