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Résumé. — Ce travail concerne le développement et l’étude de nouveaux
algorithmes d’optimisation pour la résolution de problèmes d’assimilation de
données en océanographie. L’équivalence théorique entre le filtre SEEK et une
variante réduite du problème 4D-Var permet de proposer deux méthodes inno-
vantes de minimisation pour l’approche variationnelle. La première développe
un point de départ adéquat et un préconditionneur à mémoire limitée pour ac-
célérer une méthode de type gradient conjugué, utilisée dans le procédé incré-
mental. La seconde propose une approche sans dérivée qui minimise la fonction
4D-Var en construisant et en explorant une séquence de sous-espaces appro-
priés de dimension faible. Les deux méthodes ont été analysées numériquement
sur des modèles académiques en eaux peu profondes avant d’être évaluées sur
la configuration GYRE du logiciel NEMO.
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Abstract. — This work is concerned with the development and the study of
novel optimization algorithms for solving data assimilation problems with ap-
plication in oceanography. Motivated by the theoretical equivalence between
the SEEK filter and a reduced variant of the 4D-Var problem, two innovative
minimization methods for the variational approach are proposed. The first
one derives an appropriate starting point and a limited-memory preconditioner
to accelerate the conjugate gradient-like algorithm used in the incremental
method. The second one proposes a derivative-free approach which minimizes
the 4D-Var function by constructing and exploring a sequence of appropriate
low dimensional subspaces. Both methods have been numerically analyzed on
academical shallow water models before being assessed on the GYRE configu-
ration of the NEMO framework.
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Introduction

To compute marine and weather forecasts, dynamical systems are integrated
on high performance computers within a given time window starting from an
initial state (also called initial condition). This time window is related to the
relevant time scales of the considered physical situation. The ability to make
an accurate forecast requires both that the dynamical system be a good rep-
resentation of the reality and that the initial condition be known precisely.
Numerical weather forecasts are performed since the 1950s and have witnessed
an explosion of activity since the 1980s. Over the years, the quality of the mod-
els and methods for using observation has improved continuously, resulting in
major forecast advancements. These progresses are related to the increased
amount of observational data and to the increased power of supercomputers
that is available. The problem of determining the initial condition for a fore-
cast is very complex and has become an active area of research on its own.
Data assimilation methods aim at specifying an initial condition of a dynam-
ical system by combining both the information from a numerical model and
from observations (see Kalnay, 2003; Rabier, 2005, for a review). There are
two main approaches to solve data assimilation problems. On the one hand,
the sequential approach is based on statistical estimation theory and contains
the Kalman filter algorithm with its numerous adaptations. On the other hand,
the variational approach, based on optimal control theory, proposes a family
of optimization problem formulations with minimization techniques. Among
those ones, the 4D-Var formulation with its incremental technique is the most
famous one and is used nowadays operationally in weather forecasting centers.

This thesis is concerned with the design, the implementation and the assess-
ment of novel optimization algorithms for solving data assimilation problems
with application in oceanography. In the sequential approach, the Singular
Evolutive Extended Kalman (SEEK) filter is a modification of the Kalman fil-
ter which reduces the dimension of the estimator error space thanks to the use
of Empirical Orthogonal Functions (EOFs). This reduction technique allows to
solve large data assimilation problems and has been successfully implemented
in operational oceanographic data assimilation frameworks. In this thesis, we
demonstrate a connection between the SEEK filter and a reduced variant of the

xi



xii Introduction

4D-Var problem. Motivated by this theoretical result, the reduction technique
based on the EOFs is transferred from the sequential to the variational ap-
proach and two innovative minimization methods for the variational approach
are developed. The first minimization method derives an appropriate starting
point and a limited-memory preconditioner which may accelerate the minimiza-
tion process of the 4D-Var function. The second one proposes a derivative-free
approach which minimizes the 4D-Var function by constructing and exploring
a sequence of appropriate low dimensional subspaces. Both methods have been
numerically analyzed on academical shallow water models first before being
assessed on the operational ocean model NEMO.

Structure of the thesis

We next give a brief description of the content of the thesis. The main contri-
butions are highlighted at the end of the manuscript.

Chapter 1 gives an historical introduction to weather forecasting. Moreover,
it illustrates the importance of such forecasts by listing their most common ap-
plications and exposes some future challenges. The next chapter presents the
basic concepts of data assimilation problems. It states the terminology used
throughout this work and the mathematical materials useful for our needs.
Chapter 3 gives a survey of the main variational formulations with a broad
outline about the techniques to minimize them. Chapter 4 presents the se-
quential approach with its well-known Kalman filter. A flops counting shows
that this filter is not affordable for large data assimilation problems and the
SEEK filter is then derived. These surveys of variational and sequential ap-
proaches are far from being exhaustive but essentially cover tools that will be
used and discussed in the following chapters. The well-known connection be-
tween the Kalman filter and the 4D-Var problem in the context of linear model
and observation operators are demonstrated in Chapter 5. This result is used
to establish a connection between the SEEK filter and a reduced variant of
the 4D-Var problem based on the use of the EOFs. This connection is the key
stone to motivate the development of our two new minimization methods for
the variational approach. On the one hand, Chapter 6 describes an enhanced
incremental method where an appropriate starting point and a limited-memory
preconditioner have been derived from information contained in the EOFs. A
shallow water model is used to illustrate the positive impact produced on the
convergence rate of the incremental method. On the other hand, Chapter 7
gives an attempt to develop a derivative-free approach for solving the 4D-
Var problem. It minimizes the 4D-Var function by building and exploring a
sequence of appropriate low dimensional subspaces constructed from EOFs in-
formation. This approach is numerically compared with the Ensemble Kalman
filter (EnKF) which is a Monte-Carlo, derivative-free, implementation of the
Kalman filter. Our derivative-free approach shows its efficiency on a shallow
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water model by producing estimates of comparable quality with those pro-
duced by EnKF. Finally, Chapter 8 illustrates the numerical behavior of our
two minimization methods on the operational ocean model NEMO.

We finally conclude and give some perspectives of future work. A summary
of our contributions and tables containing the main notations used are also
presented after the conclusion.
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Chapter 1

History and motivations

1.1 History

Human beings have attempted to predict the weather informally for millenni-
ums. The Babylonians were among the first to attempt weather forecast in
650 BC. Their predictions were based on the appearance of cloud patterns and
folk wisdom. Later, weather captured the imagination of the greatest minds
of the Renaissance. Galileo Galilei invented a thermometer in the 16th cen-
tury, and Evangelista Torricelli a mercury barometer in the 17th century. Such
instruments enabled quantitative observations of the atmosphere. The inven-
tion of the electric telegraph in the beginning of the 19th century allowed to
broadcast weather conditions from a wide area almost instantaneously. These
technological progresses made a giant leap toward modern meteorology.

In 1890, the American meteorologist Cleveland Abbe recognized that me-
teorology is essentially the application of hydrodynamics and thermodynamics
to the atmosphere. For his part, the Norwegian physicist stated in 1904 two
necessary conditions for rational forecasting. Firstly, the governing laws of the
atmosphere must be correctly modeled. Secondly, the state of the atmosphere
must be known accurately at a given time. These two conditions are still the
base of our actual weather forecast. Unfortunately, their ideas were not appli-
cable in practice since no reliable numerical method existed to solve systems
of nonlinear partial differential equations and since analytical solutions were
infeasible. Few years later, the English mathematician Lewis Fry Richardson
developed numerical methods for solving partial differential equations using a
spatial and temporal discretization. He manually computed one weather fore-
cast which took him six weeks of work. The results were disastrous but his
brilliant idea is the foundation of modern forecasting. He published in 1922 a
book with some visionary ideas. The most famous describes a forecast factory
that carries out the process of calculating weather. In fact, without realizing

1



2 Chapter 1. History and motivations

it, he described a massively parallel processing even before the invention of a
digital computer:

«Imagine a large hall like a theater, except that the circles and galleries go
right round through the space usually occupied by the stage. The walls of this
chamber are painted to form a map of the globe. The ceiling represents the
north polar regions, England is in the gallery, the tropics in the upper circle,
Australia on the dress circle and the Antarctic in the pit.

A myriad computers are at work upon the weather of the part of the map
where each sits, but each computer attends only to one equation or part of
an equation. The work of each region is coordinated by an official of higher
rank. Numerous little “night signs” display the instantaneous values so that
neighboring computers can read them. Each number is thus displayed in three
adjacent zones so as to maintain communication to the North and South on
the map.

From the floor of the pit a tall pillar rises to half the height of the hall. It
carries a large pulpit on its top. In this sits the man in charge of the whole
theater; he is surrounded by several assistants and messengers. One of his
duties is to maintain a uniform speed of progress in all parts of the globe. In
this respect he is like the conductor of an orchestra in which the instruments are
slide-rules and calculating machines. But instead of waving a baton he turns
a beam of rosy light upon any region that is running ahead of the rest, and a
beam of blue light upon those who are behindhand.

Four senior clerks in the central pulpit are collecting the future weather as
fast as it is being computed, and dispatching it by pneumatic carrier to a quiet
room. There it will be coded and telephoned to the radio transmitting station.
Messengers carry piles of used computing forms down to a storehouse in the
cellar.

In a neighboring building there is a research department, where they invent
improvements. But these is much experimenting on a small scale before any
change is made in the complex routine of the computing theater. In another
building are all the usual financial, correspondence and administrative offices.
Outside are playing fields, houses, mountains and lakes, for it was thought that
those who compute the weather should breathe of it freely» (Richardson, 1922).
Richardson’s idea is represented in Figure 1.1 by the Belgian artist François
Schuiten.

In the early 1950’s, the development of digital computers provided a mean
of applying Richardson’s methods and attacked the enormous computational
task involved in weather forecasting. The first numerical weather prediction
has been computed on the Electronic Numerical Integrator and Computer
(ENIAC) constructed by John von Neumann, a Hungarian-American math-
ematician. One can remark that the four most important scientists who had
marked the beginning of weather forecasting come from four different countries
(USA, Norway, UK and Hungary) with an expertness in four different fields
(Meteorology, Mathematics, Physics and Computation). The field of weather
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Figure 1.1 — An artist’s impression of Richardson’s forecast factory
(©François Schuiten).

forecasting is a beautiful illustration of an international and multidisciplinary
scientific cooperation (see Wiin-Nielsen, 1991, Lynch, 2008, for more historical
details).

During the six past decades, the development of weather forecasting can
be mainly sorted in four different ways. Firstly, tremendous improvements in
the modelization of atmosphere and ocean have been done. General circulation
models with improved representation of physical processes, using sophisticated
modeling techniques, have been developed. In parallel, numerical methods used
to compute the evolution of such models have been constantly improved with
progresses in implicit integration schemes allowing longer time steps. Secondly,
technological breakthroughs with the invention of the radiosonde and later of
the satellites have been crucial for collecting large set of accurate observa-
tions and better understanding of the earth system. Thirdly, data assimilation
methods which produce an estimation of the system using both information
from a model and observations have grown up and became a science in itself.
Whereas basic interpolation methods were used for the first weather forecasts,
more sophisticated methods based on optimal control and statistical theories
are deployed nowadays. Finally, the power of computers has been constantly
increased with the invention of vector processors and massively parallel com-
puters. It allows to increase the size of the domains as well as the spatial and
temporal discretizations which enable to represent small-scale phenomena. A
significant part of the 500 most powerful computers (http://www.top500.org)
are devoted to wheater forecasting showing that this activity use supercomput-
ers at the cutting edges of the progress.

Nowadays, most of the industrialized countries develop national weather
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forecasting centers for both operational predictions and scientific researches.
They run a large set of models which simulate not only the ocean and the
atmosphere but also geophysical, chemical and biological processes. These
models are usually coupled together to transfer information among them and
produce a wide range of marine and atmospheric forecast for different time and
space scales.

1.2 Motivations

Several countries employ government agencies to provide weather and marine
forecast. The first aim of such agencies is to give warnings and advisories to
the public in order to protect their life and property. The second one is to
maintain commercial interests of companies (Katz and Murphy, 1997). In this
section, few examples for both cases are given to show the crucial importance
of forecasting in our daily life.

A major part of modern weather forecasting is to issue alerts in the case
of severe or hazardous weather. Some of the most commonly alerts are for
thunderstorms, high winds, floods, snow and ice conditions. New alerts are
constantly developed to warn the public when, for example, the intensity of
the ultraviolet radiation is high, the risk of avalanche is important, the coastal
waves are high or a risk of tsunami after an submarine earthquake is present.

The second aim of weather forecasting which deals with commercial interests
is even more diversified. Because the aviation industry is especially sensitive
to the weather, accurate atmosphere forecasting is essential. Indeed, some
weather conditions such as fog, turbulence, icing or thunderstorms can increase
in-flight hazards. Volcanic ash is also a significant problem for aviation, as
aircraft can lose engine power within ash clouds. Additionally, airports often
decide which runway is being used to take advantage of a headwind since it
reduces the distance required for takeoff, and eliminates potential crosswinds.
At last, an accurate knowledge of jet streams can save fuel using them. The
power companies need also accurate temperature forecast since they use them
to determine how many units of energy to produce and/or to buy. Too few
or too many units of produced energy will result in a waste of money and
ultimately in a higher cost to the consumer. On their sides, the agriculture and
food industries are interested by rain amount, temperature (especially freezing
and very hot temperatures) and long term drought or heavy rain to optimize
their production effectiveness. Other companies are more interested by marine
forecasting. Commercial ships are interested by ocean currents, wind direction
and speed and wave heights since they influence the safety and the speed of
marine transit. On their sides, deep sea oil companies pay attention of wave
and ocean currents to ensure stability of their off-shore platforms.
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1.3 Challenges

Meteorologists have remarkably increased the accuracy of weather forecast
by assimilating more observations with suitable models and data assimilation
methods. On average, a five-day weather forecast of today is as reliable as a
two-day weather forecast 20 years ago. Despite this major scientific progress,
many challenges remain especially for medium and long term weather pre-
dictability. Indeed, weather forecast is a complex field because the atmosphere
and the ocean are complicated systems that are affected by many factors and
can react in different ways. These systems are chaotic, meaning that small
differences in initial conditions yield widely diverging outcomes. In this con-
text, long-term predictions are complex. A first challenge is to continue the
development of new methods which increase the accuracy in the determination
of initial conditions and to better estimate the errors in the produced fore-
cast. These methods should appropriately predict severe weather and extreme
climate events such as heavy rainfall and cyclones. Besides that, there is a
growing societal demand for environmental predictions. This demand can be
matched by using a global approach which models a whole set of physical,
chemical and biological processes for the earth system. In such a situation,
new data assimilation methods are needed. They may be able to use coupled
models with different time and space scales and to transfer information among
the different model components.
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Chapter 2

Data assimilation problems

Mathematical models are critical to understand and predict the behavior of
real-world complex systems such as the atmosphere and the ocean. Forecasts of
these systems are computed by integrating these models on high performance
computers, starting from an initial state (also called initial condition). The
accuracy of the forecast depends on the ability of the mathematical models to
adequately represent the reality and on the knowledge of an accurate initial
state. The determination of an accurate initial condition using observational
data of the system is called a data assimilation problem (Bennett, 2002, Kalnay,
2003). Even if data assimilation problems arise from very different fields, they
share the same materials. These materials are presented in this chapter. For
consistency with the literature on the subject, the notation proposed by Ide
et al. (1997) will be adopted as far as possible.

2.1 The state vector

The first step in the mathematical formalization of a data assimilation problem
is the definition of the work space. Each system is characterized by the values
of its physical fields which are often continuous functions. Nevertheless, for
reasons that will be presented in the next section, a discretization is used to
represent the state of a system. A vector x ∈ Rn is defined which contains the
values of the physical fields at the discretization points. Such a vector is called
a state vector, where n represents its size. As an example, if the system under
study is the ocean or a part of it, the state vector could contain the value of
some physical fields such as the temperature, the salinity, the velocities, etc.,
at different places of the ocean.

7
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2.2 The model

Mathematical models are derived by applying laws of physics. As an example,
the motion of the ocean can be modeled using the Navier-Stokes equations,
while the evolution of the atmosphere can be modeled using the Newton’s
second law, the continuity equation, the equation of state for ideal gases, the
first law of thermodynamics and a conservation equation for water mass (see,
Bjerknes, 1904)). In general, one can assume that a mathematical model can
be represented by a set of Ordinary Differential Equations (ODEs) or Partial
Differential Equations (PDEs). Unfortunately, the solution of such systems of
equations can generally not be solved analytically and only numerical solutions
are available.

Different methods can be applied to compute numerical solutions. A first
possibility is to perform a discretization in time and a discretization in space
using a mesh on the spatial domain. The most simple mesh is a uniform grid but
other, more complex, meshes such as curvilinear grids or adaptive mesh grids
are possible. Once a mesh is defined, a numerical method such as the leapfrog
scheme can be used to find a numerical solution of the PDEs system (Cushman-
Roisin and Beckers, 2010). Another possibility to solve PDEs systems is to use
a finite element method which approximates the exact solution using polygons
or tetrahedra as spatial discretization and a basis of piecewise linear functions.
The numerical solution is a linear combination of the basis functions where the
coefficients are computed by solving a set of ODEs using standard techniques
such as the Runge-Kutta method. In this case the state vector does not contain
the values of the physical fields at grid points anymore but the coefficients of
the linear combination of the basis functions. The size of the state vector is
the number of basis functions used for the approximation. Finally, a last usual
method to solve PDEs systems is the spectral method. It is similar to that
of the finite element method but uses spherical harmonics as basis functions.
In any case, the spatial discretization or the finite number of basis functions
implies to use a state vector of finite dimension.

Mathematically, the evolution of the model from time ti to time ti+1 is
represented by a model operator

Mi+1,i : Rn → Rn : xi  xi+1 =Mi+1,ixi, (2.1)

where xi ∈ Rn is a state vector representing the state of the system at time ti
and xi+1 ∈ Rn is a state vector representing the state of the system at time ti+1.
Calligraphic font is used whenever the considered operator is assumed to be
nonlinear. In our entire work, the model is assumed to be perfect, which means
that no randomness is added to the model evolution. If the model operator is
linear, the dynamical system is described by

xi+1 = Mi+1,ixi, (2.2)

where Mi+1,i ∈ Rn×n is an n by n matrix.
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2.3 The Observations

When studying an earth’s system, observations of different physical fields are
often needed. For example, considering the atmosphere, observations of air
speed, density, pressure, temperature and humidity are crucial. These kind of
observations can be collected by balloons, planes or weather stations and are
called in situ observations since they are directly measured. Considering now
the ocean, buoys (moored or drifting) and ships can provide in situ observations
for physical fields such as sea surface temperatures, salinity, sea level or ocean
currents. The quality and the distribution of in situ measurements are non-
uniform across space and time. As an example of observation system, Argo
is a collection of small, drifting oceanic robotic probes deployed worldwide.
The probes float as deep as 2 km measuring salinity and temperature profiles.
Once every 10 days, the probes surface and transmit measurements to scientists
on shore. This system deploys 3, 500 probes which is a large number for an
operational observation system. Nevertheless, since they are distributed for the
whole ocean, the measurements are sparse in space and time (see Figure 2.1).

Figure 2.1 — Distribution of Argo buoys
(©Argo Information Centre).

In situ measurements provide detailed conditions in specific locations, but
to obtained more measurements distributed in space and time, scientists are
relying on satellites. In few days, satellites provide uniform observations on the
entire surface of the globe. These observations are renewed permanently. The
speed of a satellite is about 1500 times that of a ship, so it is able to observe the
entirety of the ocean rather quickly. They allow in particular the observation of
high latitudes for which few in situ measurements exist. The satellites are able
to measure, amongst others, the temperature of the ocean surface, the wind
speed, the wind direction, the wave height, the wave direction, the sea level
or the extent of sea ice. For example, the QuikSCAT satellite measures near-
surface wind speed and wind direction over oceans under all weather and cloud
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conditions. The wind speed measurements are performed with an accuracy of
2 meters/second, and the wind direction, with an accuracy of 20 degrees. The
QuikSCAT satellite observes oceans on a 1, 800-kilometer-wide band with a
resolution of 25 kilometers, making approximately 400, 000 measurements and
covering 90% of the Earth’s surface in one day (see Figure 2.2). It is however

Figure 2.2 — A sequence of descending passes of the QuikSCAT
satellite measuring wind speed and wind direction (©National Oceanic

and Atmospheric Administration).

not yet possible to suppress in situ measurements since satellites cannot observe
any physical field and cannot perform observations in deep waters.

Mathematically, an observation of the system performed at time ti and
containing pi measurements is represented by a vector yi ∈ Rpi defined as

yi = Hixti + εoi , (2.3)

where xti is the true (unknown) state vector at time ti, εoi ∈ Rpi is the obser-
vational noise due to instrumental and representativeness errors and Hi is the
observation operator which maps any state vector into the observation space
Rpi as

Hi : Rn → Rpi : xi  Hixi. (2.4)

As for the model operator, calligraphic fonts are used whenever the considered
operator is assumed to be nonlinear. When the observation operators are linear,
an observation is obtained by

yi = Hixti + εoi , (2.5)
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where Hi ∈ Rpi×n is a pi by n matrix which is assumed to be of full rank
in our entire work. An observation operator is needed for two main reasons.
Firstly, measurements are not necessarily performed for each component of the
state vector and they can be made at different locations than the grid points.
Secondly, the physical fields can be observed indirectly. In the following, we
briefly illustrate both reasons and show at the same time how nonlinearities
appear in the observation operator.

2.3.1 Interpolation
The problem of measurements obtained at locations which are not grid points
can be solved by using interpolation techniques to map the state vector in the
observation space. We give an example of such a technique in the following.
Assume that a measurement is available at point Q on a two-dimensional grid
(see Figure 2.3) with coordinates (a, b) in a Cartesian plane. One simple pos-
sibility is to perform a bilinear interpolation using the four grid points closest
to the observation location, P11 = (a1, b1), P12 = (a1, b2), P21 = (a2, b1) and
P22 = (a2, b2), with their state values, say, f(a1, b1), f(a1, b2), f(a2, b1) and
f(a2, b2), respectively. The bilinear interpolation first performs two linear in-
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Figure 2.3 — Bilinear interpolation scheme.

terpolations along the horizontal axis to approximate the value of the state
vector at points R1 = (a, b1) and R2 = (a, b2). These approximations are given
by

f(a, b1) ≈ a2 − a
a2 − a1

f(a1, b1) + a− a1

a2 − a1
f(a2, b1) (2.6)

and
f(a, b2) ≈ a2 − a

a2 − a1
f(a1, b2) + a− a1

a2 − a1
f(a2, b2). (2.7)

Using the interpolated values f(a, b1) and f(a, b2) at the points R1 and R2, a
linear interpolation can is then performed along the vertical axis to approximate
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the value of the state vector at Q = (a, b)

f(a, b) ≈ b2 − b
b2 − b1

f(a, b1) + b− b1
b2 − b1

f(a, b2). (2.8)

Using (2.6) and (2.7) in (2.8), a general formulation of this bilinear interpolation
process can be derived, yielding

f(a, b) ≈ f(a1, b1)
(a2 − a1)(b2 − b1) (a2−a)(b2−b)+ f(a2, b1)

(a2 − a1)(b2 − b1) (a−a1)(b2−b)

+ f(a1, b2)
(a2 − a1)(b2 − b1) (a2 − a)(b− b1) + f(a2, b2)

(a2 − a1)(b2 − b1) (a− a1)(b− b1).

Note that the bilinear interpolation is not a linear but a quadratic function,
except for observations along the mesh grid. Figure 2.4 shows the contour lines
of the interpolated values for a unit square box with f(0, 0) = 0, f(0, 1) = 1,
f(1, 0) = 1 and f(1, 1) = 0.5, showing the nonlinear behavior of the bilinear
interpolation scheme. For a three dimensional field, a trilinear interpolation
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ear behavior.

exists which is a simple extension of the bilinear interpolation to three dimen-
sions.

2.3.2 Indirect observations
As said before, an observation operator can also be needed if the physical field
is not directly observed. As an example, we assume that the state vector xi
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contains only the value of the sea surface temperature (SST) at one location
and that a satellite is used to perform a measurement at this location such that
no interpolation is needed. In practice, the satellites are not able to directly
measure SST but they measure radiation using infrared radiometers (Pimentel,
2006). In this case, yi contains one radiation measurement while xi contains a
SST value. A model operator is needed to transform SST values into radiation
values. A possibility is to use the relation

yi = ασx4
i (0.39− 0.05

√
κ)(1− δcc2) + 4ασx3

i (SST − Ta) (2.9)

where α is the surface emissivity, σ is the Stefan-Boltzmann constant, κ is
the water vapor pressure in surface air, c is the fractional cloud cover, δc is
the lattice dependent cloud cover coefficient and Ta is the air temperature
(see Clark et al., 1974, for details). This kind of relation is modeled in the
observation operator Hi. We can see that the relation is nonlinear. It shows
another origin of nonlinearities in the observation operators. Of course, other
possibilities exist to deduce SST from satellite observations but they will not
be presented in this work since the goal was simply to illustrate the fact that
the observation operator can be use to transform physical fields.

2.3.3 Observation errors
A very large variety of sensors are employed for operational data collection
schemes. These sensors operate in a wide range of environments and use differ-
ent measurement protocols. The observation error vector εoi ∈ Rpi is a random
vector which models the error that could be made by the observation process.
The origin of error is twofold and can be illustrated using the previous example
of a radiation measurement performed by a satellite. Firstly, an instrumental
errors can occur, due to a measurement error in the radiation. Secondly, a rep-
resentativeness error can occur, due to the approximation made in a relation
such as (2.9).

