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Adaptive cubic regularisation methods for unconstrained

optimization. Part II: worst-case function- and

derivative-evaluation complexity

Coralia Cartis∗,,‡ Nicholas I. M. Gould†,‡ and Philippe L. Toint§

September 29, 2007; Revised September 25, 2008, March 9 and September 15, 2009

Abstract

An Adaptive Regularisation framework using Cubics (ARC) was proposed for unconstrained opti-

mization and analysed in Cartis, Gould & Toint (Part I, Math. Programming, DOI:10.1007/s10107-009-

0286-5, 2009), generalizing at the same time an unpublished method due to Griewank (Technical Report

NA/12, 1981, DAMTP, Univ. of Cambridge), an algorithm by Nesterov & Polyak (Math. Programming

108(1), 2006, pp 177-205) and a proposal by Weiser, Deuflhard & Erdmann (Optim. Methods Softw.

22(3), 2007, pp 413-431). In this companion paper, we further the analysis by providing worst-case

global iteration complexity bounds for ARC and a second-order variant to achieve approximate first-

order, and for the latter second-order, criticality of the iterates. In particular, the second-order ARC

algorithm requires at most O(ε−3/2) iterations, or equivalently, function- and gradient-evaluations, to

drive the norm of the gradient of the objective below the desired accuracy ε, and O(ε−3) iterations,

to reach approximate nonnegative curvature in a subspace. The orders of these bounds match those

proved for Algorithm 3.3 of Nesterov & Polyak which minimizes the cubic model globally on each

iteration. Our approach is both more general, and relevant to practical (large-scale) calculations, as

ARC allows the cubic model to be solved only approximately and may employ approximate Hessians.

1 Introduction

State-of-the-art methods for unconstrained smooth optimization rely on globalising Newton-like iterations
using either trust-region [2] or line-search [4] techniques. In this paper and its predecessor [1], we explore
a third alternative: employing a local cubic overestimator of the objective as a regularisation strategy for
the step computation. Namely, assume that a local minimizer of the smooth and unconstrained objective
f : IRn → IR is sought, and let xk be our current best estimate. Furthermore, suppose that the objective’s
Hessian ∇xxf(x) is globally Lipschitz continuous on IRn with `2-norm Lipschitz constant L. Then

f(xk + s) ≤ f(xk) + sT g(xk) + 1
2s

T H(xk)s + 1
6L‖s‖32

def= mC
k (s), for all s ∈ IRn, (1.1)

where we have defined g(x) def= ∇xf(x) and H(x) def= ∇xxf(x). Thus, so long as

mC
k (sk) < mC

k (0) = f(xk),
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2 Adaptive cubic regularisation methods. Part II

the new iterate xk+1 = xk + sk improves f(x). The bound (1.1) has been known for a long time, see for
example [4, Lemma 4.1.14]. However, (globally) minimizing the model mC

k to compute a step sk, where
the Lipschitz constant L is dynamically estimated, was first considered by Griewank (in an unpublished
technical report [9]) as a means for constructing an affine-invariant variant of Newton’s method which is
globally convergent to second-order critical points and has fast asymptotic convergence. More recently,
Nesterov and Polyak [12] considered a similar idea, although from a different perspective. They were able to
show that, if the step is computed by globally minimizing the cubic model and if the objective’s Hessian is
globally Lipschitz continuous, then the resulting algorithm has a better global-complexity bound than that
achieved by the steepest descent method, and proved superior complexity bounds for the (star) convex and
other special cases. Subsequently, Nesterov [11] has proposed more sophisticated methods which further
improve the complexity bounds in the convex case. Both Griewank [9] and Nesterov et al. [12] were able
to characterize the global minimizer of (1.1), even though the model mC

k may be nonconvex [1, Theorem
3.1]. Even more recently and again independently, Weiser, Deuflhard and Erdmann [14] also pursued a
similar line of thought, motivated (as Griewank) by the design of an affine-invariant version of Newton’s
method. The specific contributions of the above authors have been carefully detailed in [1, §1].

Simultaneously unifying and generalizing the above contributions, our purpose for the ARC framework
has been to further develop such techniques in a suitable manner for efficient large-scale calculations, while
retaining the good global and local convergence and complexity properties of previous schemes. Hence we
no longer insist that H(x) be globally, or even locally, Lipschitz (or Hölder) continuous in general, and
follow Griewank and Weiser et al. by introducing a dynamic positive parameter σk instead of the scaled
Lipschitz constant1 1

2L in (1.1). Also, we allow for a symmetric approximation Bk to the local Hessian
H(xk) in the cubic model on each iteration. Thus, instead of (1.1), it is the model

mk(s) def= f(xk) + sT gk + 1
2s

T Bks + 1
3σk‖s‖3, (1.2)

that we employ as an approximation to f in each ARC iteration (the generic algorithmic framework is
restated here on page 4). Here, and for the remainder of the paper, for brevity we write gk = g(xk) and
‖ · ‖ = ‖ · ‖2; our choice of the Euclidean norm for the cubic term is made for simplicity of exposition.
The rules for updating the parameter σk in the course of the ARC algorithm are justified by analogy to
trust-region methods [2, p.116].

Since finding a global minimizer of the model mk(s) may not be essential in practice, and as doing
so might be prohibitively expensive from a computational point of view, we relax this requirement by
letting sk be an approximation to such a minimizer. Thus in the generic ARC framework, we only require
that sk ensures that the decrease in the model is at least as good as that provided by a suitable Cauchy
point. In particular, a milder condition than the inequality in (1.1) is required for the computed step
sk to be accepted. The generic ARC requirements have proved sufficient for ensuring global convergence
to first-order critical points under mild assumptions [1, Theorem 2.5, Corollary 2.6]. For (at least) Q-
superlinear asymptotic rates [1, §4.2] and global convergence to second-order critical points [1, §5], as well
as efficient numerical performance, we have strenghtened the conditions on sk by requiring that it globally
minimizes the cubic model mk(s) over (nested and increasing) subspaces until some suitable termination
criteria is satisfied [1, §3.2, §3.3]. In practice, we perform this approximate minimization of mk using
Lanczos method (which in turn, employs Krylov subspaces) [1, §6.2, §7], and have found that the resulting
second-order variants of ARC show superior numerical performance compared to a standard trust-region
method on small-scale test problems from CUTEr [1, §7].

In this paper, we revisit the global convergence results for ARC and one of its second-order variants
in order to estimate the iteration count, and relatedly, the number of function- and gradient-evaluations,
required to reach within desired accuracy of first-order—and for the second-order ARC even second-
order—criticality of the iterates, and thus establish a bound on the global worst-case iteration complexity
of these methods. (For more details on the connection between convergence rates of algorithms and the
iteration complexity they imply, see [10, p.36].) In particular, provided f is continuously differentiable

1The factor 1
2 is for later convenience.
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and its gradient is Lipschitz continuous, and Bk is bounded above for all k, we show in §3 that the generic
ARC framework takes at most O(ε−2) iterations to drive the norm of the gradient of f below ε. This
bound is of the same order as for the steepest descent method [10, p.29], which is to be expected since the
Cauchy-point condition requires no more than a move in the negative gradient direction. Also, it matches
the order of the complexity bounds for trust-region methods shown in [7, 8].

