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REVIEW Open Access

Large-scale spatial population databases in
infectious disease research
Catherine Linard1,2* and Andrew J Tatem3,4,5

Abstract

Modelling studies on the spatial distribution and spread of infectious diseases are becoming increasingly detailed
and sophisticated, with global risk mapping and epidemic modelling studies now popular. Yet, in deriving
populations at risk of disease estimates, these spatial models must rely on existing global and regional datasets on
population distribution, which are often based on outdated and coarse resolution data. Moreover, a variety of
different methods have been used to model population distribution at large spatial scales. In this review we
describe the main global gridded population datasets that are freely available for health researchers and compare
their construction methods, and highlight the uncertainties inherent in these population datasets. We review their
application in past studies on disease risk and dynamics, and discuss how the choice of dataset can affect results.
Moreover, we highlight how the lack of contemporary, detailed and reliable data on human population
distribution in low income countries is proving a barrier to obtaining accurate large-scale estimates of population
at risk and constructing reliable models of disease spread, and suggest research directions required to further
reduce these barriers.
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Introduction
Mapping and modelling methods used to study the spa-
tial distribution and spread of vector-borne and directly
transmitted infectious diseases are becoming increas-
ingly widespread and sophisticated as the field of spatial
epidemiology grows. Spatial epidemiology is defined as
“the study of spatial variation in disease risk or inci-
dence” [1], and its aims are both to describe and to
understand these variations [2], with the ultimate objec-
tive being to assist public health decision making. Inter-
actions between pathogens, vectors and hosts, and
between these agents and their environment determine
spatial variations in disease risk and make the transmis-
sion of vector-borne and other infectious diseases an
intrinsically spatial process [1,3].
Most studies on infectious disease dynamics are not

spatially-explicit, i.e. elements are not explicitly localized
in space. Models are typically based on the metapopula-
tion concept, which considers isolated subpopulations

subject to colonization and extinction dynamics [4-6]. If
the species of interest is a parasite, colonization means
infection and a local extinction occurs when the host
dies or recovers [5]. This approach is spatially-implicit,
as it avoids the use of geographical maps to locate ele-
ments. In the majority of non-spatial mathematical
models of infectious diseases, the total population is
assumed to be constant [7], but population data have
been included, for instance, in non-spatial models of
HIV [8], pertussis [9], malaria [7], or in global burden of
disease calculations [10-16]. However, the spatial nature
of infectious diseases, and particularly spatial heteroge-
neities in transmission and spread, make risk maps and
spatially-explicit models of disease incidence valuable
tools for understanding disease dynamics and planning
public health interventions [1,2,17]. Defining the extent
of infectious diseases as a public health burden and
their distribution and dynamics in time and space are
critical to scoping the financial requirements, for setting
a control agenda and for monitoring.
The emergence of spatially-explicit studies in infec-

tious disease research has been supported by improve-
ments in spatial data and tools such as remote sensing
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and geographical information systems (GIS) [18-23], as
well as advances in spatially-explicit modelling methods
[17,24]. GIS are commonly used to combine spatial data
from different sources, for mapping disease and for per-
forming spatial analyses to identify the causal factors of
observed spatial patterns such as cluster detection or
landscape fragmentation analyses [20,25]. In addition,
the growth in computing, data collection and the centra-
lization of epidemiological data, has lead to an increase
in the sophistication and complexity in the mapping and
modelling of infectious disease risks.
Among the agents involved in the disease transmission

