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Abstract
Background: Vector-borne and zoonotic diseases generally display clear spatial patterns due to
different space-dependent factors. Land cover and land use influence disease transmission by
controlling both the spatial distribution of vectors or hosts, and the probability of contact with
susceptible human populations. The objective of this study was to combine environmental and
socio-economic factors to explain the spatial distribution of two emerging human diseases in
Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis.

Results: Negative binomial regressions including a correction for spatial endogeneity show that
the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination
of factors linked to the vector and host populations, to human behaviours, and to landscape
attributes. Both diseases are associated with the presence of forests, which are the preferred
habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas,
where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis
transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly
in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous
and exogenous processes could be accounted for in the model on PUUV but not for Lyme
borreliosis.

Conclusion: A large part of the spatial variation in disease risk can be explained by environmental
and socio-economic factors. The two diseases not only are most prevalent in different regions but
also affect different groups of people. Combining these two criteria may increase the efficiency of
information campaigns through appropriate targeting.
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Background
Numerous human infectious diseases, particularly vector-
borne and zoonotic diseases, are thought to emerge or re-
emerge in some parts of the world due to environmental
changes. The spatial distribution of two emerging human
diseases were investigated and compared in Belgium: Puu-
mala virus (PUUV) and Lyme borreliosis. Since the former
is a zoonotic rodent-borne infection (i.e. transmissible
from vertebrate animals to humans) and the latter a tick-
borne infection, zoonotic and vector-borne at the same
time, both strongly depend on the natural environment.

In Europe, hantaviruses (family Bunyaviridae) are causa-
tive agents of human zoonoses called haemorrhagic fever
with renal syndrome (HFRS). Hantaviruses are transmit-
ted via rodent excretions, unlike the other viruses from the
Bunyaviridae family that are transmitted by arthropod vec-
tors [1]. In western and northern Europe, Puumala virus
(PUUV) causes a mild form of HFRS: nephropathia epi-
demica. PUUV is associated predominantly with the bank
vole (Clethrionomys glareolus) [2-5]. Ecological factors such
as favourable habitat, food supply, and climatic condi-
tions cause interannual fluctuations in populations of
bank voles.

Lyme borreliosis is an infection caused by a spirochete
named Borrelia burgdorferi. This zoonosis is a tick-borne
disease present in the northern hemisphere where the
main vector species in European countries is Ixodes ricinus
[6,7]. The complexity of disease dynamics is due to the life
cycle of ticks, composed of three developmental stages
(larvae, nymph, and adult). Infected ticks can transmit

spirochetes to the host every time they take a blood meal,
which occurs once per stage. Each of the components of
the system (spirochete, tick vector, and hosts) is influ-
enced by external biotic and abiotic factors [8]. Conse-
quently, human activity can directly or indirectly
influence the disease ecology by its impact on landscapes
and host populations.

PUUV and Lyme borreliosis infections followed different
evolutions in Belgium over the last decade. PUUV human
infections display interannual fluctuations that follow
that of their carrier rodent population [9-11], with distinc-
tive epidemic years in 1996, 1999, 2001, 2003 and 2005.
By contrast, Lyme infections show a large linear increase.
This may be due in small part to a better knowledge, diag-
nostic, and census of the disease but this is unlikely to
fully explain the reported increase [12] (Figure 1).

The spatial distributions of both diseases in Belgium are
also dissimilar but both are highly clustered in space (Fig-
ure 2). Hantavirus human cases concentrate along the
French-Belgian border, in the provinces of Hainaut,
Namur and Luxembourg. This concentration is particu-
larly high during non-epidemic years, while human infec-
tions slightly spread to other parts of Belgium during
epidemic years [9]. The exceptionally large number of
hantavirus human infections in Belgium in 2005 (Figure
1), particularly in the province of Liège, was simultane-
ously observed in France and Germany [13]. The spatial
distribution of Lyme borreliosis infections displays high
concentrations along a North-South axis, in the provinces
of Antwerp, Brabant and Namur.