It is not trivial to estimate the observation error εoi . In our work, the mean of
the observation error is assumed to be zero and the observation error covariance
matrix, Ri ∈ Rpi×pi , is assumed to be sparse symmetric positive definite.
Moreover, the observation errors are assumed to be temporally uncorrelated.
The covariance matrix Ri can be decomposed as

Ri = ΣCΣ,

where Σ ∈ Rpi×pi is a diagonal matrix which contains the standard deviation
of each measurement and C ∈ Rpi×pi is a correlation matrix. The standard
deviations are often estimated using the characteristics of the measurement
devices. They must also include the representativeness error due to the fact
that some physical phenomena are not represented in the observation operator.
The correlation matrix is often assumed to be the identity, meaning that no
spatial correlation between measurements are modeled.
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2.3.4 Observation selection
Data assimilation problems are mathematical problems that are usually solved
iteratively. A set of observations is available from the past and is continuously
updated with new measurements from the present. Nevertheless, the whole
set of observations is not used to produce an estimation of the system’s state
but only new observations from a relevant area and time interval are used
to improve the previous estimation made from past observations. The time
interval used to collect the new observations is called the data assimilation
window. For atmospheric systems, its typical range is between 6 to 24 hours,
while between several days to one month for oceanographic systems. Formally,
the time interval defined by the assimilation window is given by [t0, tN ] and
the number of measurements used during this period is given by

p =
N∑
i=1

pi,

where N is the number of observation times. A new observation vector y ∈ Rp
which concatenates the N different ones can be defined as

y =
(

(y1)T
, . . . , (yN )T

)T
.

Its size p is usually much smaller than the size of the state vector n. Nowa-
days, weather forecasting centers use several millions of observations each day
to estimate the state of their atmospheric and oceanographic models which can
contained up to a billion of unknown parameters. The selection of the observa-
tions which are distributed spatially all around the world is not straightforward.
In Figure 2.5, the areas where observations are collected for a 24-h, a 72-h and
a 120-h atmospheric forecast for the central zone Z is shown. One can observe

Figure 2.5 — Areas where observations are collected for a 24-h, a
72-h and a 120-h forecast in the central zone Z (©European Centre

for Medium-Range Weather Forecasts).

that for a five days forecast in the central zone, observations from all around
the world must be collected.
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2.4 The Background

As said before, the estimation of the state of a system is usually computed
iteratively. The previous estimation made from past observations is called the
background vector and is denoted xb ∈ Rn. This vector is available at the
beginning of each data assimilation window, thus at time t0. The background
error is defined as the error between the background vector and the related true
(unknown) state vector. In our work, we assume that the background error
is unbiased and uncorrelated with the observations error. We suppose also
that the background error covariance matrix, B ∈ Rn×n, is sparse symmetric
positive definite. The background error covariance matrix has multiple roles
in the data assimilation process. First of all, it gives an information about the
accuracy of the background vector giving a statistical indication on the distance
between the background vector and the true state vector. In addition, this
matrix is used to spread information in spatial zones where few observations are
available or to smooth information in spatial zones with a lot of observations.
It is also used to solve the ill-posed problem when the number of observations
is fewer than the size of the state vector.

Specifying appropriate background error covariance matrices is a complex
research problem which requires careful consideration of physical, statistical
and computational issues. To describe the different parts which form a back-
ground error covariance matrix, we use a simple example. Assuming that the
state vector contains values of two different physical fields (salinity, with sub-
script S, and temperature, with subscript T ), available on a three dimensional
grid, the background can be defined by the following product

B = KD1/2FFTD1/2KT

where
K =

(
I 0

KST I

)
,

D1/2 =
(

D1/2
T 0
0 D1/2

S

)
,

F =
(

FTT 0
0 FSS

)
,

The off-diagonal block KST of the matrix K ∈ Rn×n represents the multivari-
ate correlations between the salinity and the temperature. Balance operators
are used to model these blocks (Weaver et al., 2005). The block diagonal ma-
trix D1/2 ∈ Rn×n contains the standard deviation of each variable of the state
vector. Finally, the block diagonal matrix F ∈ Rn×n represents the spatial
mono-variate correlations between values of the same physical field at differ-
ent grid points. These blocks are modeled by integrating diffusion equations



16 Chapter 2. Data assimilation problems

(Weaver and Courtier, 2001) and gives the smoothing effect of the background
error covariance matrix. The choice of explicit or implicit schemes for the in-
tegration of the diffusion equations depends on the desired accuracy as well
as the computational budget. Implicit schemes are more robust, but require
efficient linear system solvers.

For large state vectors, it is not affordable to store the matrix B explicitly.
Moreover, the amount of information to specify each entry of the matrix is not
sufficient. In practice, the matrix depends only of a small set of parameters
used to define the standard deviation, the balance operators and the diffusion
operators.

2.5 Inverse problem

Our focus in this entire work is to use and develop methods to solve data assim-
ilation problems. This kind of problems are also called parameter estimation
problems or inverse problems. The solution of such problems is intrinsically
hard for multiple reasons:

• The existence of a solution is not guaranteed. In operational applications,
the model never fits the observations because it only approximates the
real behavior of the system.

• If the exact solution exists, it may not be unique. If the model operator
is linear and rank-deficient, there is a nontrivial null space. Any linear
combination of vectors in the null space can be added to a particular
solution of the problem giving a new solution.

• Instability in the computing process often occurs. It means that the
solutions of data assimilation problems are extremely unstable for small
changes in the observations. This kind of problem is referred as ill-posed
or ill-conditioned. The solution is to stabilize the problem and prevent
overfitting with regularization techniques. To this aim, one possibility is
to use the background error covariance matrix with its smoothing effect
coming from the diffusion operator F (Weaver and Courtier, 2001).

Besides these intrinsic difficulties (see Aster et al., 2005, for details), other ones
arise in the implementation of data assimilation methods. These problems will
be addressed in the next chapters.
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The variational approach

The variational approach constitutes a broad class of methods which aims to
solve data assimilation problems. This approach has been introduced in the
early fifties by Yoshikazu Sasaki (Sasaki, 1958, Lewis and Lakshmivarahan,
2008). It treats the data assimilation problems in the form of minimizing
functions measuring weighted distances between the model and the available
information such as the background and the observations. It is tied up to
least squares problems initially developed in the beginning of the 19th century
by the German Carl Friedrich Gauss, the French Adrien-Marie Legendre and
the American Robert Adrain (Lewis et al., 2006). Under the general name of
variational approach, there is a set of different formulations of optimization
problems which solve the data assimilation problems in different ways. The
modern variational approach is divided into two general categories. The first
one, labeled 3D-Var (three-dimensional variational), has become very popular
in the early nineties and operational for the first time at the National Centers
for Environmental Prediction (USA) in 1991 (Parrish and Derber, 1992). The
second category, labeled 4D-Var (four-dimensional variational), is a straight-
forward extension of the 3D-Var one which allows to assimilate the observations
at their correct observation times, see Section 3.2. The first operational 4D-Var
scheme was implemented at the European Centre for Medium-Range Weather
Forecasts (ECMWF) in 1996 (Courtier et al., 1994, Rabier et al., 2000a). Nowa-
days, other major operational centers from France, United-Kingdom, USA,
Canada and Japan have adopted the 4D-Var formulation. In this chapter, we
outline the principal foundations of the two categories of variational methods
and present the associated formulations of the optimization problems. The
methods used to solve these optimization problems are presented formally in
Chapter 6. However, a first rough idea is presented in this chapter since it is
useful to understand the differences between 3D-Var and 4D-Var approaches.
The gap between these is bridged by the 3D-Var FGAT approach. The end of
this chapter is devoted to the presentation of two reduced formulations which

17
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allow to decrease the computational cost involved in the solution of the 4D-Var
problem.

3.1 3D-Var

Assume that at time ti, a background vector xb and an observation vector
yi are available. A possible idea is to use both information to compute an
estimation of the true state vector at time ti. More precisely, the estimation
can be computed by minimizing the distance with both information weighted
by their accuracies. The accuracy of the background is represented by the
inverse of the background error covariance matrix, B−1, while the accuracy of
the observation vector is given by the inverse of the observation error covariance
matrix, R−1

i . Mathematically, the following optimization problem is stated

min
x∈Rn

1
2(x− xb)TB−1(x− xb) + 1

2(Hix− yi)TR−1
i (Hix− yi), (3.1)

where the first term measures the weighted distance between the state vec-
tor and the background and the second term measures the weighted distance
between the state vector and the observation vector yi. The solution of this
problem is normally a better estimate than the background vector since it uses
the information from the observation. The minimization process of (3.1) is
often called the analysis phase while the obtained solution is called the anal-
ysis and denoted xa. Once the analysis is computed, it can be used as an
initial condition to integrate the model to time ti+1 using the model opera-
tor Mi+1,i. This integration is often called a forecast phase. The obtained
state vector is then called the forecast and is usually denoted xf . It plays
the role of the background at time ti+1 where a new optimization problem
similar to (3.1) can be solved to assimilate the next observation vector yi+1.
This process continue recursively, assimilating the observation vector one at a
time. In Figure 3.1, the analysis phase is illustrated for the assimilation of a
single observation vector yi. Some comments must be made on the formula-
tion (3.1) and its application for operational weather forecasts. First of all,
the discretization in the state vector allows us to solve (3.1) using the theory
of optimization in finite dimensional vector spaces with multivariate calculus
instead of using the theory of optimization in infinite dimensional spaces with
calculus of variations. It is an advantage from an optimization point of view
since most of the optimization algorithms developed in the last decades for
engineering problems are designed for finite dimensional vector spaces. Sec-
ondly, one can see that this optimization problem belongs to the large class of
nonlinear least-squares problems (remembering that the observation operator
is assumed to be nonlinear). Finally and unfortunately, this process cannot be
applied for operational weather forecasts and is only theoretical. Indeed, as
said previously, a satellite can perform 400.000 observations in one day. It is
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Figure 3.1 — The analysis phase for the observation yi.

not affordable to construct and minimize an optimization problem of the form
of (3.1) each time an observation becomes available.

In practice, in order to reduce the number of analysis phases, a data assimi-
lation window of appropriate size [t0, tN ] is fixed and the N observation vectors
yi, i = 1, . . . , N , available respectively at time ti, i = 1, . . . , N , are selected.
All of these observations are assimilated all at once by minimizing the function

min
x∈Rn

J3D(x) = 1
2(x−xb)TB−1(x−xb)+ 1

2

N∑
i=1

(Hix−yi)TR−1
i (Hix−yi). (3.2)

This function is called the 3D-Var formulation or simply the 3D-Var function.
The minimization of the 3D-Var formulation is called the 3D-Var problem. The
analysis obtained by solving the 3D-Var problem is assumed to be an estimation
of the state of the system at the center of the data assimilation window. It can
be used as an initial condition to perform a forecast for the center of the next
assimilation window. This forecast plays the role of the background vector for
the next data assimilation problem. The scheme is presented in Figure 3.2 and
shows that using a 3D-Var formulation is equivalent to assume that all the
observations in the data assimilation window have been measured at its center.
This method does not take account of the observation times, except that the
observations must be included in the correct data assimilation window.

A formal and classical approach from the optimization community for solv-
ing nonlinear least-squares problems such as (3.2) is given in Chapter 6. How-
ever, the meteorological community has also been interested by this kind of
problem and they have developed their own optimization methods using their
own vocabulary. We present this content in the following and will relate it with
formal optimization methods in Chapter 6. Le Dimet and Talagrand (1986),
Talagrand and Courtier (1987), Courtier and Talagrand (1987) have introduced
the incremental method to solve variational problems such as (3.2). This is an
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Figure 3.2 — 3D-Var scheme.

iterative method which computes a sequence of vectors {xk} hoping to reduce
gradually the value of the 3D-Var function (3.2). Note that in the incremental
formulation, the subscript does not denote the time index of the state vector
but the number of the iterate. Each iterate is defined as

xk+1 = xk + δxk,

where the increment δxk is computed by solving

min
δx∈Rn

J3D-Inc(δx) = 1
2(δx− d̂bk)TB−1(δx− d̂bk)

+ 1
2

N∑
i=1

(Hk
i δx− d̂oki )TR−1

i (Hk
i δx− d̂oki ). (3.3)

The vectors d̂bk = xb − xk and d̂oki = yi − Hixk are called the background
departure vector and the observation departure vector, respectively. The ma-
trix Hk

i is the Jacobian matrix of Hi at xk. The problem (3.3) is called the
incremental 3D-Var problem. It is a local approximation of (3.2) where the
observation operator has been linearized around xk as

Hi(xk + δx) ≈ Hixk + Hk
i δx.

It is important to remark that this approximation is suitable only for acceptable
magnitude of the perturbation δx which depends on the application (Trémolet,
2004). The incremental problem is a linear least squares problem and its solu-
tion can be calculated by using linear systems solvers. It is convenient to choose
the background vector as the first iterate of the sequence, i.e., x0 = xb, since it
is the best estimate before the assimilation of the N available observations. The
use of the 3D-Var approach implies the computation of the Jacobian matrix of
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the nonlinear observation operator, namely Hk
i . For operational oceanic and

atmospheric models, such computation is not trivial. This problem is addressed
in Chapter 7 with more details on Jacobian computation in Section 7.2.

3.2 4D-Var

The main drawback of the 3D-Var formulation is that the observations are
shifted in the middle of the data assimilation window. This can potentially
lead to inaccurate analysis vectors for fast moving weather systems. The 4D-
Var formulation address this problem by assimilating the observations at their
true observation times (Rabier and Courtier, 1992, Rabier, 2005). To this aim,
the model operator Mi+1,i is used to propagate the information along the
whole data assimilation window. The 4D-Var problem is stated as

min
x0,x1,...,xN∈Rn

J4D(x0,x1, . . . ,xN ) = 1
2(x0 − xb)TB−1(x0 − xb)

+ 1
2

N∑
i=1

(Hixi − yi)TR−1
i (Hixi − yi), (3.4)

subject to the constraints

xi+1 =Mi+1,ixi , i = 0, . . . , N − 1.

This is an optimization problem depending onN+1 state vectors x0,x1, . . . ,xN
and constrained by N nonlinear relations. Since we have assumed that the
model operator is perfect, we can directly put the constraints in the 4D-Var
function, reducing the number of unknowns to the initial vector x0. In this
case, the subscript is usually forgotten and the 4D-Var problem becomes

min
x∈Rn

J4D(x) = 1
2(x− xb)TB−1(x− xb)

+ 1
2

N∑
i=1

(HiMi,0x− yi)TR−1
i (HiMi,0x− yi), (3.5)

where Mi,0 =
∏j=i−1
j=0 Mj+1,j is an operator that describes the integration

of the model from time t0 to time ti. The scheme of the 4D-Var problem is
represented in Figure 3.3. One can see that the observations are assimilated at
their true observation times measuring the exact misfit between the observation
vector yi and the model counterpart at time ti, given by HiMi,0x. In this
work, the 4D-Var formulation is presented in a strong constraint formulation
since the constraints are used to reduce the minimization problem (3.4) to an
initial value problem (3.5). When model errors exist, there is a weak constraint
4D-Var formulation which adds a third term accounting for the model error
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Figure 3.3 — 4D-Var scheme.

(Trémolet, 2006). In the weak formulation, the 4D-Var function depends not
only on the initial state vector but also on the model errors.

As the 4D-Var problem will be used in a large part of this work, we refor-
mulate (3.5) in a more convenient way as

min
x∈Rn

J4D(x) = 1
2(x− xb)TB−1(x− xb) + 1

2(G(x)− y)TR−1(G(x)− y), (3.6)

where y = ((y1)T , . . . , (yN )T )T ∈ Rp, with yi ∈ Rpi and p =
∑N
i=1 pi, is the

observation vector and the covariance matrix R ∈ Rp×p is formed with each Ri,
for i = 1, . . . , N . The operator G : Rn → Rp is mapping the initial condition
into the space of the observation vector y and is given by

G(x) =



H1M1,0x
...

HiMi,0x
...

HNMN,0x

 . (3.7)

An incremental method similar to the one used for the 3D-Var problem
can be developed to solve the 4D-Var problem (3.6). It leads to a sequence of
4D-Var incremental problems defined by

min
δx∈Rn

J4D-inc(δx) = (δx− dbk)TB−1(δx− dbk)

+ 1
2(Gkδx− dok)TR−1(Gkδx− dok), (3.8)
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where the matrix Gk is the Jacobian matrix of the operator G at xk and is
given by

Gk =



Hk
1Mk

1,0
...

Hk
iMk

i,0
...

Hk
NMk

N,0

 , (3.9)

where Mk
i,0, i = 1, . . . , N , is the Jacobian matrix of Mi,0 at xk and is called

the tangent linear model. The background departure vector dbk is unchanged
compared to the 3D-Var incremental formulation (3.3) and is still given by

dbk = xb − xk, (3.10)

while the observation departure vector is given now by

dok = y− G(xk). (3.11)

The incremental 4D-Var formulation (3.8) is derived using the following lin-
earization

G(xk + δx) ≈ G(xk) + Gkδx.

As for the 3D-Var, the linearization is only suitable for acceptable magnitudes
of perturbations. The solution of (3.6) gives an estimate of the state of the
system at the initial time t0. It is used as an initial condition to perform a
forecast for the beginning of the next assimilation window.

The 4D-Var formulation outperforms the 3D-Var one since it assimilates
the observations at their correct observation times (Lorenc and Rawlins, 2005).
Nevertheless, the computational cost of the 4D-Var formulation is higher than
the 3D-Var one since it requires the computation of the Jacobian matrices Hk

i

and Mk
i , while the 3D-Var formulation requires only the computation of Hk

i .
The problem of Jacobian computation is addressed in Chapter 7 with more
details in Section 7.2.

3.3 Other formulations

The 3D-Var and 4D-Var formulations are not the only possible formulations to
solve data assimilation problems. In this section, we shortly present two other
famous formulations. The first one bridges the gap between the 3D-Var and
4D-Var formulations and is called the 3D-FGAT which stands for First Guess
at Appropriate Time (Massart et al., 2010). It uses the same formulation
as the 4D-Var formulation (3.6). The only difference is in the incremental
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formulation where the Jacobian of the model operator is assumed to be the
identity. Mathematically, the following linearization is used in the 3D-FGAT

G(xk + δx) ≈ G(xk) + Hkδx,

where Hk is the Jacobian matrix of

H(x) =



H1x
...
Hix
...
HNx


at xk. It leads to the following incremental problem

min
δx∈Rn

J3D-FGAT-Inc(δx) = (δx− dbk)TB−1(δx− dbk)

+ 1
2(Hkδx− dok)TR−1(Hkδx− dok). (3.12)

The 3D-FGAT method loses the dynamical aspect of the 4D-Var since the in-
crement does not evolve dynamically in the assimilation window. It is for that
reason that it belongs to the 3D-Var category. Nevertheless, the comparison
between the model and the observations is still computed at the right obser-
vation time in the departure vector. It is an attractive compromise between
the accuracy of the 4D-Var formulation and the simplicity of the 3D-Var for-
mulation which requires only the computation of the Jacobian matrices of the
observation operators.

A last famous formulation to solve data assimilation problems is called
PSAS which stands for Physical Space Assimilation System (Courtier, 1997).
This approach is available for both 3D-Var and 4D-Var categories. It is a dual
method which solves the incremental problem in the observation space rather
than in the state space. It can be an attractive formulation since the observation
space is often substantially smaller than the state space. Theoretically, the
PSAS formulation gives the same solution than the conventional variational
formulations.

3.4 Reduced order 4D-Var

The 4D-Var approach (3.6) with its incremental formulation (3.8) can be com-
putationally intensive for operational problems. Indeed, the 4D-Var function
is a very large nonlinear least squares function which is expensive to evalu-
ate since it involves a model integration along the data assimilation window.
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Moreover, the computation of the Jacobian matrix Gk used in the incremental
formulation is also expensive. Many attempts have been made to reduce the
computational cost of the 4D-Var approach. We briefly review some of the
most famous ones.

A first possible idea is to minimize the sequence of 4D-Var incremental
functions (3.8) using a coarser discretization grid than the one used for the
computation of the departure vectors (Courtier et al., 1994). It leads to a
computation gain since the minimization is performed in a much smaller space,
say Rr with r << n. More precisely, a reduced increment δx ∈ Rr is computed
at low resolution on a coarse grid and the following update formula

xk+1 = xk + Sδxk,

is used where δx is prolongated at high resolution on the fine grid using a linear
prolongation operator S ∈ Rn×r. Conversely, the operator which transforms
a vector from high to low resolution is a restriction operator and is given by
S+, the pseudo-inverse of S (see Appendix A.1). With these prolongation and
restriction operators, the reduced incremental 4D-Var problem can be stated as

min
δx∈Rr

(δx− S+dbk)TB−1
r (δx− S+dbk)

+ 1
2(G̃kδx− dok)TR−1(G̃kδx− dok), (3.13)

where Br ∈ Rr×r is the reduced background error covariance matrix. It is an
approximation in some sense of S+BS and models the background error on
the coarse grid. Its inverse B−1

r is an approximation of S+B−1S. The matrix
G̃k is the Jacobian matrix of G̃ : Rr → Rp which maps an initial condition
defined on the coarse grid, x ∈ Rr, into the space of the observation vectors.
It is defined by

G̃(x) =



H̃1M̃1,0x
...

H̃iM̃i,0x
...

H̃NM̃N,0x

 ,

where M̃i,0, i = 1, . . . , N , is the coarse model operator, from time t0 to time
ti, given by

M̃i,0 : Rr → Rr : x M̃i,0x,
and where H̃i, i = 1, . . . , N , is the coarse observation operator given by

H̃i : Rr → Rpi : x H̃ix.

These two operators defined on the coarse grid must approximate in some sense
S+Mi,0S and HiS, respectively. As said previously, one can remark that the
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departure vectors of (3.13), defined by (3.10) and (3.11), are computed on
the fine grid. This procedure of reduced incremental 4D-Var can be slightly
modified. Instead of only using one coarse grid, a hierarchy of different grids
(from the coarsest to the finest) can be used to solve the sequence of incremental
4D-Var problems. This strategy of refinement is called the multi-incremental
4D-Var (Veerse and Thépaut, 1998, Laroche and Gauthier, 1998). It is possible
to use the same refinement philosophy to derive another reduced formulation.
Rather than using a hierarchy of discretization grids, one can use a hierarchy
of model operators which simplify the physical assumptions and discard some
physical process (Rabier et al., 2000b, Mahfouf and Rabier, 2000).

Besides these ideas, it is also possible to formulate another reduced in-
cremental 4D-Var problem which performs the minimization of the classical
4D-Var incremental function (3.8) only in some well-chosen directions. With
this philosophy, another reduced increment δxk ∈ Rr is computed by solving

min
δx∈Rr

(Lδx− dbk)TB−1(Lδx− dbk)

+ 1
2(GkLδx− dok)TR−1(GkLδx− dok), (3.14)

where the matrix L ∈ Rn×r contains the r favored directions in which the
optimization is performed. The update formula is given by

xk+1 = xk + Lδxk.

The choice of the favored directions can be performed using different approaches
such as the balance truncation (Lawless et al., 2006) or based on empirical or-
thogonal functions (Robert et al., 2005). These last ones will be used to estab-
lish, for linear operators, a connection between a reduced 4D-Var problem and a
SEEK filter derived from the sequential approach (see Theorem 5.3). Moreover,
the reduced incremental 4D-Var formulation (3.14) will be used in Section 6.4
to compute an appropriate starting point for the incremental method .

3.5 Evolution of the background error

We have seen in Sections 3.1 and 3.2 that the variational approach computes an
analysis vector which is an estimation of the system state at a given time. This
analysis can be used as an initial condition to perform a forecast and to com-
pute the background of the next assimilation window. However, the variational
approach does not explicitly calculate the evolution of the background error co-
variance matrix. Since the background vector evolves dynamically during the
sequence of assimilation problems, it seems natural that its error covariance
matrix does the same. A possible idea to estimate the background error statis-
tics is to solve an ensemble of independent variational problems where the
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observations have been perturbed by adding well-chosen random noises from
the assumed distribution of the observation error (Daget et al., 2009, Bonavita
et al., 2012). Each variational problem produces its own sequence of analysis
and background vectors. The difference between the background vectors for
pairs of members of the ensemble can be used to estimate the background er-
ror covariance matrix. With this technique, the background error covariance
matrix evolves dynamically along the sequence of data assimilation windows.
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Chapter 4

The sequential approach

The sequential approach is the second broad class of methods to solve data
assimilation problems. This approach is based on statistical estimation theory
and has been introduced by Rudolph Kalman (1960) with the Kalman filter.
This filter has been successfully applied in a wide range of engineering applica-
tions, mostly in navigation and positioning systems. However, its application
in operational weather forecasting is not straightforward. Some adaptations of
the original filter have to be performed to overcome the difficulties arising from
the large size of the problems and from the nonlinearities in the model and
observation operators. It has led to the development of some suboptimal filters
(see Todling and Cohn, 1994, Rozier et al., 2007, for a review). Among them,
the Singular Evolutive Extended Kalman (SEEK) filter decreases the compu-
tational cost by reducing the rank of the estimator error covariance matrices
(Pham et al., 1998). This filter is of interest since it has been successfully
applied to operational oceanographic forecast (Hoteit and Pham, 2003).

The term “filter” has two meanings in our work. The first one comes
from the usual and general definition which states a filter as a porous ma-
terial through which a liquid or gas is passed in order to separate the fluid from
suspended particulate matter. This definition, applied in our context, means
that the filter is a mathematical device through which the system’s informa-
tion is passed to separate the information from its errors. The second meaning
of the term filter is only related to the context of data assimilation problems.
It is used to denote a process which estimates the state of a system at a given
time ti using only observations up to this time, i.e., {y1, . . . ,yi}. In conjunc-
tion with this term, two other terms are usually used. A “smoother” estimates
the state of a system at a given time ti using observation up to but also pos-
terior to this time, i.e., {y1, . . . ,yi,yi+1, . . . ,yi+L}, where the constant L is
called the lag of the smoother. Whereas, a “predictor” estimates the state of
a system at a given time ti using only some observations prior to this time,
i.e., {y1, . . . ,yi−F }, where the constant F defines the length of the prediction.

29
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In our work, we are only interested by filter processing (see Simon, 2006, for
details on smoothers and predictors).

In this chapter, we derive the equations of the Kalman filter using a non-
conventional approach based on the theory of constrained optimization. Once
the equations are established, we show why these cannot be applied directly for
large size problems by performing a count of the required number of floating-
point operations (flops). The SEEK filter which approximates the original
Kalman filter is then presented. A flops analysis is fulfilled showing the ability
of the SEEK filter to handle large size problems. Finally, we describe how
the SEEK filter can be applied in practice. For the whole chapter, we assume
that the model and observation operators are linear. It is a legitimate approach
since the Kalman filter has been originally introduced for linear operators. The
problems arising from nonlinearities is not covered in this chapter but is treated
in Chapter 7.

