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Markov time sweeping for the map equation
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The detection of community structure in networks is intimately related to finding a concise description of the
network in terms of its modules. This notion has been recently exploited by the map equation formalism [Rosvall
and Bergstrom, Proc. Natl. Acad. Sci. USA 105, 1118 (2008)] through an information-theoretic description of
the process of coding inter- and intracommunity transitions of a random walker in the network at stationarity.
However, a thorough study of the relationship between the full Markov dynamics and the coding mechanism is
still lacking. We show here that the original map coding scheme, which is both block-averaged and one-step,
neglects the internal structure of the communities and introduces an upper scale, the “field-of-view” limit, in
the communities it can detect. As a consequence, map is well tuned to detect clique-like communities but can
lead to undesirable overpartitioning when communities are far from clique-like. We show that a signature of this
behavior is a large compression gap: The map description length is far from its ideal limit. To address this issue,
we propose a simple dynamic approach that introduces time explicitly into the map coding through the analysis
of the weighted adjacency matrix of the time-dependent multistep transition matrix of the Markov process.
The resulting Markov time sweeping induces a dynamical zooming across scales that can reveal (potentially
multiscale) community structure above the field-of-view limit, with the relevant partitions indicated by a small
compression gap.

DOI: 10.1103/PhysRevE.86.026112 PACS number(s): 89.75.Fb, 89.75.Hc, 89.75.Kd

I. INTRODUCTION

The analysis of biological, technical and social networks
has become extremely popular in recent years [1–3]. The
availability of high-dimensional relational data coupled with
increasing computational power has set the ground for the
investigation of complex systems from a network perspective;
i.e., each agent or entity is viewed as a node interacting
via multiple links with other nodes in the network. Such a
viewpoint aims to understand the global emergent behavior
of the system from the interactions between the individual
components of the system, in contrast to focusing on each part
on its own.

In many cases of interest, complex networks are far from
being unstructured and contain relevant subgroupings or com-
munities, possibly organized into (not necessarily hierarchical)
multiple levels [4]. The detection of such community structure
can be of importance for the understanding of the interplay
between the structural and functional features of the network.
In particular, parts of the system operating on given scales
could be represented with a simplified description at an
appropriate level of coarse graining.

Community detection methods based on a variety of
heuristics (including modularity [5,6] and spectral partitioning
methods [7–10] among many others; see Refs. [1,11] for
recent reviews) have been proposed to find an optimized
split into communities. The communities thus found result
from identifying groups with high intracommunity weights
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as compared to the expected weights in surrogate models
of the network. In adopting such a structural criterion, these
methods introduce an intrinsic scale that establishes limits on
the communities they can detect, thus leading to potential
misdetection [12]. Furthermore, such single-scale methods
are not suitable for the analysis of networks in which there
is not a single “best” mesoscopic level of description, but
rather multiple levels associated with different scales in the
system [13].

In order to account for the presence of multiple levels of
organization, multiscale methods have been introduced that
allow to search for the right scale at which the network should
be analyzed [14–17]. Recently it has been shown that one can
use the time evolution of a Markov process on the graph to
reveal relevant communities at different scales in a process
of dynamic zooming through the so-called partition stability
[12,18,19]. As the Markov time increases, the diffusive
process involves multistep transitions and explores further
afield the structure of the graph, resulting in the detection of
community structure across scales, from finer to coarser. This
dynamic approach has the advantage that it provides a unifying
framework for structural community detection methods (such
as modularity and spectral methods), which can be seen as
particular cases of this approach involving one-step measures.

A different perspective is provided by an information
theoretic framework that considers the problem of finding
communities in a network as a coding or compression
problem [20–23]. The underlying idea is that the presence
of communities should imply the existence of an efficient and
concise way to encode the behavior of a system in terms of
its subgroups. Recently the map equation method by Rosvall
et al. [21,22] relies on a compression of the description length
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of a random walk inside and between communities to find good
graph partitions. This method has received a lot of attention,
since it has been shown to be extremely efficient on benchmark
tests [24] outperforming the popular modularity [5,6]. It has
also been shown to be immune to the resolution limit [25]
that affects the performance of modularity. However, the
mathematical properties and possible limitations of the map
equation remain relatively unexplored.