Number of human infections over the last decade in BelgiumFigure 1
Number of human infections over the last decade in Belgium. (a) PUUV human cases between 1994 and 2005. (b) 
Lyme borreliosis infections between 1994 and 2004. Only data in dark were used in statistical analyses. Data source: Institute 
of Public Health (IPH).
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Spatial variation in incidence rates of human infections in BelgiumFigure 2
Spatial variation in incidence rates of human infections in Belgium. (a) Spatial distribution of PUUV mean annual inci-
dence rates per municipality for the 1994–2004 period. (b) Spatial distribution of Lyme borreliosis mean annual incidence rates 
per municipality for the 1998–2004 period. Discretization method: natural breaks (Jenks). Data source: Institute of Public 
Health (IPH).
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Vector-borne and zoonotic diseases generally display clear
spatial patterns that can be due to different space-depend-
ent factors: (i) the limited pathogen dispersal, (ii) the spa-
tial distribution of vectors, hosts and reservoirs, and (iii)
the human exposure to the infectious agent. Ostfeld et al.
(2005) define spatial epidemiology as "the study of spa-
tial variation in disease risk or incidence" [14]. Land cover
– defined by the attributes of the earth's land surface and
immediate subsurface, including biota, soil, topography,
surface and groundwater, and human structures – and
land use – defined by the purposes for which humans
exploit the land cover – influence directly the spatial vari-
ation in disease risk by controlling the different agents of
the disease transmission process (pathogen, vectors and
hosts, including humans) and the degree of contact
between these agents [15].

Geographical information systems (GIS) and remote
sensing are appropriate tools to describe the spatial distri-
bution of infectious diseases and predict disease risk [16-
20]. These tools have already been used to explain or pre-
dict tick-borne diseases [21-24] and rodent-borne diseases
[25,26]. These previous studies were aimed at relating spa-
tial data on land cover and climate to the ecology of vec-
tors or hosts.

The objective of this study was to combine environmental
and socio-economic factors to explain the geographic dis-
tribution of disease incidence of Puumala virus and Lyme
borreliosis in Belgium. We used multivariate statistical
analysis to explain the number of PUUV and Lyme borre-
liosis infections per municipality according to variables
related to land cover, land use, settlement characteristics,
socio-economic variables, risk behaviours, and host pop-
ulation. We used the disease incidence as proxy for disease
risk because: (i) data on human infections are better
inventoried than data on hosts (in the case of PUUV) or
vectors (in the case of Lyme borreliosis), and (ii) human
infection results from the presence of vectors/hosts and
the pathogen but also from people's exposure to vectors/
hosts [27]. Human exposure is generally not taken into
account in studies of vector or host ecology (but see [28]).

Data and methods
Dependent variable
The surveillance of Lyme borreliosis and hantavirus infec-
tions is carried out through the Scientific Institute of Pub-
lic Health (IPH) sentinel laboratory network. As the
diagnosis of these infections is complex and needs to be
confirmed by a specialised laboratory, sentinel laborato-
ries are asked to send positive samples to the Reference
Laboratories for confirmation. These Reference Laborato-
ries (e.g., the Reference Laboratory for Vector-borne dis-
eases in Brussels) send monthly data on confirmed cases
to the IPH and duplicated records are eliminated. The IPH

collects data per postal code, which is a subdivision of the
Belgian municipality. As socio-economic census data are
only publicly available at the level of municipalities, we
simply aggregated data from postal codes to municipali-
ties and conducted the study at that level.

The number of human infections was used as dependent
variable and the population number was added as offset
variable in the model. Therefore, the model explains the
incidence rate per municipality, as it was done in [29],
under the assumption that incidence and disease trans-
mission risk are highly correlated [14]. For Puumala virus,
we considered all the human infections that were diag-
nosed in Belgium between 1994 and 2004. For Lyme bor-
reliosis infections, we only consider the period 1998–
2004 given data availability.

The data collection method was slightly different for the
two diseases. While PUUV patients were georeferenced
according to their residential municipality in the IPH
database, Lyme borreliosis patients were georeferenced
according to the municipality where they thought the con-
tamination took place. Since, in most cases, Lyme con-
tamination by a tick took place close to one's house, we
assumed that the municipality of contamination that was
recorded is the municipality of residence. We thus consid-
ered municipalities of residence for both diseases. This
assumption allows combining socio-economic and envi-
ronmental characteristics of municipalities in explaining
disease occurrence.