4.1 Estimation

The sequential approach with its Kalman filter has been established using a
rather different philosophy than the variational approach. The true trajectory
of a system during a time interval is represented by a sequence of true state vec-
tors. Since these vectors are unknown, they can be represented using random
vectors. The idea of the Kalman filter is to produce a sequence of estimators
which approximates the sequence of the true state vectors. These estimators
are constructed using the information contained in the available observations
and in the dynamics of the model operator.

Moreover, the Kalman filter computes a sequence of estimator error covari-
ance matrices giving statistical information about the accuracy of the estima-
tors. Since the numerical integration of the system’s equations implies a space
and time discretization, this chapter will deal only with discrete Kalman filters
(see Simon, 2006, for continuous Kalman filters). To derive the equations of
the Kalman filter, a progressive approach based on the theory of constrained
optimization will be used. Although this is not the shortest approach, we think
that it gives a profound understanding of the theory behind the Kalman filter.
We first explain a method to produce an optimal estimator of a state vector
using one observation. Then, we present a recursive estimation scheme which
allows to update an estimator when new observations become available. Fi-
nally, we describe how to propagate estimators and error covariance matrices
in time. The Kalman filter equations will be naturally derived gathering all
these ingredients.
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4.1.1 Statistical estimation
In this part, we show how to produce the best linear unbiased estimator (BLUE)
of a true state vector xti available at time ti using the information contained in
one observation yi = Hixti + εoi . The BLUE estimator is denoted xi and the
optimality is ensured by minimizing its variance. As assumed in Chapter 2,
the mean of the observation error, E [εoi ], is zeros and the observation error
covariance matrix, E

[
εoi (εoi )T

]
, is given by Ri. The matrix Ri is symmetric

positive definite by construction (see Subsection 2.3.3). The desired estimator
must be linear in the observation and can thus be written has

xi = Tyi, (4.1)

where T ∈ Rn×pi has to be determined. The error between the estimator and
the true state vector, denoted εxi , can be expressed as

εxi = xi − xti
= Tyi − xti
= T

(
Hixti + εoi

)
− xti

= (THi − In) xti + Tεoi , (4.2)

using (4.1) and the definition of yi. Note that the matrix In is the identity
matrix of order n. The mean of this estimator error is given by

E[εxi ] = E
[
(THi − In)xti + Tεoi

]
= (THi − In)E

[
xti
]

+ TE [εoi ]
= (THi − In)E

[
xti
]
,

using the properties of the mean and the assumption that E[εoi ] = 0. The
condition of an unbiased estimator imposes that the mean of the estimator
error is equal to zero, i.e., E[εxi ] = 0. It implies that we have to impose the
condition THi − In = 0, since E[xti] 6= 0 in general. Under this condition, the
estimator error (4.2) becomes

εxi = Tεoi

and the estimator error covariance matrix, denoted Pi, is given by

Pi =E
[
εxi (εxi )T

]
=E

[
Tεoi (Tεoi )

T
]

=TE
[
εoi (εoi )

T
]
TT

=TRiTT , (4.3)
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using the properties of the mean and the definition of Ri. The variance of the
estimator xi is given by the trace of Pi. To obtain the BLUE estimator, the
trace of Pi is minimized subject to the unbiased constraint THi − In = 0. It
leads to the following constrained optimization problem{

min
T∈Rn×pi

tr
(
TRiTT

)
s.t. THi − In = 0.

(4.4)

The solution can be computed using the theorem of second-order sufficient
optimality conditions where the Lagrangian function is given by

L(T,Λ) = tr
(
TRiTT

)
−

n∑
k=1

n∑
l=1

Λ(k, l)
[

pi∑
m=1

T(k,m)Hi(m, l)− I(k, l)
]
,

with Λ ∈ Rn×n, the Lagrangian multiplier matrix (see Appendix B with its
last example for more details). Note that the notation (i, j) designates the
matrix element at the ith row and the jth column. It gives the following
Karush–Kuhn–Tucker (KKT) linear system

2TRi + ΛHT
i = 0

THi − In = 0

using a similar approach as for (B.7) and observing that ∇Ttr
(
TRiTT

)
=

2TRi from (A.9).
The solution of the system is obtained by solving the first equation for T

and by performing the substitution in the second one. It gives

T =
(
HT
i R−1

i Hi

)−1 HT
i R−1

i (4.5)

and
Λ = −2

(
HT
i R−1

i Hi

)−1
.

where the inverse of HT
i R−1

i Hi exists for a full rank matrix Hi with pi >
n[1]. Otherwise, the estimation problem is ill-posed. This solution is a strict
minimum of (4.4) since from (A.9) and (A.10), we have

∇2
TL(T,Λ) = 2Ri

which is symmetric positive definite by definition. Using (4.1) and (4.5), the
BLUE estimator of the vector xti using the observation yi is

xi = (HT
i R−1

i Hi)−1HT
i R−1

i yi. (4.6)
[1]In operational weather forecasts, this approach is impractical since the number of obser-

vation, pi, is usually much smaller than the size of the state vector, n. The solution is given
in the next section with the use of a regularization term
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Its error covariance matrix is given by

Pi =TRiTT

=
(
HT
i R−1

i Hi

)−1 HT
i R−1

i Ri

((
HT
i R−1

i Hi

)−1 HT
i R−1

i

)T
=
(
HT
i R−1

i Hi

)−1 HT
i

(
R−1
i Hi

(
HT
i R−1

i Hi

)−1)
=
(
HT
i R−1

i Hi

)−1
, (4.7)

using (4.3), (4.5) and some basic linear algebra calculus.

4.1.2 Recursive estimation

Whenever new measurements become available at time ti, it would be ineffi-
cient to augment the vector yi and the matrix Hi with the new measurements
and to completely recompute the estimator xi using (4.6) and its error covari-
ance matrix using (4.7). It is preferable to develop a technique which updates
the current estimator xi with its error covariance matrix Pi using the new
measurements. This is the aim of this part which derives a recursive process
to construct a new BLUE estimator, x+

i , from a previous one, xi, and from a
new available observation

y+
i = H+

i xti + εo+i .

As previously, we assume that the mean of the observation error, E[εo+i ], is
zero and that the observation error covariance matrix, E[εo+i (εo+i )T ], is given
by R+

i which is symmetric positive definite. Moreover, we assume that the
estimator error of xi and the observation error of y+

i are uncorrelated, i.e.,
E[εxi (εo+i )T ] = 0. To derive the formula which update the BLUE estimator xi,
we use an approach similar to the previous subsection.

The estimator x+
i ∈ Rn of the unknown vector xti is build so as to depend

linearly on the new observation y+
i ∈ Rpi and on the previous estimator xi.

Thus, we have
x+
i = Fxi + Ky+

i , (4.8)

where F ∈ Rn×n and K ∈ Rn×pi have to be determined. The new estimator
error is given by

εx+
i = x+

i − xti
= Fxi + K

(
H+
i xti + εo+i

)
− xti

= F
(
xi − xti + xti

)
+ K

(
H+
i xti + εo+i

)
− xti

= F
(
xi − xti

)
+ Kεo+i +

(
F + KH+

i − In
)
xti

= Fεxi + Kεo+i +
(
F + KH+

i − In
)
xti, (4.9)
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and its mean is equal to

E[εx+
i ] = E

[
Fεxi + Kεo+i +

(
F + KH+

i − In
)
xti
]

= FE [εxi ] + KE
[
εo+i
]

+
(
F + KH+

i − In
)
E
[
xti
]

=
(
F + KH+

i − In
)
E
[
xti
]
,

since E[εxi ] = 0 and E[εo+i ] = 0 by assumption. The estimator has to be
unbiased meaning that the mean of its error has to be zero. This condition
imposes that

F + KH+
i − In = 0, (4.10)

since in general E[xti] 6= 0. Using the condition (4.10), the estimator error (4.9)
becomes

εx+
i = Fεxi + Kεo+i ,

and the estimator error covariance matrix, denoted P+
i , is given by

P+
i = E

[
εx+
i

(
εx+
i

)T ]
= E

[(
Fεxi + Kεo+i

) (
Fεxi + Kεo+i

)T ]
= FE

[
εxi (εxi )T

]
FT + KE

[
εo+i

(
εo+i
)T ]KT

= FPiFT + KR+
i KT , (4.11)

where the assumption E[εxi (εo+i )T ] = 0 is used to simplify the third expression.
To construct the new BLUE estimator, the trace of P+

i is minimized subject to
the unbiased constraint F+KH+

i − In = 0. It gives the following optimization
problem {

min
F∈Rn×n,K∈Rn×pi

tr
(
FPiFT + KR+

i KT
)

s.t. F + KH+
i − In = 0.

(4.12)

Since the objective function depends on two matrices F and K, the Lagrangian
function for this problem is given by

L(F,K,Λ) = tr
(
FPiFT + KR+

i KT
)

−
n∑
k=1

n∑
l=1

Λ(k, l)
[
F(k, l) +

pi∑
m=1

K(k,m)H+
i (m, l)− I(k, l)

]
,

where Λ ∈ Rn×n is the Lagrangian multiplier matrix (see Appendix B with
its last example for more details). Using the linearity of the trace and simple
calculus, the Lagrangian function can be reformulated as

L(F,K,Λ) = tr
(
FPiFT

)
+ tr

(
KR+

i KT
)

−
n∑
k=1

n∑
l=1

Λ(k, l)F(k, l)−
n∑
l=1

Λ(:, l)T
(
KH+

i (:, l)− I(:, l)
)
,
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where (:, l) denotes the lth column of a matrix. The KKT system is formed by
differentiating the Lagrangian function with respect to F and K and by adding
the constraint. It gives

2FPi + Λ = 0

2KR+
i + Λ

(
H+
i

)T = 0
F + KH+

i − In = 0,

using a similar approach as for (B.7) together with the formulas (A.9). The
solution is given by

F = In −Pi(H+
i )T

(
H+
i Pi

(
H+
i

)T + R+
i

)−1
H+
i

K = Pi(H+
i )T

(
H+
i Pi

(
H+
i

)T + R+
i

)−1
(4.13)

Λ = −2
(
In −Pi(H+

i )T
(
H+
i Pi(H+

i )T + R+
i

)−1 H+
i

)
Pi.

Note that the matrix R+
i + H+

i Pi(H+
i )T is invertible since R+

i and Pi are
positive definite matrices and H+

i is assumed to be of full rank (see Section 2.3).
Using (A.9) and (A.10), we have

∇2L(F,K,λ) =
(
∇2
FFL ∇2

FKL
∇2
KFL ∇2

KKL

)
=
(

2Pi 0
0 2R+

i

)
,

which is a symmetric positive definite matrix since Pi and R+
i are symmetric

positive definite matrices. So, one can conclude that the solution of the linear
system is a strict local minimum of (4.12). Recalling the form of the estimator
(4.8) and the unbiased constraint (4.10), the BLUE estimator of the vector xti
using the former estimator xi and the observation y+

i is then given by

x+
i = Fxi + Ky+

i

=
(
In −KH+

i

)
xi + Ky+

i

= xi + K
(
y+
i −H+

i xi
)

= xi + Pi

(
H+
i

)T (H+
i Pi

(
H+
i

)T + R+
i

)−1 (
y+
i −H+

i xi
)
. (4.14)

Its error covariance matrix, P+
i , can be written as

P+
i =FPiFT + KR+

i KT

=
(
In −KH+

i

)
Pi

(
In −KH+

i

)T + KR+
i KT

=
(
In −KH+

i

) (
Pi −Pi

(
H+
i

)T KT
)

+ KR+
i KT

=
(
In −KH+

i

)
Pi −

(
In −KH+

i

)
Pi

(
H+
i

)T KT + KR+
i KT

=
(
In −KH+

i

)
Pi +

(
K
(
H+
i Pi

(
H+
i

)T + R+
i

)
−Pi

(
H+
i

)T)KT .
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This expression can be reformulated by replacing the first occurrence of K by
its optimal value (4.13). We obtain

P+
i =

(
In −KH+

i

)
Pi

+
(
P(H+

i )T
(
H+
i Pi(H+

i )T + R+
i

)−1 (H+
i Pi(H+

i )T + R+
i

)
−Pi(H+

i )T
)

KT .

The second term vanished, which gives

P+
i =

(
In −KH+

i

)
Pi, (4.15)

where the matrix K is given by (4.13).

4.1.3 Propagation of estimators and covariance matrices
The last result needed before presenting the Kalman filter concerns the pro-
pagation of the estimator x+

i and its error covariance matrix P+
i from the time

ti to the next time ti+1. The propagation of the estimator x+
i to time ti+1 is

denoted xi+1 and is simply obtained by a model integration from x+
i

xi+1 = Mi+1,ix+
i . (4.16)

The propagation of the error covariance matrix is denoted Pi+1 and is given
by

Pi+1 = E
[(

xi+1 − xti+1
) (

xi+1 − xti+1
)T ]

= E
[
Mi+1,i

(
x+
i − xti

) (
x+
i − xti

)T MT
i+1,i

]
= Mi+1,iE

[(
x+
i − xti

) (
x+
i − xti

)T ]MT
i+1,i

= Mi+1,iP+
i MT

i+1,i (4.17)

using simple manipulations and (2.1).

4.2 The Kalman filter

The Kalman filter equations can be stated from the results obtained in the
previous section. It is a recursive process which assimilates the observations
yi, i = 1, . . . , N , at their correct observation times ti, i = 1, . . . , N . It involves
mainly two steps based on the propagation of an estimator with its error co-
variance matrix and on the computation of a recursive estimator using the new
available observation. We describe these two steps for the first iteration of the
Kalman filter which allows to assimilate the first observation vector y1. At the
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initial time t0, the best estimator is the background vector xb with its error
covariance matrix B. The forecast step propagates to time t1 both information
using (4.16) and (4.17) with i = 0, x+

i = xb and P+
i = B. The new estimator

x1 is designed as xf1 in the Kalman framework to denote the fact that it has
been obtained by a forecast. Its error covariance matrix P1 is denoted Pf

1 for
the same reason. The forecast xf1 is an estimator of xt1 and can be corrected
with the observation vector y1 performing an analysis step. Using the formulas
(4.13) and (4.14) with i = 1, y+

i = y1, H+
i = H1, R+

i = R1, xi = xf1 and
Pi = Pf

1 , we obtain

K1 = Pf
1HT

1 (H1Pf
1HT

1 + R1)−1

and
x+

1 = xf1 + K1(y1 −H1xf1 ).

The new estimator x+
1 is designed as xa1 to denote the fact that this estima-

tor has been computed by an analysis step. The corresponding analysis error
covariance matrix, denoted Pa

1 , is given by (4.15) with i = 1, H+
i = H1 and

Pi = Pf
1 . This two-step process can continue recursively by performing a new

forecast step to time t2 from the current analysis xa1 . The Kalman filter is
summarized in Algorithm 4.1 and is illustrated in Figure 4.1.

Algorithm 4.1 Kalman filter with perfect model operators
1: xa0 = xb
2: Pa

0 = B
3: for i = 1 to N do
4: (* Forecast step *)
5: xfi = Mi,i−1xai−1
6: Pf

i = Mi,i−1Pa
i−1MT

i,i−1
7: (* Analysis step *)
8: Ki = Pf

i HT
i (HiPf

i HT
i + Ri)−1

9: xai = xfi + Ki(yi −Hixfi )
10: Pa

i = (In −KiHi)Pf
i

11: end for

We can make some comments on the formulation of this algorithm. Since
the background xb is the best estimator of the state of the system at the initial
time, it is denoted as the result of an analysis step, i.e., xa0 . Therefore, the
background error covariance matrix is denoted Pa

0 . The computation of the
analysis xai at line 9 is performed in two stages by first computing at line 8 the
matrix Ki called the Kalman gain or the Kalman matrix.
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Figure 4.1 — Kalman filter scheme.

The Kalman filter has a simple expression and there are a huge amount of
engineer applications which use it. An historical use relates to the Apollo mis-
sion where a Kalman filter was implemented in 14-bit arithmetic to guide the
descent of the lunar module (Cipra, 1993). Nowadays, the Kalman filter is still
used mainly for navigational and guidance systems on vehicles such as ships, air-
crafts, submarines, guided missiles, and spacecrafts. In these cases, the model
operator is computed using an inertial navigation system which computes the
position, orientation, and velocity without the need of external references but
using accelerometers, gyroscopes and a dead reckoning process. At the same
time, observations of positions are coming from a GPS system. The goal of
the Kalman filter is to use both informations with their different error charac-
teristics to produce an optimal position estimation (Borre and Strang, 1997,
Grewal et al., 2000). As said previously, its applications for data assimilation
problems with operational ocean and atmospheric models encounter several
major difficulties such as the computational cost, the storage of matrices and
the nonlinearities in the operators. We address the first two issues in what
follows while the problem of nonlinearities is treated in Chapter 7.

4.2.1 Computational cost

The computational cost of the Kalman filter can be studied by performing
an evaluation of the required number of floating-point operations (flop). This
study will allow to highlight the most expensive parts of the algorithm. To
simplify the count, we assume that each basic operation (addition, multiplica-
tion, subtraction and division) takes the same time and is equal to one flop. In
general, this assumption is not true and depends on the processor properties
and on the precision used for the computation (Overton, 2001).
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Before presenting the study, we recall some useful results and comments.
Counting the number of flops for a matrix addition or a matrix multiplication
is rather simple. The number of flops needed to add two matrices A1 ∈ Rn1×n2

and A2 ∈ Rn1×n2 is equal to n1n2 and the number of flops to multiply two
matrices B1 ∈ Rn1×n2 and B2 ∈ Rn2×n3 is equal to 2n1n2n3 (n1n2n3 multipli-
cations and n1n2n3 additions) (Golub and Van Loan, 1996). However, there is
a big gap between the mathematical formulation of an algorithm and an effi-
cient implementation of it. Some cautions must be taken before beginning the
implementation since there are tricks that can be used to decrease the number
of flops. We review some classical ones. The first trick is based on the fact
that the associativity of matrix multiplications does not imply an invariance in
the number of flops. Assuming three matrices B1 ∈ Rn1×n2 , B2 ∈ Rn2×n3 and
B3 ∈ Rn3×n4 , the associativity property gives

(B1B2)B3 = B1(B2B3).

The numerical result is independent of the order in which the two matrix prod-
ucts are performed. Nevertheless, the number of flops required is different. For
the first expression, the number of flops is given by

(B1B2)B3 = 2n1n2n3 + 2n1n3n4 (4.18)

while for the second one

B1(B2B3) = 2n2n3n4 + 2n1n2n4. (4.19)

Depending on the size of the matrices, one implementation of this matrix prod-
uct will be more efficient than the other one.

Another trick is about the matrix inversion. When the inverse of a known
matrix A ∈ Rn×n is involved in an algorithm, the naive approach is to explicitly
compute the inverse A−1 and to store it. For a general matrix with no specific
properties, it is done by first applying a LU factorization,

A = LU,

and then by inversing the two triangular matrices

A−1 = U−1L−1.

The number of flops for the LU factorization is equal to 2
3n

3 (Golub and Van
Loan, 1996, p.98) and the number of flops for each triangular matrix inversion
is given by 1

3n
3 + 3

4n
2 (Quarteroni et al., 2000, p.70). Nevertheless, in most

cases, the explicit inversion must be skipped since the algorithm does not need
to compute explicitly the inverse of the matrix but needs to compute the inverse
of a matrix times a vector, namely A−1b. This computation is equivalent to
solve the linear system

Az = b
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for z. This time, the computation of z is done using the LU factorization of A
followed by one forward and one backward substitution, for a cost of 2n2 flops
(Golub and Van Loan, 1996, p.89). We see that it is cheaper to solve a linear
system ( 2

3n
3 + 2n2 flops) than to inverse a matrix and perform the matrix-

vector product ( 2
3n

3 + 1
3n

3 + 3
4n

2 + 2n2 flops). Moreover, solving the linear
system is numerically more accurate. A last trick is to use the properties of the
matrices involved in the algorithm such as sparsity, band property, symmetry
or positive definiteness. Most of linear algebra operations can be optimized to
reduced the number of flops involved in these cases.

Finally, it is important to note that scientific linear algebra packages ex-
ist, such as LAPACK (Anderson et al., 1999). This later implements a large
number of algebra operations such as solving linear equations, least-squares
problems, eigenvalue problems, and singular value problems. It also imple-
ments the most famous matrix factorizations (LU, Cholesky, QR, SVD, Schur,
etc.). It is preferable to use this kind of packages instead of coding its own
routines since they reorganize the underlying algorithms to use block matrix
operations. These block operations allow to perform minimal data motions
using the multi-layered memory hierarchies of the machines (disk, main mem-
ory, cache, register). Moreover, the LAPACK routines are redesigned in the
ScaLAPACK package to exploit the power of parallel machines with distributed
memory (Blackford et al., 1997).

With these remarks, we are now able to present an efficient way to imple-
ment the Kalman filter and to deduce the number of flops for one iteration.
For some lines of the algorithm, special attention must be payed and the tricks
presented above must be used to reduce the number of flops as far as possible.
At lines 8 and 9 of Algorithm 4.1, the Kalman gain matrix Ki and the analysis
xai are computed. These operations can be set together to obtain

xai = xfi + Pf
i ×HT

i × (HiPf
i H

T
i + Ri)−1 × (yi −Hixfi ),

where the three main products are represented by the symbol times. To min-
imize the computational cost, the products must be performed from right to
left since the rightmost factor is a vector of size n. The first rightmost product
implies an inverse matrix which must not be explicitly computed. Instead, the
following linear system is constructed,

Az = b,

where A = HiPf
i HT

i + Ri and b = yi − Hixfi , and is solved for z. Since
A ∈ Rpi×pi is symmetric positive definite, a Cholesky factorization requiring
only 1

3p
3
i flops (Golub and Van Loan, 1996, p.98) can be performed instead of

the LU decomposition. Next, at line 10, we have to compute the covariance
error matrix

Pa
i = (In −Pf

i H
T
i (HiPf

i H
T
i + Ri)−1Hi)Pf

i , (4.20)
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which involves the inverse matrix product (HiPf
i HT

i +Ri)−1Hi. This product
can be computed by solving the following linear system with n right-hand sides,

AZ = Hi,

for Z ∈ Rpi×n. Since the Cholesky factorization of the matrix A has already
been computed, it will cost 2np2

i flops to compute the n columns of Z corre-
sponding to n right-hand sides. The computation of Pf

i HT
i Z involved in (4.20)

then requires 2n2pi + 2n2pi flops using (4.18). Thanks to the special struc-
ture of an identity matrix, the subtraction in (4.20) costs n flops and the final
post-multiplication by Pf

i costs 2n3 flops. The number of flops for each lines
of the algorithm 4.1 is summarized in Table 4.1. Another study of the number

Line Operation Flops
5 Mi,i−1xai−1 2n2

6 Mi,i−1Pa
i−1MT

i,i−1 4n3

8 A = HiPf
i HT

i + Ri 2n2pi + 2np2
i + p2

i

9 b = yi −Hixfi 2npi + pi
9 z = A−1b 1

3p
3
i + 2p2

i

9 xfi + Pf
i HT

i z 2npi + 2n2 + n
10 Z = A−1Hi 2np2

i

10 (In −Pf
i HT

i Z)Pf
i 2n2pi + 2n2pi + n+ 2n3

Table 4.1 — Number of flops for one iteration of the Kalman filter.

of required flops is presented in Lewis and Lakshmivarahan (2008) which gives
roughly the same order of flops as ours. However, it is impossible to draw the
exact number of flops without defining precisely the methods used to solve the
linear systems and the architecture of the machine. When the Kalman filter is
implemented for a specific application, the sparsity of some matrices, such as
Ri and Hi, can be exploited to decrease the number of flops. Flop counting is
a quick method that capture only one of the several dimensions of the efficiency
of an algorithm (Golub and Van Loan, 1996).

In our problems, the size of the state vector, n, is much larger than the size
of observation vector, pi (typically, around three orders of difference). Thus,
the most expensive operations are the computation of the covariance matrices
Pf
i and Pa

i at lines 6 and 10, respectively, since they imply operations with
n3 flops. The other operations involved in the Kalman filter do not overtake
n2pi or 1

3p
3
i . The size of the state vector used to represents the state of the

atmosphere or of the ocean in operational forecast systems increases constantly
over the years. At the ECMWF, the last version of their global atmospheric
forecast system (IFS with the T1279L91 configuration) has more than 1 bil-
lion of variables with 10 millions of assimilated observations per day (Bonavita
and L. Isaksen, 2012). More generally, state vectors with 10 millions of com-
ponents and observation vectors with 100.000 measurements are common. In
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this context, the computation of the forecast error covariance matrix Pf
i which

requires 4n3 flops will take more than 4 days on the fastest super computer in
the world (assuming that its theoretical peak of 11,28 Peta flops per second
can be achieved, see http://www.top500.org). This computational cost is not
affordable and shows the impractical use of the Kalman filter for operational
weather forecast.

4.2.2 Storage

Besides the computational issue, there is also a storage issue with dense matri-
ces of size n. During the past decades the memory of computers has drastically
increased. Memory is cheap but still finite. Double-precision floating-point is
a format commonly used for scientific computations. It is a binary format that
occupies 64 bits (8 bytes) in memory. There is one bit for the sign, 11 bits for
the exponent and 52 bits for the significand (IEEE 754). As for computational
costs, there are some tricks to save memory. The first one is to eliminate the
data redundancy. As an example, the error covariance matrices are symmetric,
thus only the upper or the lower triangular part must be stored. The second
trick is to replace matrices by algorithms. There are matrices, such as Mi+1,i
and Hi, which are only used to perform matrix-vector products. It could be
unnecessary to store these matrices explicitly, but rather to implement rou-
tines which compute the matrix-vector products. Nevertheless, the Kalman
filter does not allow to skip the storage of the error covariance matrices. For
problems with 10 millions of variable, the storage of one matrix requires 400
terabytes of memory, which is prohibitive for current computers.