These steepest-descent-like complexity bounds can be improved when one of the second-order variants
of ARC—referred here as the ARC(S) algorithm—is employed. ARC(S) [1] distinguishes itself from the
other second-order ARC variants in [1] in the particular criteria used to terminate the inner minimiza-
tion of mk over (increasing) subspaces containing gk. This difference ensures, under local convexity and
local Hessian Lipschitz continuity assumptions, that ARC(S) is Q-quadratically convergent [1, Corollary
4.10], while the other second-order variants proposed are Q-superlinear [1, Corollary 4.8] (under weaker
assumptions). Regarding its iteration complexity, assuming H(x) to be globally Lipschitz continuous, and
the approximation Bk to satisfy ‖(H(xk) − Bk)sk‖ = O(‖sk‖2), we show that the ARC(S) algorithm has
an overall worst-case iteration count of order ε−3/2 for generating ‖g(xk)‖ ≤ ε (see Corollary 5.3), and of
order ε−3 for achieving approximate nonnegative curvature in a subspace containing sk (see Corollary 5.4
and the remarks following its proof). These bounds match those proved by Nesterov and Polyak [12, §3]
for their Algorithm 3.3. However, our framework is more general, as we allow more freedom in the choice
of sk and of Bk in a way that is relevant to practical calculations.

The outline of the paper (Part II) is as follows. Section 2 describes the ARC algorithmic framework
and gives some useful preliminary complexity estimates. Section 3 shows a steepest-descent-like bound for
the iteration complexity of the ARC scheme when we only require that the step sk satisfies the Cauchy-
point condition. Section 4 presents ARC(S), a second-order variant of ARC where the step sk minimizes
the cubic model over (nested) subspaces, while §5 shows improved first-order complexity for ARC(S),
and even approximate second-order complexity estimates for this variant. We draw final conclusions in §6.
Note that the assumption labels, such as AF.1, AF.4, are conforming to notations introduced in Part I [1].

2 A cubic regularisation framework for unconstrained

minimization

2.1 The algorithmic framework

Let us assume for now that

AF.1 f ∈ C1(IRn). (2.1)

The generic Adaptive Regularisation with Cubics (ARC) scheme below follows the proposal in [1] and
incorporates also the second-order algorithm for minimizing f to be analysed later on (see §4).

Given an estimate xk of a critical point of f , a step sk is computed that is only required to satisfy
condition (2.2). The step sk is accepted and the new iterate xk+1 set to xk + sk whenever (a reasonable
fraction of) the predicted model decrease f(xk)−mk(sk) is realized by the actual decrease in the objective,
f(xk) − f(xk + sk). This is measured by computing the ratio ρk in (2.4) and requiring ρk to be greater
than a prescribed positive constant η1 (for example, η1 = 0.1). Since the current weight σk has resulted in
a successful step, there is no pressing reason to increase it, and indeed there may be benefits in decreasing
it if good agreement between model and function are observed. By contrast, if ρk is smaller than η1,
we judge that the improvement in objective is insufficient—indeed there is no improvement if ρk ≤ 0. If
this happens, the step will be rejected and xk+1 left as xk. Under these circumstances, the only recourse
available is to increase the weight σk prior to the next iteration with the implicit intention of reducing the
size of the step.

Note that while Steps 2–4 of each ARC iteration were completely defined above, we have not yet
specified how to compute sk in Step 1. The Cauchy point sC

k achieves (2.2) in a computationally inexpensive
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Algorithm 2.1: Adaptive Regularisation using Cubics (ARC).

Given x0, γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, and σ0 > 0, for k = 0, 1, . . . until convergence,
1. Compute a step sk for which

mk(sk) ≤ mk(sC
k), (2.2)

where the Cauchy point

sC
k = −αC

kgk and αC
k = arg min

α∈IR+

mk(−αgk). (2.3)

2. Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

f(xk)−mk(sk)
. (2.4)

3. Set

xk+1 =
{

xk + sk if ρk ≥ η1

xk otherwise.

4. Set

σk+1 ∈


(0, σk] if ρk > η2 [very successful iteration]

[σk, γ1σk] if η1 ≤ ρk ≤ η2 [successful iteration]
[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(2.5)

way (see [1, §2.1]); the choice of interest, however, is when sk is an approximate (global) minimizer of
mk(s), where Bk in (1.2) is a nontrivial approximation to the Hessian H(xk) and the latter exists (see §4).
Nevertheless, condition (2.2) on sk is sufficient for ensuring global convergence of ARC to first-order
critical points ([1, §2.2]), and a worst-case iteration complexity bound for ARC to generate ‖gk‖ ≤ ε will
be provided in this case (§3).

We have not yet established if the ratio ρk in (2.4) is well-defined. A sufficient condition for the latter
is that

mk(sk) < f(xk). (2.6)

It follows from Lemma 3.1 below that the ARC framework satisfies

gk 6= 0 =⇒ mk(sk) < f(xk). (2.7)

Note that due to the Cauchy condition, the basic ARC algorithm as stated above, is only a first-order
scheme and hence, AF.1 is sufficient to make it well-defined. As such, it will terminate whenever gk = 0.
Thus, from (2.7), we can safely assume that (2.6) holds on each iteration k ≥ 0 of the generic ARC
framework. For the second-order ARC variant that we analyse later on (§4 onwards), we will argue that
condition (2.6) holds even when gk = 0 (see the last paragraph of §4). This case must be addressed for
such a variant since it will not terminate when gk = 0 as long as (approximate) problem negative curvature
is encountered (in some given subspace). Based on the above remarks and our comments at the end of
§4, it is without loss of generality that we assume that (2.6) holds unless the (basic or second-order) ARC
algorithm terminates.

Condition (2.6) and the construction of ARC’s Steps 2–4 are sufficient for deriving the complexity
properties in the next section, which will be subsequently employed in our main complexity results.
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2.2 Some iteration complexity properties

The construction of ARC implies that the total number of ARC iterations is the same as the number of
objective function evaluations as we also need to evaluate f on unsuccessful iterations in order to be able
to compute ρk in (2.4); the number of successful ARC iterations is the same as the gradient-evaluation
count.

Firstly, let us present a generic worst-case result regarding the number of unsuccessful iterations that
occur up to any given iteration.

Throughout, denote the index set of all successful iterations of the ARC algorithm by

S def= {k ≥ 0 : k successful or very successful in the sense of (2.5)}. (2.8)

Given any j ≥ 0, denote the iteration index sets

Sj
def= {k ≤ j : k ∈ S} and Uj

def= {i ≤ j : i unsuccessful}, (2.9)

which form a partition of {0, . . . , j}. Let |Sj | and |Uj | denote their respective cardinalities. Concerning
σk, we may require that on each very successful iteration k ∈ Sj , σk+1 is chosen such that

σk+1 ≥ γ3σk, for some γ3 ∈ (0, 1]. (2.10)

Note that (2.10) allows {σk} to converge to zero on very successful iterations (but no faster than {γk
3}).