Here we show that the map equation can also be understood
as a one-step method, and, consequently, it suffers from an
upper scale (the field-of-view limit) above which it cannot
detect communities [12]. This limited field of view can lead
to overpartitioning when communities are far from being
clique-like [12]. In addition, the one-step map coding scheme
also neglects the internal structure of the communities and,
in doing so, introduces a bias towards communities that are
locally fast mixing (and in this sense clique-like). We also
show that the quality of the map partitioning can be assessed
through the existence of a small compression gap, i.e., a small
distance between the compression achieved by map and its
theoretical limit given by the true entropy rate of the Markov
process. To alleviate some of these limitations, we introduce
a dynamical approach that introduces time explicitly into
the map coding scheme, by considering the time-dependent
multistep transition matrix of the Markov process on the
network as the object of the map encoding. This introduces
a dynamic zooming by sweeping through the Markov time,
which allows the detection of multiscale community structure
with the map equation formalism.

II. COMMUNITY DETECTION FROM A CODING
PERSPECTIVE: THE MAP EQUATION

The map formalism considers the problem of partitioning
a network into nonoverlapping communities from a coding
perspective. The original map formalism [21] equates the
quality of the partition to the efficiency of a code that would
describe the notional transitions of a random walker inside
and between communities. The Infomap algorithm can then
be used to obtain good partitions through the optimization
of this quality function. The underlying principle is that the
code for such one-step transitions of the random walker can be
efficiently compressed in the presence of a strong community
structure: short names for nodes (codewords) can be reused in
different communities, much like street names can be reused in
different cities of a country [21]. In the original map equation,
the movement of the walker is described in terms of two kinds
of codebook. The first kind of codebook is specific to each
community and assigns a unique codeword for each node
inside it and a particular exit codeword for the community. An
additional codebook contains unique codewords that describe
the movements between different communities. More recently,
a hierarchical extension of the map formalism (a recursive
version of the original method) has been presented [22] as
well as an extension for overlapping modules [26]. We do not
consider these extensions in detail here, as both methods are
based on the same principles of the standard map equation and
our findings are applicable to these as well.

A. Definitions and notation

An explicit rewriting of the original map formalism in terms
of the stationary distribution of a random walk is as follows.
Consider a discrete-time Markov process on a graph with N

nodes:

pk+1 = pk D−1A ≡ pk M, (1)

where pk is the 1 × N (node) probability vector, A is the
(weighted) adjacency matrix of the graph, and D is the
diagonal matrix containing the (weighted) degree of each
node, and we have also defined M , the transition matrix of
the random walk. The stationary distribution of the random
walk π is then given by

π = π M. (2)

Consider now a partition of the network into c communities
indexed by α = 1, . . . ,c. At stationarity, the probability of
leaving community α (or of arriving at community α) is

qα� =
∑
i∈α

∑
j /∈α

πiMij ,

and the overall probability of changing community is

q� =
c∑

α=1

qα�.

Similarly, the probability to stay within or to leave community
α is

pα
� = qα� +

∑
i∈α

πi.

The map equation then defines the per-step description
length of a code associated with this partition as

LM =
c∑

α=1

pα
� H (Pα) + q� H (Q), (3)

a weighted combination of the Shannon entropies:

H (Pα) = −qα�

pα
�

log2

(
qα�

pα
�

)
−

∑
i∈α

πi

pα
�

log2

(
πi

pα
�

)
,

H (Q) = −
c∑

α=1

qα�

q�

log2

(
qα�

q�

)
.

The two terms in Eq. (3) correspond to two classes of code-
books that encode one-step transitions at stationarity viewed
through the prism of the given partition. The first term stems
from the “community-centric” codebooks with probability
distributionsPα (and associated entropy) of being at or leaving
from each of the communities. The second term corresponds
to the “intercommunity” codebook with distribution Q (and
associated entropy) of changing community.