4.2.3 Numerical stability

One last problem of the original Kalman filter is its numerical instability since
it may suffer of a lack of robustness against round-off errors. This problem
is due to the finite precision used in the implementation and to the mathe-
matical operations that are performed. In the 1960’s, when the Kalman filter
was introduce in the aerospace industry and in the NASA’s space program,
the arithmetic precision in the computers and in the embedded systems were
lower than now and many numerical problems appeared. Numerical stability
can be improved by increasing the arithmetic precision (by adding more bits in
the binary format of real numbers), but even with current computers, numer-
ical problems still appear when the Kalman filter is implemented. Two main
problems can occur. The first one is that the error covariance matrix, which
is symmetric positive definite by definition, could become non symmetric and
indefinite. The second one is that even if Hi has full rank and Pf

i and Ri are
symmetric positive definite, the matrix HiPf

i HT
i + Ri could be not invertible
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due to round-off errors in the computation of HiPf
i HT

i .

Square root filtering is a way to increase the precision of the Kalman filter
when no more hardware precision is available. The first square root Kalman fil-
ter seems to have been developed by J. Potter (Battin, 1964) and extended
to handle model noise (Andrews, 1968) and observation vectors instead of
scalar measurement (Bellantoni and Dodge, 1968). The fundamental concept
of square root filtering is to factorize the initial error covariance matrix B.
Since it is a symmetric positive definite matrix, a Cholesky factorization can
be applied,

B = CCT ,

where C ∈ Rn×n is a lower triangular matrix called the square root. The
matrix C is then used to propagate the error statistics instead of the full error
covariance matrix. The first advantage of this reformulation is that the product
CCT is always symmetric non-negative definite. The second advantage is about
the condition number of the matrices involved in the algorithm. Since the
condition number of C is the square root of the condition number of B, it
may improve the precision of the algorithm. A famous implementation of this
approach is the Carlson-Schmidt square root filter. It computes the analysis
step using a fast triangular update (Carlson, 1973) and the forecast step using
Householder reflections (Golub and Van Loan, 1996).

There is an alternative to the Cholesky factorization which leads up to
another square root Kalman filter. It is based on a modified Cholesky factor-
ization given by

B = FDFT , (4.21)

where F is a unit upper triangular matrix (its diagonal elements are equal to
1) and D is a diagonal matrix. There is no huge difference with the Cholesky
factorization except that this algorithm does not require to compute square
roots of numbers. A common implementation of the square root Kalman filter,
using (4.21) as initial decomposition, is the Bierman-Thornton filter (Bierman,
1977, Thornton, 1976).

The computational cost of the square root filters does not exceed the cost
of the conventional Kalman filter by more than 50 percent in most practical
problems. Nevertheless, the square root filters can yield twice the effective
precision of the Kalman filter for ill-conditioned problems (Kaminski, 1971).

4.3 The SEEK filter

In this section, the Singular Evolutive Extended Kalman filter (SEEK filter)
proposed by Pham et al. (1998) is presented. It uses a framework similar to
that of the square root Kalman filter ensuring a sufficient numerical stability.
Moreover, it solves the computational and storage issues of the error covariance
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matrices constraining these ones to be of low rank. This constraint is well mo-
tivated. Indeed, the initial error covariance matrix B is a huge matrix which
contains the error statistics for each component of the background vector. Its
computation is not usually trivial and suitable processes are used to model the
background error covariance matrix (see Section 3.5). The error covariance
matrix B contains uncertainties in the error statistics and thus it will be inap-
propriate to spend a huge amount of computational time to propagate probably
erroneous informations. For this reason, using low rank approximations seems
to be appropriate.

4.3.1 Derivation of the algorithm
The background error covariance matrix B can be diagonalized by a spectral
decomposition,

B = L0U0LT0 + L̂0Û0L̂T0 , (4.22)

where the diagonal matrix U0 ∈ Rr×r contains the r largest eigenvalues of
B and the diagonal matrix Û0 ∈ R(n−r)×(n−r) contains the remaining eigen-
values, while the matrices L0 ∈ Rn×r and L̂0 ∈ Rn×(n−r) are formed with the
corresponding eigenvectors. Since the matrix B is symmetric, these eigenvec-
tors can be chosen such that they are orthogonal to each other and have norm
one, i.e., [L0L̂0]T [L0L̂0] = In. The idea of the SEEK filter is to keep only the
r first eigenvectors and to discard the n − r last eigenvectors for the initial
analysis covariance matrix, i.e.,

Pa
0 = L0U0LT0 . (4.23)

We obtain a decomposition which is similar to the modified Cholesky factoriza-
tion (4.21) except that it is a low rank approximation of B where L0 ∈ Rn×r
is a rectangular matrix with r columns.

In the following, we derive the equations of the SEEK filter for the first it-
eration using the equation of the Kalman filter and the low rank decomposition
(4.23). The initial analysis is kept unchanged and is equal to the background
vector xb. It evolves like as in the Kalman filter. The evolution of the initial
error covariance matrix becomes

Pf
1 =M1,0Pa

0MT
1,0

=M1,0L0U0LT0 MT
1,0

=L1U0LT1 , (4.24)

where L1 = M1,0L0 is formed by integrating the columns of L0 to time t1.
The Kalman gain can be rewritten from its definition (line 8 of Algorithm 4.1)
using the equality (4.24). It gives the following expression

K1 =L1U0LT1 HT
1 (H1L1U0LT1 HT

1 + R1)−1,
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which can be reformulated as

K1 =L1U0LT1 HT
1
[
R−1

1 −R−1
1 H1L1(U−1

0 + LT1 HT
1 R−1

1 H1L1)−1LT1 HT
1 R−1

1
]

using the Sherman–Morrison–Woodbury formula (A.1). The following equality

(R1 + H1L1U0LT1 HT
1 )−1H1L1U0 = R−1

1 H1L1(U−1
0 + LT1 HT

1 R−1
1 H1L1)−1,

obtained from (A.2), allows to write the Kalman gain as

K1 =L1U0LT1 HT
1
[
R−1

1 − (R1 + H1L1U0LT1 HT
1 )−1H1L1U0LT1 HT

1 R−1
1
]

and to factorize it as

K1 =L1
[
U0 −U0LT1 HT

1 (R1 + H1L1U0LT1 HT
1 )−1H1L1U0

]
LT1 HT

1 R−1
1 .

Applying, in a reverse way, the Sherman–Morrison–Woodbury formula to the
above equation, we have

K1 =L1
[
(U−1

0 + LT1 HT
1 R−1

1 H1L1)−1]LT1 HT
1 R−1

1 .

The final expression of the Kalman gain is given by

K1 =L1U1LT1 HT
1 R−1

1 , (4.25)

where
U1 = (U−1

0 + LT1 HT
1 R−1

1 H1L1)−1. (4.26)

Lastly, the analysis error covariance matrix P a1 , defined at line 10 of Algo-
rithm 4.1, can be rewritten as

Pa
1 =Pf

1 −K1H1Pf
1

=L1U0LT1 − L1(U−1
0 + LT1 HT

1 R−1
1 H1L1)−1LT1 HT

1 R−1
1 H1L1U0LT1 ,

using (4.24) and (4.25). From the formula (A.2), the following equality can be
deduced,

(U−1
0 + LT1 HT

1 R−1
1 H1L1)−1LT1 HT

1 R−1
1

= U0LT1 HT
1 (R1 + H1L1U0LT1 HT

1 )−1

which allows to write the analysis error covariance matrix as

Pa
1 =L1U0LT1 − L1U0LT1 HT

1 (R1 + H1L1U0LT1 HT
1 )−1H1L1U0LT1 .

Factorizing this expression as

Pa
1 =L1

[
U0 −U0LT1 HT

1 (R1 + H1L1U0LT1 HT
1 )−1H1L1U0

]
LT1 ,
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Algorithm 4.2 SEEK filter with perfect model operators
1: xa0 = xb
2: Pa

0 = L0U0LT0
3: for i = 1 to N do
4: (* Forecast step *)
5: xfi = Mi,i−1xai−1
6: Li = Mi,i−1Li−1
7: Pf

i = LiUi−1LTi
8: (* Analysis step *)
9: U−1

i = U−1
i−1 + LTi HT

i R−1
i HiLi

10: Ki = LiUiLTi HT
i R−1

i

11: xai = xfi + Ki(yi −Hixfi )
12: Pa

i = LiUiLTi
13: end for

and using the Sherman–Morrison–Woodbury formula (A.1), we obtain

Pa
1 = L1U1L1, (4.27)

from (4.26) The expression of the analysis error covariance matrix (4.27) after
one iteration has the same form has the initial one, meaning that the process
can be conducted recursively. The equations are summarized in Algorithm 4.2.

The use of low rank error covariance matrices has the consequence of cor-
recting the state vector only in the columns of Li (see line 11 of Algorithm 4.2
with the definition of the Kalman gain at line 10). There are physical con-
siderations in oceanography which support this approximation. Indeed, the
ocean is basically a dissipative dynamical system that exhibits an attractor,
meaning that asymptotically the trajectories of the state vector belong only to
a small part of the phase space. The existence of a global attractor has been
proved for the Navier-Stokes equations (Lions et al., 1997). In the vicinity of
this attractor, orthogonal perturbations will be naturally damped while tan-
gent perturbations will not. The efficiency of the SEEK filter comes from the
fact that the matrix Li contains the main directions of variability tangent to
the attractor.

4.3.2 Computational cost
As for the Kalman filter, the computational cost of the SEEK filter can be
studied by counting the required number of flops for one iteration. Before
presenting the result, some comments must be done on certain parts of Algo-
rithm 4.2. These comments are based on the same counting rules and tricks
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as the ones presented in Subsection 4.2.1. The main point is about the small
square matrix Ui. Since this matrix and its inverse both appear at different
lines of the algorithm, we have to choose if we store explicitly Ui or U−1

i . The
obvious choice is to store U−1

i for each iteration because the updating rule at
line 9 is given for the matrix inverse. With this choice, we have to inverse the
initial matrix U0. Fortunately, it can be performed using only r flops since
it is a diagonal matrix. At line 7, the product LiUi−1LTi is computed in two
stages. Firstly, the following linear system with n right-hand sides,

U−1
i−1Z = LTi ,

is solved for Z ∈ Rr×n. It requires 1
3r

3 flops to factorize U−1
i−1 and 2nr2 to

compute the n columns of Z. Secondly, the product LiZ is performed using
2n2r flops. Note that the computation of the error covariance matrices, namely
Pf
i and Pa

i , are not mandatory for the computation of the rest of the algorithm.
They can thus be skipped if no user-oriented diagnostic are required. The
update of U−1

i can be rewritten as

U−1
i = U−1

i−1 + (HiLi)TR−1
i (HiLi).

To reduce the number of flops, the operations must be calculated using the
following order. The matrix computation HiLi which required 2npir flops is
first performed. Then the linear system with r multiple right hand sides

RiZ = HiLi

is solved for Z ∈ Rp×r which required 1
3p

3
i + 2p2

i r flops. The solution is used to
compute the product (HiLi)TZ and the matrix addition is performed. These
two operations necessitate 2pir2 and r2 flops, respectively.

The last comment is about the computation of the analysis vector. Com-
bining the lines 10 and 11 of the algorithm, we have

xai = xfi + LiUi(HiLi)TR−1
i (yi −Hixfi ).

To minimize the number of flops, the matrix multiplications must be performed
from right to left once the departure vector yi − Hixfi is computed. The
multiplications by R−1

i and Ui are performed by solving a linear system. Note
that the Cholesky factorization of R−1

i is already computed. The flops count
for each lines of the SEEK algorithm is summarized in Table 4.2.

In our data assimilation problems, the size of the state vector, n, is much
larger than the size of the observation vector, pi, which is larger than the size,
r, of the subspace L0. From Table 4.2, the most expensive operation in the
SEEK filter is the update of Li−1 at line 6 since it implies 2n2r flops. A usual
size for the subspace in operational oceanographic forecast is around r = 50.
With a 10 million component state vector, this operation will take less than one
second on the fastest computer in the world. It demonstrates that the SEEK
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Line Operation Flops
5 Mi,i−1xai−1 2n2

6 Mi,i−1Li−1 2n2r
7 LiUi−1LTi 1

3r
3 + 2nr2 + 2n2r

9 U−1
i−1 + LTi HT

i R−1
i HiLi 2npir + 1

3p
3
i + 2p2

i r + 2pir2 + r2

11 b = yi −Hixfi 2npi + pi
11 z = R−1

i b 2p2
i

11 xfi + LiUi(HiLi)T z 2rpi + 1
3r

3 + 2r2 + 2nr + n
12 LiUiLTi 1

3r
3 + 2nr2 + 2n2r

Table 4.2 — Number of flops for one iteration of the SEEK filter.

filter has drastically reduced the computational cost compared to the Kalman
filter. Moreover, the storage issue is also solved since the largest matrix that
must be stored is Li and represents only 4Gb of memory.

The computational cost of the spectral decomposition of B given by (4.22)
is not outlined in this section. One can remark that the filter requires only
the computation of the first r eigenvectors related to the r largest eigenvalues.
Since B is assumed to be a large sparse symmetric positive definite matrix,
iterative methods such as the Lanczos method or the Jacobi-Davidson method
are well suited to achieve this task (Bai et al., 1987). Their convergence rate
and the underlying number of flops depend on the matrix in itself. A flop
counting is thus irrelevant in this case. However, the next section presents a
practical application of the SEEK filter where a flop counting for the spectral
decomposition is available.

4.3.3 A practical application of the SEEK filter

The equations of the SEEK filter have been derived in Subsection 4.3.1 for a
general background error covariance matrix. However, if the model is suffi-
ciently good and representative of the system variability, the background error
covariance matrix can be modeled using informations from a set of state vectors
computed by a model integration. This approach is often used in the context
of the twin experiment since the model is unbiased and the observations are
simulated from a model trajectory with known statistical properties (Brasseur
and Verron, 2006). In the following, we present how to apply a SEEK filter in
such a situation and we address the problem of choosing the dimension of the
subspace.

Empirical orthogonal functions

To build a background error covariance matrix from a model information, one
considers a set of m (linearly independent) state vectors x1, . . . ,xm ∈ Rn,
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taken either from previous data assimilation windows or from a free model
run. These vectors are supposed to be representative of the variability of the
system. Regarding now the state vector x as a random vector and considering
that the set {x1, . . . ,xm} is a sample of realizations, one calculates the sample
covariance matrix

S = 1
m− 1

m∑
i=1

(xi − x̄)(xi − x̄)T = XXT , (4.28)

where x̄ is the sample mean and X = [x1/
√
m− 1, . . . ,xm/

√
m− 1] ∈ Rn×m.

The spectral decomposition of S can be defined as

S = L0U0LT0 + L̂0Û0L̂T0 , (4.29)

where the diagonal matrix U0 ∈ Rr×r contains the r largest eigenvalues of S
and the diagonal matrix Û0 ∈ R(n−r)×(n−r) contains the remaining eigenval-
ues, while the matrices L0 ∈ Rn×r and L̂0 ∈ Rn×(n−r) are formed with the
corresponding eigenvector. In this case, these eigenvectors are called Empir-
ical Orthogonal functions (EOFs) (see, Hannachi et al., 2007, for a review).
Computing such a decomposition is called an EOF analysis, also known as a
principal component analysis (PCA)(see Hannachi et al. (2007), for a review).
The subspace L0 is optimal in some sense since it minimizes the reconstruction
error (the squared distance between the original trajectory and its orthogonal
projection on the subspace),

L0 = argmin
L∈Rn×r

m∑
i=1
||xi − LLTxi||2

for a given sample of realizations (Jolliffe, 2002). Instead of executing the
SEEK filter where the initial analysis error covariance matrix, P a0 , is based
on the spectral decomposition of B given by (4.22), one can choose to use
the spectral decomposition of S given by (4.29). It is more practical since
the structure of S allows to compute its eigenvectors and eigenvalues cheaply
without explicitly storing S. Indeed, The singular value decomposition (SVD)
of X ∈ Rn×m is given by

X = TΣVT , (4.30)

where the columns of the orthogonal matrix T ∈ Rn×n are the left singular
vectors, the columns of the orthogonal matrix V ∈ Rm×m are the right singular
vectors and Σ ∈ Rn×m is a diagonal matrix containing the singular values of X.
A useful linear algebra result claims that the left singular vectors of X coincide
with the eigenvector of S. Moreover, the singular values of X correspond to
the square roots of the eigenvalues of S (Golub and Van Loan, 1996, M. Wall,
2003). The matrix L0 can thus be constructed from left singular vectors of
X. Essentially, 6nm2 + 11m3 flops are necessary to compute all singular values
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and the related left singular vectors (see Golub and Van Loan, 1996, p.254).
This computation is affordable for two reasons. On the one hand, the typical
size of m is much smaller than n, e.g., it is equal to 500 in operational ocean
models such as OPA. On the other hand, the decomposition is computed only
once before the beginning of the data assimilation process.

Since the 1940’s, EOFs have been used in atmospheric science to search for
low dimensional subspaces of the state space in which the dynamics of interest
of the original system are contained (Lall et al., 1999). Variants of EOFs-based
methods have been (and are still) developed to overcome some difficulties. For
instance, the computational cost of the EOFs can be reduced by using the On-
line Singular Value Decomposition, an incremental SVD algorithm that avoids
storing the matrix X see (see Brand, 2003). Methods such as Rotated EOFs
(REOF) (Horel, 1981) or Least Absolute Shrinkage and Selection Operator
(LASSO) (Jolliffe et al., 2003) have been proposed to relax the orthogonality
condition, while the Extended EOFs (EEOF) attempt to incorporate temporal
correlation to the spatial correlation already present in the EOFs, see Weare
and Nasstrom (1982).

The EOFs approach is not the only way to compute reduced subspace for
suboptimal Kalman filter. It is possible to use, for instance, singular vectors,
Liapunov vectors or bred grown vectors. These are computed using information
from the model and contain, in a sense, the main directions of variability of the
system. Durbiano (2001) performed a study of these families of vectors. When
the data assimilation is performed on a shallow water model, she concluded to
the clear superiority of the EOFs basis with regards to the other subspaces.

Dimension of the subspace

The number of selected EOFs in the construction of the subspace L0 is a last
important question of practical interest. Theoretically, we have seen that the
filter may only perform corrections in the directions tangent to the attractor
since the error in other directions will be damped by the model integration.
The number of these direction is equal to the number of eigenvalues of the
model operator, Mi+1,i, having an absolute value larger than or equal to one
(Pham et al., 1998). In operational forecast, it is impossible to compute the
eigenvalues of this matrix and thus a more practical guideline must be set up.
It is often based on the percentage of variation accounted for by the first r
EOFs, defined as

100
∑r
i=1 λi∑n
i=1 λi

, (4.31)

where the λi’s are the eigenvalues of S in decreasing order. A threshold of
variance (e.g., 80 %) explained by the first r EOFs provides a criterion to
determine the value of r. It will be often a good compromise since it allows to
account for most of the variation without increasing too much the dimension
of the subspace spanned by the selected EOFs.



Chapter 5

Connections between the
variational and the sequential
approaches

The connections between the sequential and the variational methods have been
known for long. For linear model and observation operators, both the 4D-Var
formulation and the Kalman filter yield the same estimates of the system state
(theoretically) at the end of the assimilation window, as shown in Strang and
Borre (1997) and in Li and Navon (2001). Their proofs are based on a block
matrix and on a statistical view, respectively. In this section, we propose
an alternative proof for the equivalence[1] between the Kalman filter and the
4D-Var in the specific case of a perfect linear model operator and of a linear
observation operator. This proof, which is based on quadratic optimization
techniques, is both short and elementary. Moreover, we use some results from
this proof to establish in Section 5.2 a useful connection between a reduced
order 4D-Var problem and the SEEK filter. This last result will motivate the
development of some preconditioning techniques presented in Chapter 6.

5.1 Connection between 4D-Var / Kalman filter

The goal of this section is to show the connection between the solution of the
4D-Var problem (3.5) and the Kalman filter presented in Algorithm 4.1 under
the assumption of linear operators. For more convenience, the 4D-Var problem

[1]By the word «equivalence» we mean, throughout this work, the fact that the considered
methods produce the same results at the end of the assimilation window.

51
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(3.5) with linear operator is reformulate as

min
x∈Rn

J4D(x) = 1
2 ||x− xb||2B−1 + 1

2

N∑
i=1
||yi −HiMi,0x||2R−1

i

, (5.1)

using the weighted norms defined by ||z||2B−1 = zTB−1z and ||z||2R−1 = zTR−1z
with the equality Mi,0 =

∏j=i−1
j=0 Mj+1,j .

Theorem 5.1 Suppose that the model operator is perfect and linear, that
the observation operator is linear and that the same background xb, obser-
vations yi, background covariance matrix B, and observation covariance
matrices Ri, are given. Then the analysis state xai computed at time ti by
the Kalman filter and the solution produced by the 4D-Var method, using
the first i observations and integrated up to time ti, are identical and have
same covariance matrices. Both methods hence produce the same results
at the end of the assimilation window.

Proof. — In order to be as concise as possible, we set Mi = Mi,0, H = Hi

and R = Ri throughout this proof. Generalizing it would just result in heavier
notation. We first introduce the notation xkl to denote the solution of the
4D-Var (5.1) using the first l observations,

min
x∈Rn

Jl(x) = 1
2 ||x− xb||2B−1 + 1

2

l∑
i=1
||yi −HMix||2R−1 ,

and integrated up to time tk, and Pk
l to denote the covariance matrix of xkl . We

thus want to prove, for each observation time l = 1, . . . , N , that the solution of
the 4D-Var using the first l observations and integrated up to time tl is equal
to the analysis produced by the Kalman filter after l iterations, i.e., xll = xal ,
and that both state vectors have the same covariance matrices, i.e., Pl

l = Pa
l .

The proof is by induction. To prove that x1
1 = xa1 and P1

1 = Pa
1 , we first

notice that x0
0 = xb = xa0 since xb is the solution of the 4D-Var problem using no

observations. Therefore, the covariance matrix of x0
0 is given by P0

0 = B = Pa
0 .

We next define the 4D-Var problem using only the first observation y1 at time
t1 as

min
x∈Rn

J1(x) = 1
2 ||x− x0

0||2(P0
0)−1 + 1

2 ||y1 −HM1x||2R−1 . (5.2)

The solution x0
1 of this problem is computed by nullifying its gradient,

(P0
0)−1(x0

1 − x0
0)−MT

1 HTR−1(y1 −HM1x0
1) = 0. (5.3)

Defining
W ≡ (P0

0)−1 + MT
1 HTR−1HM1, (5.4)
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we obtain, by simple extraction of the vector x0
1 from (5.3)

x0
1 = W−1 (MT

1 HTR−1y1 + (P0
0)−1x0

0
)
. (5.5)

Note that the matrix W is invertible since it is the sum of a positive definite and
a positive semidefinite matrix, which gives a positive definite matrix. From the
Sherman-Morisson-Woodbury formula (see, for example, Horn and Johnson,
2006, p.18), we have that

W−1 = P0
0 −P0

0MT
1 HT(R + HM1P0

0MT
1 HT)−1HM1P0

0. (5.6)

Using this formula in (5.5), developing the product and reordering the terms,
we obtain

x0
1 = x0

0 + P0
0MT

1 HTR−1y1 −P0
0MT

1 HT(R + HM1P0
0MT

1 HT)−1

HM1P0
0
(
MT

1 HTR−1y1 + (P0
0)−1x0

0
)
. (5.7)

Observing that

HM1P0
0
(
MT

1 HTR−1y1 + (P0
0)−1x0

0
)

=
(HM1P0

0MT
1 HT + R)R−1y1 − y1 + HM1x0

0,

we obtain, after appropriate simplifications,

x0
1 = x0

0 + P0
0MT

1 HT(R + HM1P0
0MT

1 HT)−1(y1 −HM1x0
0) (5.8)

as solution of the 4D-Var (5.2). If we next integrate this solution x0
1 up to the

first time-step, we find

x1
1 = M1x0

0 + M1P0
0MT

1 HT(R + HM1P0
0MT

1 HT)−1(y1 −HM1x0
0).

It thus follows from Algorithm 4.1 that x1
1 = xa1 , since M1x0

0 = M1xa0 = xf1 ,
M1P0

0MT
1 = M1Pa

0MT
1 = Pf

1 and since we use the same observation y1.
Moreover, observe from (5.3) that W, as defined in (5.4), is the Hessian matrix
of J1. Following Rabier and Courtier (1992), who proved that the covariance
matrix of a 4D-Var solution is equal to the Hessian inverse, we can thus conclude
that the covariance matrix of x0

1 is given by

P0
1 = W−1. (5.9)

We have that the covariance matrix of x1
1, denoted Cov(x1

1,x1
1) and defined by

E[(x1
1 − xt1)(x1

1 − xt1)T ], is given by

P1
1 = Cov(x1

1,x1
1) = Cov(M1x0

1,M1x0
1)

= M1Cov(x0
1,x0

1)MT
1 = M1P0

1MT
1 .
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By (5.6) and (5.9), we deduce from this last expression that

P1
1 = M1P0

0MT
1 −M1P0

0MT
1 HT(R + HM1P0

0MT
1 HT)−1HM1P0

0MT
1 ,

which corresponds to the analysis error covariance matrix Pa
1 produced by the

Kalman filter (see Algorithm 4.1), since M1P0
0MT

1 = Pf
1 .