A stronger condition on σk is
σk ≥ σmin, k ≥ 0, (2.11)

for some σmin > 0. The conditions (2.10) and (2.11) will be employed in the complexity bounds for ARC
and the second-order variant ARC(S), respectively.

Theorem 2.1. For any fixed j ≥ 0, let Sj and Uj be defined in (2.9). Assume that (2.10) holds and
let σ > 0 be such that

σk ≤ σ, for all k ≤ j. (2.12)

Then

|Uj | ≤
⌈
− log γ3

log γ1
|Sj |+

1
log γ1

log
(

σ

σ0

)⌉
. (2.13)

In particular, if σk satisfies (2.11), then it also achieves (2.10) with γ3 = σmin/σ, and we have that

|Uj | ≤
⌈
(|Sj |+ 1)

1
log γ1

log
(

σ

σmin

)⌉
. (2.14)

Proof. It follows from the construction of the ARC algorithm and from (2.10) that

γ3σk ≤ σk+1, for all k ∈ Sj ,

and
γ1σi ≤ σi+1, for all i ∈ Uj .

Thus we deduce inductively
σ0γ

|Sj |
3 γ

|Uj |
1 ≤ σj . (2.15)

We further obtain from (2.12) and (2.15) that |Sj | log γ3 + |Uj | log γ1 ≤ log (σ/σ0), which gives (2.13),
recalling that γ1 > 1 and that |Uj | is an integer. If (2.11) holds, then it implies, together with (2.12),
that (2.10) is satisfied with γ3 = σmin/σ ∈ (0, 1]. The bound (2.14) now follows from (2.13) and
σ0 ≥ σmin. 2
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Let Fk
def= F (xk, gk, Bk,Hk) ≥ 0, k ≥ 0, be some measure of optimality related to our problem of

minimizing f (where Hk may be present in Fk only when the former is well-defined). For example, for
first-order optimality, we may let Fk = ‖gk‖, k ≥ 0. Given any ε > 0, and recalling (2.8), let

Sε
F

def= {k ∈ S : Fk > ε}, (2.16)

and let |Sε
F| denote its cardinality. To allow also for the case when an upper bound on the entire |Sε

F|
cannot be provided (see Corollary 3.4), we introduce a generic index set So such that

So ⊆ Sε
F, (2.17)

and denote its cardinality by |So|. The next theorem gives an upper bound on |So|.

Theorem 2.2. Let {f(xk)} be bounded below by flow. Given any ε > 0, let Sε
F and So be defined

in (2.16) and (2.17), respectively. Suppose that the successful iterates xk generated by the ARC
algorithm have the property that

f(xk)−mk(sk) ≥ αεp, for all k ∈ So, (2.18)

where α is a positive constant independent of k and ε, and p > 0. Then

|So| ≤
⌈
κpε

−p
⌉
, (2.19)

where κp
def= (f(x0)− flow)/(η1α).

Proof. It follows from (2.4) and (2.18) that

f(xk)− f(xk+1) ≥ η1αεp, for all k ∈ So. (2.20)

The construction of the ARC algorithm implies that the iterates remain unchanged over unsuccessful
iterations. Furthermore, from (2.6), we have f(xk) ≥ f(xk+1), for all k ≥ 0. Thus summing up (2.20)
over all iterates k ∈ So, with say jm ≤ ∞ as the largest index, we deduce

f(x0)− f(xjm
) =

jm−1∑
k=0,k∈S

[f(xk)− f(xk+1)] ≥
jm−1∑

k=0,k∈So

[f(xk)− f(xk+1)] ≥ |So|η1αεp. (2.21)

Recalling that {f(xk)} is bounded below, we further obtain from (2.21) that jm < ∞ and that

|So| ≤
1

η1αεp
(f(x0)− flow),

which immediately gives (2.19) since |So| must be an integer. 2

If (2.18) holds with So = Sε
F, then (2.19) gives an upper bound on the total number of successful

iterations with Fk > ε that occur. In particular, it implies that the ARC algorithm takes at most dκpε
−pe

successful iterations to generate an iterate k such that Fk+1 ≤ ε.
In the next sections, we give conditions (on sk and f) under which (2.18) holds with Fk = ‖gk‖ for

p = 2 and p = 3/2. The conditions for the former value of p are more general, while the complexity for
the latter p is better.
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3 An iteration complexity bound based on the Cauchy condition

The results in this section assume only condition (2.2) on the step sk. For the model mk given by (1.2),
we assume

AM.1 ‖Bk‖ ≤ κB, for all k ≥ 0, and some κB ≥ 0. (3.1)

This assumption is satisfied when the approximations Bk are close to the Hessian values H(xk), and the
latter are uniformly bounded above. For the function f , however, we only asume AF.1, and that the
gradient g is Lipschitz continuous on an open convex set X containing all the iterates {xk}, namely,

AF.4 ‖g(x)− g(y)‖ ≤ κH‖x− y‖, for all x, y ∈ X, and some κH ≥ 1. (3.2)

If f ∈ C2(IRn), then AF.4 is satisfied if the Hessian H(x) is bounded above on X. Note that no Lipschitz
continuity of H(x) will be required in this section.

The next lemma summarizes some useful properties of the ARC iteration.

Lemma 3.1. Suppose that the step sk satisfies (2.2).

i) [1, Lemma 2.1] Then for k ≥ 0, we have that

f(xk)−mk(sk) ≥ ‖gk‖
6
√

2
min

 ‖gk‖
1 + ‖Bk‖

,
1
2

√
‖gk‖
σk

 . (3.3)

ii) [1, Lemma 2.2] Let AM.1 hold. Then

‖sk‖ ≤
3
σk

max(κB,
√

σk‖gk‖), k ≥ 0. (3.4)

We are now ready to show that it is always possible to make progress from a nonoptimal point (gk 6= 0).

Lemma 3.2. Let AF.1, AF.4 and AM.1 hold. Also, assume that

√
σk‖gk‖ >

108
√

2
1− η2

(κH + κB) def= κHB. (3.5)

Then iteration k is very successful and
σk+1 ≤ σk. (3.6)

Proof. From (3.5), we have gk 6= 0, and so (3.3) implies f(xk) > mk(sk). It follows from (2.4) that

ρk > η2 ⇐⇒ rk
def= f(xk + sk)− f(xk)− η2[mk(sk)− f(xk)] < 0. (3.7)

To show (3.6), we derive an upper bound on rk, which will be negative due to (3.5). Firstly, we express
rk as

rk = f(xk + sk)−mk(sk) + (1− η2) [mk(sk)− f(xk)] , k ≥ 0. (3.8)

To bound the first term in (3.8), a Taylor expansion of f(xk + sk) gives

f(xk + sk)−mk(sk) = (g(ξk)− gk)T sk −
1
2
s>k Bksk −

σk

3
‖sk‖3, k ≥ 0,
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for some ξk on the line segment (xk, xk + sk). Employing AM.1 and AF.4, we further obtain

f(xk + sk)−mk(sk) ≤ (κH + κB)‖sk‖2, k ≥ 0. (3.9)

Now, (3.5), η2 ∈ (0, 1) and κH ≥ 0 imply
√

σk‖gk‖ ≥ κB, and so the bound (3.4) becomes ‖sk‖ ≤
3
√
‖gk‖/σk, which together with (3.9), gives

f(xk + sk)−mk(sk) ≤ 9(κH + κB)
‖gk‖
σk

. (3.10)

Let us now evaluate the second difference in (3.8). It follows from (3.5), η2 ∈ (0, 1) and κH ≥ 1 that
2
√

σk‖gk‖ ≥ 1 + κB ≥ 1 + ‖Bk‖, and thus the bound (3.3) becomes

mk(sk)− f(xk) ≤ − 1
12
√

2
· ‖gk‖3/2

√
σk

. (3.11)

Now, (3.10) and (3.11) provide the following upper bound for rk, namely,

rk ≤
‖gk‖
σk

[
9(κH + κB)− 1− η2

12
√

2

√
σk‖gk‖

]
, (3.12)

which together with (3.5), implies rk < 0. Thus k is very successful, and (3.6) follows from (2.5). 2

The next lemma gives an upper bound on σk when gk is bounded away from zero.