In the original map formalism it is proposed that a low LM is
a characteristic of good partitions, and the Infomap algorithm
is used to search computationally for partitions with low LM .
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III. MAP ENCODES BLOCK-AVERAGED,
ONE-STEP TRANSITIONS: IMPLICATIONS

FOR COMMUNITY DETECTION

As shown by the definitions above, the original map equa-
tion does not fully code for the dynamics of the Markov process
(1), as it uses only quantities derived from block-averaging
of one-step transitions at stationarity. The simplifications
involved in block averaging the structure and in ignoring
longer-term dynamics both have interrelated implications for
community detection, which we now study in detail.

A. Block averaging the connectivity: The compression gap
and a bias towards overfitting to clique-like communities

An examination of the terms in the map equation (3) reveals
that the implicit block averaging neglects the internal structure
of the communities as well as the detailed intercommunity
connectivity. More precisely, given a particular partition, all
graphs with the same equilibrium distribution π and overall
leaving probabilities qα� will be indistinguishable in terms of
their map quality, LM , as exemplified in Fig. 1.

From the viewpoint of entropies, the map equation (3)
is formally equivalent to a weighted sum of the en-
tropies of i.i.d. stochastic processes with states visited

FIG. 1. (Color online) Equivalent graph partitions for the map
equation. Because the map equation ignores the specific connectivity
of the graph, graph partitions with equal equilibrium and leaving prob-
abilities become indistinguishable to map. Different communities are
represented by different colors (shades of gray). Unless indicated, the
weight of the edge is 1. (a) Two graphs with different intracommunity
connectivity but the same map coding length, LM . (b) Two graphs
with different intercommunity connectivity and the same LM . (c) Two
graphs with equal LM but very different inter- and intracommunity
connectivity. From the viewpoint of map, a ring-of-rings is equivalent
to a clique-of-cliques with different weights.

according to: normalized “community-centric” probabilities
{{πi/p

α
�}i∈α,qα�/pα

�}cα=1 and normalized “leaving” probabil-
ities {qα�/q�}cα=1, respectively. Alternatively, this procedure
may be seen as formally equivalent to using a block-averaged
transition matrix corresponding to a block-structured weighted
(and in general directed) complete graph with self-loops.
Consequently, Infomap exhibits a bias towards identifying
communities that are formally equivalent to clique-like sub-
graphs.

In this sense, the map equation can be seen to code for a
two-level, mean-field organization: one inside communities,
one across communities. Such block-structured, all-to-all
models are a good representation of community structure based
on hierarchical cliques-of-cliques. Indeed, the map equation
performs well in block-structured Erdös-Renyi benchmarks
[24] and is not afflicted by the “resolution limit” [25]. On
the other hand, there are important networks with a more
marked local structure in which communities are not clique-
like [12]. Because the map formalism has not been designed
to detect such nonclique-like communities with large effective
distances, Infomap will tend to overpartition such networks.

Ignoring the detailed connectivity: The compression gap
of the map equation

The fact that map ignores the detailed connectivity inside
and outside the communities leads to a suboptimal coding
scheme. This suboptimality can be quantified through the
compression gap (defined below), which can be used as a
measure of when the map block-averaging assumptions are a
valid simplification for the network under study.

Consider the Markov chain with transition matrix M and
stationary distribution π , as given in Eq. (1). The most efficient
coding of the dynamics of the associated Markov process
at stationarity is bounded from below by the entropy rate
h [27,28]:

h(π ; M) = −
∑
ij

πiMij log2(Mij ). (4)

The corresponding optimal encoding can be asymptotically
achieved by endowing each node with a dictionary for its
outgoing links, as shown by Shannon [27]. This is a kind of
“edge encoding.”