Covariates
Independent variables included several factors that have
been related to the spatial variation in disease risk, includ-
ing proxies for human behaviours that facilitate contacts
with pathogenic agents (via vectors, hosts or a contami-
nated environment) (Table 1).

Land cover and land use
Land cover determines the spatial distribution of vectors,
hosts and animal reservoirs according to their habitat
preferences. Broad-leaved forests, being considered as the
favourite habitat for bank voles and ticks alike are
expected to have an impact on disease risk. The CORINE
Land Cover 2000 database, with a spatial resolution of
100 meters, was produced between 1999 and 2001 on the
basis of satellite image interpretation [30]. The proportion
of municipality area covered by forests (categories 3.1.1,
3.1.2 and 3.1.3 from CORINE Land Cover 2000) and
broad-leaved forests (category 3.1.1 from CORINE Land
Cover 2000) were extracted.

Land use determines human presence in a given place
(settlement, leisure, agriculture,...) at particular times of
the year and of the day. In built-up areas, the presence of
Page 4 of 14
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Table 1: Summary statistics of dependent and independent variables

Dependent variables

Label Variable Mean Std. Dev. Min. Max.

PUUV total number of PUUV infections during the 1994–2004 period 1.5 5.3 0 88
Lyme total number of Lyme borreliosis infections during the 1998–2004 period 7.8 13.5 0 104

Independent variables

Label Variable Mean Std. Dev. Min. Max.

Land cover and land use
propforest proportion of forest area (%) 13.7 17.7 0.0 83.5
propleaf proportion of broad-leaved forest area (%) 5.3 8.2 0.0 54.9
urbanisation urbanisation level from a morphological point of view (5 categories) 3.0 1.0 1.0 5.0
Settlement characteristics
housesep proportion of people living in a separated house (%) 50.3 20.3 0.7 87.2
housetwin proportion of people living in a twinned house (%) 20.6 6.6 1.0 42.0
houseadj proportion of people living in an adjoining house (%) 18.9 12.5 1.9 59.2
apartment proportion of people living in an apartment (%) 8.8 11.7 0.2 71.6
cottage proportion of people living in a caravan or country cottage (%) 0.2 0.5 0.0 8.0
Socio-economic data
income average income per 1000 inhabitants in 2002 25173 3752 16916 39735
pop94_04 average population for the 1994–2004 period 17360 27585 86.82 451778
pop98_04 average population for the 1998–2004 period 17473 27492 85.57 448782
Risk behaviours
hunting proportion of people with a hunting licence for Flemish or Walloon forests during 

the hunting year 2004–2005 (%)
0.34 0.29 0.00 3.45

Host population
roedeer density of roe deer (heads/km2) 1.4 2.0 0.0 18.2

vectors and hosts is very constrained ecologically and dis-
ease risk is expected to be low. A higher disease risk is
expected in landscape mosaics of human-dominated and
natural covers, where contacts between humans and vec-
tors or hosts are more frequent [29]. To test the influence
of the level of urbanisation, we used a classification based
on the 1991 survey of the Directorate-general Statistics
Belgium that classifies municipalities in 5 categories
according to their morphological urbanisation level: cen-
tral municipalities of main towns; high, medium and low
level of morphological urbanisation; and rural municipal-
ities [31]. The morphological urbanisation level of munic-
ipalities was determined using the population density and
the proportion of built-up areas.

Settlement characteristics
Settlement density and types are expected to have an
impact on the likelihood of contacts between humans and
vectors or hosts. People living at the vicinity of forests are
more likely to be infected because they are more often in
direct contact with soil and wood potentially infected by
PUUV. For some PUUV human cases in France, the only
risk factor found was the proximity between habitation
and forest [32]. Outdoor activities, even in the garden,
also increase the probability of being bitten by a tick. The

2001 socio-economic survey of the Directorate-general
Statistics Belgium provides data on population distribu-
tion according to residential characteristics [33]. Habita-
tions are divided in 5 categories: separated houses,
twinned houses, adjoining houses, apartments, and
mobile homes or country cottages. We used the propor-
tion of people living in these different settlement types for
each municipality.