process, human hosts play a crucial role as their density
[26], spatial location, demographic characteristics (e.g.
age-risk profiles [27-30]) and behaviour [31-33] deter-
mine their exposure to infection. Any approach that
requires the use of modelled disease rates or dynamics
requires reasonable information on the resident popula-
tion for the time period one is intending to estimate
risk. Where risks and spread of diseases are heteroge-
neous in space, population distributions and counts
should ideally be resolved to higher levels of spatial
detail than large regional estimates. Accurate and
detailed information on population size and distribution
are therefore of significant importance for deriving
populations at risk and infection movement estimates in
spatial epidemiological studies [34]. For many low-
income countries of the World, where disease burden is
greatest, however, spatially detailed, contemporary cen-
sus data do not exist. This is especially true for much of
Africa, where currently available census data are often
over a decade old, and at administrative boundary levels
just below national-level [35,36].
Modelling techniques for the spatial reallocation of

populations within census units have been developed in
an attempt to overcome the difficulties caused by input
census data of varying resolutions. National census
population data can be represented as continuous
gridded population distribution (or count) datasets
through the use of spatial interpolation algorithms.
Here, we firstly review and compare the methods used
in the construction of existing large-scale population
datasets, and secondly review applications of these data-
sets in past studies of disease risk and dynamics.

Mapping humans
Spatial demographic data
Our knowledge of human distribution in many areas of
the World remains surprisingly poor. A growing interest
in the global mapping of human populations emerged in
the 1990s [37,38]. Until then, the only information on
the spatial distribution of people came from maps show-
ing the location of towns, cities and administrative
boundaries on one hand and sparse, inconsistent

population data coming from national censuses or
demographic surveys on the other [39]. Wright (1936)
provided one of the first examples of the combination
of demographic and spatial data to build a population
density map of the Cape Cod region in the United
States [40]. Improvements in demographic and spatial
data availability and the development of methods to
combine them led to the creation of global population
density datasets.
Demographic data come from different sources: cen-

suses, civil registration systems, governmental or non-
governmental administrative data or sample surveys
[37]. Civil registration systems provide the most reliable
and useful demographic data as they continuously
record information on the population of a country,
including their spatial distribution. However, up-to-date
registration systems only exist in a small number of
countries. Instead, censuses are conducted approxi-
mately every 10 years by national statistical offices in
order to provide consistent and geo-referenced popula-
tion data. The accuracy and amount of data supplied by
national censuses vary considerably from one country to
the other. From a temporal point of view, (at the time
of writing) the most recent census is more than 25 years
old in some sub-Saharan countries such as Angola, Eri-
trea and the Demographic Republic of Congo [41] (Fig-
ure 1a). Large variations also exist in the spatial
resolution of available census data, as the ways in which
national territories are divided and the administrative
level at which population data are collected and sum-
marized vary by country. Figure 1b shows the spatial
resolution of census data used in the construction of the
Gridded Population of the World version 3 (GPW3)
[42] and the Global Rural Urban Mapping Project
(GRUMP) [43,44] spatial population databases (both
described below).
The link between demographic data and a spatial

reference system is essential for geographical analyses.
Census data collected at the administrative unit level
must be related to an accurate boundary dataset [37].
This has in the past often been neglected, mainly due to
a lack of GIS technology, knowledge, resources and
methods, as well as computing infrastructure [37,39,42],
but efforts are now being made across the world to link
census data with digital administrative boundaries.

Population distribution modelling methods
A variety of methods for converting population count
data from irregular administrative units to regular grids
have been developed since the 1990s [43,44] and have
led to the emergence of differing global gridded popula-
tion datasets. The quality and accessibility of population
and spatial data have been improving, making collabora-
tions between demographers and geographers stronger
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[39,42,43]. In addition, GIS technologies are becoming
increasingly available and accessible and computer
power is continuously improving, allowing the proces-
sing of larger and more detailed datasets [37,39,42].
Population distribution modelling methods over large

spatial scales rely on redistributing populations within
census units to obtain continuous population surfaces, i.
e. gridded datasets with a number of inhabitants per
grid cell. Different interpolation methods have been
typically used to reallocate populations within adminis-
trative units (Figure 2):