Lemma 3.3. Let AF.1, AF.4 and AM.1 hold. Also, let ε > 0 such that ‖gk‖ > ε for all k = 0, . . . , j,
where j ≤ ∞. Then

σk ≤ max
(
σ0,

γ2

ε
κ2

HB

)
, for all k = 0, . . . , j, (3.13)

where κHB is defined in (3.5).

Proof. For any k ∈ {0, . . . , j}, due to ‖gk‖ > ε, (3.5) and Lemma 3.2, we have the implication

σk >
κ2

HB

ε
=⇒ σk+1 ≤ σk. (3.14)

Thus, when σ0 ≤ γ2κ
2
HB/ε, (3.14) implies σk ≤ γ2κ

2
HB/ε, ∀k ∈ {0, . . . , j}, where the factor γ2 is

introduced for the case when σk is less than κ2
HB/ε and the iteration k is not very successful. Letting

k = 0 in (3.14) gives (3.13) when σ0 ≥ γ2κ
2
HB/ε, since γ2 > 1. 2

A comparison of Lemmas 3.2 and 3.3 to [2, Theorems 6.4.2, 6.4.3] can be performed, and suggests
naively that σk may be viewed as the reciprocal of the trust-region radius.

Next we show that the conditions of Theorem 2.2 are satisfied with Fk = ‖gk‖, which provides an upper
bound on the number of successful iterations. To bound the number of unsuccessful iterations, we then
employ Theorem 2.1. Finally, we combine the two bounds to deduce one on the total number of iterations.
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Corollary 3.4. Let AF.1, AF.4 and AM.1 hold, and {f(xk)} be bounded below by flow. Given any
ε ∈ (0, 1], assume that ‖g0‖ > ε and let j1 ≤ ∞ be the first iteration such that ‖gj1+1‖ ≤ ε. Then
the ARC algorithm takes at most

Ls
1

def=
⌈
κs

Cε−2
⌉

(3.15)

successful iterations or equivalently, gradient evaluations, to generate ‖gj1+1‖ ≤ ε, where

κs
C

def= (f(x0)− flow)/(η1αC), αC
def= [6

√
2 max (1 + κB, 2 max(

√
σ0, κHB

√
γ2))]−1 (3.16)

and κHB is defined in (3.5). Additionally, assume that on each very successful iteration k, σk+1 is
chosen such that (2.10) is satisfied. Then

j1 ≤
⌈
κCε−2

⌉ def= L1, (3.17)

and so the ARC algorithm takes at most L1 (successful and unsuccessful) iterations, and function
evaluations, to generate ‖gj1+1‖ ≤ ε, where

κC
def=

(
1− log γ3

log γ1

)
κs

C + κu
C, κu

C
def=

1
log γ1

max
(

1,
γ2κ

2
HB

σ0

)
(3.18)

and κs
C is defined in (3.16).

Proof. The definition of j1 in the statement of the Corollary is equivalent to

‖gk‖ > ε, for all k = 0, . . . , j1, and ‖gj1+1‖ ≤ ε. (3.19)

Thus Lemma 3.3 applies with j = j1. It follows from (3.3), AM.1, (3.13) and (3.19) that

f(xk)−mk(sk) ≥ αCε2, for all k = 0, . . . , j1, (3.20)

where αC is defined in (3.16). Letting j = j1 in (2.9), Theorem 2.2 with Fk = ‖gk‖, Sε
F = {k ∈ S :

‖gk‖ > ε}, So = Sj1 and p = 2 yields the complexity bound

|Sj1 | ≤ Ls
1, (3.21)

with Ls
1 defined in (3.15), which proves the first part of the Corollary.

Let us now give an upper bound on the number of unsuccessful iterations that occur up to j1. It
follows from (3.13) and ε ≤ 1 that we may let σ

def= max
(
σ0, γ2κ

2
HB

)
/ε and j = j1 in Theorem 2.1.

Then (2.13), the inequality log(σ/σ0) ≤ σ/σ0 and the bound (3.21) imply that

|Uj1 | ≤
⌈
− log γ3

log γ1
Ls

1 +
κu

C

ε

⌉
, (3.22)

where Uj1 is (2.9) with j = j1 and κu
C is defined in (3.18).

Since j1 = |Sj1 | + |Uj1 |, the bound (3.17) is the sum of the upper bounds (3.15) and (3.22) on the
number of consecutive successful and unsuccessful iterations k with ‖gk‖ > ε that occur. 2

We remark (again) that the complexity bound (3.17) is of the same order as that for the steepest
descent method [10, p.29]. This is to be expected because of the (only) requirement (2.2) that we imposed
on the step, which implies no more than a move along the steepest descent direction.

Similar complexity results for trust-region methods are given in [7, 8].
Note that Corollary 3.4 implies lim infk→∞ ‖gk‖ = 0. In fact, we have proved the latter limit in [1,

Theorem 2.5] solely under the conditions AF.1 and AM.1. Thus, the additional condition AF.4 in Corollary
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3.4 shows that in this case, stronger problem assumptions are required in order to be able to estimate the
global iteration complexity of ARC than to ensure its global convergence. Furthermore, provided also that
g is uniformly continuous on the iterates — an assumption that is weaker than AF.4 — we have shown in
[1, Corollary 2.6] that limk→∞ gk = 0.