Socio-economic data
Certain professional or leisure activities that are dominant
in certain municipalities could be reflected in the socio-
professional level. For example, municipalities with many
farmers and forest workers, such as loggers or foresters,
which are more exposed to disease risk, generally corre-
spond to lower mean incomes. By contrast, peri-urban
zones, characterized by large gardens surrounded by
woods generally correspond to higher incomes. A higher
income may also enhance the propensity to consult a doc-
tor and therefore the probability to detect the disease.
Since 2000, the Directorate-general Statistics Belgium per-
forms an annual survey on Belgian household budgets.
We used data on average taxable income per tax return
form in each municipality from 2002, the most recent
publicly available data [34]. Data on the number of
Page 5 of 14
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inhabitants per municipality are also available for 1993
and 2000 to 2004. Data were interpolated for missing
years to estimate the average number of inhabitants for
the period 1994–2004 for PUUV and 1998–2004 for
Lyme borreliosis.

Risk behaviours
Specific human behaviours are expected to increase risk
for the two diseases. Risk activities for PUUV include
working in forest, farming, animal trapping, woodcutting
or reopening rodent infested buildings [2,10,32], and are
mainly linked to professional activities [2]. Lyme borrelio-
sis incidence is more linked to peridomestic and recrea-
tional activities such as gardening, hiking or other
outdoor activities. Few data on these behaviours are avail-
able. A detailed analysis of risk behaviours would require
data at the individual level rather than municipalities, as
it was done in [2,5]. In this study, we included only the
proportion of people who were holding a hunting licence
for Flemish or Walloon forests during the hunting year
2004–2005. These data were provided at the municipality
level by institutions that deliver licences to hunt either in
Walloon forests (data provided by the "Nature and forest"
Division of the Walloon Region, Hunting and Fishing
direction, 2005) or in Flemish forests (data provided by
district police stations, Nature and Forest agency of the
Flanders Region, 2006) and were associated with the
municipality of residence. We assumed that people have
only one licence, to hunt either in Walloon or Flemish for-
ests.

Host population
The roe deer, the main host of Ixodes ricinus – although not
a reservoir – plays an important role of maintenance and
co-feeding for ticks [35,36]. Roe deer abundance should
therefore be related to tick abundance and Lyme borrelio-
sis transmission risk, as it was verified in Denmark [37].
The absence of deer could also amplify tick abundance at
small spatial scales [38]. Censuses on the number of roe
deer (estimation of the number of roe deer on feet) are
compiled by regional institutions in Belgium. Data were
provided by: (i) the "Instituut voor Bosbouw and Wildbe-
hher" (IBW), "Wildbeheer" department, "afschot reewild"
for Flanders, (ii) the "grand gibier" statistics from the
"Nature and forest" Division of the Walloon Region, and
(iii) the Brussels Environment (IBGE-BIM) for Brussels
[39]. Data on roe deer abundance are available at the
province level in Flanders and at the forest district level in
Wallonia and Brussels. These data were spatially disaggre-
gated at the level of municipalities to be compatible with
the scale of the dependent variable. For Wallonia, we first
overlaid forest district and municipality boundaries in a
GIS. Deer populations were allocated to each polygon
resulting from the intersection between forest districts and
municipalities according to the proportion of forested

area of the forest district belonging to the municipality.
The number of deer per municipality was then obtained
by aggregation of the different polygons in a municipality.
For Flanders, as municipalities are fully included in prov-
inces, we simply allocated a deer population to munici-
palities in proportion to the forest area of each
municipality. For Brussels, we only had an estimate of a
density of 3 roe deer for 100 hectares of forest [39]. Using
this estimate and the proportion of forest area in each
municipality of Brussels, we computed the expected
number of deer per municipality. For the three regions, we
considered the average number of deer over the 1998–
2004 period. This variable was used only in the model for
Lyme borreliosis.