On the other hand, if we consider a coding scheme that
gives each node a unique name within the whole graph, (i.e.,
a “node encoding”), then the corresponding coding length is
bounded by the entropy rate of the i.i.d. random variable with
probability distribution π , which is equal to the entropy of the
stationary distribution:

H (π ) = −
∑

i

πi log2 (πi) . (5)

The map coding scheme can be seen as a mixture of both:
It encodes nodes uniquely within communities, but encodes
for transitions (“edges”) between communities. Therefore, in
general,

h(π ; M) < LM � H (π ), (6)

and map is suboptimal in terms of its coding length [29],
as recognized by Rosvall and Bergstrom in their original
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FIG. 2. The compression gap of the map coding scheme. (a) For
a clique with self-loops, the map coding scheme is optimal (assuming
no communities) and is equivalent to a uniform i.i.d. process with four
states. (b) In a directed cycle, the map coding is far from optimal. The
movement of a random walker on this graph can be encoded by just
denoting the starting position, but the map coding scheme enforces
unique names for each node and thus requires at least 2 bits/step.

publication [21]. This suboptimality can be understood with
a simple example: Consider a community αout from which
there is only one possible link to another community αto. Map
encodes this transition with two codewords: an exit codeword
to signal the leaving of αout and a codeword to identify the
destination community αto. Clearly the second codeword is
redundant.

Importantly, if the graph is a weighted, directed clique
(i.e., with transition matrix M = 1π ), then h(π ; M) = H (π )
and the two coding schemes (“edge” and “node”) give the
same result [see Fig. 2(a)]. Therefore, the suboptimality of
the map coding is minimal when the graph is close to
a clique. Consequently the minimization of the map cost
function is well suited to identify community structure that is a
clique of cliques: Within each community map uses a “node”
encoding while between communities map encodes transitions
by default. In such a scenario, the map coding scheme is nearly
optimal and close to the entropy rate.

The suboptimality of the map encoding plays a significant
role when encoding communities with restricted connectivity.
For instance, if the community is a ring, a random walker
has only two possible nodes to transition to, instead of nα as
assumed by map. In this case there is a large gap between the
map description length LM and the optimal limit established
by h(π ; M), indicating that the full consideration of the graph
structure in the Markov dynamics could be exploited for a
better encoding [see Fig. 2(b) for an example].

This discussion highlights the fact that the block-averaging
implicit in the original map scheme leads to a suboptimality
of the proposed map coding scheme that becomes significant
when the network cannot be well described as a clique-
of-cliques. In order to quantify this effect, we define the
compression gap δ:

δ = (LM − h)/h, (7)

which measures how close the map encoding is to optimality.
Note that other measures for the compression gap, such as δ′ =
(LM − h)/(H − h), could be used and may be more suitable,
or sensitive, in some cases. In this paper we stick mostly to

the slightly simpler expression of δ, as it is sufficient for our
purposes. The compression gap can be used to establish when
the communities identified by map are far from being clique-
like and hence serves as an indicator of the reliability of the
partitions obtained by Infomap, as shown below.

B. One-step transitions: The field-of-view limit and a bias
towards overpartioning of nonclique-like communities

As discussed above, the original map formalism is based
on an implicit clique-like concept of community, and a com-
munity structure as a (statistical) clique of cliques. Although
this model has proved successful in a variety of fields [24,30],
relevant technological, social, and biological networks are far
from being clique-like [12]. In such cases, Infomap might tend
to overpartition communities as a result of an upper scale (the
“field-of-view limit”) which stems from map encoding only
for one-step transitions at stationarity. This field-of-view limit
affects all one-step methods, including not only map but also
modularity. The field of view occurs on the opposite end of
the well-known resolution limit that appears as a lower scale
for modularity [25] but does not seem to impact map [17].

Overpartitioning of lattice-like graphs

The overpartitioning induced by the field-of-view limit
can be understood analytically through the following simple
examples of lattice-like graphs.

First, consider a cycle graph of length N with unweighted
edges. The equilibrium distribution of the random walk on
this graph is πi = 1/N,i = 1, . . . ,N . This graph has no
community structure, and the only relevant partition should
be the global “all-in-one.”

For a partition of the ring into c � 2 communities indexed
by α we have{

qα� = 1/N,∀α; q� = c/N ; pα
� = (nα + 1)/N

}
,

where nα is the number of nodes in community α and, clearly,∑c
α=1 nα = N . The map cost function of this partition is

LM

({nα}cα=1

) = c

N
log2(c) +

c∑
α=1

nα + 1

N
log2(nα + 1). (8)

Using convexity arguments, it is easy to show that for a given
N and c, the minimal LM is attained for the partition with
equally sized communities with nα = N/c,∀α, if it exists.
For such a partition, the map equation (8) becomes

LM

({N/c}cα=1

) =
(

1 + c

N

)
log2(N + c) − log2(c), (9)

with c � 2. The case c = 1 is the trivial “all-in-one partition”
with LM ({N}α=1) = log2 N .