4 A second-order ARC algorithm

The step sk computed by the ARC algorithm has only been required to satisfy the Cauchy condition
(2.2). This has proved sufficient to guarantee approximate first-order criticality of the generated iterates
to desired accuracy in a finite number of iterations (§3), and furthermore, convergence of ARC to first-order
critical points [1]. To be able to guarantee stronger complexity and convergence properties for the ARC
algorithm, we could set sk to the (exact) global minimizer of mk(s) over IRn. Such a choice is possible as
mk(s) is bounded below over IRn; moreover, even though mk may be nonconvex, a characterization of its
global minimizer can be given (see [9], [12, §5.1], [1, Th.3.1]), and can be used for computing such a step
[1, §6.1]. Indeed, Griewank [9] and Nesterov et al. [12] show global convergence to second-order critical
points at fast asymptotic rate of their algorithms with such a choice of sk (provided the Hessian is globally
Lipschitz continuous and Bk = H(xk), etc.); in [12], global iteration complexity bounds of order ε−3/2

and ε−3 are given for approximate (within ε) first-order and second-order optimality, respectively. This
choice of sk, however, may be in general prohibitively expensive from a computational point of view, and
thus, for most (large-scale) practical purposes, (highly) inefficient (see [1, §6.1]). Therefore, in [1], we have
proposed to compute sk as an approximate global minimizer of mk(s) by globally minimizing the model
over a sequence of (nested and increasing) subspaces, in which each such subproblem is computationally
quite inexpensive (see [1, §6.2]). Thus the conditions we have required on sk in [1, §3.2], and further on
in this paper (see next paragraph), are some derivations of first- and second-order optimality when sk is
the global minimizer of mk over a subspace. Provided each subspace includes gk, the resulting ARC will
satisfy (2.2), and so it will remain globally convergent to first-order, and the previous complexity bound
still applies. In our ARC implementation [1], the successive subspaces that mk is minimized over in each
(major) ARC iteration are generated using Lanczos method and so they naturally include the gradient
gk [1, §6.2]. Another ingredient needed in this context is a termination criteria for the method used to
minimize mk (over subspaces). Various such rules were proposed in [1, §3.3], with the aim of yielding a step
sk that does not become too small compared to the size of the gradient. Using the above techniques for the
step calculation, we showed in [1] that the resulting ARC methods have Q-superlinear asymptotic rates of
convergence (without requiring Lipschitz continuity of the Hessian) and converge globally to approximate
second-order critical points.

Using the (only) termination criteria that was shown in [1, §4.2] to make ARC Q-quadratically conver-
gent locally, and the subspace minimization condition for sk, we show that the resulting ARC variant—
referred to here as ARC(S)—satisfies the same complexity bounds for first- and second-order criticality as
in [12], despite solving the cubic model inexactly and using approximate Hessians.

Minimizing the cubic model in a subspace In what follows, we require that sk satisfies

g>k sk + s>k Bksk + σk‖sk‖3 = 0, k ≥ 0, (4.1)

and

s>k Bksk + σk‖sk‖3 ≥ 0, k ≥ 0. (4.2)

The next lemma presents some suitable choices for sk that achieve (4.1) and (4.2).
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Lemma 4.1. [1] Suppose that sk is the global minimizer of mk(s), for s ∈ Lk, where Lk is a
subspace of IRn. Then sk satisfies (4.1) and (4.2). Furthermore, letting Qk denote any orthogonal
matrix whose columns form a basis of Lk, we have that

Q>
k BkQk + σk‖sk‖I is positive semidefinite. (4.3)

In particular, if s∗k is the global minimizer of mk(s), s ∈ IRn, then s∗k achieves (4.1) and (4.2).

Proof. See the proof of [1, Lemma 3.2], which applies the characterization of the global minimizer
of a cubic model over IRn to the reduced model mk

∣∣∣Lk
. 2

The Cauchy point (2.3) satisfies (4.1) and (4.2) since it globally minimizes mk over the subspace
generated by −gk. To improve the properties and performance of ARC, however, it may be necessary to
minimize mk over (increasingly) larger subspaces (that each contain gk so that (2.2) can still be achieved).

The next lemma gives a lower bound on the model decrease when (4.1) and (4.2) are satisfied.

Lemma 4.2. [1, Lemma 3.3] Suppose that sk satisfies (4.1) and (4.2). Then

f(xk)−mk(sk) ≥ 1
6
σk‖sk‖3. (4.4)

Termination criteria for the approximate minimization of mk For the above bound (4.4) on
the model decrease to be useful for investigating complexity bounds for ARC, we must ensure that sk

does not become too small compared to the size of the gradient. To deduce a lower bound on ‖sk‖, we
need to be more specific about ARC. In particular, a suitable termination criteria for the method used to
minimize mk(s) needs to be specified.

Let us assume that some iterative solver is used on each (major) iteration k to approximately minimize
mk(s). Let us set the termination criteria for its inner iterations i to be

‖∇smk(si,k)‖ ≤ θi,k‖gk‖, (4.5)

where
θi,k

def= κθ min(1, ‖si,k‖), (4.6)

where si,k are the inner iterates generated by the solver and κθ is any constant in (0, 1).
Note that gk = ∇smk(0). The condition (4.5) is always satisfied by any minimizer si,k of mk, since

then ∇smk(si,k) = 0. Thus condition (4.5) can always be achieved by an iterative solver, the worst that
could happen is to iterate until an exact minimizer of mk is found. We hope in practice to terminate well
before this inevitable outcome.

It follows from (4.5) and (4.6) that

TC.s ‖∇smk(sk)‖ ≤ θk‖gk‖, where θk = κθ min(1, ‖sk‖), k ≥ 0. (4.7)

where sk
def= si,k > 0 with i being the last inner iteration. The lower bound on sk that the criteria TC.s

provides is given in Lemma 5.2.
A family of termination criteria were proposed in [1, §3.3], that also includes TC.s. Conditions were

given under which ARC with any of these termination rules (and sk satisfying (4.1) and (4.2)) is locally
Q-superlinearly convergent, without assuming Lipschitz continuity of the Hessian H(x) (see [1, Corollary
4.8]); the latter result also applies to TC.s. Furthermore, when the Hessian is locally Lipschitz continuous
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and standard local convergence assumptions hold, ARC with the TC.s rule is locally Q-quadratically
convergent (see [1, Corollary 4.10]). This rate of convergence implies an O(| log log ε|) local iteration
complexity bound (when the iterates are attracted to a local minimizer x∗ of f with H(x∗) positive
definite) [10]; however, the basin of attraction of x∗ is unknown in general.

Summary Let us now summarize the second-order ARC variant that we described above.

Algorithm 4.1: ARC(S).

In each iteration k of the ARC algorithm, perform Step 1 as follows:
compute sk such that (4.1), (4.2) and TC.s are achieved, and (2.2) remains satisfied.

For generality purposes, we do not prescribe how the above conditions in ARC(S) are to be achieved by sk.
We have briefly mentioned in the first paragraph of this section—and discussed at length in [1, §6.2,§7]—a
way to satisfy them using Lanczos method (to globally minimizes mk over a sequence of nested Krylov
subspaces until TC.s holds) in each major ARC(S) iteration k.

Let us now ensure that (2.6) holds unless ARC(S) terminates. Clearly, (2.7) continues to hold since sk

still satisfies (2.2). In the case when gk = 0 for some k ≥ 0, we need to be more careful. If sk minimizes
mk over a subspace Lk generated by the columns of some orthogonal matrix Qk (as it is the case in our
implementation of ARC(S) and in its complexity analysis for second-order optimality in §5.2), then we
have

(4.3) holds and λmin(Q>
k BkQk) < 0 =⇒ sk 6= 0, (4.8)

since Lemma 4.1 holds even when gk = 0. Thus, when the left-hand side of the implication (4.8) holds,
the (4.4), (4.8) and σk > 0 imply that (2.6) is satisfied. But if λmin(Q>

k BkQk) ≥ 0 and gk = 0, then, from
(4.1), sk = 0 and the ARC(S) algorithm will terminate. Hence, if our intention is to identify whether Bk

is indefinite, it will be necessary to build Qk so that Q>
k BkQk predicts negative eigenvalues of Bk. This

will ultimately be the case with probability one if Qk is built as the Lanczos basis of the Krylov space
{Bl

kv}l≥0 for some random initial vector v 6= 0. We assume here that, irrespectively of the way the step
conditions are achieved in ARC(S), (2.6) holds, even when gk = 0, unless the ARC(S) algorithm terminates.