Statistical distributions analysis
Count data such as the number of human infections often
follow a Poisson distribution. This distribution requires
that the mean is equal to the variance, a condition com-
monly not fulfilled. Our data follow such an extra-Pois-
son model. The dependent variables (total number of
human infections) for both diseases have highly asym-
metrical statistical distributions (Figure 3). Variances are
much larger than the means of the number of human
infections for both distributions. For PUUV infections,
more than half of the municipalities had no reported
cases during the ten years period. Lyme borreliosis infec-
tions are more evenly distributed, with only 95 out of 589
municipalities (16%) with no case. In terms of incidence
rates, the maximum annual PUUV incidence rate reaches
90.2 for 100,000 inhabitants in the municipality of Chi-
may. For Lyme borreliosis, four municipalities have a
mean incidence rate exceeding 50 (Kasterlee, Court-St-
Etienne, Dinant, and Beauraing).

As we are interested in inference of regression parameters,
the use of a model that allows for the possibility of extra-
Poisson variation is preferable [40]. The negative bino-
mial probability distribution is a generalisation of the
Poisson distribution with variances higher than means.
An overdispersion parameter k (≥ 0) is added:

var(Y) = µ + k * µ2

When k = 0, the negative binomial distribution is reduced
to a Poisson distribution.

Likelihood ratio tests and Dean's tests for overdispersion
were performed with the DCluster package of the R soft-
ware. The three tests were very significant and the null
hypothesis of overdispersion was not rejected (Table 2).
Page 6 of 14
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Multivariate analyses
Non-spatial model
Generalized linear regression models were computed
using the R statistical software. All variables were relative
to the population size Ni of municipalities and the loga-
rithm of Ni was added as an offset variable in the models.
The distribution parameter k is estimated by the maxi-
mum likelihood method, as the other parameters of the
negative binomial regression model. The Akaike's infor-
mation criterion (AIC), which takes the number of esti-
mated parameters into account, was used to select the
covariates to retain in the model. Variables were tested for
collinearity and confounding factors.

Spatial model
Spatial autocorrelation appears when a spatial depend-
ence due to neighbouring effects (i.e., spatial externalities)
exists between spatial entities. Spatial dependence usually
results from a combination of exogenous and endogenous
processes. In an exogenous spatial process, the identified
spatial pattern is generated by independent factors,
whereas endogenous spatial dependence is an inherent
property of the variable of interest [41]. Spatial epidemio-
logical models are particularly prone to spatial autocorre-
lation since disease transmission requires contacts
between infected and susceptible agents. The infection
rate in a locality is therefore influenced by the infection
rates in neighbouring spatial entities. The spatial diffusion

of epidemic diseases and the influence on infection of
many unobserved factors also cause spatial autocorrela-
tion.

Since spatial dependence between observations skews
parameter estimation, the presence of residual spatial
dependence in the error term needs to be examined [42].
Empirical variograms and their envelopes were estimated
with the geoR package from the R software (Figure 4) [43].
The envelopes of empirical variograms were computed
based on a simple Monte Carlo test that permutes data
values on spatial locations. Therefore, evidence of spatial
dependence is noticed when points representing residual
values fall outside the envelope on an empirical vario-
gram [44].

For linear regression models, one can distinguish between
endogenous and exogenous spatial processes by compar-

Table 2: Likelihood ratio test and Dean's tests for 
overdispersion

PUUV Lyme borreliosis

Likelihood Ratio Test 398.33* 2367.71*
Dean's P_B test 45.99* 134.66*
Dean's P'_B test 46.35* 134.91*

* P-value < 0,0001

Frequency charts of dependent variablesFigure 3
Frequency charts of dependent variables. (a) Number of PUUV infections per municipality for the 1994–2004 period. (b) 
Number of Lyme borreliosis infections per municipality for the 1998–2004 period.
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ing spatial lag and spatial error models [45]. This
approach does not apply for generalized linear models.
For negative binomial regressions, endogenous spatial
dependence can be corrected for by adding an instrumen-
tal variable that explains the dependent variable in the
neighbouring municipalities [46]:

log(Yi) = α + β1xi1 + β2xi2 + ... + βnxin + λ  + σεi

where Yi is the expected value of the dependent variable y

for the municipality i, xin are the dependent variables with

their associated regression coefficients βn, σεi is the distur-

bance term and  is the linear prediction of the depend-

ent variable in neighbouring spatial entities j. This model
was implemented in two stages, following the method of
Mallar (1977) [46]. Firstly, a separate negative binomial
regression model, with the number of human infections
in the surrounding municipalities as dependent variable,
provided linear predictions of YEj in each municipality.