Now, we suppose that when the j first observations vectors are available,
the solution x0

j of the corresponding 4D-Var problem

min
x∈Rn

Jj(x) = 1
2 ||x− x0

0||2(P0
0)−1 + 1

2

j∑
i=1
||yi −HMix||2R−1

satisfies Mjx0
j = xjj = xaj and Pj

j = Pa
j . We know that the Hessian matrix of

Jj is (P0
j )−1, allowing us to express the quadratic function Jj using its Taylor

expansion around the solution x0
j as

Jj(x) = Jj(x0
j ) + 1

2(x− x0
j )T(P0

j )−1(x− x0
j ),

remembering that ∇Jj(x0
j ) = 0. We add the next available observation vector

yj+1 to this expression and obtain the expression of the 4D-Var problem using
the first j + 1 observation vectors

min
x∈Rn

Jj+1(x) = Jj(x0
j ) + 1

2 ||x− x0
j ||2(P0

j
)−1

+ 1
2 ||yj+1 −HMj+1x||2R−1 . (5.10)

It remains to prove that xj+1
j+1 = xaj+1 and that Pj+1

j+1 = Pa
j+1. Observing that

the first term of (5.10) is constant, we can apply the same reasoning as the one
used to deduce (5.8) and (5.9) from (5.2) and write the solution of (5.10) as

x0
j+1 = x0

j

+ P0
jMT

j+1HT(R + HMj+1P0
jMT

j+1HT)−1(yj+1 −HMj+1x0
j ), (5.11)

with the covariance matrix

P0
j+1 =

(
(P0

j )−1 + MT
j+1HTR−1HMj+1

)−1
. (5.12)

If we integrate the solution x0
j+1 up to the time-step tj+1, we have

xj+1
j+1 = Mj+1x0

j

+ Mj+1P0
jMT

j+1HT(R + HMj+1P0
jMT

j+1HT)−1(yj+1 −HMj+1x0
j ).
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Observing that

Pj
j = Cov(xjj ,x

j
j) = Cov(Mjx0

j ,Mjx0
j )

= MjCov(x0
j ,x0

j )MT
j = MjP0

jMT
j ,

we can thus conclude that xj+1
j+1 = xaj+1 from Algorithm 4.1 and the recurrence

assumptions, since we have

Mj+1x0
j = Mj+1,jMjx0

j = Mj+1,jxjj
= Mj+1,jxaj = xfj+1,

and

Mj+1P0
jMT

j+1 = Mj+1,jMjP0
jMT

j MT
j+1,j

= Mj+1,jPj
jM

T
j+1,j

= Mj+1,jPa
jMT

j+1,j

= Pf
j+1, (5.13)

and the same observation yj+1. The covariance matrix of xj+1
j+1 is given by

Pj+1
j+1 = Cov(xj+1

j+1,x
j+1
j+1)

= Cov(Mj+1x0
j+1,Mj+1x0

j+1)
= Mj+1Cov(x0

j+1,x0
j+1)MT

j+1

= Mj+1P0
j+1MT

j+1.

Replacing P0
j+1 by its expression (5.12) and using the right-hand side of (5.6)

(with subscripts j and j + 1 instead of 0 and 1, respectively), we obtain

Pj+1
j+1 = Mj+1P0

jMT
j+1

−Mj+1P0
jMT

j+1HT(R + HMj+1P0
jMT

j+1HT)−1HMj+1P0
jMj+1. (5.14)

Using (5.13) in (5.14), we obtain Pj+1
j+1 = Pa

j+1, which ends the proof.

Note that the proof of this theorem shows (see equations (5.11) and (5.12))
how to update the solution of the 4D-Var and its covariance matrix incremen-
tally when observations are obtained sequentially, without processing all the
information from the beginning.

5.2 Connection between reduced 4D-Var / SEEK fil-
ter

In a recent paper, Krysta et al. (2011) proposed an hybridization between a
reduced 4D-Var and a SEEK smoother (issued from the SEEK filter) with
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the purpose to ensure the evolution of the background error covariance matrix
within the reduced 4D-Var. In doing so, the authors have shown the equivalence
between the reduced 4D-Var and a SEEK smoother.

In what follows, we investigate the connection between a reduced order 4D-
Var and the SEEK filter presented in Algorithm 4.2. On the one hand, we
define the following reduced 4D-Var problem,

min
x∈Rr

J(x) = 1
2 ||L0x− xb||2S−1 + 1

2

N∑
i=1
||yi −HiMiL0x||2R−1

i

, (5.15)

where the background error covariance matrix is given by the sample covariance
matrix S defined in (4.28) and where the basis of the reduced space is given by
L0 which contains the r first EOFs computed from the spectral decomposition
(4.29). This reduced problem (5.15) is derived using a similar approach that
the one developed for the reduced incremental 4D-Var problem (3.14) but it
defines a reduced state vector x instead of a reduced increment δx. On the
other hand, we consider the practical formulation of the SEEK filter where the
initial analysis error covariance matrix, P a0 , is based on the spectral decompo-
sition (4.29) of S. Note that since this matrix is symmetric, the EOFs can be
chosen such that they are orthonormal. Before proving that problem (5.15) is
equivalent to the SEEK filter, we have to reformulate its background term in
another way. This is the purpose of the following lemma.

Lemma 5.2 The solution of the reduced 4D-Var (5.15) is equal to the solution
of

min
x∈Rr

J(x) = 1
2 ||x− xb||2U−1

0
+ 1

2

N∑
i=1
||yi −HiMiL0x||2R−1 , (5.16)

where xb = LT
0 xb is the reduced background and U0 is the reduced background

covariance matrix, which is a diagonal matrix containing the r largest eigen-
values of S.

Proof. — Since the columns of [L0 L̂0] form an orthonormal basis of Rn, we
have the equality [L0 L̂0][L0 L̂0]T = In (see Meyer, 2000, p.320) which can be
rewritten as L0LT

0 + L̂0L̂T
0 = In and used to decompose the background vector

xb as
xb = L0LT

0 xb + L̂0L̂T
0 xb. (5.17)

Substituting (5.17) in the background term of (5.15), we obtain

||L0x− xb||2S−1 = ||L0(x− LT
0 xb)− L̂0L̂T

0 xb||2S−1

whose right-hand side can be reformulated as

||L0(x− LT
0 xb)||2S−1 + ||L̂0L̂T

0 xb||2S−1 − 2(L0(x− LT
0 xb))TS−1(L̂0L̂T

0 xb).
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We observe that the third term is equal to zero, using (4.22) and the decom-
position of S−1 in the basis [L0 L̂0]

S−1 = L0U−1
0 LT

0 + L̂0Û−1
0 L̂T

0 , (5.18)

and twice the equality LT
0 L̂0 = 0. The second term is constant and can thus

be ignored for the minimization. Finally, we can reformulate the first term as

||L0(x− LT
0 xb)||2S−1 = ||x− LT

0 xb||2LT
0 S−1L0

,

which is equal to
||x− xb||2U−1

0
, (5.19)

by (5.18) and where xb = LT
0 xb. This concludes the proof since the background

term of (5.15) is equal to (5.19) plus a constant term.

We can now prove the main theoretical result of this chapter, i.e., the equiv-
alence between the reduced 4D-Var and a specific formulations of the SEEK
filter. More precisely, we consider the reduced 4D-Var (5.15) and a SEEK filter
where the matrix L0 is build with the first r EOFs computed from the sample
covariance matrix S.

Theorem 5.3 Suppose that the model operator is perfect and linear, that
the observation operator is linear and that the same background xb, ob-
servations yi and observation covariance matrices Ri, are given. Assume
moreover that the initial analysis of the SEEK filter xa0 is equal to L0LT

0 xb
and that its covariance matrix Pa

0 is equal to L0U0LT
0 . Then the analysis

state xai computed at time ti by the SEEK filter and the solution produced
by the reduced 4D-Var (5.15), using the first i observations, prolongated
in the full space and integrated up to time ti, are identical and have same
covariance matrices. Both methods hence produce the same results at the
end of the assimilation window.

Proof. — In order to be as concise as possible, we set Mi = Mi,0, H = Hi

and R = Ri throughout this proof. Generalizing it would just result in heavier
notation. We have to prove that the reduced 4D-Var (5.15) is equivalent to the
SEEK filter (with a specific choice for xa0). Using Lemma 5.2, this amounts to
proving the equivalence of this last with (5.16). To this aim, we use the same
scheme as in the proof of Theorem 5.1. We first introduce the notation x0

l to
denote the solution of the reduced 4D-Var (5.16) using the first l observations,
and P0

l to denote the covariance matrix of x0
l . Moreover, we introduce the

notation xkl to denote the prolongation of the solution x0
l integrated up to

time tk and Pk
l to denote the covariance matrix of xkl . We thus want to prove

that the solution of the reduced 4D-Var (5.16) using the first l observations,
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prolongated and integrated up to time tl, is equal to the analysis produced by
the SEEK filter after l iterations, i.e., xll = xal , and that both state vectors
have the same covariance matrices, i.e., Pl

l = Pa
l , for each observation time

l = 1, . . . , N .
The proof is again by induction. To prove that x1

1 = xa1 and P1
1 = Pa

1 , we
first notice that x0

0 = L0x0
0 = L0xb = L0LT

0 xb = xa0 , since xb is the solution of
the reduced 4D-Var problem using no observations and from the definition of
xb in Lemma 5.2 and the assumption on xa0 . Therefore, the covariance matrix
of x0

0 is given by P0
0 = L0U0LT

0 = Pa
0 . We next define the reduced 4D-Var

problem when only one observation vector is available at the first time step as

min
x∈Rr

J1(x) = 1
2 ||x− x0

0||2(P0
0)−1 + 1

2 ||y1 −HM1L0x||2R−1 .

Using the equivalent of equations (5.4), (5.5) and (5.9) from Theorem 5.1
adapted to the reduced space, we obtain as solution

x0
1 = P0

1
(
LT

0 MT
1 HTR−1y1 + (P0

0)−1x0
0
)

(5.20)

where
P0

1 =
(
(P0

0)−1 + LT
0 MT

1 HTR−1HM1L0
)−1 (5.21)

is its covariance matrix. The solution (5.20) can now be rewritten as

x0
1 = P0

1LT
0 MT

1 HTR−1y1

+ P0
1
[
(P0

0)−1 + LT
0 MT

1 HTR−1HM1L0 − LT
0 MT

1 HTR−1HM1L0
]
x0

0,

or, equivalently, using (5.21)

x0
1 = x0

0 + P0
1LT

0 MT
1 HTR−1(y1 −HM1L0x0

0). (5.22)

If we formulate this reduced solution in the full space Rn and integrate it up
to the first time step, we obtain

x1
1 = M1L0x0

1 = M1L0x0
0 + M1L0P0

1LT
0 MT

1 HTR−1(y1 −HM1L0x0
0),

and retrieve the solution of Algorithm 4.2 after one iteration. Indeed, by the
algorithm, we have that M1L0x0

0 = M1x0
0 = M1xa0 = xf1 and, using (5.21) and

the equality P0
0 = U0, that P0

1 = U1. This and the fact that we use the same
observation y1 implies that x1

1 = xa1 . Moreover, the covariance matrix of x1
1 is

given by

P1
1 = Cov(x1

1,x1
1) = Cov(M1L0x0

1,M1L0x0
1)

= M1L0Cov(x0
1,x0

1)LT
0 MT

1

= M1L0P0
1LT

0 MT
1 = L1U1LT

1 = Pa
1 ,
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which is the analysis error covariance matrix given by the SEEK filter after one
iteration.

Now, we suppose that when the j first observation vectors are available, the
solution x0

j of the corresponding reduced 4D-Var problem

min
x∈Rr

Jj(x) = 1
2 ||x− x0

0||2(P0
0)−1 + 1

2

j∑
i=1
||yi −HMiL0x||2R−1

satisfies MjL0x0
j = xjj = xaj and Pj

j = Pa
j . We also assume that P0

j = Uj .
Since (P0

j )−1 is the Hessian matrix of Jj , it allows us to express the quadratic
function Jj using its Taylor expansion around the solution x0

j as

Jj(x) = Jj(x0
j ) + 1

2(x− x0
j )T(P0

j )−1(x− x0
j ),

remembering that ∇Jj(x0
j ) = 0. We add the next available observation vec-

tor yj+1 to this expression and obtain the expression of the reduced 4D-Var
problem using the first j + 1 observation vectors

min
x∈Rr

Jj+1(x) = Jj(x0
j ) + 1

2 ||x− x0
j ||2(P0

j
)−1 + 1

2 ||yj+1 −HMj+1L0x||2R−1 .

Taking into account that Jj(x0
j ) is constant, the solution of this problem, based

on the same reasoning used to derive (5.21) and (5.22), may be written

x0
j+1 = x0

j + P0
j+1LT

0 MT
j+1HTR−1(yj+1 −HMj+1L0x0

j ),

with the covariance matrix

P0
j+1 =

(
(P0

j )−1 + LT
0 MT

j+1HTR−1HMj+1L0
)−1

.

By Algorithm 4.2, we remark that P0
j+1 = Uj+1 since P0

j = Uj . If we formulate
the solution x0

j+1 in the full space and integrate it up to the time-step j + 1,
we have

xj+1
j+1 = Mj+1L0x0

j+1

= Mj+1L0x0
j + Mj+1L0P0

j+1LT
0 MT

j+1HTR−1(yj+1 −HMj+1L0x0
j ).

Using the recurrence assumptions, we retrieve the SEEK filter solution xaj+1
and its covariance matrix after j + 1 iterations, since P0

j+1 = Uj+1, and

Mj+1L0x0
j = Mj+1,jMjL0x0

j = Mj+1,jxjj
= Mj+1,jxaj = xfj+1
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and

Pj+1
j+1 = Cov(xj+1

j+1,x
j+1
j+1)

= Cov(Mj+1L0x0
j+1,Mj+1L0x0

j+1)
= Mj+1L0Cov(x0

j+1,x0
j+1)LT

0 MT
j+1

= Mj+1L0P0
j+1LT

0 MT
j+1

= Lj+1Uj+1LT
j+1

= Pa
j+1

by Algorithm 4.2. This ends the proof.

The two theorems presented in this chapter state connections between the
variational and the sequential approaches in the specific case of linear observa-
tion and model operators. However, these theorems have also a usefulness in
the case of nonlinear operators. Recalling that the nonlinear 4D-Var problems
are solved by a sequence of incremental 4D-Var problems (see Section 3.2), the
theorems can be applied to the incremental 4D-Var problems since they use
linear operators (Jacobians of the nonlinear ones). As an example, the reduced
incremental 4D-Var problem (3.14) can be reformulated as

min
δx∈Rr

||Lδx− dbk||2B−1 + 1
2

N∑
i=1
||(yi −HiMi,0xk)−Hk

iMk
i Lδx||2R−1

i

, (5.23)

using the weighted norms and the definitions (3.7) and (3.11). If the back-
ground error covariance matrix B is replaced by the sample covariance matrix
S and if the reduced space L contains the first r EOFs, this problem has the
same form as (5.15), equalizing

x := δx
xb := dbk

yi := yi −HiMi,0xk
Hi := Hk

i

Mi := Mk
i .

and remarking that L is given by L0 from (4.29). Thus, the Theorem 5.3 can be
applied to (5.23) and proves the equivalence between its solution and a specific
SEEK filter.



Chapter 6

Minimizing the 4D-Var
problem

The 4D-var problem has been presented in Chapter 3 where a first rough idea on
its solution has been given with the incremental approach. In this chapter, we
give a survey on the basic optimization methods designed for solving nonlinear
problems with continuous variables. It will allow us to highlight the connection
between the incremental approach and the Gauss-Newton method since they
both compute the solution of the 4D-Var problem by solving the same sequence
of symmetric positive definite linear systems. Two suited methods for solving
such linear systems, namely the conjugate gradient method and the Lanczos
method are presented and analyzed. Their rate of convergence depends, among
other things, on the condition number of the matrix and on the starting point.
The remainder of this chapter is then devoted to present a limited-memory
preconditioner with an appropriate starting point, both based on information
from EOFs, in an attempt to accelerate the Gauss-Newton method further.
Numerical experiments performed on a shallow water model are presented at
the end of the chapter. The behavior of this approach is also illustrate with
the NEMO framework in Chapter 8.

6.1 Unconstrained nonlinear optimization

Unconstrained nonlinear optimization problems attend to find a vector x that
minimizes an objective function

f : Rn → R : x f(x),

61
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without restriction on the values of x. Mathematically, the problem is formu-
lated as

min
x∈Rn

f(x).

The objective function f is assumed to be smooth, which signifies that the
derivatives of all orders are available. In most optimization problems, the graph
of the function is unknown and it is only possible to evaluate the function and
its first, possibly second, order derivative on particular points. Since these
evaluations have a computational cost, the optimization algorithm has to find
a solution performing a minimal number of evaluations. Because the objective
function f is nonlinear and there is no assumption about its convexity, it is
possible that the objective function has multiple local minimizers with a global
one. Of course, it would be preferable to have an optimization algorithm which
finds the global minimizer. However, this task is tough and there are no efficient
algorithms which guarantee to find a global minimizer for any problem (Ugray
et al., 2007). Most of the optimization algorithms are iterative, computing a
sequence of points {xk} which converges to a first-order critical point, i.e., a
point where the norm of the gradient of f is null. At each iteration k, the
optimization algorithm computes a new iterate xk+1 with a lower function
value[1] than at xk using the information from the previous iterations and
from the evaluation of f and its derivatives at xk. There are two fundamental
strategies for computing such a sequence: the line search and the trust-region
strategies. We review briefly these strategies in what follows.

In the line search strategy (Griva et al., 2009, Nocedal and Wright, 2006),
the algorithm computes, at each iteration k, a direction pk and searches along
this direction for a point which sufficiently reduces the function value. More
precisely, a step length αk is computed by approximately solving

min
α∈R+

f(xk + αpk), (6.1)

and the new iterate is given by

xk+1 = xk + αkpk.

Of course, solving (6.1) exactly produces an iterate with the maximal decrease
along the direction pk. Unfortunately, it may be expensive to compute since it
may involve a lot of objective function evaluations. Instead, the line search al-
gorithm generates only a limited number of trial steps and stops generally once
a sufficient curvature and a decrease condition is obtained. To this aim, various
conditions such as the Wolfe conditions or the Goldstein conditions can be used
(Nocedal and Wright, 2006). The search direction pk can be computed in differ-
ent ways. The most obvious one is pk = −∇f(xk) since it is the direction where

[1]The family of non-monotone optimization method relax this constraint and the sequence
{f(xk)} is no longer monotonically decreasing.
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the function decreases the most rapidly. The line search method which uses this
direction as search direction is called the steepest descent method. However, this
method may converge slowly, suffering of oscillatory effects in the convergence
since it uses only the first-order derivative. The Newton direction is the most
famous search direction and is defined as pk = −

(
∇2f (xk)

)−1∇f(xk). It uses
derivative information up to the second-order. Its derivation comes from the
fact that this direction, with a step length of one, minimizes the second-order
Taylor expansion of f around xk. The line search method which uses Newton
direction as search direction is called the Newton method. Some caution must
be made with the use of this direction. Indeed, if the Hessian matrix ∇2f(xk) is
not positive definite, the inverse may not exists or the search direction may not
be a descent direction, i.e., ∇f(xk)T pk < 0. In these cases, some modification
of the Newton direction must be performed (Nocedal and Wright, 2006).

The trust-region strategy (Conn et al., 2000) uses a rather different ap-
proach than the line search strategy. At each iteration k, a model mk of the
objective function is constructed around the current iterate xk using the infor-
mation from the function value and its derivatives at xk. Usually, a quadratic
model is used

mk(xk + p) = f(xk) + pT∇f(xk) + 1
2pT∇2f(xk)p.

Since the model is a good surrogate of the objective function only in a local
region around xk, it is minimized in such a region, called the trust region and
defined by a trust-region radius ∆k,

min
||p||6∆k

mk(xk + p),

using usually the Euclidean norm. On the one hand, if the decrease in the model
yields a decrease in the objective function, the trial point xk + pk is accepted
and the new iterate is given by xk+1 = xk + pk. The trust region could be
increased for the next iteration since it seems that the model represents well
the objective function. On the other hand, if the decrease in the model yields
an increase in the objective function, the trial point xk +pk is rejected and the
new iterate is given by xk+1 = xk. The trust region is shrunk, hoping that the
model will better represent the function value in a smaller region.

Optimization algorithms using second-order derivatives perform better than
the ones using only first-order derivatives. However computing second-order
derivatives can be an expensive process. Finite differences or automatic dif-
ferentiation can be used to avoid hand writing but the evaluation can remain
too costly. A possible solution, for both line search an trust-region strategies,
is to use quasi-Newton methods. These methods replace the exact Hessians
by approximations updated at each iteration from previous first-order informa-
tion. The most famous rules are the symmetric-rank-one (SR1) formula and
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula. The BFGS formula
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updates an inverse Hessian approximation Hk
[2] after each iteration of the line

search or the trust-region method. Assuming that the iterate xk has been
computed, the BFGS formula computes Hk using the previous approximation
Hk−1 and the two last iterates xk and xk−1 with their gradient evaluations
∇f(xk) and ∇f(xk−1), as

Hk =
(

In −
skyTk
yTk sk

)
Hk−1

(
In −

yksTk
yTk sk

)
+ sksTk

yTk sk
, (6.2)

with sk = xk − xk−1 and yk = ∇f(xk) − ∇f(xk−1). The BFGS formula
produces symmetric positive definite Hessian approximations (ensuring that the
Newton directions are descent directions) whenever the initial approximation
H0 is symmetric positive definite and skyk > 0 (see, Nocedal and Wright, 2006,
Chapter 6).

The line search and the trust-region strategies are globalization techniques.
It means that, using some basic assumptions, both methods converge (theoret-
ically) to first-order critical points, independently of the chosen starting point
x0

[3](Nocedal and Wright, 2006). However, this nice convergence result may
suffer from numerical instabilities which may slow down the convergence rate
or even break the convergence.

Some optimization problems have special forms which can be exploited to
facilitate the minimization. Amongst others, nonlinear least squares problems
are defined as

min
x∈Rn

f(x) = 1
2 ||r(x)||22, (6.3)

where
r : Rn → Rm : x r(x) = (r1(x), . . . , rm(x))T

is a residual function which is assumed to be smooth (Bjorck, 1996). These
problems arise frequently in chemistry, physics or economy when a model must
be parameterized using observations. In our work, we are concerned with non-
linear least squares problems since the 4D-Var problem belongs to this class.
Before presenting a special formulation of the line search and trust-region strat-
egy devoted for nonlinear least squares problems, it is useful to express the first
and second derivatives of f in (6.3) in terms of the Jacobian of r, denoted by
J. The gradient of f is given by

∇f(x) =
m∑
i=1

ri(x)∇ri(x)

= J(x)T r(x). (6.4)

[2]Be careful not to confuse this Hessian approximation with the observation operator.
[3]Pay attention that the word “globalization” does not mean that the method converges

to a global minimizer.
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and the Hessian by

∇2f(x) =
m∑
i=1
∇ri(x)∇ri(x)T +

m∑
i=1

ri(x)∇2ri(x)

= J(x)TJ(x) +
m∑
i=1

ri(x)∇2ri(x). (6.5)

Most of the algorithms for nonlinear least squares problems will approximate
the Hessian neglecting the second term in (6.5). This assumption is commonly
made since one can hope that the first term usually dominate the second ones.
It allows to compute an approximation of the Hessian only using first-order
derivatives of ri:

∇2f(x) ≈ J(x)TJ(x). (6.6)
The Gauss-Newton method is a line search algorithm which solves nonlinear

least squares problems using the approximation (6.6) (Sun and Yuan, 2006).
It belongs to the family of quasi-Newton methods since the exact Hessian is
approximated. At each iteration, the search direction is given by the solution
of the following linear system

J(xk)TJ(xk)p = −J(xk)T r(xk), (6.7)

known as the normal equations. The system (6.7) can be rewritten in a more
compact form as

Akp = bk, (6.8)
where Ak = J(xk)TJ(xk) and bk = −J(xk)T r(xk). If the Jacobian has full
rank, the matrix Ak is symmetric definite positive and the search direction is a
descent direction. Symmetric positive definite linear systems like (6.8) can be
solved using direct methods based on the Cholesky factorization of Ak or on the
QR factorization of Jk (Davis, 2006). However, iterative methods, such as the
conjugate gradient and the Lanczos method, are better suited for large systems
since they do not require the explicit storage of Ak but only a routine which
computes matrix-vector products. Once the descent direction is computed, a
line search is performed as previously.

The Levenberg-Marquardt method is a trust region-method using the ap-
proximation (6.6) (Sun and Yuan, 2006). At each iteration the following model
is minimized in a trust region

min
||p||6∆k

1
2 ||r(xk)||22 + pTJ(xk)T r(xk) + 1

2pTJ(xk)TJ(xk)p,

which is a quadratic model where (6.4) and (6.6) are used for the first and
second derivatives, respectively. This problem is equivalent to the minimization
of

min
||p||6∆k

1
2 ||J(xk)p + r(xk)||22,
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which belongs to the class of linear least-squares problems. Since the Gauss-
Newton and the Levenberg-Marquardt methods use the line search or the trust
region framework, they have the nice property of convergence to first-order
critical points (Nocedal and Wright, 2006). In the next section, we show that
the incremental method presented in Chapter 3 is related to a modified Gauss-
Newton method.

6.2 Gauss-Newton method for the 4D-Var problem

In atmospheric and oceanographic data assimilation problems, the model and
observation operators are usually nonlinear and the 4D-Var problem (3.6) be-
longs to the class of nonlinear least-squares problems. Indeed, it can be rewrit-
ten in the form

min
x∈Rn

J4D(x) = 1
2 ||r(x)||22, (6.9)

with
r(x) =

(
B−1/2(x− xb)

R−1/2(G(x)− y)

)
, (6.10)

where the matrices B−1/2 and R−1/2 are the inverses of the Cholesky factors
given by B = B1/2(B1/2)T and R = R1/2(R1/2)T , respectively. The Gauss-
Newton method solves a sequence of linear systems (6.7) to compute the search
directions. For the 4D-Var problem, the Jacobian matrix of r at xk is given by

J(xk) =
(

B−1/2

R−1/2Gk

)
, (6.11)

where Gk is the Jacobian matrix of G at xk defined by (3.7). The matrix and
the right hand side of the system (6.8) are given by

Ak = J(xk)TJ(xk) = B−1 + GT
kR−1Gk, (6.12)

and

bk = −J(xk)T r(xk)
= B−1(xb − xk) + GT

kR−1(y− G(xk))
= B−1dbk + GT

kR−1dok (6.13)

using (3.10) and (3.11). The matrix Ak is a symmetric positive definite matrix
which ensures that the solution of the linear system, pk, is a descent direction.
One can remark that the solution of the normal equations (6.7) is equivalent
to the minimization of

min
p∈Rn

1
2 ||J(xk)p + r(xk)||22 (6.14)
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by nullifying its gradient, using the formula (A.7). This linear least squares
problem can be expanded using (6.10) and (6.11) as

min
p∈Rn

1
2
(
p− (xb − xk)

)T B−1 (δx− (xb − xk)
)

+ 1
2 (Gkp− (y− G(xk)))T R−1 (Gkp− (y− G(xk))) . (6.15)

Performing the change of variable δx = p and using the definition of the
departure vectors given by (3.10) and (3.11), we obtain

min
δx∈Rn

1
2(δx− dbk)TB−1(δx− dbk)

+ 1
2(Gkδx− dok)TR−1(Gkδx− dok), (6.16)

and we recover the incremental 4D-Var formulation J4D-inc(δx) introduced in
(3.8). It shows that the sequence of linear systems defined in the Gauss-Newton
method is equivalent to the sequence of incremental problems.