The relevant map optimization for the cycle graph of size
N is then equivalent to finding which of the equal partitions
into c communities has the lowest LM :

min
c

LM

({N/c}cα=1

)
.

Assume N/c to be real to facilitate the analysis, a relaxation
which our numerics show not to affect the result. Then the
partition with minimal LM has equal communities of size N/c∗
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with c∗(N ) given by

ln(N + c∗) = N

c∗ − 1, c∗ � 2. (10)

It is easy to show that, for a long enough ring, such a partition
will have lower LM than the “all-in-one” partition. Indeed,
map partitions all cycles with N � 10.

Similar results are obtained for the regular k cycles used
as the starting point for the small-world construction (see
Sec. V C). In this case, map partitions the k cycle into equally
sized communities of size N/c∗ given by

ln

(
2N

k + 1
+ c∗

)
= 2N

c∗(k + 1)
− 1, c∗ � 2. (11)

The same reasoning can be applied to a torus network, i.e.,
the Cartesian product of two cycles of lengths R and r , with
N = rR. This graph can be thought of as the discretization of
a two-dimensional lattice with periodic boundary conditions.
It is easy to show that the optimal radially symmetric partition
of the graph (with R > r) is into communities of size N/c∗
with c∗ given by

ln(2R + c∗) = 2R

c∗ − 1. (12)

Therefore, as the size of the lattice N increases, Infomap
will partition the torus into smaller sections. Our numerical
exploration shows that the above solution is a conservative
estimate and the overpartitioning induced by map is even more
acute for the torus: As N grows, other even smaller patch-like
partitions are obtained by the Infomap optimization.

IV. A DYNAMICAL ENHANCEMENT OF THE
MAP SCHEME: MARKOV TIME SWEEPING

FOR THE MAP EQUATION

As discussed above, the original map equation does not
fully account for the dynamics of the Markov process (1), as
it uses only quantities derived from block-averaged one-step
transitions. Such a simplification is reasonable for clique-like
communities, which exhibit a small compression gap and can
be fully explored in one step. However, networks of interest
sometimes possess a multiscale, nonclique-like community
structure which will go unrecognized by the original map
equation due to its intrinsic bias towards cliques and the
ensuing field-of-view limit.

The limitations of the map equation in such scenarios can
be overcome by adopting concepts from partition stability,
a recently introduced dynamical framework for community
detection [12,18,19]. The idea is to consider the time evolution
of the Markov process as a means to unfolding systemat-
ically the graph structure at different scales. This Markov
time sweeping, which is equivalent to considering multistep
transitions, applies a natural zooming process (from small to
large scales) to the network. A key aspect of this approach is the
systematic sweeping across scales provided by the dynamics,
which minimizes the effects of the resolution and field-of-view
limits. For an extended discussion, see Refs. [12,18,19,31].

This Markov time sweeping can be used to endow the
map equation with a dynamic zooming that allows it to
detect multiscale community structure, with relevant partitions

characterized by a low compression gap. For simplicity,
consider the continuous version of the Markov process (1)
associated with a graph with adjacency matrix A on N nodes:

ṗ = −p D−1L, (13)

where p is a 1 × N vector of probabilities, D is the diagonal
matrix containing the weights of each node, and L = D − A

is the graph Laplacian. It is easily verified that this continuous-
time Markov process has the same stationary distribution as
the discrete-time random walk (1) [18,19].

The analytical solution of this system leads us to consider
the discrete-time process:

pk+1 = pk T (t), (14)

where Tij (t) = [e−tD−1L]ij is the effective transition probabil-
ity between nodes i and j after a (Markov) time t . Within this
framework, it is easy to see that the original map formulation
considers the linearized version of T (t) evaluated at time
t = 1. Consequently the original map equation scheme is
included as a particular case in our formulation, and we can
always recover the standard map results under our scheme [32].