5 Iteration complexity bounds for the ARC(S) algorithm

For the remainder of the paper, let us assume that

AF.3 f ∈ C2(IRn). (5.1)

Note that no assumption on the Hessian of f being globally or locally Lipschitz continuous has been
imposed in Corollary 3.4. In what follows, however, we assume that the objective’s Hessian is globally
Lipschitz continuous, namely,

AF.6 ‖H(x)−H(y)‖ ≤ L‖x− y‖, for all x, y ∈ IRn, where L > 0, (5.2)

and that Bk and H(xk) agree along sk in the sense that

AM.4 ‖(H(xk)−Bk)sk‖ ≤ C‖sk‖2, for all k ≥ 0, and some constant C > 0. (5.3)

The requirement (5.3) is a slight strengthening of the Dennis–Moré condition [3]. The latter is achieved
by a number of quasi-Newton techniques under some additional assumptions [13, Sect. 3.3, Chapter 8];
see our discussion following [1, (4.8)]. Quasi-Newton methods may still satisfy AM.4 in practice, though
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we are not aware if this can be ensured theoretically. We remark that if the inequality in AM.4 holds for
sufficiently large k, it also holds for all k ≥ 0. The condition AM.4 is trivially satisfied with C = 0 when
we set Bk = H(xk) for all k ≥ 0.

Some preliminary lemmas are to follow. Firstly, let us show that when the above assumptions hold,
σk cannot become unbounded, irrespectively of how the step sk is computed as long as (2.6) holds. Thus
the result below applies to the basic ARC framework and to ARC(S).

Lemma 5.1. [1, Lemma 5.2] Let AF.3, AF.6 and AM.4 hold. Then

σk ≤ max (σ0, 3
2γ2(C + L)) def= L0, for all k ≥ 0. (5.4)

In view of the global complexity analysis to follow, we would like to obtain a tighter bound on the
model decrease in ARC(S) than in (3.3). For that, we use the bound (4.4) and a lower bound on sk to be
deduced in the next lemma.

Lemma 5.2. Let AF.3–AF.4, AF.6, AM.4 and TC.s hold. Then sk satisfies

‖sk‖ ≥ κg

√
‖gk+1‖ for all successful iterations k, (5.5)

where κg is the positive constant

κg
def=

√
1− κθ

1
2L + C + L0 + κθκH

(5.6)

and κθ is defined in (4.7) and L0, in (5.4).

Proof. The conditions of Lemma 5.1 are satisfied, and so the bound (5.4) on σk holds. The proof of
(5.5) follows similarly to that of [1, Lemma 4.9] , by letting σmax = L0 and L∗ = L, and recalling that
we are now in a non-asymptotic regime. (The latter Lemma was employed in [1] to prove that ARC(S)

is Q-quadratically convergent asymptotically.) For convenience, however, and since the bound (5.5) is
crucial for the complexity analysis to follow, we give a complete proof of the lemma here.

Let k ∈ S, and so gk+1 = g(xk + sk). Then

‖gk+1‖ ≤ ‖g(xk + sk)−∇smk(sk)‖+ ‖∇smk(sk)‖ ≤ ‖g(xk + sk)−∇smk(sk)‖+ θk‖gk‖, (5.7)

where we used TC.s to derive the last inequality. We also have from differentiating mk,

∇smk(sk) = gk + Bksk + σk‖sk‖sk,

and from Taylor’s theorem that

‖g(xk + sk)−∇smk(sk)‖ ≤
∥∥∥∥∫ 1

0

[H(xk + τsk)−Bk]skdτ

∥∥∥∥ + σk‖sk‖2. (5.8)

From the triangle inequality and AF.4, we obtain

‖gk‖ ≤ ‖gk+1‖+ ‖gk+1 − gk‖ ≤ ‖gk+1‖+ κH‖sk‖. (5.9)

Substituting (5.9) and (5.8) into (5.7), we deduce

(1− θk)‖gk+1‖ ≤
∥∥∥∥∫ 1

0

[H(xk + τsk)−Bk]skdτ

∥∥∥∥ + θkκH‖sk‖+ σk‖sk‖2. (5.10)
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It follows from the definition of θk in (4.7) that θk ≤ κθ‖sk‖ and θk ≤ κθ, and (5.10) becomes

(1− κθ)‖gk+1‖ ≤
∥∥∥∥∫ 1

0

[H(xk + τsk)−Bk]skdτ

∥∥∥∥ + (κθκH + σk)‖sk‖2. (5.11)

The triangle inequality, AM.4 and AF.6 provide∥∥∥∥∫ 1

0

[H(xk + τsk)−Bk]skdτ

∥∥∥∥ ≤
∥∥∥∥∫ 1

0

[H(xk + τsk)−H(xk)]dτ

∥∥∥∥ · ‖sk‖+ ‖(H(xk)−Bk)sk‖,

≤
∫ 1

0

‖H(xk + τsk)−H(xk)‖dτ · ‖sk‖+ C‖sk‖2,

≤ ( 1
2L + C) ‖sk‖2. (5.12)

It now follows from (5.11) and from the bound (5.4) in Lemma 5.1 that

(1− κθ)‖gk+1‖ ≤ ( 1
2L + C + κθκH + L0) ‖sk‖2, (5.13)

which together with (5.6) provides (5.5). 2

In the next sections, ARC(S) is shown to satisfy better complexity bounds than the basic ARC frame-
work. In particular, the overall iteration complexity bound for ARC(S) is O(ε−3/2) for first-order optimality
within ε, and O(ε−3), for approximate second-order conditions in a subspace containing sk. As in [12],
we also require f to have a globally Lipschitz continuous Hessian. We allow more freedom in the cubic
model, however, since Bk does not have to be the exact Hessian, as long as it satisfies AM.4; also, sk is
not required to be a global minimizer of mk over IRn.

5.1 A worst-case bound for approximate first-order optimality

We are now ready to give an improved complexity bound for the ARC(S) algorithm.