For operational weather forecast, the computational budget is very limited
since the forecast must be broadcast before being obsolete. For this reason, the
sequence of incremental problems has to be shorten (around 2 to 5 problems
are stated) and each incremental problem has to be solved approximately (us-
ing an iterative method and performing around 10 iterations) (Weaver et al.,
2003). With this computational constraint, it is not conceivable to expect the
convergence to a first-order critical point and we can just hope to decrease the
4D-Var function as much as possible. One can remark that the incremental
approach is thus equivalent to the Gauss-Newton method where only few ap-
proximative descent directions are computed without line search along them
(Lawless et al., 2004, Gratton et al., 2007). We summarize the Gauss-Newton
method for solving the 4D-Var in Algorithm 6.1.

In the next two subsections, we present the conjugate-gradient and the
Lanczos methods which aim to solve the normal equations (6.7) or, equiva-
lently, to minimize the incremental problem (6.16). Both methods are iterative
and suited for solving large problems since they do not require explicit matrix
storage but only matrix-vector products.

6.2.1 The conjugate gradient method
The conjugate gradient (CG) method has been introduced by Hestenes and
Stiefel (1952) to solve symmetric positive definite linear systems and belongs
to the class of Krylov subspace methods (Meurant and Strakos, 2006). Its
philosophy can be understood using the equivalence between the solution of a
symmetric positive definite linear system,

Ax = b,



68 Chapter 6. Minimizing the 4D-Var problem

Algorithm 6.1 Gauss-Newton algorithm for the 4D-Var problem
1: Define an initial guess at time t0, usually, x0 = xb
2: for k = 0, 1, 2, . . . do
3: Run the nonlinear model from the current iterate xk to update the ref-

erence trajectory and store the vector G(xk).
4: Calculate the departure vectors dbk and dok
5: Approximately solve

min
δx∈Rn

1
2(δx−dbk)TB−1(δx−dbk) + 1

2(Gkδx−dok)TR−1(Gkδx−dok),

or equivalently
Akδx = bk

with Ak and bk given by (6.12) and (6.13).
6: Update the iterate with the increment xk+1 = xk + δxk
7: end for

and the minimization of a strictly convex quadratic function

min
x∈Rn

1
2xTAx− bTx. (6.17)

The CG algorithm is a special line search method which constructs a sequence
of A-conjugate directions {sj}, i.e.,

siAsj = 0, ∀ i 6= j,

as search directions. The step length performed along each direction is the
result of an exact minimization of the quadratic function along this direction.
The importance of A-conjugacy lies in the fact that the quadratic function can
be minimized in n steps (for A ∈ Rn×n) by successively minimizing along each
A-conjugate direction (see Nocedal and Wright, 2006, p.103, for the proof).
The CG method is summarized in Algorithm 6.2. Its computational cost is
mainly dominated by the matrix-vector product between A and sj performed
at each iteration. Some interesting properties are summarized in the next
theorem.

Theorem 6.1 Suppose that the jth iterate generated by the conjugate gra-
dient method is not the solution. The following properties hold

1. xj is the minimizer of the quadratic function over the set
{x | x = x0 + span {s0, s1, . . . , sj−1}},

2. span {s0, s1, . . . , sj−1} = K(r0, j),
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Algorithm 6.2 Conjugate gradient method to solve Ax = b
1: j = 0
2: Given x0
3: r0 = b−Ax0
4: for j = 0, 1, 2, . . . do
5: if j = 0 then
6: s0 = r0
7: else
8: βj = rTj rj/rTj−1rj−1
9: sj = rj + βjsj−1
10: end if
11: αj = rTj sj/sTj Asj
12: xj+1 = xj + αjsj
13: rj+1 = rj − αjAsj
14: j = j + 1
15: end for

3. span {r0, r1, . . . , rj−1} = K(r0, j),

where K(r0, j) is the Krylov subspace of degree j and is defined as
span

{
r0,Ar0, . . . ,Aj−1r0

}
.

Proof. — (Nocedal and Wright, 2006, p.106 and p.109)

This result shows that the CG method minimizes the quadratic function in
nested Krylov subspaces of increasing dimension. Its rate of convergence de-
pends mostly on the eigenvalues distribution of the matrix. There are two main
results which are expressed in the next two theorems.

Theorem 6.2 If A has only r distinct eigenvalues, then the CG iteration
will terminate at the solution in at most r iterations.

Proof. — (Nocedal and Wright, 2006, p.115)

Theorem 6.3

||xj − x∗||A 6 2
(√

κ(A)− 1√
κ(A) + 1

)j
||x0 − x∗||A,

where κ(A) = λn/λ1 is the ration between the largest and the smallest
eigenvalues of A, called the condition number of A.
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Proof. — (Conn et al., 2000, p.82)

These results show that the rate of convergence depends on the clusterization of
the eigenvalues and on the condition number κ(A) of the system matrix A. The
larger is κ(A), the slower the convergence. The CG method can theoretically
be viewed as a direct method, as it produces, in exact arithmetic, the solution
after a finite number of iterations, which is not larger than n. However, it
suffers of a lack of robustness and efficiency. In practice, the directions are not
A-conjugate, there are instabilities when sTj Asj is small and the convergence
can be extremely slower than the theoretical rate (Meurant and Strakos, 2006).
Fortunately, the CG method can be used as an iterative method as it decreases
monotonically the quadratic function. An effective stopping criteria is to stop
the algorithm when the norm of the residual, ||rj ||, is reduced to a user-specified
tolerance.

Both the efficiency and the robustness of the CG method can be improved
by using preconditioning techniques. Preconditioning is a simple mean of trans-
forming the original linear system into another one which has the same solution,
but which is likely to be easier to solve with an iterative method (Saad, 2008).
It is widely recognized that there is no special and universal way to design a
preconditioner for all types of problems (Benzi, 2002). But ideally, a precondi-
tioner must:

• be an approximation of A−1 (inverse type) or be the inverse of an ap-
proximation of A (forward type);

• be symmetric and positive definite;

• be cheap to apply;

• reduce the condition number and/or cluster the eigenvalues.

There are in general two approaches to construct a preconditioner. On the one
hand, physical-based preconditioners require the knowledge of the application
and are problem dependent. The most famous ones use geometric multigrid or
domain decomposition algorithms (Chen, 2005). On the other hand, algebraic
preconditioners use only information contained in the entrances of A. They
achieve reasonable efficiency on a wide range of problems. As an example,
the incomplete Cholesky factorization (a sparse approximation of the Cholesky
factorization) can be used as a preconditioner (Manteuffel, 1980).

Assuming an inverse preconditioner P, there are three main different ways
of applying it. To the left, it leads to the following preconditioned system

PAx = Pb.

To the right, we obtain
APy = b,
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where the solution is computed by performing a change of variables x = Py.
The third possible way is to compute a preconditioner in a factored form,

P = SST ,

and to apply it in a splitting form, giving the following preconditioned system,

STASy = STb.

where the solution is given by x = Sy. The third way is the only one which
preserves the symmetry of the original linear system.

The CG algorithm can be reformulated when a preconditioner is used. Re-
membering that the CG method solves only symmetric positive definite linear
systems, the split preconditioner seems to be the best suited. It leads to the
split preconditioned CG method presented in Algorithm 6.3. However, there

Algorithm 6.3 Preconditioned Conjugate gradient to solve Ax = b
1: j = 0
2: Given x0
3: r0 = ST (b−Ax0)
4: for j = 0, 1, 2, . . . do
5: if j = 0 then
6: p0 = Sr0
7: else
8: βj = rTj rj/rTj−1rj−1
9: pj = Srj + βjpj−1
10: end if
11: αj = rTj pj/pTj Apj
12: xj+1 = xj + αjpj
13: rj+1 = rj − αjSTApj
14: j = j + 1
15: end for

is an alternative of the split preconditioner for the CG method which does not
require the split form. It replaces the usual Euclidean inner product by the
P-inner product, where P = STS (see Golub and Van Loan, 1996, p.534). No
approach is better than the other since the produced iterates are identical (see
Saad, 2008, p.278).

6.2.2 The Lanczos method
The Lanczos method is usually thought as a method for constructing an or-
thonormal basis of a Krylov subspace or for estimating eigenvalues and eigen-
vectors of a symmetric matrix (Stewart, 2001). However, it can be used to
solve symmetric indefinite linear systems. The Lanczos method is summarized
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Algorithm 6.4 Lanczos method
1: j = 0
2: Given r0
3: y0 = r0
4: q−1 = 0
5: for j = 0, 1, 2, . . . do
6: γj = ||y0||2
7: qj = yj/γj
8: δj = qTj Aqj
9: yj+1 = Aqj − δjqj − γjqj−1
10: j = j + 1
11: end for

in Algorithm 6.4. Its goal is to produce a sequence of Lanczos vectors {qj}
which form an orthonormal basis of K(r0, j). Rounding errors may effect the
behavior of the Lanczos algorithm. These are mainly due to the loss of or-
thogonality between the Lanczos vectors. To restore the orthogonality in the
Lanczos vectors, it is recommended to orthogonalize each Lanczos vector qj
with respect to those of the preceding iterations. This process can be done us-
ing a Gram-Schmidt algorithm (Golub and Van Loan, 1996, p.230 and p.482).
The Lanczos vectors can be used to solve the linear system Ax = b thanks to
the following result.

Theorem 6.4 Assume that Qj = [q0, . . . ,qj−1] ∈ Rn×j is the matrix of
Lanczos vectors obtained after j iterations with r0 = b−Ax0 for a given
x0. Then the vector

xj = x0 + Qjwj ,

where wj is the solution of

(QT
j AQj)w = QT

j r0, (6.18)

minimizes the quadratic function (6.17) over the set
{x | x = x0 + span {q0,q1, . . . ,qj−1}}. Therefore when j = n, the
minimization, in exact arithmetic, is over all Rn and thus xn is the
solution of Ax = b.

Proof. — (Golub and Van Loan, 1996, p.490)
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The matrix of the system (6.18) has a tridiagonal form,

QT
j AQj = Tj =



δ0 γ1

γ1 δ1
. . .

. . . . . . . . .
. . . δj−2 γj−1

γj−1 δj−1


, (6.19)

and the system can be solved cheaply using a factored decomposition (for in-
stance using the DPTSV routine from the LAPACK library). An effective stop-
ping criteria in finite precision arithmetic is to stop the algorithm when γj is
reduced to a user-specified tolerance.

As for the conjugate gradient method, a split preconditioned Lanczos method
can be derived, leading to Algorithm 6.5. The solution of the linear system is

Algorithm 6.5 Preconditioned Lanczos algorithm
1: j = 0
2: Given r0
3: y0 = ST r0
4: q−1 = 0
5: for j = 0, 1, 2, . . . do
6: γj = ||y0||2
7: qj = yj/γj
8: δj = qTj STASqj
9: yj+1 = STASqj − δjqj − γjqj−1
10: j = j + 1
11: end for

then given by
xj = x0 + SQjwj , (6.20)

where wj is the solution of (6.18). It is also possible to derive a preconditioned
Lanczos algorithm for a general preconditioner P (see Conn et al., 2000, p.104).

As said previously, the Lanczos algorithm can also be used to find eigenval-
ues and eigenvectors of a symmetric matrix. We have shown in equation (6.19)
that the orthonormal basis Qj can be used to transform the initial matrix A
in a tridiagonal one Tj . The idea of the Lanczos algorithm is to estimate the
eigenpairs of A from the eigenpairs of Tj . To this aim, the following eigen-
problem of size j is solved

Tjy = θy,

and the j eigenpairs (θi,yi), i = 1, . . . , j, are determined. They are called
the primitive Ritz pairs. Their computation is cheap since the matrix Tj is
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tridiagonal (the DSTEQR routine from LAPACK can be used). From these pairs,
the Ritz vectors can be computed as zi = Qjyi, i = 1, . . . , j, and the Ritz pair
(θi, zi) can be constructed. Each Ritz pair can be related to an eigenpair
(λk,vk) of A such as

|λk − θi| 6 ||Azi − θizi||2 = γj |eTj yi|,

where ej is the j-th canonical vector (see, Conn et al., 2000, p.101). Since
the Ritz vectors yi are normalized, we have |eTj yi| 6 1 and this bound shows
that a small γj means that the Ritz pairs (θi, zi) are close to eigenvalues and
eigenvectors of A. However, a Ritz pair may also be close to an eigenpair of
A if the j-th component of yi is small. After n iterations, we have that Tn is
similar to A and thus they share the same eigenvalues and eigenvectors.

There are strong relationships between the CG and the Lanczos algorithms.
From Theorems 6.1 and 6.4, one can see that both methods minimize the
quadratic function over the same sequence of nested Krylov subspaces K(r0, j).
The CG and Lanczos algorithms are then equivalent, in exact arithmetic, for
solving symmetric positive definite linear systems. Moreover, it is possible to
determine the tridiagonal matrix Tj from the coefficients αj and βj computed
in the CG algorithm. It is also possible to determine a A-conjugate basis
from the Krylov basis Qj computed by the Lanczos method (see Conn et al.,
2000, p.95). Due to their strong relationships, the term “Conjugate Gradient-
like” (CG-like) method may refer simultaneously to the CG or to the Lanczos
method.

6.3 Computational cost and diagnostics

In Algorithm 6.1, the Gauss-Newton method has been presented for solving the
4D-Var problem. This method states a sequence of symmetric positive definite
linear systems

Akδx = bk,

where Ak and bk are given by (6.12) and (6.13). They can be solve by the
CG method or the Lanczos method presented in Subsection 6.2.1 and 6.2.2.
The computational cost of such methods is dominated by the matrix-vector
products performed at each iteration (see line 11 of Algorithm 6.2 for the CG
method and line 8 of Algorithm 6.4 for the Lanczos method). For any vector
p, the matrix-vector product is given by

Akp = B−1p + GT
kR−1Gkp. (6.21)

While the first term can be computed straightforward, the second term must
be computed with caution to avoid any extra computational cost. It can be
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rewritten in detail as

GT
kR−1Gkp = 1

2

N∑
i=1

MT
i,0HT

i R−1
i HiMi,0p, (6.22)

remembering the definition of Gk given in (3.9) and the block diagonal structure
of R which contains each Ri, for i = 1, . . . , N . Note that the superscript k
has been omitted for lighter notations. The Jacobian Mi,0 of the nonlinear
operatorMi,0 and its transpose MT

i,0 are called the tangent linear model and
the adjoint model, respectively. The computation of (6.22) is performed in two
stages with the aim of minimizing the number of products by Mi,0 and by MT

i,0
since these products dominate the computational cost. The first stage performs
the integration of the tangent linear model from t0 to tN with the vector p as
initial condition and stores the vectors

di = R−1
i HiMi,0p,

for i = 1, . . . , N . With this result, the sum (6.22) can be rewritten and ex-
pended as

1
2

N∑
i=1

MT
i,0HT

i di = MT
1,0HT

1 d1 + MT
2,0HT

2 d2 + . . .+ MT
N,0HT

NdN

= MT
1,0HT

1 d1

+ MT
1,0(MT

2,1HT
2 d2 + MT

2,1(. . .+ MT
N,N−1HT

NdN ) . . .),

using Mi,0 =
∏j=i−1
j=0 Mj+1,j . The second stage of the computation then eval-

uates this last expression using an adjoint vector d̃ and the following algo-
rithm
1: d̃ = 0
2: for i = N to 1 do
3: d̃ := MT

i,i−1
(
d̃ + HT

i di
)

4: end for
This algorithm thus requires one suitably modified integration of the adjoint
model from time tN to t0. At the end of this algorithm, the value of (6.22) is
contained in the vector d̃. In conclusion, the computation of the matrix vector
product (6.21) requires one integration of the tangent linear model and of the
adjoint model along the assimilation window.

It is common that no routine implements the matrix-vector product (6.21)
in data assimilation software. However, there is often a routine which codes the
evaluation of the incremental 4D-Var function value (6.16) with the evaluation
of its gradient. In that case, the matrix vector product can be computed as

Akp = (Akp− bk)− (−bk)
= ∇J4D-inc(p)−∇J4D-inc(0)
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where 0 represents a zero vector of size n. This simple trick is deduced using
the derivative formula (A.7) with the definition (6.12) and (6.13).

During the solution of the linear system (the minimization of the incremen-
tal function), some user-oriented diagnostics can be performed. It is possible
to compute cheaply, for each iterate xj , the incremental 4D-Var function value
with its gradient. Indeed, the function value of the incremental 4D-Var at xj
can be formulated as

J4D-inc(xj) = J4D-inc(x0) + 1
2(xj − x0)T r0 (6.23)

where x0 and r0 are defined in Algorithm 6.2 for the CG method and in Al-
gorithm 6.4 with Theorem 6.4 for the Lanczos method (see Tshimanga, 2007,
p.154, for further details). The function value at an iterate xj is a useful di-
agnostic since it is related to the distance with the optimal solution x∗ of the
incremental problem as

J4D-inc(xj) = 1
2 ||xj − x∗||2Ak

+ J4D-inc(x∗),

where Ak is the matrix of the system (see Nocedal and Wright, 2006, p.113,
for further explanations about this equality). The gradient of the incremental
function at an iterate xj is given by Akxj − bk. For the CG method, this
information is directly computed in rj at line 13 of Algorithm 6.2. For its
part, the Lanczos method does not compute directly the gradient but it can be
retrieved using the formula

∇J4D-inc(xj) = (eTj wj)γjqk,

where ej is the jth canonical vector and where the other quantities are com-
puted in Algorithm 6.4 and Theorem 6.4 (see Conn et al., 2000, p.100, for the
derivation of the formula). However, when solving linear systems, the gradient
norm tends to exhibit an erratic behavior and is not so useful to diagnostic the
performance of the method (Nocedal et al., 2002).

6.4 Enhanced Gauss-Newton method using EOFs

The aim of this section is to develop an enhanced Gauss-Newton method by
improving the speed of convergence of the iterative method used for the solution
of the linear systems. It is well known (see Nocedal and Wright, 2006, for
instance) that the rate of convergence of conjugate gradient-like methods is
influenced by the starting point, the right-hand side and the actual distribution
of the eigenvalues (e.g., the existence of eigenvalue clusters). Therefore, the
development of good starting points and preconditioners is essential to obtain
a better convergence rate.
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Robert et al. (2005) and Robert et al. (2006) make use of the EOFs, intro-
duced in Section 4.3.3, to define an appropriate reduced control space and an
estimation of the background error covariance matrix. In their approach, an op-
timal solution is sought in the full space but the problem of the computational
cost is addressed by considering a reduced 4D-Var to provide a relevant initial
guess for the full space minimization. Their approach consists in performing a
few number of iterations to approximately solve the first incremental 4D-Var
(6.16) reduced to the subspace L0 containing the first r EOFs and with the
sample covariance matrix S, defined in (4.28), as background error covariance
matrix approximation, that is

min
δx∈Rr

1
2 ||L0δx− db0||2S−1 + 1

2 ||G0L0δx− do0||2R−1 . (6.24)

The prolongation of the approximate solution is then used as a starting point
of a Gauss-Newton method to solve the full 4D-Var (3.6) where the background
error covariance matrix B is used as preconditioner. They apply this reduced-
order approach in the OPA model with its TDH configuration and the vari-
ational data assimilation package OPAVAR (Weaver et al., 2003). Note that
Theorem 5.3 of Section 5.2 gives theoretical foundations for this approach. In-
deed, under the assumptions of Theorem 5.3 and taking db0 = xb and do0 = y,
the reduced 4D-Var (6.24) and the SEEK filter are equivalent (see the last com-
ment at the end of Chapter 5 for more details). This motivates the relevance
of approximately solving (6.24) to obtain an initial guess.

In what follows, we propose, and combine, two ways of exploiting the
relevant information contained in the EOFs to accelerate the Gauss-Newton
method. Firstly, to define an appropriate starting point for the CG-like method
for the first incremental problem (6.16),

min
δx∈Rn

1
2(δx−db0)TB−1(δx−db0)+ 1

2(G0δx−do0)TR−1(G0δx−do0), (6.25)

we consider its reduced form based on the information contained in the r first
EOFs stored in L0 ∈ Rn×r,

min
δx∈Rr

= 1
2(L0δx− db0)TB−1(L0δx− db0)

+ 1
2(G0L0δx− do0)TR−1(G0L0δx− do0). (6.26)

This reduced incremental problem has been presented in Section 3.4 and differs
from (6.24) only by the use of the background error covariance matrix B instead
of the sample covariance matrix S. It leads to the symmetric positive definite
linear system

LT0 A0L0δx = LT0 b0, (6.27)
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using the notation from (6.12) and (6.13). The solution of (6.27), denoted by
δx0, is then prolongated in the full space, yielding L0δx0. Observe that the
prolongation of the solution δx0 of (6.27) satisfies

L0δx0 = L0(LT0 A0L0)−1LT0 b0 (6.28)
= L0(LT0 A0L0)−1LT0 A0δx0,

and corresponds to the solution of the full linear least-squares problem (6.25)
projected onto L0 and orthogonal to A0L0 (see Saad, 2008, for a review on
projections). In our approach, instead of performing only a few iterations
on the reduced problem as in Robert et al. (2005), we compute (6.28) and
choose it as a starting point to solve the full linear least-squares problem (6.25).
This starting point is called the Ritz-Galerkin starting point with respect to the
subspace L0 (van der Vorst, 2003). The matrix inverse in (6.28) is computed
using a direct method since its dimension is equal to r and is very small in
practice.

Considering again the first outer iteration of the Gauss-Newton method,
the convergence rate of the CG-like method is strongly influenced by the dis-
tribution of the eigenvalues of A0 and is roughly bounded by a function of the
condition number of A0 (see Theorems 6.2 and 6.3). Gratton et al. (2011) in-
troduced a class of preconditioners called the Limited-Memory Preconditioner
(LMP) which is related to the BFGS Hessian updating formula presented in
equation (6.2). This class of preconditioners is based on the fact that when the
objective function is quadratic,

f(x) = 1
2xTAxT − bTx,

the iterates generated by a line search method with the BFGS formula and
optimal step lengths are identical to the iterates generated by the CG-like
method (Nazareth, 1979). Assuming that r iterations have been performed,
the correction pair (zr,yr) involved in the BFGS formula is given by

zr = xr − xr−1 = αrpr,

from line 12 of Algorithm 6.2, and by

yr = Axr − b− (Axr−1 − b) = Asr,

from the definition of zr. Using the A-conjugate property of the zi vectors,
i = 1, . . . , r, the BFGS formula (6.2) is given by

Hr =
(

In −
r∑
i=1

zizTi
zTi Azi

A
)

H0

(
In −

r∑
i=1

A zizTi
zTi Azi

)
+

r∑
i=1

zizTi
zTi Azi

, (6.29)

using the derivation from Gratton et al. (2011). If we now define an n × r
matrix Z = [z1, . . . , zr], one can observe that

(ZTAZ)−1 = diag
(
(zTi Azi)−1) .
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Relaxing the A-conjugate property of zi, we obtain the general formulation of
the LMP,

Hr = [In − Z(ZTAZ)−1ZTA]H0

[In −AZ(ZTAZ)−1ZT ] + Z(ZTAZ)−1ZT , (6.30)

where the column of the matrix Z ∈ Rn×r are now assumed to contain linearly
independent vectors. The initial inverse Hessian approximation H0 plays the
role of a first-level preconditioner. The LMP presented in (6.30) is an inverse
type preconditioner since it aims to approximate A−1. Its split preconditioner
Hr = SrSTr is given by

Sr = In − ZR−TR−1ZTA + ZR−TU−1ZT ,

where R and U are the lower triangular matrices coming, respectively, from
the Cholesky decomposition ZTAZ = RRT and ZTZ = UUT . It is also
possible to derive an equivalent forward preconditioner with its related split
preconditioners (Tshimanga, 2007, p.50).