Our approach is then to use the map equation to analyze the
community structure of the time-dependent weighted network
D T (t) as a function of the (Markov) time t . As time grows, the
transition matrix T becomes less sparse and more clique-like,
yet in a structured manner that reflects the community structure
of the network [19]. Consequently, the leaving probabilities
qβ�(t) = ∑

i∈α

∑
j /∈α πiTij (t) increase with increasing time;

the cost for encoding distinct communities increases too; and
map tends to find coarser communities that can be better
represented as cliques. More specifically:

(i) For t → 0, the leaving probabilities go to zero, and the
map equation is minimized by setting each node in its own
community, as can be easily verified.

(ii) For t → ∞, we approach the limit of an i.i.d. random
process, i.e., T (t) → 1π , where 1 is the vector of ones. In
this limit, the map encoding for the “all-in-one” partition
is optimal, since it results in a description length which is
equivalent to the entropy rate. More precisely, it is easy to see
from Eq. (6) that δ(t) → 0 as t → ∞.

(iii) For intermediate times, the Markov time acts as a natural
resolution parameter and the partitions of the time-dependent
weighted graph D T (t) become increasingly coarser. By
following the time evolution, we can check whether a particular
partition corresponds merely to a transient or whether it is
persistent for a range of times.

Furthermore, the compression gap (7) can be used as
an information-theoretic indicator of the reliability of the
partitions found by Infomap at different Markov times. As
discussed above, a low δ is expected when the partition reflects
a community structure close to that of a clique of cliques, thus
conforming to the assumptions underlying the map formalism.
Therefore, low values of δ(t) can be used to indicate relevant
map partitions and also to identify the existence of a multi-scale
community structure in the network.

This Markov time sweeping brings to the map equation
what the partition stability offers to modularity [18,19];
namely, the possibility to use time as a means to scan naturally
through the resolution of community detection (from fine
to coarse) in a manner that is consistent with the Markov
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dynamics on the graph. From this dynamical viewpoint, the
standard map equation corresponds to a time snapshot of the
diffusion dynamics. Furthermore, this dynamical approach is
a natural framework for the map scheme, since it introduces
a time-dependent but finite probability of jumping from any
node to any other node at all times, in line with the formalism
underpinning the map equation.

V. SOME ILLUSTRATIVE EXAMPLES

In this section we illustrate the use of Markov sweeping
map with simple examples. The procedure is as follows: For
each Markov time, we construct the time-dependent network
defined by D T (t). We then optimize the (time-dependent)
map cost function using the implementation of Infomap for di-
rected graphs found online at http://www.tp.umu.se/∼rosvall/,
slightly modified to enable self-loops in the graphs. We
only consider here undirected networks but the method can
be extended easily to directed graphs when we allow for
teleportation [33]. For all examples, 100 runs of the Infomap
algorithm at each Markov time were used to find the optimal
partition.

A. A network without community structure: The cycle graph

As a first example, we apply Markov time sweeping to the
ring network discussed in Sec. III B. Recall that for the cycle
graph with N = 20 nodes, our analytical arguments show that
the original map scheme leads to a nonintuitive partition into
five equal communities, instead of the expected “all-in-one”
partition. However, the high compression gap of the five-way
partition found by the standard map (δ ≈ 2.48) confirms
that this partition is far from being formed by clique-like
communities. Because standard map is being applied to a
network which does not conform to the implicit assumptions
about community detection in the original map framework, we
see an overpartitioning in this case.

As seen in Fig. 3, analyzing this network with the Markov
sweeping version of map reveals that there is no significant
community structure in this graph. Only the singleton partition
(at very short times) and the global partition (at very long
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FIG. 3. (Color online) Markov sweeping map for a cycle graph
with N = 20. As the Markov time increases, the map partitioning goes
from the finest possible partition to the global “all-in-one” partition
(solid blue line). However, as indicated by the featureless decay of the
compression gap δ with no clear minima (dashed green line), no other
relevant community is found between those two extreme partitions,
thus signaling the lack of community structure. In this case, standard
map finds five communities but a large compression gap δ ≈ 2.48
indicates that this partition is unreliable. Inset: Analyzed graph.
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FIG. 4. (Color online) Markov sweeping map for a graph with
a hierarchical community structure. The graph analyzed (inset) has
a clear community structure given by a hierarchy of triangles: The
six smaller triangles (denoted by different colors) have edges within
them of weight 100; they are grouped into two larger triangles with
weaker links (the edges between the six small triangles have weight
10); the edge between the two big triangular structures has weight 1.
The compression gap (dashed green line) shows two clear minima,
indicating well-defined partitions into six and two communities,
corresponding to the two tiers of the hierarchy. Standard map finds
only the six small triangles (δ ≈ 0.62).