Covariates included the same variables as for the non-spa-
tial model computed for both the central and its neigh-
bouring municipalities. Interaction variables were also
included to maximize the performance of the model. In

the second stage, these linear predictions  were

included among the explanatory variables in the negative
binomial regression.

Results
Non-spatial model
Both non-spatial regression models have a high explana-
tory power, with all parameters being very significant and
a residual deviance value close to the number of degrees
of freedom (DF) (with a ratio of 0.81 for PUUV and 1.1
for Lyme), indicating a good model fit. For PUUV, we
reduced the deviance from 1,167.8 for the null model to
474.9 (with 584 DF). For Lyme, it was reduced from 857.9
to 642.4 (with 584 DF) (Tables 3 and 4). Each model
includes four significant explanatory variables. The dis-
persion parameters for the negative binomial regressions
(0.77 for PUUV and 1.20 for Lyme borreliosis) were taken
to be 1.

The variograms of residuals for these non-spatial regres-
sions lead to a different diagnostic for the two diseases
(Figure 4). For PUUV, the envelope contains all the points
of the empirical variogram. This suggests that the spatial
dependence in PUUV incidence is mainly due to an exog-
enous process that is associated with one or several
explanatory variables included in the model, which have
their own spatial structure. The proportion of broad-
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Empirical variograms and envelopes of residuals from non-spatial modelsFigure 4
Empirical variograms and envelopes of residuals from non-spatial models. (a) Residuals from non-spatial negative 
binomial regression on PUUV infections. (b) Residuals from non-spatial negative binomial regression on Lyme borreliosis infec-
tions. Envelopes were computed by permutation of the data values on the spatial locations [43].
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leaved forests, one of the significant independent varia-
bles, explains a large part of this spatial dependency in
PUUV incidence. By contrast, for Lyme borreliosis, the
residuals of the regression model display a significant spa-
tial dependence. This could be caused by unobserved
explanatory variables, i.e. an external process whose spa-
tial structure is not represented in the model. It could also
be due to an endogenous effect if the incidence of Lyme
borreliosis in one location influences its incidence in
neighbouring locations.

Spatial model
To test for spatial endogeneity in the Lyme borreliosis
model, a linear predictor of the dependent variable in
neighbouring municipalities was estimated. For compara-
tive purpose, the same approach was applied to the PUUV
model, even though the spatial dependency was already

reduced in the non-spatial model for this disease. Both
spatial models have a high explanatory power and very
significant parameters (Tables 3 and 4). For PUUV, the
residual deviance value is closer to DF compared to the
non-spatial model, with a ratio that reaches 0.83. For
Lyme, the gap between the residual deviance and DF is
similar to the non-spatial model (with a ratio of 1.1). Each
model includes the same explanatory variables as the
non-spatial models. All these covariates – except for roe
deer density for Lyme – remain significant and with the
same signs. The linear predictors of the dependent varia-
ble in neighbouring municipalities are very significant in
both models.

The variograms of the residuals from the spatial regres-
sions show that the spatial dependence is further reduced
for PUUV (Figure 5). Spatial autocorrelation in PUUV

Table 4: Parameter estimates of significant variables using negative binomial regressions on Lyme borreliosis infections (1998–2004)

Non-spatial model Spatial model

Parameter Estimate Estimate

Intercept -10.41*** -11.08***
propforest 0.0225*** 0.0254***
income 0.0001*** 0.00004***
housesep 0.0084*** 0.0098***
roedeer 0.0955*** 0.0302
Linear predictors in neigbourhood municipalities 0.3675***

Degrees of freedom 584 583
Null deviance 857.9 916.6
Residual deviance 642.4 642.3
AIC 3220.9 3182.9
2 × log-likelihood -3208.9 -3168.9

*** P-value < 0,0001

Table 3: Parameter estimates of significant variables using negative binomial regressions on PUUV infections (1994–2004)