The first-level preconditioner H0 usually depends on the physics of the
application. In variational data assimilation problems, it is equal to the back-
ground error covariance matrix B and is able to cluster most eigenvalues at 1.
In order to improve the efficiency of this first-level preconditioner, the columns
of the matrix Z in the LMP are built to contain directions in a low dimen-
sional subspace that are left out by the first-level preconditioner and which
slow down the convergence of the CG-like method. Recently, Tshimanga et al.
(2008), used the LMP technique above in a Gauss-Newton context for solving
the 4D-Var problem. Their idea is to exploit information gained when solving
one system to build an LMP for the next system of the sequence. The infor-
mation could be, for example, Ritz pairs or descent directions generated by the
CG-like method. Their method however is unable to exploit the LMP technique
to design a preconditioner for the first system to solve in the sequence, since
in this case no information is already available through a CG-like method. We
propose here such a preconditioner, based on EOFs. More precisely, we choose
as preconditioner for the first system the LMP

Hr = [In − L0(LT0 A0L0)−1LT0 A0]B
[In −A0L0(LT0 A0L0)−1LT0 ] + L0(LT0 A0L0)−1LT0 , (6.31)

where L0 ∈ Rn×r contains the first r EOFs. The cost of building this precon-
ditioner is dominated by the product A0L0 and is thus available without any
extra computational cost since this product has been computed for the start-
ing point (6.28). In the numerical experiments that follow, we assume that the
Hessian approximations Ak do not change significantly from one outer itera-
tion to the next and keep the preconditioner unchanged for each system, since
it is available from the first to the last system of the sequence.
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6.5 Numerical experiments

In what follows, we illustrate the numerical behavior of our enhanced Gauss-
Newton method which uses the appropriate starting point and the limited
memory preconditioner, both based on EOFs information, presented in the
previous section. The model we consider is the one-dimensional shallow water
system describing the flow of a fluid over an obstacle (see Lawless et al. (2003)).
The governing equation can be written as

Du

Dt
+ ∂φ

∂z
= −g ∂h̄

∂z
,

Dφ

Dt
+ φ

∂u

∂z
= 0,

where D
Dt = ∂

∂t + u ∂
∂z is the material derivative and g is the gravitational

constant. In these equations, u = u(z, t) is the velocity of the fluid, φ = gh(z, t)
is the geopotential, with h(z, t) > 0, the depth of the fluid above the orography,
and h̄ = h̄(z) is the height of the bottom orography. The problem is defined on
the domain z ∈ [0, `], with the periodic boundary condition z(0) = z(`), and
for t ∈ [0, T ]. The height of the obstacle is given by

h̄(z) =
{

h̄c

(
1− (z− `

2 )2

a2

)
for 0 6 |z − `

2 | 6 a,
0 otherwise,

where h̄c is the maximum height of the obstacle and a is half the length over
which the base of the obstacle extends. In our experiments, a is set to 0.4m
and h̄c to 0.05m. The values of u and φ are specified everywhere at the initial
time as

u(z, 0) = u0(z) = u0,

φ(z, 0) = φ0(z) = g (h0 − h̄(z)),

with u0 = 0.1m/s and h0 = 0.2m. At time t = 0, the fluid is impulsively put
in motion with the constant velocity u0. From this impulse, a wave motion
develops and moves away from the obstacle in both directions. In our example,
the domain is defined to be periodic over 250 grid points, with a distance of
∆z = 0.01m between them, so that z ∈ [0m, 2.5m]. For simplicity, we set the
gravitational constant g to 10m/s2. The time-step ∆t for the model integration
is 4.6×10−3s. The state vector of the system at a time t is given by the velocity
and the geopotential at each of the 250 grid points and is thus of dimension
n = 500.

The framework for the numerical tests is the classical twin experiment.
The system period, i.e., the average time for a wave to cover the whole basin,
is empirically estimated to 400 time-steps. It is divided into 10 assimilation
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Figure 6.1 — Velocity, geopotential and water level at a given time
for the shallow water model.

windows and we solve the data assimilation problem for the first assimilation
window only, hence composed of 40 time-steps. We first compute reference
states by integrating the model from an arbitrary initial condition during 40
time-steps. Observations are then generated from the reference states by adding
Gaussian noises. To build the sample covariance matrix S given by (4.28) and
required to get L0, one computes a set of l = 50 state vectors by integrating
the model during 400 time-steps from an arbitrary initial condition occurring
before the assimilation window, storing the state vectors produced every 8th
time-step. Note that the background xb is computed as the average of these 50
state vectors, while the background covariance matrix B is computed using a
Laplacian-based correlation model, with a correlation lengthscale equal to 1.5m
and a variance of 1.0 × 10−3. The spectral decomposition (4.29) of S is then
applied to compute the EOFs basis. The percentage of variation accounted for
by the first r EOFs, defined in (4.31), is plotted in Figure 6.2 (for r = 1, . . . , 50).
One can see that retaining the first five EOFs enables to explain 80% of the
system’s variability. This choice for r is a good compromise since it allows to
account for most of the variation without increasing too much the dimension
of the subspace spanned by the selected EOFs. Note that all these parameters
are chosen according to the choices made for operational data assimilation
problems.

The set of experiments is designed to illustrate the impact of the Ritz-
Galerkin starting point (6.28) and of the LMP (6.31) when the subspace spanned
by L0 is defined by the five dominant EOFs. We allow for three outer Gauss-
Newton iterations with five inner CG-like iterations to solve each linear system,
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Figure 6.2 — Percentage of explained system’s variability versus the
number of selected EOFs.

which corresponds to realistic heuristics for operational 4D-Var problems. We
consider a first set of three experiments with an increasing number of obser-
vations (see Figures 6.3 to 6.5). These observations are generated at each
time-step, implying that N = 40. A velocity and geopotential observation is
generated at the 50th grid point for the first experiment (pi = 2), at the 50th
and 200th grid points for the second experiment (pi = 4), and at the 50th,
125th and 200th grid points for the third one (pi = 6). In these experiments,
the observation error covariance matrix R is set to a multiple µ of the identity
matrix, with µ = 10−4. These experiments yield an observation vector space
of dimension p = 80, p = 160 and p = 240, respectively. We next consider a
second set of two experiments in which µ is set to µ = 10−5 and µ = 10−3,
successively, for the case p = 240 (see Figures 6.6 and 6.7).

Figures 6.3 to 6.7 show the history of the nonlinear and incremental cost
functions for the three outer iterations (the nonlinear with circles and the
incremental with lines). Note that the nonlinear function value is available
only at outer iterations when a linearization is performed in the Gauss-Newton
algorithm. For the incremental cost functions, the curves are placed one after
the other in sequence and the inner iterations are cumulated. The dash-dot
curve is obtained using a basic Gauss-Newton algorithm with the background
covariance matrix B as preconditioner in the CG-like method. The dotted
curve and the dashed curve are obtained using the same approach, but with
the Ritz-Galerkin starting point (6.28) for the first system. No second-level
preconditioner has been added to generate the dotted curve, while the LMP
(6.31) has been used as second-level preconditioner to get the dashed curve.
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Figure 6.3 — Convergence curves for p = 80 and µ = 10−4.
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Figure 6.4 — Convergence curves for p = 160 and µ = 10−4.

A first look at these pictures show that the Ritz-Galerkin starting point
provides a good reduction for the first quadratic problem and globally improves
the convergence of the Gauss-Newton method. The second-level preconditioner
however substantially improves the reduction in the nonlinear function. These
remarks hold for all five experiments, showing the small influence of the number
of observations and of their accuracy on the comparative behaviour of the three
approaches. But one needs to be careful as the methods do not have the same
cost for the whole process. Indeed, this cost is dominated by the number of
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Figure 6.5 — Convergence curves for p = 240 and µ = 10−4.
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Figure 6.6 — Convergence curves for p = 240 and µ = 10−5.

matrix-vector products with the system’s matrices Ak (k = 1, 2, 3) defined
in (6.21). Remembering that the computation of the Ritz-Galerkin starting
point requires five (r) matrix-vector products to evaluate A0L0 and that the
LMP (6.31) is available without any extra cost, it makes sense to compare the
results obtained after 15 cumulated inner iterations of the basic approach with
that obtained after 10 cumulated inner iterations of the two others. Table 6.1
reports the nonlinear function values extracted from Figures 6.3 to 6.7 after a
computational cost of 15 matrix-vector products for the three methods (denoted
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Figure 6.7 — Convergence curves for p = 240 and µ = 10−3.

“Basic”, “RG” and “RG+LMP”, respectively, in Table 6.1). From this table,

Experiment Basic RG RG+LMP
p = 80, µ = 10−4 402.3 409.4 338.8
p = 160, µ = 10−4 786.8 783.4 726.0
p = 240, µ = 10−4 1064.2 1048.8 964.1
p = 240, µ = 10−5 7194.3 7090.1 6458.7
p = 240, µ = 10−3 510.9 506.9 497.4

Table 6.1 — Nonlinear function values after a same computational
cost of 15 matrix-vector products for the three methods.

we see that the use of the Ritz-Galerkin starting point improves the reduction
obtained in the nonlinear function for the same computational effort (except
for the first experiment). However, it clearly appears that adding a second-level
preconditioning generates a more substantial improvement, showing the power
of combining the Ritz-Galerkin starting point with an LMP of the form (6.31).

We can partly explain the good performance of adding the LMP by looking
at the spectrum of A0, the matrix of the first system. We have plotted in
Figure 6.8 the spectrum of A0 and of its two preconditioned versions, BA0 and
H0A0, for the case p = 80 and µ = 10−4. The curves for the two preconditioned
versions being hardly distinguishable on Figure 6.8, we have also plotted their
20 largest eigenvalues in Figure 6.9, to make the comparison easier. The matrix
A0 has a spectrum that does not exhibit any gap and a condition number of
9.70 × 107. By (6.12), one has that the preconditioned matrix BA0 is given
by In + BGT

0 R−1G0, that is, the identity matrix augmented by a symmetric
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Figure 6.8 — Spectrum of A0, BA0 and H5A0.
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Figure 6.9 — Twenty largest eigenvalues of BA0 and H5A0.

positive semidefinite matrix. Its spectrum thus becomes bounded below by 1
and has a cluster of eigenvalues at 1 of size at least max{0, n− p}, where p is
the dimension of the observation vector y. For our example, the size of this
cluster is thus at least max{0, 500 − 80} = 420, and the condition number is
3.48 × 106. The condition number of the preconditioned matrix H0A0 falls
down to 1.19× 103, while its cluster of eigenvalues at 1 keeps at least the same
size than that of BA0 (Gratton et al., 2011). Since the convergence rate of the
CG-like method depends, to a large extend, on the condition number and on
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the clustering of the eigenvalues, this spectral analysis gives some insight on
the impact the LMP (6.31) has on the first linear system.

We conclude the numerical experiments by illustrating the impact of the
number of EOFs used to construct the Ritz-Galerkin starting point and the
LMP. Figure 6.10 shows the nonlinear function values obtained after three
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Figure 6.10 — Nonlinear function values obtained after the whole pro-
cess when using an increasing number of EOFs in the Ritz-Galerkin

starting point and the LMP.

outer iterations, i.e., 15 cumulated CG-like iterations, for the case p = 80 and
µ = 10−4. The results for the approaches using a Ritz-Galerkin starting point
without and with the LMP are reported for a number of selected EOFs varying
from 0 to 15. It is important to note that in this picture, the overall cost in
terms of matrix-vector products is not constant but increases with the number
of EOFs. Figure 6.10 first illustrates the significant contribution of using a
second-level preconditioning, independently of the number of EOFs used to
build the Ritz-Galerkin starting point and the LMP. It also shows that the
choice for r = 5 based on the percentage of explained system’s variability is
relevant. Indeed, using less than 4 EOFs leads to a poor improvement, while
using more than 8 EOFs does not bring a significant additional improvement
in the reduction of the objective function.



88 Chapter 6. Minimizing the 4D-Var problem



Chapter 7

Derivative-free approach for
the 4D-Var

In the previous chapter, we have presented the Gauss-Newton method which
uses the information contained in the Jacobian matrices to solve the nonlinear
4D-Var problem. Although the Kalman filter has been initially developed for
linear models, it has been adapted to handle nonlinear ones. It leads up to the
extended Kalman filter which is presented in the beginning of the chapter. Since
this filter performs linearizations of the operators using Jacobian matrices, it
is not suited for highly nonlinear dynamics. To address this problem, a class
of ensemble-based Kalman filters proposes an alternative where the state of
the system is estimated by a probabilistic density function computed from
an ensemble of well-chosen state vectors. This class has the advantage to
be a derivative-free alternative since it does not require the computation of
Jacobian matrices. Few ensemble-based Kalman filters are described including
the Ensemble Kalman filter (EnKF) which is particularly interesting since it is
adapted for large systems.

To our knowledge, no derivative-free variant of the variational approach has
been proposed so far. Yet the optimization community has been quite active
in developing derivative-free optimization (DFO) methods designed to solve
nonlinear problems arising from the engineering community. Maybe is this due
to the fact that DFO algorithms are not yet able to handle problems larger
than few tens of variables at once. The rest of the chapter is devoted to the
presentation of an attempt to solve the 4D-Var problem using a derivative-
free approach. It is based on the construction of a sequence of well-chosen
and low dimensional subspaces and exploits reduction techniques from EOFs.
An academical shallow water model is used to illustrate the behavior of our
derivate-free approach and to compare it with a basic EnKF and with a clas-
sical Gauss-Newton method. Other numerical experiments using the NEMO

89
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framework are presented in Chapter 8.

7.1 The extended Kalman filter

In Chapter 4, the derivation of the Kalman filter with its optimal statistical
properties is clean and powerful. Nevertheless, most real life applications do
not behave linearly and are modeled using nonlinear operators. Trying to
estimate these models with the linear filter theory will not give good results
and nonlinear filters are needed. This branch is more complex and less mature
than linear filtering.

The Extended Kalman Filter (EKF) is a straightforward extension of the
classical Kalman filter and solves the issue of nonlinear operators by linearizing
them around well-chosen points. To present this approach, we recall from
Chapter 2 that the model operator from time ti−1 to time ti and the observation
yi are given, in the nonlinear case, by{

xti =Mi,i−1xti−1

yi = Hixti + εoi ,
(7.1)

where the superscript t denotes the true state of the system. In the Kalman
filter (Algorithm 4.1), one can remark that the forecast and the analysis are
computed from xai−1 and xfi , respectively. Thus, it seems natural to linearize
the model operator around xai−1 and the observation operator around xfi . The
Taylor series expansion to the first order of the model operatorMi,i−1 around
xai−1 can be formulated as

Mi,i−1xti−1 'Mi,i−1xai−1 + Mi,i−1
(
xti−1 − xai−1

)
= Mi,i−1xti−1 +

(
Mi,i−1xai−1 −Mi,i−1xai−1

)
= Mi,i−1xti−1 + ui−1, (7.2)

where ui−1 = Mi,i−1xai−1 −Mi,i−1xai−1 is a known vector. In the same way,
the Taylor series expansion to the first order of the observation operator Hi
around xfi is given by

Hixti ' Hix
f
i + Hi

(
xti − xfi

)
= Hixti +

(
Hixfi −Hixfi

)
= Hixti + zi, (7.3)

where zi = Hixfi −Hixfi is a known vector too. Using both approximations
(7.2) and (7.3) in the definition of the system (7.1), we obtain{

xti = Mi,i−1xti−1 + ui
yi = Hixti + zi + εoi ,

(7.4)
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which is the linearization of (7.1) around xai−1 and xfi . Since this system is
linear, the Kalman filter presented in Algorithm 4.1 can be applied taking care
of the fact that two known vectors, ui and zi, have appeared and cause some
modifications. Indeed, at the i-th iteration of the Kalman filter, the analysis
xai−1 is now propagated using the model transition defined in (7.4), which gives

xfi = Mi,i−1xai−1 + ui
= Mi,i−1xai−1 +Mi,i−1xai−1 −Mi,i−1xai−1

=Mi,i−1xai−1.

For its part, the propagation of the analysis error covariance matrix can be
derived as

Pf
i = E

[
(xfi − xti)(x

f
i − xti)T

]
= E

[ (
Mi,i−1xai−1 + ui −Mi,i−1xti−1 − ui

)
(
Mi,i−1xai−1 + ui −Mi,i−1xti−1 − ui

)T ]
= E

[
Mi,i−1(xai−1 − xti−1)(xai−1 − xti−1)TMT

i,i−1

]
= Mi,i−1E

[
(xai−1 − xti−1)(xai−1 − xti−1)T

]
MT

i,i−1

= Mi,i−1Pa
i−1MT

i,i−1.

From the definition of the observation yi in (7.4), the departure vector used in
the correction step at line 9 of Algorithm 4.1 is now given by yi − (Hixfi + zi)
and can be reformulated as

yi − (Hixfi + zi) = yi −Hixfi −Hix
f
i + Hixfi

= yi −Hixfi .

The other equations of the Kalman filter are not affected by the vectors ui and
zi. The extended Kalman filter is summarized in Algorithm 7.1. Nowadays, it
is used as a standard in navigation systems (Strang and Borre, 1997) even if it
does have a few flaws. Due to the approximations (7.2) and (7.3), the extended
Kalman filter is not an optimal estimator unlike its linear counterpart. This
filter is only reliable for systems that are almost linear with respect to the time
discretization. If the model and observation operators are highly nonlinear, the
filter may quickly diverge (Simon, 2006).

The Iterated Kalman Filter (IKF) (Bell and Cathey, 1993) is directly re-
lated to the extended Kalman filter and solves the problem of nonlinearities
in the observation operators by performing multiple analysis steps. As in the
extended Kalman filter (see Algorithm 7.1), it first performs a linearization of
the observation operator around xfi since it is the current best estimate and
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Algorithm 7.1 Extended Kalman filter with perfect nonlinear model operators
1: xa0 = xb
2: Pa

0 = B
3: for i = 1 to N do
4: (* Forecast step *)
5: xfi =Mi,i−1xai−1
6: Pf

i = Mi,i−1Pa
i−1MT

i,i−1
7: (* Analysis step *)
8: Ki = Pf

i HT
i (HiPf

i HT
i + Ri)−1

9: xai = xfi + Ki(yi −Hixfi )
10: Pa

i = (In −KiHi)Pf
i

11: end for

computes the analysis xai . Nevertheless, it does not go directly to the next
forecast step but computes a new analysis step where the observation operator
is linearized, this time, around xai , the new best estimate. This process can be
repeated as many times as desired. For the majority of problems, most of the
possible improvements is obtained by only performing one extra linearization.
Unfortunately, the IKF cannot solve problems with high nonlinearities in the
model operator since extra linearizations are not applicable for the forecast
step.

For the sake of completeness, we present the SEEK filter (Algorithm 4.2)
in the nonlinear case. It is summarized in Algorithm 7.2 and is derived from
the extended Kalman filter using the same approach as in Subsection 4.3.1.

Algorithm 7.2 SEEK filter with perfect nonlinear model operators
1: xa0 = xb
2: Pa

0 = L0U0LT
0

3: for i = 1 to N do
4: (* Forecast step *)
5: xfi =Mi,i−1xai−1
6: Li = Mi,i−1Li−1
7: Pf

i = LiUi−1LT
i

8: (* Analysis step *)
9: Ui = (U−1

i−1 + LT
i HT

i R−1
i HiLi)−1

10: Ki = LiUiLT
i HT

i R−1
i

11: xai = xfi + Ki(yi −Hixfi )
12: Pa

i = LiUiLT
i

13: end for
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7.2 Computing the Jacobian

In the previous section, we have presented the EKF which is based on the
linearization of the model and observation operators and which involves the
computation of their Jacobian matrices. We have shown, from the last chapter,
that the variational approach also requires the computation of these Jacobian
matrices to generate the sequence of incremental problems. The computation
of such matrices is not trivial for operational ocean and atmosphere models.
The main issues are highlighted in this section and their costs are analyzed.
Actually, due to the very large size of the vectors in weather forecasting, the
Jacobian matrices and their transposes are not stored explicitly but the con-
struction of a tangent code and of an adjoint code are requested to compute
Jacobian-vector products. We next shortly explain how these nontrivial codes
are built. The development of a numerical oceanic or atmospheric model is
usually done in three steps. The analytical differential equations are first for-
mulated. Then a discretization scheme is chosen and the discrete difference
equations are constructed. Finally an algorithm is implemented that solves
the discrete equations using a programming language, producing a direct code.
The tangent and adjoint codes may be theoretically implemented after any of
these three steps (Giering and Kaminski, 1998). In practice however, oceanic
or atmospheric models have been quite often conceived without taking the cod-
ing of the derivatives into account and the tangent and adjoint codes were, in
that case, derived from the direct code. To do so, during the eighties and the
nineties, hand coding based on the “chain rule” on the direct code was used.
This task was extremely error prone and time consuming. Moreover, for any
change in the direct code, both the tangent and adjoint codes had to be rewrit-
ten. For these reasons, such codes were rarely developed and only for simplified
models. As an exception, the tangent and adjoint codes for the atmospheric
model at ECMWF and for the ocean general circulation model OPA have been
written and maintained by hand (Tber et al., 2007). Algorithmic, or auto-
matic, differentiation (AD) techniques then appeared, allowing to accurately
and efficiently evaluate derivatives for functions or models given as computer
programs (Griewank and Walther, 2008). With automatic differentiation, any
change in the direct code can be propagated to the tangent and adjoint codes
at almost no additional cost. Recently, a number of AD software have been
developed that are capable of generating reliable tangent and adjoint codes
(TAF, TAMC, Tapenade, Odyssee). Unfortunately, these codes are often less
efficient than hand written codes because they cannot exploit some tricks that
could be made manually. This drawback seems to be damped with the latest
AD tools (Giering and Kaminski, 1998). Today the tangent and adjoint codes
need between 2 and 5 times the execution time of the direct code. This ratio
decreases with the new advancements in automatic differentiation combined
with a careful preparation of the direct code (Müller and Cusdin, 2005).
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7.3 The ensemble-based Kalman filters

The ensemble-based Kalman filters are a broad class of nonlinear filters which
are designed to handle nonlinear operators without relying on the computa-
tion of their Jacobian matrices. They are based on a recursive Bayesian ap-
proach where the state vector of the system is assumed to be a random vector
which follows a given but unknown Probabilistic Density Function (PDF). The
ensemble-based Kalman filters keep the Kalman filter philosophy unchanged
but generate a sequence of PDFs from the information contained in an en-
semble of state vectors which are propagated and corrected along the data
assimilation window. Since the PDF contains all the available statistical infor-
mation, it may be regarded as the complete solution of the estimation problem
in comparison with the Kalman filter approach which computes only the first
two statistical moments, namely the mean and the covariance matrix.

Depending on the assumptions made on the PDFs and on the ensemble of
state vectors, different filters can be derived. We present three of them. The
first one is called the particle filter and implements the Bayesian approach for
any general PDFs. It randomly generates a given number of state vectors called
particles and uses a sequential Monte-Carlo technique to estimate the PDF from
the information contained in the particles (Ristic et al., 2004). However, this
filter is not directly applicable since it requires a large number of particles to
estimate entirely the PDF (Snyder et al., 2008).

For their part, the two other ensemble-based Kalman filters, namely the
unscented Kalman filter and the ensemble Kalman filter, generate PDFs with
the assumption that they follow multivariate normal distributions. The main
advantage of such a distribution is that it is fully determined by its mean and
covariance matrix. Thus, it simplifies the computation process since the entire
PDF must not be estimated but only the mean and the covariance matrix.
Before presenting the two methods, we show that this approach is equivalent
to the Kalman filter if the model and observation operators are linear. This
equivalence is well-known (see, for example, Anderson and Moore, 1979). The
proof is based on a statistical result which calculates the conditional distribu-
tion between two vectors which follow multivariate normal distributions.

Theorem 7.1 Let z ∼ Nn+p(m,Σ) be a multivariate normal random vec-
tor of mean m ∈ Rn+p and of covariance matrix Σ ∈ R(n+p)×(n+p) parti-
tioning as

z =
(

x
y

)
, m =

(
mx

my

)
and Σ =

(
Σxx Σxy

Σyx Σyy

)
,

where x ∼ Nn(mx,Σxx) and y ∼ Np(my,Σyy). Then, the conditional
distribution of x given y is also normally distributed where the mean is
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given by
mx|y = mx + ΣxyΣ−1

yy (y−my), (7.5)

and the covariance matrix is given by

Px|y = Σxx −ΣxyΣ−1
yy Σyx. (7.6)

Proof. — The proof is given in Eaton (1983), p.116.

This theorem can be applied to each analysis step of the Kalman filter (Algo-
rithm 4.1) with z = (xfi ,yi)T . To this aim, we assume that :

xti ∼ N(xfi ,P
f
i ), (7.7)

εoi ∼ N(0,Ri), (7.8)

E
[
(xti − xfi )(εoi )T

]
= 0, (7.9)

Mi+1,i and Hi are linear, (7.10)

where the Assumption 7.9 states that the error in the forecast vector and
in the observations are uncorrelated. The mean of z is thus given by m =
(xfi , Hixfi )T since E[xti] = xfi by Assumption 7.7 and since

E[yi] = E[Hixti + εoi ]
= HiE[xti] + E[εoi ]

= Hixfi ,

using the definition of the observation yi and using the Assumption 7.8. The
covariance matrix of z is given by

Σ =
(

Pf
i Pf

i HT
i

HiPf
i HT

i Pf
i Hi + Ri

)
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since

Cov(xti,yi) = E
[(

xti − E
[
xti
])

(yi − E [yi])T
]

= E

[(
xti − xfi

)(
Hixti + εoi −Hixfi

)T]
= E

[(
xti − xfi

)(
Hi(xti − xfi ) + εoi

)T]
= E

[(
xti − xfi

)(
xti − xfi

)T
HT
i

]
+ E

[(
xti − xfi

)
(εoi )

T
]

= E

[(
xti − xfi

)(
xti − xfi

)T]
HT
i

= Pf
i H

T
i ,

by Assumptions 7.9 and 7.10, and since

Cov(yi,yi) = E
[
(yi − E [yi]) (yi − E [yi])T

]
= E

[(
Hixti + εoi −Hixfi

)(
Hixti + εoi −Hixfi

)T]
= E

[(
Hi(xti − xfi ) + εoi

)(
Hi(xti − xfi ) + εoi

)T]
= E

[
Hi

(
xti − xfi

)(
xti − xfi

)T
HT
i

]
+ E

[
εoi (εoi )

T
]

+ 2HiE
[(

xti − xfi
)

(εoi )
T
]

= HiPf
i H

T
i + Ri.

by Assumptions 7.8, 7.9 and 7.10. Thus, the conditional distribution of xti
given yi follows a multivariate normal distribution of mean

mx|y = xfi + Pf
i H

T
i (HiPf

i H
T
i + Ri)−1(yi −Hixfi )

and of covariance matrix

Px|y = Pi −PiHT
i (HiPiHT

i + Ri)−1HiPi.

This result is equivalent to the Kalman filter correction step presented in Algo-
rithm 4.1 as mx|y = xai and Px|y = Pa

i . To complete the equivalence with the
Kalman filter, one can observe that if an analysis state vector xti ∼ Nn(xai ,Pa

i ),
then we have that Mi+1,ixti ∼ Nn(Mi+1,ixai ,Mi+1,iPa

iMT
i+1,i) using the prop-

erty of multivariate normal distribution (see Montgomery and Runger, 2007, for
example). It shows that the propagation of a multivariate normal distribution
is equivalent to the forecast step of Algorithm 4.1. Besides this equivalence be-
tween the Bayesian approach and the Kalman filter, it is possible to prove that
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the mean mx|y defined in (7.5) is the minimal variance estimator among the
set of all estimators (Anderson and Moore, 1979, p.26). This result is stronger
than the one presented in Subsection 4.1.2 which states that the estimator
produced by the Kalman filter is only the BLUE estimator, i.e., the minimal
variance estimator among the set of all linear estimators.