times) provide significant groupings of the nodes while all
other partitions show high values of δ.

B. A simple network with multiscale community structure

Consider now a weighted graph with a distinct hierarchical
community structure: two triangles of triangles with weighted
links to reinforce the hierarchy (see inset of Fig. 4). In this
example, the standard map equation method identifies the fine
structure of six small triangles. (We note that the hierarchical
map equation uncovers the two-tier hierarchy of communities
in this graph.)

Our proposed Markov sweeping map also recovers the
hierarchy of partitions across time scales, as indicated by
the sharp decreases in the compression gap δ when the
sixfold and the twofold partition are detected (Fig. 4). Our
method also indicates over which time scales the relevant
partitions appear to be natural. For instance, a change in the
weights would induce changes in the lengths of the plateaux
corresponding to the different levels of the hierarchy. As stated
above, hierarchical map is able to resolve this clique-like
community structure (while standard map finds only the
fine structure). However, if the multiscale structure is not
clique-like, hierarchical map may fail to resolve the multiscale
structure, as shown in the network of small-world communities
discussed in the next section.

C. A ring of small-world communities

As a next scenario, we study a ring of five weakly connected
small-world graphs [34] of 200 nodes each, as introduced in
Ref. [12] [see Fig. 5(a)]. We use the CONTEST toolbox
[35] to generate small-world communities by adding random
connections following Newman-Watts [36] starting from a
pristine world with two nearest neighbors [37] but allowing
for the possibility of multiple shortcuts at each node.

As discussed in Sec. III B, the standard map equation will
tend to overpartition lattice-like structures, such as the pristine
worlds (k cycles) used as starting point for the small-world
construction. As given by Eq. (11), standard Infomap partitions
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FIG. 5. (Color online) Community detection in a ring of small-
world communities. (a) Ring of five small-world communities with
N = 200 each. The edges within the small worlds have weight 5
while the weight of the links between them is 1. All the small-worlds
have an average number of randomly added shortcuts per node s.
For s = 1 (shown), standard map shows a strong overpartitioning
leading to an average of 16 communities inside each small world
(indicated by different colors in online version). (b) Number of
communities found by standard map vs mean path length inside
the small-world communities. The numerics shown correspond to 10
different realizations of the network with average number of shortcuts
per node s = 1,1.25,1.5, . . . ,3.75,4. (c) Applying Markov sweeping
map to the ring of small worlds with s = 2.5 (mean path length
inside the small worlds ≈2.7) finds the relevant partition into five
communities, while standard map finds 23 communities in this case.

the pristine world with N = 200 and k = 2 into 22 equally
sized communities.

This overpartitioning persists when few random shortcuts
are added, as shown in Fig. 5(b). Only when the average
number of added shortcuts per node, here denoted by s, is
greater than 3.5 (and the mean distance within the small world
has become small) does standard map obtain the right split
into five communities. This is consistent with our discussion
pertaining the field of view, i.e., the smaller the mean

path length, the more clique-like the structure. In this case,
hierarchical Infomap can even give a nonintuitive partition
into four communities, due to the nonclique-like nature of
the communities. On the other hand, Fig. 5(c) shows that
Markov sweeping allows map to detect the relevant partition
into five communities over an extended time scale with a small
compression gap.