Non-spatial model Spatial model

Parameter Estimate Estimate

Intercept -7.982*** -9.308***
propleaf 0.0915*** 0.0469***
income -0.0001*** -0.00006**
urbanisation -0.192*** -0.246**
hunting 189.6* 152.0***
Linear predictors in neigbourhood municipalities 0.5491***

0
Degrees of freedom 584 583
Null deviance 1167.8 1311.9
Residual deviance 474.9 484.3
AIC 1418.3 1389.4
2 × log-likelihood -1406.3 -1375.4

*** P-value < 0,0001; ** P-value < 0,01; * P-value < 0,1
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incidence therefore results from exogenous – mainly via
broad-leaved forest habitats – but also endogenous proc-
esses. As the envelope completely contains the points of
the empirical variogram, we do not reject the hypothesis
of spatial independence in the error terms of the spatial
regression. By contrast, for Lyme borreliosis, even though
the spatial dependence is slightly reduced in the spatial
regression (Figure 5), it is still significant. Removing the
roe deer density variable from the spatial model on Lyme
disease did not modify the explanatory power of the
model (AIC of 3181.9) nor did it reduce spatial autocor-
relation. Spatial dependence in Lyme borreliosis inci-
dence is therefore mainly due to unobserved exogenous
processes that are not accounted for in the model [42].
The spatial distribution of residuals provides insights on
the spatial structure of missing external factors (Figure 6).
The model on Lyme disease tends to overestimate values
in low-incidence areas and underestimate values in high-
incidence areas (Figures 2b and 6b).

Discussion
The spatial model on PUUV is composed of four varia-
bles, each with the expected sign, in addition to the spatial
dependency term that is also significant. Two variables are
related to the landscape (proportion of the area of the
municipality occupied by broad-leaved forests and urban-
isation), one to a socio-economic characteristic of the

population (income), and another one to a risk behaviour
of humans (hunting). The PUUV incidence rate is higher
where the proportion of broad-leaved forests is high and
where urbanisation is low. Broad-leaved forests are the
favourite habitat for bank voles and are thus positively
related to the disease. Moreover, bank voles use small
areas and only rarely leave forests. Therefore, humans gen-
erally catch the disease in the ecological habitat of bank
voles, in broad-leaved forests. A high level of urbanisation
thus limits PUUV transmission. Income is negatively cor-
related with the disease incidence because PUUV particu-
larly affects forest workers and farmers who are in
frequent contact with bank voles or infected soil in forests
or at their edge. These socio-professional categories are
generally characterised by a low income. Hunters also
spend time in forests and are thus particularly vulnerable
to PUUV infection.

The spatial model for Lyme borreliosis infections has four
explanatory variables, each of them with a positive sign, in
addition to the spatial dependency term that is also highly
significant. One variable is related to the host population
(roe deer), two variables represent landscape attributes
that favour Lyme borreliosis transmission (proportion of
the area of the municipality occupied by forest and pro-
portion of people living in separated houses), and one
characterises the human population by its socio-profes-

Empirical variograms and envelopes of residuals from spatial modelsFigure 5
Empirical variograms and envelopes of residuals from spatial models. (a) Residuals from spatial negative binomial 
regression on PUUV infections. (b) Residuals from spatial negative binomial regression on Lyme borreliosis infections. Enve-
lopes were computed by permutation of the data values on the spatial locations [43].
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Spatial distribution of residuals from spatial modelsFigure 6
Spatial distribution of residuals from spatial models. (a) Residuals from spatial negative binomial regression on PUUV 
infections. (b) Residuals from spatial negative binomial regression on Lyme borreliosis infections.
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sional level. The model confirms the hypothesis that roe
deer density has an impact on spatial variations in Lyme
disease transmission risk in Belgium, probably by favour-
ing tick reproduction and co-feeding. Lyme borreliosis
incidence rate is positively linked to forest cover but also
to the proportion of people living in separated houses.
This suggests that heterogeneous landscapes with a frag-
mented land use mixing forests and houses are more at
risk. In areas with a high proportion of separated houses,
people are more likely to have gardens and thus spend
time outdoors. The presence of forests nearby further
favours human-vector contacts. Peri-urbanisation could
thus be one of the major causes of the recent increase in
Lyme borreliosis infections. In Belgium, it largely affects
Walloon Brabant and the province of Antwerp, two
wealthy peri-urban areas. The positive relationship
between Lyme borreliosis incidence rate and mean
income supports this hypothesis since higher incomes are
likely to be associated with large gardens in wooded areas
and thus a larger interface between settlements and forests
in peri-urban areas. Higher incomes – especially when
they are associated with education level – could also
increase the probability of being aware of the disease and
of consulting a doctor, thus increasing the likelihood of
disease detection.