Areal weighting assumes that the population is uni-
formly distributed within each administrative unit. The
population assigned to a grid cell is simply the total
population of the administrative unit divided by the
number of cells in the administrative unit. Every grid
cells of an administrative unit has therefore the same
population value [45]. This method was used to con-
struct the Gridded Population of the World (GPW)
database, versions 2 and 3 [42,46]
Pycnophylactic interpolation starts with the areal

weighted method, but smoothes population values using

< 1990
1991 - 2000
2001 - 2005

> 2005

< 12
13 - 16
17 - 28

29 - 60
61 - 145
> 146

a)

b)

Year of last census

ASR (km)

Figure 1 Spatial and temporal characteristics of available census data. a) Year of the last national census data available (data source:
GeoHive [41]) and b) average spatial resolution (ASR) of census data used in the construction of Gridded Population of the World version 3
(GPW3) and the Global Rural Urban Mapping Project (GRUMP). The ASR measures the effective resolution of administrative units in kilometers. It
is calculated as the square root of the land area divided by the number of administrative units [42]. It can be thought of as the “cell size” if all
units in a country were square and of equal size.
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the weighted average of nearest neighbours, while pre-
serving the summation of population data to the original
population per areal unit [47]. Pycnophylactic interpola-
tion was used to generate GPW version 1 [48,49].
Dasymetric modelling involves using ancillary data -

often this may include satellite derived land cover data -
to redistribute populations within administrative units
[45,50]. Weightings are attributed to the different land
cover classes and the population is redistributed accord-
ingly. For example, the Global Rural Urban Mapping
Project (GRUMP) uses a similar approach to GPW, but
incorporates urban-rural extents and their correspond-
ing populations in the spatial reallocation of census
counts [43,44]. The urban-rural extent information is
generated by a variety of input data that include census
data, online web sources and National Imagery and
Mapping Agency (NIMA) database of populated places
[46]. The recently produced AfriPop dataset, which cov-
ers the African continent at a fine spatial resolution,
also used land cover data to redistribute populations
[51,52]. Other kinds of ancillary data such as the slope
or roads can be used for dasymetric mapping.
More sophisticated modelling approaches - called

smart interpolation - involve modelling the finescale
distribution of populations using a range of satellite and
other ancillary data. For example, an accessibility surface
developed from road networks and populated places can
be used to redistribute people, as was done in the con-
struction of the UNEP database [53-56]. The LandScan
dataset is another example of smart interpolation, where
various ancillary data such as roads, slope, land cover
and nighttime lights are used to determine the probabil-
ity of population occurrence in cells. Populations are
spatially reallocated within each areal unit using

modelling approaches based on these probability coeffi-
cients [57-59].
Features of each dataset are outlined in Table 1. All of

these existing datasets show the spatial distribution of
nighttime residential population, except LandScan that
maps the ‘ambient’ population, i.e. the average location
of people across time. AfriPop is the only project that
also freely provides demographic sub-group gridded
datasets, i.e. age composition by 5-years groupings and
gender [52]. The most recently updated datasets are
LandScan and AfriPop, updated in 2010 and 2011,
respectively. However, given its commercial status, the
LandScan 2010 dataset is not available in the public
domain. LandScan and AfriPop are also the two datasets
for which we can expect the most frequent updates in
the future. Different levels of transparency in the meth-
odologies are observed. Most of the datasets are fully
documented, with methods clearly described and all
data sources mentioned (e.g. GPW, GRUMP, UNEP,
AfriPop), whereas datasets using more sophisticated
interpolation methods are sometimes less transparent.
For example, the available documentation of LandScan
only enables a general understanding of the methodolo-
gies used. These global population distribution datasets
that have been created at spatial resolutions of finer
than 1 degree have been used in various epidemiological
studies, and these are reviewed below.