VI. DISCUSSION

A key insight to emerge from the map equation formalism
is the fact that a coarse-grained description of a graph in terms
of its communities is intimately related to finding concise
descriptions of the information flow on these networks, and
hence to the field of coding theory and data compression.
However, the adoption of a coding or compression mechanism
has important effects on the outcome of the algorithm
and ultimately reflects the underlying assumptions about
the concept of community. Here we have shown that the
original map equation formalism is inherently tuned towards a
block-averaged notion of community structure as a weighted,
statistical clique of cliques. This tuning stems from two inter-
related simplifications: the block-averaged coding mechanism,
which ignores the detailed connectivity and exhibits a large
compression gap for nonclique structures, and the use of
one-step quantities, which ignores the effect of multistep flows
in the communities and leads to an upper scale (field of view)
for detection. This intrinsic bias of the map equation explains
the excellent performance of the map equation in clique-like
benchmarks but can lead to unexpected overpartitioning of
networks if they differ strongly from the assumed clique-like
organization.

We have shown that using the dynamical zooming provided
by Markov time sweeping allows one to take into account
multistep flows and scan across all scales in a natural manner.
The underlying idea is that, as time increases, the communities
in the network will become more clique-like when analyzed
through the time-dependent weighted transition matrix of the
Markov process. Therefore, the map formalism can be used to
detect long-range communities as the Markov time increases,
and the relevant communities will be signaled by a low
compression gap. This Markov sweeping for the map equation
can enhance the performance of the method by allowing it to
detect nonclique communities and the presence of multiscale
community structure in networks. Importantly, the method still
recovers all the results from the original map equation.

As stated above, the dynamic zooming across all scales
effected by the Markov process is an integral ingredient
of the method. Rather than just looking for the “right”
scale, the community structure emerges from the integration
of the information gathered systematically at all scales. This
approach can help alleviate the reliance on a global scale,
which can affect the results when dealing with networks with
communities with very heterogeneous sizes [38]. In particular,
Markov sweeping map is able to detect heterogeneous cliques
as obtained through the LFR benchmark, a fact consistent
with the notion that cliques are all effectively one-step and that
standard map already performs effectively on such benchmarks
(see also Fig. 6 for an analysis with heterogeneously sized
cliques). Similarly our method performs well in detecting
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FIG. 6. (Color online) Community detection with heteroge-
neously sized subgraphs. (a) Ring of six cliques with different sizes
{10,15,20,25,30,40}. Upper panel: Number of communities found
by Markov sweeping pap vs Markov time. Lower panel: Both the
compression gap δ (dashed green line) and the alternative compres-
sion gap measure δ′ (red dashed-dotted line) clearly highlight the
presence of a robust partition into six communities. Inset: Analyzed
graph. (b) Ring of six rings with different sizes {10,15,20,25,30,40}.
In this case the alternative measure δ′ for the compression gap is better
suited for the analysis, indicating the presence of the six rings by a
relative minimum around Markov time 30. Inset: Analyzed graph.

communities in a ring of rings with very dissimilar sizes
as illustrated in Fig. 6, although when the heterogeneity
of the relative ring sizes becomes very large, our approach
will not identify all rings at once at the same level of the
hierarchy. To improve further the applicability of the method

to such problems, one can use different dynamics for the
Markov process [19,39]. This is an area of research we are
currently pursuing. However, since there is no community
detection algorithm that will serve all purposes for all possible
applications, one should complement the analysis with other
methods based on different principles (e.g., local algorithms
in those cases).

Adding a dynamical dimension to map through Markov
sweeping is just one of the possible ways to enhance the map
equation and alternative approaches are worth pursuing. One
direction would be the modification of the coding scheme.
For instance, a more rigorous treatment would require to
remove the constraint of having unique codewords within
each community and allow also for encoding of walks instead
of single step codewords. This generalization, however, would
most likely lead to a breakdown of the simple coding picture
that underpins the map equation. Our work emphasizes the
importance of the choice of dynamics on the network and
shows that using a dynamical perspective may lead to a more
natural framework for community detection, especially when
the underlying system has an inherent flow. In this paper, we
have used the standard (unbiased) continuous-time random
walk as a neutral first choice of dynamics. However, other
continuous-time or discrete-time processes are possible (see
also Ref. [19] for a related discussion) in order to tune our com-
munity detection algorithm to different characteristics of the
network.

Code is available in Ref. [40].
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