Corollary 5.3. Let AF.3–AF.4, AF.6 and AM.4 hold, and {f(xk)} be bounded below by flow. Let
σk be bounded below as in (2.11), and let ε > 0. Then the total number of successful iterations with

min (‖gk‖, ‖gk+1‖) > ε (5.14)

that occur when applying the ARC(S) algorithm is at most

L̃s
1

def=
⌈
κs

Sε−3/2
⌉
, (5.15)

where
κs

S
def= (f(x0)− flow)/(η1αS), αS

def= (σminκ3
g)/6 (5.16)

and κg is defined in (5.6). Assuming that (5.14) holds at k = 0, the ARC(S) algorithm takes at most
L̃s

1 + 1 successful iterations or equivalently, gradient evaluations, to generate a (first) iterate, say l1,
with ‖gl1+1‖ ≤ ε.
Furthermore, when ε ≤ 1, we have

l1 ≤
⌈
κSε−3/2

⌉
def= L̃1, (5.17)

and so the ARC(S) algorithm takes at most L̃1 (successful and unsuccessful) iterations, and function
evaluations, to generate ‖gl1+1‖ ≤ ε, where

κS
def= (1 + κu

S)(2 + κs
S) and κu

S
def= log(L0/σmin)/ log γ1, (5.18)

with L0 defined in (5.4) and κs
S, in (5.16).
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Proof. Let
Sε

g
def= {k ∈ S : min (‖gk‖, ‖gk+1‖) > ε}, (5.19)

and let |Sε
g| denote its cardinality. It follows from (4.4), (2.11), (5.5) and (5.19) that

f(xk)−mk(sk) ≥ αSε3/2, for all k ∈ Sε
g, (5.20)

where αS is defined in (5.16). Letting Fk = min (‖gk‖, ‖gk+1‖), Sε
F = So = Sε

g and p = 3/2 in
Theorem 2.2, we deduce that |Sε

g| ≤ L̃s
1, with L̃s

1 defined in (5.15). This proves the first part of the
Corollary and, assuming that (5.14) holds with k = 0, it also implies the bound

|Sl+ | ≤ L̃s
1, (5.21)

where Sl+ is (2.9) with j = l+ and l+ is the first iterate such that (5.14) does not hold at l+ +1. Thus
‖gk‖ > ε, for all k = 0, . . . , (l+ + 1) and ‖gl++2‖ ≤ ε. Recalling the definition of l1 in the statement of
the Corollary, it follows that Sl1 \{l1} = Sl+ , where Sl1 is (2.9) with j = l1. From (5.21), we now have

|Sl1 | ≤ L̃s
1 + 1. (5.22)

A bound on the number of unsuccessful iterations up to l1 follows from (5.22) and from (2.14) in
Theorem 2.1 with j = l1 and σ = L0, where L0 is provided by (5.4) in Lemma 5.1. Thus we have

|Ul1 | ≤
⌈
(2 + L̃s

1)κ
u
S

⌉
, (5.23)

where Ul1 is (2.9) with j = l1 and κu
S is defined in (5.18). Since l1 = |Sl1 | + |Ul1 |, the upper bound

(5.17) is the sum of (5.22) and (5.23), where we also employ the expression (5.15) of L̃s
1. 2

Note that we may replace the cubic term σk‖s‖3/3 in mk(s) by σk‖s‖α/α, for some α > 2. Let us
further assume that then, we also replace AM.4 by the condition ‖(H(xk) − Bk)sk‖ ≤ C‖sk‖α−1, and
AF.6 by (α− 2)−Hölder continuity of H(x), i. e., there exists CH > 0 such that

‖H(x)−H(y)‖ ≤ CH‖x− y‖α−2, for all x, y ∈ IRn.

In these conditions and using similar arguments as for α = 3, one can show that

lα ≤ dκαε−α/(α−1)e,

where lα is a (first) iteration such that ‖glα+1‖ ≤ ε, ε ∈ (0, 1) and κα > 0 is a constant independent of ε.
Thus, when α ∈ (2, 3), the resulting variants of the ARC algorithm have better worst-case iteration
complexity than the steepest descent method under weaker assumptions on H(x) and Bk than Lipchitz
continuity and AM.4, respectively. When α > 3, the complexity of the ARC α-variants is better than the
O(ε−3/2) of the ARC algorithm, but the result applies only to quadratic functions.

5.2 A complexity bound for achieving approximate second-order optimality

in a subspace

The next corollary addresses the complexity of achieving approximate nonnegative curvature in the Hessian
approximation Bk along sk and in a subspace. Note that the approach in §2.1 and §3, when we require
at least as much model decrease as given by the Cauchy point, is not expected to provide second-order
optimality of the iterates asymptotically as it is, essentially, steepest descent method. When in the
ARC(S) algorithm the step sk is computed by globally minimizing the model over subspaces (that may
even equal IRn asymptotically), second-order criticality of the iterates is achieved in the limit, at least in
these subspaces, as shown in [1, Theorem 5.4] (provided AF.6 and AM.4 hold). We now analyse the global
complexity of reaching within ε of second-order criticality with respect to the approximate Hessian in the
subspaces of minimization.
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Corollary 5.4. Let AF.3–AF.4, AF.6 and AM.4 hold. Let {f(xk)} be bounded below by flow and
σk, as in (2.11). Let sk in ARC(S) be the global minimizer of mk(s) over a subspace Lk that is
generated by the columns of an orthogonal matrix Qk and let λmin(Q>

k BkQk) denote the leftmost
eigenvalue of Q>

k BkQk. Then, given any ε > 0, the total number of successful iterations with negative
curvature

−λmin(Q>
k BkQk) > ε (5.24)

that occur when applying the ARC(S) algorithm is at most

Ls
2

def=
⌈
κcurvε

−3
⌉
, (5.25)

where
κcurv

def= (f(x0)− flow)/(η1αcurv) and αcurv
def= σmin/(6L3

0), (5.26)

with σmin and L0 defined in (2.11) and (5.4), respectively. Assuming that (5.24) holds at k = 0,
the ARC(S) algorithm takes at most Ls

2 successful iterations or equivalently, gradient evaluations, to
generate a (first) iterate, say l2, with −λmin(Q>

l2+1Bl2+1Ql2+1) ≤ ε. Furthermore, when ε ≤ 1, we
have

l2 ≤
⌈
κt

curvε
−3

⌉ def= L2, (5.27)

and so the ARC(S) algorithm takes at most L2 (successful and unsuccessful) iterations, and function

evaluations, to generate −λmin(Q>
l2+1Bl2+1Ql2+1) ≤ ε, where κt

curv
def= (1 + κu

S)κcurv + κu
S and κu

S is
defined in (5.18).