Uncertainty and error
Given the different input data and the different model-
ling methods used, the existing gridded population data-
sets described above clearly differ. Different sources of
error and uncertainty are associated with these popula-
tion datasets, which generally arise from (i) the input

Figure 2 Schematic illustrations of population distribution modelling methods. The population of two administrative units A and B (with
total population in A = 8 and total population in B = 16) are redistributed according to different population distribution modelling approaches
(areal weighted, pycnophylactic and dasymetric). In the dasymetric method, a higher weight was attributed to the red hatched area.
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data, (ii) temporal projections and (iii) the modelling
procedure used.
Uncertainties associated with input data, such as cen-

sus data, can be important, especially in low income
regions where misreporting errors may be frequent
[60,61]. In addition to errors in population counts, inac-
curacies in the spatial positioning of administrative unit
boundaries can lead to population mapping uncertain-
ties. Population movements also make counts not
entirely representative of the long-term residential popu-
lation. However, censuses are often the only consistent
and exhaustive population databases available in coun-
tries where registration systems do not exist, and quan-
tifying such uncertainties remains difficult. Figure 3

shows population distribution as mapped by existing
global population datasets (LandScan 2008, GRUMP
beta, GPW3, AfriPop and UNEP Africa) for a region of
Kenya, where census data are available at a high admin-
istrative unit level, and a region of Angola, where the
spatial resolution of census data is coarse. This figure
highlights how the differing approaches to the spatial
interpolation of census data produce very different spa-
tial configurations of population distribution when cen-
sus data are aggregated in large administrative units, as
in the case of Angola. Recent studies used Kenya data at
different administrative levels to show quantitatively that
population map accuracies significantly improve with
finer resolution input census data [35,62,63]. With fine

Table 1 Existing gridded global and continental population datasets and their main characteristics.

Code Dataset Producer Method Level of
transparency
in data and
methodology

used

Spatial
resolution

Year(s)
represented

Updates Distribution
policy

References

GPW Gridded
Population
of the
World

National Center for
Geographic

Information and
Analysis (NCGIA),
University of
California;
Center for

International Earth
Science Information
Network (CIESIN),

Columbia university

GPW1:
pycnophylactic;
GPW2 and
GPW3: areal-
weighted

High 2.5
arcminutes
(~5 km)

1990, 1995,
2000, 2005,
20101, 20151

1995,
2000,
2004

Open-access [42,46,48,49]

GRUMP Global
Rural
Urban

Mapping
Project

Center for
International Earth
Science Information
Network (CIESIN),

Columbia university;
International Food
Policy Research

Institute; The World
Bank; Centro

Internacional de
Agricultura Tropical

Dasymetric High 30
arcseconds
(~1 km)

1990, 1995,
2000

2000,
2004

Open-access [44]

LandScan LandScan Global
Population database

Oak Ridge
National
Laboratory

Smart Low 30
arcseconds
(~1 km)

year of
release

1998; yearly
from 2000 to

2010

Commercial

[57-59]

UNEP UN Environment
Programme global
population datasets

United Nations
Environment
Programme/

Global Resource
Information
Database

(UNEP/GRID),
Sioux Falls

Smart High 2.5
arcminutes
(~5 km)

2000 1996, 2004 Open-
access

[53-55]

AfriPop AfriPop
population
dataset for

Africa

AfriPop project:
University of Oxford,
University of Florida
and Université Libre

de Bruxelles

Dasymetric High 3
arcseconds
(~100 m)

2010 2011 Open-access [51,52]

1 Based on extrapolations of older datasets using UN growth rates
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resolution census data, populations are already distribu-
ted in small spatial units, so that the margin of possible
errors due to the population distribution modelling is
reduced, relative to the output resolution of the mod-
elled surfaces. These studies demonstrate that obtaining
as fine a spatial resolution of census data as possible
must be the priority starting point in population distri-
bution modelling [35,62,63]. This calls for regular updat-
ing of input census data, as and when it becomes
available. The cost of population censuses is however
large and most countries undertake full censuses only
once per decade. Therefore, models also help provide
estimates in the intervening years. Given the positional
uncertainties that may be associated with detailed
boundaries, some dataset producers (e.g. LandScan)
have prioritised smart modelling methods over obtaining
fine resolution census data. Deciding upon which solu-
tion produces the more accurate results here is difficult.
However, if the methodologies used to construct the
fine resolution census data boundaries are well docu-
mented and known to match accurately with census
enumeration units, then the use of detailed census data
likely produces consistently more accurate results in
mapping [35].
To adjust population counts to one target year, either