The spatial distribution of PUUV and Lyme borreliosis
infections are thus associated with similar factors, in par-
ticular the presence of forests. For both diseases, it is
linked to the vector or host habitat preferences. Other var-
iables influence both diseases but in opposite directions,
such as mean income and urbanisation. This reflects the
fact that PUUV incidence is more associated with profes-
sional outdoor activities (in low-income, rural and for-
ested areas), whereas Lyme borreliosis is rather associated
with recreational and peridomestic outdoor activities (in
high income, peri-urban areas with isolated houses and
forests).

Most importantly, both diseases are associated with a
combination of factors linked to the vector and host pop-
ulations, to human behaviours, and to landscape
attributes. The latter includes both land cover (forests), as
a function of vector/host ecology, and land use that deter-
mines human presence in critical habitats, the frequency
of contacts between vectors and human populations, and
thus human exposure to infection.

Residuals of the spatial regression model of Lyme disease
still display strong spatial dependence, which suggests
that one or more external factors with spatial structure are
missing. However, several factors could influence and
skew the spatial effect in the Lyme model. Firstly, the roe
deer density data were only available at the province level
in Flanders and at the forest district level in the Walloon

region and Brussels. This variable was thus spatially disag-
gregated at the level of municipalities. Removing this var-
iable did not reduce the spatial autocorrelation. However,
representing more ecologically-relevant boundaries that
separate independent deer populations (e.g., major
roads) could reduce spatial autocorrelation compared to
administrative boundaries [47]. Secondly, data on Lyme
borreliosis incidence are based on the contamination
place, whereas data on PUUV infections are based on the
residential municipality. The assumption that the munic-
ipality of contamination corresponds to that of residence
for Lyme disease could create a bias, especially for fine-
scale analyses. This bias could increase spatial dependence
effects or simply add randomly distributed errors [14].
Thirdly, information campaigns organised for doctors in
certain regions could have led to a better diagnostic of
Lyme borreliosis infections. High positive residuals are
found for example around the municipality of Ottignies-
Louvain-la-Neuve in Walloon Brabant, where an impor-
tant information centre on Lyme disease – Research
Group and Information on tick-borne diseases (RILY) – is
located. This is highly speculative however since this
municipality is also a high-income, peri-urban area with
several small forests.

Conclusion
The objective of this study was to explain the spatial dis-
tribution of a zoonotic (Puumala virus) and a vector-
borne (Lyme borreliosis) disease in Belgium. The combi-
nation of environmental and socio-economic factors
allowed explaining the major part of the spatial variation
in disease risk. Besides the influence of land cover on the
spatial distribution of vectors and hosts, land use also
determines the prevalence of vector-borne and zoonotic
diseases by controlling the degree of exposure of people to
contact with vectors or hosts. PUUV infection risk is more
prevalent in remote, low-income areas with large forests
whereas the probability of Lyme borreliosis infection is
higher in areas with a large interface between settlements
and forests in wealthy peri-urban areas. This study showed
the importance of adding variables related to human
behaviour and land use in addition to land cover and hab-
itat variables in epidemiological models. Spatial depend-
ence diagnostics in error terms revealed a combination of
endogenous and exogenous processes causing spatial
clustering of incidence for both diseases. The spatial
dependence could be accounted for in the model of PUUV
incidence but not for Lyme borreliosis.

The results of this study have important implications to
define priority areas for public health policies aimed at
preventing diseases by informing the public and promot-
ing the use of protective measures. For example, the Insti-
tute for Public Health produces information sheets on the
diseases for distribution to the public. Each disease is not
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only most prevalent in different regions but also affects
different groups of people. Combining these two criteria
may increase the efficiency of information campaigns
through appropriate targeting.
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