Proof. Lemma 4.1 implies that the matrix Q>
k BkQk + σk‖sk‖I is positive semidefinite and thus,

λmin(Q>
k BkQk) + σk‖sk‖ ≥ 0, for k ≥ 0,

which further gives

σk‖sk‖ ≥ |λmin(Q>
k BkQk)|, for any k ≥ 0 such that −λmin(Q>

k BkQk) > ε, (5.28)

since the latter inequality implies λmin(Q>
k BkQk) < 0. It follows from (4.4), (5.4) and (5.28) that

f(xk)−mk(sk) ≥ αcurvε
3, for all k ≥ 0 with −λmin(Q>

k BkQk) > ε, (5.29)

where αcurv is defined in (5.26). Define Sε
λ

def= {k ∈ S : −λmin(Q>
k BkQk) > ε} and |Sε

λ|, its cardinality.
Letting Fk = |λmin(Q>

k BkQk)|, So = Sε
F = Sε

λ and p = 3 in Theorem 2.2 provides the bound

|Sε
λ| ≤ Ls

2, where Ls
2 is defined in (5.25). (5.30)

Assuming that (5.24) holds at k = 0, and recalling that l2 is the first iteration such that (5.24) does
not hold at l2 + 1 and that Sl2 is (2.9) with j = l2, we have Sl2 ⊆ Sε

λ. Thus (5.30) implies

|Sl2 | ≤ Ls
2. (5.31)

A bound on the number of unsuccessful iterations up to l2 can be obtained in the same way as in the
proof of Corollary 5.3, since Theorem 2.1 does not depend on the choice of optimality measure Fk.
Thus we deduce, also from (5.31),

|Ul2 | ≤ d(1 + |Sl2 |)κu
Se ≤ d(1 + Ls

2)κ
u
Se, (5.32)

where Ul2 is given in (2.9) with j = l2 and κu
S, in (5.18). Since l2 = |Sl2 | + |Ul2 |, the bound (5.27)

readily follows from ε ≤ 1, (5.31) and (5.32). 2
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Note that the complexity bounds in Corollary 5.4 also give a bound on the number of the iterations
at which negative curvature occurs along the step sk by considering Lk as the subspace generated by the
normalized sk.

Assuming sk in ARC(S) minimizes mk globally over the subspace generated by the columns of the
orthogonal matrix Qk for k ≥ 0, let us now briefly remark on the complexity of driving the leftmost
negative eigenvalue of Q>

k H(xk)Qk — as opposed to Q>
k BkQk — below a given tolerance, i. e.,

−λmin(Q>
k H(xk)Qk) ≤ ε. (5.33)

In the conditions of Corollary 5.4, let us further assume that

‖Bk −H(xk)‖ ≤ ε2, for all k ≥ k1 where k1 is such that ‖gk1‖ ≤ ε1, (5.34)

for some positive parameters ε1 and ε2, with ε2
√

n < ε. Then Corollary 5.3 gives an upper bound on the
(first) iteration k1 with ‖gk‖ ≤ ε1, and we are left with having to estimate k ≥ k1 until (5.33) is achieved.
A useful property concerning H(xk) and its approximation Bk is needed for the latter. Given any matrix
Qk with orthogonal columns, [6, Corollary 8.1.6] provides the first inequality below

|λmin(Q>
k H(xk)Qk)− λmin(Q>

k BkQk)| ≤ ‖Q>
k [H(xk)−Bk]Qk‖ ≤

√
n‖H(xk)−Bk‖, k ≥ 0, (5.35)

while the second inequality above employs ‖Q>
k ‖ ≤

√
n and ‖Qk‖ = 1. Now (5.34) and (5.35) give

|λmin(Q>
k HkQk)− λmin(Q>

k BkQk)| ≤ ε2
√

n, k ≥ k1, (5.36)

and thus, (5.33) is satisfied when

−λmin(Q>
k BkQk) ≤ ε− ε2

√
n

def= ε3. (5.37)

Now Corollary 5.4 applies and gives us an upper bound on the number of iterations k such that (5.37) is
achieved, which is O(ε−3

3 ).

If we make the choice Bk = H(xk) and Qk is full-dimensional for all k ≥ 0, then the above argument
or the second part of Corollary 5.4 imply that (5.33) is achieved for k at most O(ε−3), which recovers the
result obtained by Nesterov and Polyak [12, p. 185] for their Algorithm 3.3.

Corollary 5.4 implies lim infk∈S,k→∞ λmin(QT
k BkQk) ≥ 0, provided its conditions hold. The global

convergence result to approximate critical points [1, Theorem 5.4] is more general as it does not employ
TC.s; also, conditions are given for the above limit to hold when Bk is replaced by H(xk).

5.3 A complexity bound for achieving approximate first- and second-order

optimality

Finally, in order to estimate the complexity of generating an iterate that is both approximately first- and
second-order critical, let us combine the results in Corollaries 5.3 and 5.4.
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Corollary 5.5. Let AF.3–AF.4, AF.6 and AM.4 hold, and {f(xk)} be bounded below by flow. Let
σk be bounded below as in (2.11), and sk in ARC(S) be the global minimizer of mk(s) over a subspace
Lk that is generated by the columns of an orthogonal matrix Qk. Given any ε ∈ (0, 1), the ARC(S)

algorithm generates l3 ≥ 0 with

max
(
‖gl3+1‖,−λmin(Q>

l3+1Bl3+1Ql3+1)
)
≤ ε (5.38)

in at most dκs
fsε
−3e successful iterations, or equivalently, gradient evaluations, where

κs
fs

def= κs
S + κcurv + 1, (5.39)

and κs
S and κcurv are defined in (5.16) and (5.26), respectively. Furthermore, for the total number

of iterations l3, or equivalently, for the function evaluations required, we have l3 ≤
⌈
κfsε

−3
⌉
, where

κfs
def= (1 + κu

S)κs
fs + κu

S and κu
S is defined in (5.18).

Proof. The conditions of Corollaries 5.3 and 5.4 are satisfied. Thus the sum of the bounds (5.15)
and (5.30), i. e.,

dκs
Sε−3/2 + κcurvε

−3e, (5.40)

gives an upper bound on all the possible successful iterations that may occur either with

min(‖gk‖), ‖gk+1‖) > ε

or with
−λmin(Q>

k BkQk) > ε.

As the first of these criticality measures involves both iterations k and k+1, the latest such a successful
iteration is given by (5.39). The bound on l3 follows from Theorem 2.1, as in the proof of Corollary
5.3. 2

The above result shows that the better bound (5.17) for approximate first-order optimality is oblit-
erated by (5.27) for approximate second-order optimality (in the minimization subspaces) when seeking
accuracy in both these optimality conditions.

Counting zero gradient values. Recall the discussion in the last paragraphs of §2.1 and §4 regarding
the case when there exists k ≥ 0 such that gk = 0. Note that in the conditions of Corollary 5.4, (4.8)
implies that sk 6= 0 and (2.6) holds. Furthermore, (5.29) remains satisfied even when gk = 0, since our
derivation of (5.29) in the proof of Corollary 5.4 does not depend on the value of the gradient. Similarly,
Corollary 5.5 also continues to hold in this case.

6 Conclusions

In this paper, we investigated the global iteration complexity of a general adaptive cubic regularisation
framework, and a second-order variant, for unconstrained optimization, both first introduced and analysed
in the companion paper [1]. The generality of the former framework allows a worst-case complexity bound
that is of the same order as for the steepest descent method. Its second-order variant, however, has
better first-order complexity and allows second-order criticality complexity bounds, that match the order
of similar bounds proved by Nesterov and Polyak [12] for their Algorithm 3.3. Our approach is more
general as it allows approximate model minimization to be employed, as well as approximate Hessians.

Similarly to [11, 12], further attention needs to be devoted to analysing the global iteration complexity
of ARC and its variants for particular problem classes, such as when f is convex or strongly convex.
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Together with Part I [1], the ARC framework, and in particular, its second-order variants, have been
shown to have good global and local convergence, as well as complexity, and to perform better than a
basic trust-region approach on small-scale test problems from CUTEr.
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