inter-censal growth rates or national-level growth rates -
often from the United Nations [64] - are used. These
national estimates are derived from fertility, mortality
and international migration numbers, a method that is
inevitably associated with uncertainties [65]. In addition,
growth rates can vary substantially within countries,
introducing uncertainties when using national-level esti-
mates, and are dependent upon the urban-rural defini-
tion used when using urban and rural growth rates.
Modelling approaches using ancillary datasets only

increase population distribution model accuracies over the
simple gridding (areal weighting) of census data if the
ancillary data is more detailed and complete spatially than
the input census data, and can be detrimental to modelling
accuracies otherwise [35,62]. The extent to which ancillary
data can improve population model accuracies depends on
the resolution of census data, and decreases when the
resolution of census data becomes finer.
The validation of large-scale population distribution

datasets is problematic as no independent source exists
that could serve this purpose globally. Map accuracies
can be tested in target regions where reference data are
available at a finer spatial resolution than the map pro-
duced [57,62,66,67]. Recent studies have shown that
using certain methods of downscaling increases consis-
tently the mapping accuracy over simple areal weighting
of administrative unit census data [35,63]. Until now,
validation efforts at the global level have been limited to
comparing results with population totals reported by the

UN (in the case of GPW and GRUMP) [39]. Another
way to evaluate the accuracy of population datasets is to
use geospatial metrics to compare spatial datasets [68].
These metrics quantify differences in the spatial struc-
ture of datasets and analyse properties such as spatial
correlations within and between datasets [68,69]. The
accuracy of urban extent datasets can be more easily
assessed using expert opinion [70] or a set of indepen-
dent test sites derived from medium or high resolution
remote sensing imagery [71,72]. In any case, a future
priority should be to design methods for the incorpora-
tion of uncertainty explicitly.

Application of global population distribution data
in studies of disease risk and dynamics
Gridded population data have been commonly used to
estimate populations at risk of infectious disease and to
simulate disease dynamics. These raster datasets have
the advantage of being global and consistent in terms of
spatial resolution and are particularly useful for popula-
tion at risk (PAR) assessments and infectious disease
risk mapping and modelling. In this section, we will first
review studies that have used gridded population data-
sets as input data for spatial transmission models. Sec-
ondly, studies that used existing gridded population data
to calculate infectious disease health metrics, such as
populations at risk, will be covered. An overview of the
literature cited is available in Table 2.

Input data for spatial transmission modelling
Population density and growth are significant drivers for
the emergence of different categories of infectious dis-
eases [73]. Jones and colleagues (2008) examined the
relationship between the spatial distribution of emerging
infectious disease events of different kinds - including
vector-borne and non-vector-borne - and population
data from GPW3 [73]. For directly-transmitted diseases,
the spatial distribution of people is determinant as it
controls person-to-person contacts and therefore the
spread of the disease. Gridded population data have
been used in spatio-temporal models that simulate con-
tacts between infectious and susceptible people and the
spatial spread of the disease [74-76]. Even if less
obvious, the link between indirectly-transmitted diseases
- i.e. infections that require an external agent for trans-
mission to occur, such as a vector, an animal host or
the environment - and population density can also be
determinant. The effect however varies according to the
disease considered, mainly because population size and
distribution can modify the habitat of disease vectors or
hosts and hence increase or decrease disease incidence.
For example, trypanosomiasis is expected to decline in
large parts of Africa because of the growth in human
population and the expansion of agriculture at the
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expense of tsetse fly habitat [77]. Urbanization in Africa
is also expected to reduce malaria transmission risk
[78]. Other transmitting agents can live in urbanized or
highly populated places, making the disease transmission

risk higher in these areas, such as poultry responsible
for avian influenza [79].
Gridded population datasets have been widely used to

examine the relationships between infectious disease

GRUMP

GPW v3

LandScan

UNEP

a)

b) GRUMP

GPW v3

LandScan

UNEP

0 4020
km

0 4020
km

0 4020
km

Kenya

Ethiopia

Somalia

United Rep. 
of Tanzania

Sudan

Uganda

0 4020
km

Angola

Namibia

Botswana

Dem. Rep. Congo

0 10050
km

0 10050
km

0 10050
km

0 10050
km

AfriPop

AfriPop

0 4020
km

0 10050
km

Population
density
(people/km²)

50,000

0

Population
density
(people/km²)

50,000

0

Figure 3 Selected examples of existing global and continental population datasets. LandScan 2008, GRUMP beta version, GPW3, UNEP
Africa and AfriPop for a) a region in Kenya where census data is very detailed and b) a region of Angola where census data is coarse.
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incidence and population size and distribution. Globally,
population density has an opposed impact on dengue
and yellow fever: vector preferences mean that dengue
risk is higher in highly populated urban areas, whereas
yellow fever risk is higher in rural areas [80]. Several
authors included gridded population data as a risk factor
in disease mapping and modelling [79,81-85]. When the
objective is to study the impact of factors other than
population (e.g. climate, ecological or socio-economic
variables) on disease transmission, gridded population
data can be used as an offset variable in statistical mod-
els, i.e. to control for population count differences by
analysing rates instead of absolute values [86,87].
Besides spatial models that simply study the statistical

association between disease risk or incidence and popu-
lation density in order to map disease risk, more sophis-
ticated spatially-explicit models have been developed to
study the spatial diffusion of infectious diseases. Several
of such spatially-explicit models have successfully used
gridded population datasets as input data, for example
for creating risk maps [88,89], for the calculation of a
global malaria transmission stability index [90], or to
study the potential economic impacts of avian influenza

in Nigeria [91]. All of these models were developed at
the grid cell level, making gridded population datasets
particularly useful. Gridded population data have also
been used to develop agent-based simulation models at
the regional level [92,93] and at the global level [94].
Whatever the spatial approach for modelling - patch,
distance, group or network - population data are essen-
tial, as these models generally require the generation of
a virtual society with an appropriate distribution of peo-
ple. Population distribution datasets have been used to
randomly distribute households in study areas according
to local population densities [92-94]. In these models,
gridded population data provide valuable input datasets
mainly because of their wide coverage, consistent spatial
detail and availability in the public domain. Moreover,
most spatially-explicit models are grid cell-based, mean-
ing that the gridded population datasets are ready to use
without any further processing.
Human interactions and movements are crucial for

disease spread. However, the complexity of human
mobility and its multiscale nature make comprehensive
data on movements difficult to obtain [95]. A recurrent
issue emerging from large-scale modelling of infectious

Table 2 Infectious disease-related studies that have utilized large-scale spatial population databases (adapted from
[34])

Disease Application Population map used [Reference]

Malaria Populations at risk GPW [108,122,123,132,134,135,138], Landscan [109,133], UNEP [107], GRUMP
[110,113-115,124,127,128,139]

Clinical cases GPW [111], GRUMP [112]

Intervention coverage GRUMP [126]

Funding coverage GRUMP [129]

Risk mapping GPW [81,88,90], UNEP [82], GRUMP [110]

Infection movements GRUMP [128], GRUMP and AfriPop [101]

Urbanization effects GPW [78], GRUMP [36]

Helminths Populations at risk GPW [118,122,123,140,141], GRUMP [142,143], UNEP [117,119]

Risk mapping Landscan [89]

Influenza Epidemic modelling GPW [94,95,99,100], Landscan [92,93,96], GRUMP [91]

Risk mapping GRUMP [85], Landscan [79,83]

Yellow fever Populations at risk GRUMP [80]

Dengue Populations at risk GRUMP [80]

Risk mapping UNEP [121], Landscan [86,87]

Trypanosomiasis Populations at risk Landscan [120]

Risk mapping UNEP [77]

Bovine TB Risk mapping Landscan [84,144], GPW [144]

HIV Prevalence analyses Landscan [76]

Leprosy Risk mapping GPW [75]

Poliovirus Incidence analyses GPW [74]

General Trends in emerging
diseases

GPW [73]

Health of schoolchildren UNEP [145]
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diseases is therefore the mobility patterns and the spatial
details required for transport network data [95]. Gridded
population data provide a useful baseline for developing
mobility networks. Several authors have combined
gridded population data with transport networks to
simulate the large-scale spread of infectious diseases
[95-100]. In low-income countries, data on population
flows are rare and a recent study on the risk of introdu-
cing malaria to areas targeted for elimination used a
database of bilateral migrant stocks and the GRUMP
dataset to evaluate international population movements
[101]. Even if population datasets help in the construc-
tion of large-scale mobility databases, significant further
work is required to fill the data gaps.

Endemic disease health metrics
Population distribution datasets constitute an essential
denominator required for many infectious disease stu-
dies. It is well known that disease transmission is focal
and heterogeneous [102-105], partially due to the clus-
tered nature of human population distribution. As the
precision and detail of disease risk mapping improves,
spatial population datasets that capture these patterns
are therefore required if the sizes of populations at risk
(PAR) are to be more accurately quantified.
PAR of some infectious diseases have been estimated

based on gridded population datasets, principally malaria
[78,106-115], helminth infections [116-119], human
African trypanosomiasis [120] and dengue and yellow
fevers [80,121]. Typically, disease risk maps are spatially
overlaid onto population distribution datasets to quan-
tify the number of people residing in specific risk zones
or classes, and thus derive PAR numbers. This com-
monly used method of combining population and preva-
lence data to assess PAR was also used to study co-
infection of diseases that show a clear geographic over-
lap, such as malaria and helminth infections [122,123].
This method is simple to implement and provides a use-
ful assessment of PAR. However, PAR assessments gen-
erally use the different existing population datasets
interchangeably to provide such estimates. Moreover,
uncertainties inherent in the population datasets are
rarely acknowledged in such calculations. As already
described above, existing gridded population datasets
clearly differ, especially where census population data
are spatially coarse, and both input-based and process-
based uncertainties contribute to great variations in
mapping precision (Figure 3). As a consequence, large
variations in PAR estimates can result from the choice
of population dataset, particularly in low-income coun-
tries where census data are often spatially and tempo-
rally poor [34]. Specific estimates for pregnant women
and children have been also derived from population
distribution datasets, by combining gridded population

data with age, sex and fertility data from the United
Nations [124,125]. However, given that the demographic
composition of populations varies substantially within
countries, using such national-level demographic esti-
mates introduces additional uncertainties, as already
mentioned before.
The combination of endemic disease risk maps with

human population counts in the ‘at risk’ regions pre-
sents opportunities for designing the targeting of inter-
ventions such as resource allocation, vaccine campaigns
or epidemic prevention measures to regions where they
will have most cost-effective or burden-reducing impact
[80,108,111]. For example, PAR estimates of malaria
enabled the derivation of intervention coverage esti-
mates [126], the intervention costs for reducing the
malaria burden [127], malaria elimination feasibility
[128], and the actual funding coverage [129]. The use of
gridded population datasets in these studies facilitated
more precise estimates of PAR than estimates based on
aggregated population data by administrative units. An
accurate assessment of ‘at risk’ populations also presents
opportunities for designing disease surveillance and
early warning systems for epidemics in the populations
[130,131].
The size of PAR is expected to vary in the future as a

response to environmental and demographic changes.
Some authors have attempted to assess the future PAR
of malaria according to different scenarios [132-135].
While climate factors are predicted to cause limited
changes in PAR of malaria for the year 2050 [134] and
even a reduction in the size of PAR in Africa in the
coming decades [133], demographic changes could sig-
nificantly increase PAR. Applying forecasted population
growth rates to gridded population data enables the
derivation of estimates of future global population distri-
bution [132,135]. The combination of such projected
data based on GPW2 with climate scenarios showed
that population growth likely will have a larger effect
than climate change on future global PAR of malaria
estimates [135]. Moroever, a study examining the com-
bined effects of climate, population and urbanisation
changes confirmed the likely dominant effect of popula-
tion growth in the increasing size of malaria PAR esti-
mates in Africa [132]. Dengue fever risk in the future
was also estimated based on population and climate
projections for 2055 and 2085 [121].

Conclusions
Spatial methods and tools are now widely used in infec-
tious disease research and have led to significant
advances in our understanding of disease dynamics, sur-
veillance and control [1,2,17,18]. Population distribution
datasets are becoming increasingly important inputs to
these models. During the past decade, a number of
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advances have been made in GIS technologies that have
allowed demographers and GIS specialists to begin to
map the spatial distribution of human populations glob-
ally at an unprecedented level of detail. We have shown
in this paper how useful large-scale gridded population
datasets are for the calculation of PAR of infectious dis-
eases and for disease risk mapping and modelling.
Gridded population datasets allow the user to select
geographic boundaries of interest independently from
administrative boundaries. Population datasets capture
spatial heterogeneities observed in disease transmission
risks, making PAR calculations significantly more accu-
rate than can be reached with aggregated population
data.
Nevertheless, a number of issues and challenges

remain, that, if resolved, would permit a more refined
analysis of the spatial distribution of human population
around the globe, and reduced uncertainty resulting
from their use in epidemiological studies. Population
distribution modelling methods have raised several
issues and challenges such as the lack of comparability
of statistical data from different countries and sources
[43], the lack of standard definitions for what constitutes
an urban area [136], the need for extensive source and
metadata information, and the difficulties in validating
the existing population datasets or measuring which
existing dataset is the most accurate. The construction
of contemporary, well-validated and well-documented
spatial demographic datasets should be a priority in
order to reduce uncertainties in spatial epidemiological
studies [34]. In the absence of a more institutionalized
mechanism to generate updated and freely available
population datasets, data sharing should be encouraged
between projects. Each dataset is for instance built upon
similar population data linked to administrative bound-
aries and a standardized database framework that would
encourage sharing of new and improved datasets
between projects would greatly facilitate the data pro-
duction and benefit the users.
Several extensions of population datasets would be par-

ticularly useful for infectious disease research (as well as
other health related fields such as disaster risk manage-
ment or conservation), for policy and planning. The most
useful one would be to improve information on popula-
tion attributes of interest. The disease impact in terms of
morbidity, mortality, and speed of spread varies substan-
tially with demographic profiles, so that identifying the
most exposed or affected populations becomes a key
aspect of planning and targeting interventions. It is not
feasible for global population databases to generate on-
demand maps for each variable of interest, nevertheless
the potential to leverage current freely available popula-
tion databases appears large, as was recently discussed in
Tatem et al. [137]. These authors proposed a strategy for

building an open-access database of spatial demographic
data that is tailored to epidemiological applications.
Over the next few years, improvements in population

distribution modelling methods and infectious disease
distribution mapping will allow further refinements in
PAR estimation and intervention targeting. Continued
efforts to resolve the remaining challenges in accurate
spatial population datasets construction will be required
to obtain the full benefits from these potentially power-
ful methodologies.
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