We now present the two ensemble-based Kalman filters which deal with
nonlinear operators using the Bayesian approach and the assumption of multi-
variate normal distributions.

7.3.1 The unscented Kalman filter

The unscented Kalman filter (UKF) is an ensemble-based Kalman filter in-
troduced by Julier and Uhlmann (1997) and reviewed in Julier and Uhlmann
(2004). It uses a deterministic sampling technique known as the unscented
transform to generate an ensemble of state vectors. At each iteration, a mini-
mal set of 2n sample points (called sigma points) are deterministically picked
up around the mean xai−1 according to the covariance matrix Pa

i−1. These
sigma points are then propagated through the nonlinear model operator, from
which the mean xfi and covariance Pf

i are then recovered. For the analysis step
a new set of 2n sigma points are deterministically picked up around the mean
xfi according to the covariance matrix Pf

i . This set is used to determine the
covariance matrices involved in (7.5) and (7.6) and allows to compute xai and
Pa
i . The unscented Kalman filter captures the true estimate and covariance

matrix accurately to the third order for any nonlinear system (Simon, 2006).
Unfortunately, it is too costly for large problems since it implies 2n model
integrations at each iteration for the propagation of the 2n sigma points.

7.3.2 The ensemble Kalman filter

The Ensemble Kalman filter (EnKF) randomly generates an ensemble of state
vectors using a Monte Carlo approach (Evensen, 2007). Its advantage is that it
requires an ensemble size much lower than the size of the state vector. Indeed, it
has been shown that an ensemble size of 50 to 100 is often adequate for systems
with thousands of variables (Snyder et al., 2008). For this reason, the EnKF
is particularly well suited for large nonlinear data assimilation problems. The
original EnKF proposed by Evensen (1994) is based on perturbations of the
observations. We briefly explain how it works below (see also Algorithm 7.3).
At the initialization phase (line 1), an ensemble of q state vectors is randomly
generated, following a Gaussian distribution of mean xb and of covariance B.
The EnKF filter then assimilates the N observations sequentially. At each it-
eration i of the loop, a forecast step is first performed, in which each member
of the ensemble is integrated up to the next observation time, yielding a fore-
cast ensemble (line 4). The sample mean (line 5) and the sample covariance
matrix (line 7) of this ensemble are computed to obtain an estimate of the true
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Algorithm 7.3 Ensemble Kalman filter

1:
{

xa(j) = xb + ε | ε ∼ N(0,B), j = 1, . . . , q
}

2: for i = 1 to N do
3: (* Forecast step *)
4:

{
xf (j) =Mi,i−1xa(j) | j = 1, . . . , q

}
5: x̄f = 1

q

q∑
j=1

xf (j)

6: Xf =
[
xf (1)− x̄f , . . . ,xf (q)− x̄f

]
7: P̄f = 1

q − 1Xf (Xf )T

8: (* Correction step *)
9:

{
yf (j) = Hixf (j) | j = 1, . . . , q

}
10: ȳf = 1

q

q∑
j=1

yf (j)

11: Yf =
[
yf (1)− ȳf , . . . ,yf (q)− ȳf

]
12: K = Xf (Yf )T (Yf (Yf )T + Ri)−1

13:
{

yi(j) = yi + εi|εi ∼ N(0,Ri), j = 1, . . . , q
}

14:
{

xa(j) = xf (j) + K(yi(j)− yf (j)) | j = 1, . . . , q
}

15: x̄a = 1
q

q∑
j=1

xa(j)

16: Xa =
[
xa(1)− x̄a, . . . ,xa(q)− x̄a

]
17: P̄a = 1

q − 1Xa(Xa)T

18: end for

state and of its error covariance matrix, respectively, before correction by the
observations. Since the size of the ensemble is lower than the size of the state
vector, the error covariance matrix is of low rank. At the correction step, the
counterpart of the forecast ensemble generated on line 4 is mapped into the
observation space (line 9) and a Kalman gain matrix K is derived (line 12).
An ensemble of q perturbed observations is then randomly generated, using a
Gaussian distribution of mean yi and covariance Ri (line 13). Each member
of the forecast ensemble is finally corrected by the Kalman gain using a per-
turbed observation (line 14), hence producing the correction ensemble. The
sample mean (line 15) and the sample covariance matrix (line 17) of this cor-
rection ensemble is then computed to get an estimate of the true state and
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of its error covariance matrix after correction by the observations. Note that
the sample covariance matrices (lines 7 and 17) are computed for diagnostic
reasons. In an operational framework, the computation of the Kalman gain
can be made less expensive (see Evensen, 2003).

Besides the fact that this filter does not require Jacobians computation
and is suited for large systems, the EnKF has a simple formulation, is rel-
atively easy to implement and naturally parallelizable. For these reasons, it
has gained popularity. Moreover, the estimate of the error covariance matrix
evolves dynamically during the assimilation process. Other advantages are de-
veloped in Kalnay et al. (2007) and Lorenc (2003), where a comparison with
the 4D-Var is performed. The EnKF community is very active, proposing a lot
of improvements and variants of the initial algorithm. For examples, Evensen
(2004) examines how different sampling strategies and implementations of the
correction scheme influence the performance of the EnKF, while in Ott et al.
(2004) and Hunt et al. (2007), a local EnKF has been developed where the
correction is performed grid point by grid point using observations on a local
region. An approach also exists which determines a square root Kalman gain
without perturbing the observations (see Whitaker and Hamill (2002)).

To our knowledge, there are no method for the 4D-Var formulation which
do not rely on the Jacobian information. Before trying to fill this gap, we
shortly review the current state of the art in the derivative-free optimization
community.

7.4 Derivative-free optimization

Nonlinear optimization methods generate a sequence of iterates designed to
asymptotically converge to a solution. The best way to build this sequence is to
rely on the information given by the (usually first and second-order) derivatives
computed at the current iterate, to cleverly produce a step to a good, next
iterate. This is the basis of Newton or quasi-Newton methods which have been
presented in Section 6.1. When derivatives are difficult or costly to compute,
unreliable or even unavailable, approximating them by finite differences is worth
being used in some applications but cannot be regarded as a general technique,
because of the excessive number of function evaluations it may need and the
possible inaccuracy it may induce. Under such circumstances, one can use
Derivative-Free Optimization (DFO) methods.

There are three main classes of DFO algorithms. Two of them are determin-
istic (Conn et al., 2009) and one is stochastic. The first deterministic DFO class
of methods maintains linear or quadratic approximations[1] of the functions in-
volved in the problem by constructing them using only function evaluations

[1]To avoid confusion with oceanic or athmospheric models, we use the word approximation
to denote a surrogate of a given function, instead of the word model commonly used in the
optimization community.
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computed at appropriate sample points. These approximations are built using
polynomial interpolations or regressions, or by any other approximation tech-
nique. The power of this class of DFO algorithms comes from the trust-region
framework (Section 6.1) which is well-suited for nonlinear optimization prob-
lems. The second class of deterministic DFO algorithms is named direct-search
methods. It directly exploits a sample set of function values without building
an explicit approximation. One of the simplest direct-search method is called
coordinate search. In an unconstrained framework, it evaluates, from a current
iterate xj , with a current step size parameter αj , and following a specific order,
the function to minimize, f say, in a poll set Pj defined by

Pj = {xj + αjd : d ∈ D},

where D = [e1, . . . , en,−e1, . . . ,−en] and ei, i = 1, . . . , n, are the vectors of
the canonical basis. When a point xj + αjd decreases the function value, it
is selected as the next iterate, setting xj+1 = xj + αjd, and the step size
is increased. If none of the points in Pj leads to a decrease in the function
value, the step size parameter is shrunk and xj+1 = xj . The basic steps of
the coordinate-search method are summarized in Algorithm 7.4. Figure 7.1

Algorithm 7.4 Coordinate-search method
Choose x0 and α0
Set 0 < γ1 < 1 and γ2 > 1
for k = 0, 1, 2, . . . do
Pj = {xj + αjd : d ∈ D} (poll set)
Evaluate f at the poll points using a given order
if for some poll point f(xj + αjd) < f(xj) then
Set xj+1 = xj + αjd (successful iteration)
Set αj+1 = γ2αj
Stop evaluating

else
Set xj+1 = xj (unsuccessful iteration)
Set αj+1 = γ1αj

end if
end for

illustrates the coordinate-search method on a simple two variables function
for the parameter values γ1 = 0.5 and γ2 = 1, using the order “left, up,
right, down” to evaluate the poll points. The circles represent poll points at
which the objective function has been evaluated while the squares represent
the iterates. Coordinate-search methods belong to a class of so-called pattern-
search methods[2] whose convergence, for the interested reader, is analyzed and

[2]Pattern-search methods form a subclass of the direct-search methods, see Lewis et al.
(2000) for a classification tree of direct-search methods.
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Figure 7.1 — The coordinate-search iterates for f(x, y) = x2 + 5y2.

guaranteed (without prematurely termination due to inadequate step length
control mechanisms) in (Torczon, 1993). The third class of DFO methods is
based on random choices and includes the evolutionary family, among which
the well-known genetic algorithms (Ashlock, 2005).

To our purpose, we have chosen a deterministic method of direct-search type
to illustrate the numerical performance of our DFO approach (see Sections 7.7
and 7.10). The direct-search methods have some advantages compared to DFO
methods based on approximations. Indeed, evaluating the 4D-Var function in
(3.6) requires a PDE integration to evaluate G(x), which may fail to work.
Direct-search methods are best suited to easily face this problem by simply
ignoring the problematic point and skipping it (Booker et al., 1998). More-
over, direct-search methods are more adapted to be implemented on parallel
machines, taking advantage of any number of processors (Dennis and Torczon,
1991). The main idea is to add more directions in the poll set Pj and to per-
form multiple searches along these directions simultaneously. On the contrary,
when using approximation-based DFO techniques, parallelization of the linear
algebra steps in Newton or quasi-Newton like methods is limited to only few
processors (Byrd et al., 1988, Nash and Sofer, 1989).

We are now ready to present the different components of our DFO approach
to solve the 4D-Var problem (3.6). Before that, it is important to notice that,
despite the huge efforts in the development of DFO methods by the optimiza-
tion community, it is clear that there are still considerable disadvantages not
having or using the derivative information. One cannot expect the perfor-
mance of DFO methods to be comparable to that of Newton or quasi-Newton
like methods based on derivatives. It is also more challenging to decide when
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convergence has occurred and to design stopping criteria when no derivatives
are available. Another major drawback of DFO methods is related to the size of
the problem to solve. It is usually not reasonable to use them to solve medium
or large problems, i.e., problems with more than a few tens of variables, be-
cause of their need of function evaluations that becomes quickly not affordable.
To overcome this drawback, the usual remedy is to attempt to determine the
most critical variables involved in the problem and to optimize on these only,
hence drastically reducing the dimension of the search space.

7.5 Reducing the dimension of the problem

The computational cost of solving the 4D-Var problem (3.6) can be reduced
in several ways: through the model integration, the reduction of the number
of function evaluations or the reduction of the state space dimension (Biegler
et al., 2011). From a DFO point of view, the crucial issue is the reduction of
the state space dimension.

Clearly, in three dimensions, discretizing PDEs can rapidly lead to millions
of variables. However, quite often, the way the state vector is organized (in
smoothness and/or in structure) allows to identify subspaces containing the
essential of the variability of the problem. A first possibility to reduce the
dimension of the state space is based on the Empirical Orthogonal Functions
(EOFs) developed for the SEEK filter presented in Subsection 4.3.3. Another
possibility to reduce the dimension of the state space is to use balanced trun-
cation (Antoulas (2005), see also Moore (1981) and Hahn and Edgar (2002)
for the linear and the nonlinear case, respectively). Both methods compute
eigenvectors and rely on modal truncation. It means that the decrease of the
eigenvalues is used to perform the truncation since the essential of the variabil-
ity of the problem is contained in the subspace spanned by the eigenvectors
corresponding to the largest eigenvalues. No universal rule exists but they all
amount to fix a threshold r on the number of eigenvectors used to build the
reduced space (see, criteria 4.31, for example). These eigenvectors are stored
in a matrix L ∈ Rn×r with the property that LTL = Ir. Once the matrix
L has been computed, one can focus on the search of a solution of the type
x = xb + Lδx, where δx ∈ Rr is an approximate solution of

min
δx∈Rr

1
2 ||Lδx||

2
B−1 + 1

2 ||G(xb + Lδx)− y||2R−1 , (7.11)

which is a reduced form of the 4D-Var problem (3.6) in the subspace generated
by L. In the following, the reduction technique based on the EOFs is adopted
since we have had a positive experience using them in the previous chapter.
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7.6 Iterative subspace minimization

In operational ocean models such as OPA, a typical size for the set of state
vectors used in the EOFs analysis is equal to m = 500 and the number of
computed EOFs is equal to r = 50 (Hoteit and Pham, 2003). In a DFO
context however, a crucial issue is the number of variables, hence the choice of
the subspace dimension for our concern. Indeed, if this subspace is too large,
solving the problem could be far too expensive, while if this subspace is too
small, part of the important variability could be missed. For these reasons,
we propose an approach which allows as much flexibility as possible. This
approach builds a sequence of subspaces with appropriate size with respect to
the use of a DFO method, while exploiting as much as possible the information
contained in the computed EOFs.

Let us thus consider s subspaces generated by the matrices Lk ∈ Rn×rk , k =
1, . . . , s (we propose below two strategies to choose these subspaces, based on
different hierarchies of the EOFs). Our method basically computes a sequence
of approximations of the solution of the 4D-Var (3.6) using the update formula
xk = xk−1 + Lkδwk, where δwk minimizes

min
δw∈Rrk

Jk(δw) = 1
2 ||Lkδw−(xb−xk)||2B−1 + 1

2 ||G(xk+Lkδw)−y||2R−1 . (7.12)

This technique, that we call iterative subspace method (ISM), is summarized
in Algorithm 7.5. As already mentioned, the matrices Lk can be generated

Algorithm 7.5 Iterative subspace method (ISM)

1: x0 = xb
2: Compute m EOFs using (4.30) and choose a hierarchy
3: for k = 1, . . . , s do
4: Construct Lk according to the hierarchy
5: Use a coordinate-search algorithm to minimize (7.12)
6: Set xk = xk−1 + Lkδwk
7: end for

using other tools than the EOFs and any DFO algorithm could be used to
solve (7.12). An important issue remains the choice of the dimensions rk for
the iterated subspaces. To some extend, this choice may be considered as
dependent on how computer ressources and DFO algorithms evolve. We are
now ready to illustrate our ISM algorithm on a two dimensional shallow water
data assimilation problem.
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7.7 Results on a shallow water model

Consider the shallow water equations in a two dimension Cartesian coordinate
system

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂z

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g

∂z

∂x
= 0,

∂z

∂t
+ ∂

∂x
[u(z − b)] + ∂

∂y
[v(z − b)] = 0,

where u is the zonal velocity, v is the meridional velocity, z is the height field,
b is the height of the ground, g is the gravity and f is the Coriolis parameter
induced by the rotation of the earth (Figure 7.2).
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Figure 7.2 — Shallow water model.

The results we present in this section have been obtained using a Matlab
implementation of these equations developed by S. Gratton, Ph. Toint, J.
Tshimanga, S. Gurol and O. Titaud. In their Matlab data assimilation frame-
work, the authors have chosen a discretization that uses a uniform grid and a
Leapfrog scheme is applied to integrate the PDEs. Dirichlet boundary condi-
tions are imposed by specifying the solutions on the boundary of the domain
along y, while periodic boundary conditions are applied on the boundary of
the domain along x. Tangent and adjoint codes are generated by automatic
differentiation with a backward mode. Our DFO approach will not use these
codes but they will be useful for diagnostic and comparative reasons.

The framework for the assimilation problem is the classical twin experiment.
The true trajectory is computed from a true initial condition. The observations,
distributed in space and time, are extracted from this trajectory by adding an
observation noise. Only the height field z is observed. The background is
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equal to the true initial condition where a phase and amplitude error has been
added. For our numerical illustration, we consider five different experiments
on increasingly finer grids. The size of the state vector varies from 816 to
197376, corresponding to grids of sizes 16 × 17, 32 × 33, 64 × 65, 128 × 129
and 256 × 257, respectively. The values for the most important parameters
(the size of the state vector n and the total number of observations p) for each
experiment are summarized in Table 7.1.

# n p Assimilation window length
1 816 48 24 hours
2 3168 896 24 hours
3 12480 3584 24 hours
4 49536 504 12 hours
5 197376 1008 12 hours

Table 7.1 — Parameters values for the 5 different experiments.

Referring to Algorithm 7.5, we first need to compute EOFs. These are
computed from a set of m = 100 state vectors collected during 20 days. The
singular values corresponding to these 100 EOFs are plotted in Figure 7.3 for the
fourth experiment. The first (obvious) hierarchy we consider consists in sorting
the EOFs following a decreasing order of their corresponding singular values.
Each matrix Lk is then constructed using a batch of rk = 10 successive EOFs,
starting from the batch corresponding to the 10 largest singular values. For each
subspace minimization, we use a Matlab implementation of Algorithm 7.4 above
(with some improvements) called SID-PSM (Custodio et al., 2010, Custodio and
Vicente, 2007) to approximately solve (7.12). The stopping criterion for the
SID-PSM code is based on a minimal value for the step size parameter. The
algorithm stops if this step size parameter becomes smaller than a threshold
value, fixed to 10−3 in our experiments. Finally, to mimic the solution of real-
life data assimilation problems which are real-time optimization problems, we
put a limit on the computational time budget. In our framework, we have fixed
a limit of 1000 evaluations of the objective function Jk in (7.12). This limit,
together with the step size threshold used in SID-PSM, are the unique stopping
criteria, making possible that only a subset of the s = 10 subspaces generated
by the matrices Lk are explored.

The results of the ISM Algorithm 7.5 on the shallow water problem are
presented in Figure 7.4 and illustrate the behavior of the method on our set
of five experiments. The plots represent the 4D-Var function value versus the
number of function evaluations. Each dot on the graphs means that the step
size threshold has been reached in SID-PSM and a new subspace is explored.
For the four first experiments, five subspaces are investigated, while only four
are for the fifth experiment. A way to improve the quality of the solution
obtained within the allowed budget is clearly to improve the quality of the
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Figure 7.3 — Singular values (n=49536).

successive subspaces used. We devote the next sections to this goal, along two
axes. The first improves the quality of the EOFs and the second proposes
another EOFs hierarchy for the construction of the iterated subspaces.

7.8 Improving the EOFs

As mentioned in Section 4.3.3, the EOFs are computed from a set of state vec-
tors x1, . . . ,xm ∈ Rn supposedly representative of the variability of the system
and computed on a time interval before the assimilation window. In prac-
tice, the model is integrated over a long period from a previous state estimate.
Since successive states are quite similar, only m of them are selected at regular
frequencies. This procedure does not need to be restarted for each new data
assimilation window as the information can be used during a certain time.

The closer the state vectors selected for the EOFs computation are to the
true trajectory, the better is the quality of the subspace generated by the
computed EOFs. To illustrate this relation, we consider a time interval of 20
days much prior to the assimilation window and denote by t∗ the initial time of
this time interval. We generate a set of 100 equally distributed state estimates
xi using the formula

xi = xt(t∗) + ρi(xb(t∗)− xt(t∗)),

where xt(t∗) and xb(t∗) are the true state and the background, respectively,
at time t∗, and ρi ∈ [0, 1]. Using each state estimate xi as initial condition,
a model integration is performed for 20 days, storing m = 100 state vectors,
from which a set of 100 EOFs are computed to form the basis of a subspace
L. A subspace will be considered as of high quality if the minimization of
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Figure 7.4 — Results of the iterative subspace method on the shallow
water model. Experiment 1 (top left), experiment 2 (top right), ex-
periment 3 (center left), experiment 4 (center right) and experiment

5 (bottom left).

the reduced 4D-Var (7.11) gives a low function value and of low quality if
this minimization gives a high function value. We have used a Gauss-Newton
method until convergence to solve (7.11) for each of the 100 subspaces, in order
to reach the best possible decrease in the function.

Figure 7.5 shows the minimum function values versus the parameter ρ for



108 Chapter 7. Derivative-free approach for the 4D-Var

0 0.25 0.5 0.75 1
0

500

1000

1500

2000

2500

ρ

M
in

im
al

 fu
nc

tio
n 

va
lu

e

Figure 7.5 — Minimum function value versus distance to the truth
(for experiment 3).

the third experiment (similar behaviors are observed for the other experiments).
When ρi = 0, the starting point for the EOFs computation is the true state
xt(t∗), while for ρi = 1, it is the background xb(t∗). We see the importance of
selecting state vectors which are close to the true trajectory to obtain subspaces
of good quality. However, for operational data assimilation problems without
twin experiments, such vectors are hard to select.

Another strategy to increase the quality of the subspace L is based on
smoothing. While the first EOFs corresponding to the largest singular values
are smooth, the last ones corresponding to the smallest singular values are
generally oscillating. Figure 7.6 shows the height field components (water level)
of the first, smooth, EOF and of the 20th, more oscillating, one. The increment
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Figure 7.6 — EOF number 1 (left) and EOF number 20 (right) .
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Lδx computed in (7.11) being a linear combination of them EOFs, it may suffer
from the oscillating behavior of the last ones. Frequency filtering could be used
to smooth the EOFs and is the basic idea that we develop next.

We first consider a smoothing based on Fourier transformations. To explain
this smoothing, consider the three fields of each EOF (u, v and z) represented
as images of pixels (see for instance Figure 7.6 for the height field z). These
representations define three matrices of size nx× ny, one for each field, where
nx × ny is the number of grid points. Let I be one of these matrices, if one
applies a two-dimensional Fast Fourier Transform (FFT) to this matrix, a new
matrix F ∈ Rnx×ny is obtained which contains the frequencies of the corre-
sponding image (see for example the frequency domain drawn for the height
field of the 20th EOF in Figure 7.7, where the lowest frequencies are located in
the center of the picture and the colors show their amplitude). The smoothing
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Figure 7.7 — EOF number 20 in the frequency domain.

idea consists in defining a low-pass filter whose effect suppresses all frequencies
higher than a fixed cut-off frequency fc, leaving all frequences below fc un-
changed. Such a low-pass filter can be defined by a matrix H ∈ Rnx×ny with
entries

Hij =
{

1, if (i− nx
2 )2 + (j − ny

2 )2 6 fc
nx2+ny2

4 ,
0, otherwise.

The resulting filtered domain is given by the matrix G ∈ Rnx×ny whose entries
are

Gij = Fij ∗Hij ,

where ∗ denotes the multiplication element by element, and corresponds to
Figure 7.7 where only the frequencies within a disk centered at (nx2 ,

ny
2 ) and of

radius
√
fc
nx2+ny2

4 are retained (see the blue circle, corresponding to a cut-off
frequency fc = 0.1). Note that if fc = 0, no frequency is retained, while if
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fc = 1, all are kept. In order to go back to the spatial domain, an Inverse
Fast Fourier Transform (IFFT) is applied to the matrix G, yielding the EOF’s
corresponding smoothed field (see Figure 7.8 where the smoothed height field
of the 20th EOF is represented for a cut-off frequency value fc = 0.1). If we
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Figure 7.8 — EOF number 20 smoothed by FFT.

compare this EOF before and after smoothing, we see that the high frequencies
have disappeared while roughly keeping the general shape of the EOF. The
main issue is clearly the choice of the parameter fc. If fc is too small, the
general shape of the EOF will be lost while if fc is too large, the oscillatory
effects will stay.

Figure 7.9 illustrates the quality of the subspace with respect to the value of
the parameter fc ∈ [0, 1]. More precisely, it shows the minimum function values
obtained in the smoothed subspace versus the parameter fc for the second and
fourth experiment, where again we have used a Gauss-Newton method until
convergence to solve (7.11). One can see that applying a smoothing to the EOFs
with a well-chosen fc increases the quality of the subspace (see the intervals of
successful values for fc), but a bad value for fc can also damage the quality
of the subspace. The different behavior for the two selected experiments also
show that it is difficult to choose an optimal or even appropriate value for fc
without sampling part of or the whole set of possible values.

We next consider a smoothing based on the background error covariance
matrix B. Usually, this covariance matrix is designed using correlation models
(see Weaver and Courtier, 2001), derived from the diffusion equation. That is,
the action of this covariance matrix on a vector x is computed by time-stepping
a discretized version of a diffusion equation with initial condition x over a
pseudo-time interval (Weaver and Ricci, 2003, Mirouze and A.Weaver, 2010).
This integration can be done explicitly or implicitly (Mirouze and Weaver,
2010). Since integrating a diffusion equation has a smoothing effect on the
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Figure 7.9 — Minimum function value versus fc.

Experiment 2 (left), experiment 4 (right).

initial condition, applying a background covariance matrix to a vector can be
interpreted as a smoothing (Zhang and Hancock, 2008, Chung, 2006). Note that
the background error covariance matrix also depends on a covariance length-
scale parameter, but this one is carefully chosen by the modelers to obtain a
desirable regularization effect in the 4D-Var in accordance with the applica-
tion. It thus has an appropriate smoothing strength. The smoothing of the
20th EOFs by B (which amounts to multiply this EOF by B) is illustrated in
Figure 7.10. Here the background error covariance matrix is modeled using a
diffusion operator which is integrated using an implicit Euler scheme.
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Figure 7.10 — EOF number 20 smoothed by B.

Table 7.2 compares the quality of the subspace generated by the EOFs either
unsmoothed or smoothed by Fourier transformations (with optimal value for
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the parameter fc) or by the background error covariance matrix. It reports
the minimum function values obtained in the (smoothed) subspace when using
a Gauss-Newton method until convergence to solve (7.11). Smoothing the
EOFs clearly increases, sometimes drastically, the quality of the subspace. The
smoothing by B clearly outperforms the smoothing by Fourier transformations,
while being parameter free. We will use this smoothing for the numerical
experiments presented in the next sections.

n minimal function value
no smoothing FFT B

816 142.58 62.22 44.18
3168 1320.03 885.23 756.84
12480 2049.84 1730.87 1470.40
49536 17383.90 13932.23 837.29
197376 66246.88 66245.52 8905.30

Table 7.2 — Minimal function values for the different smoothing ap-
proaches.

7.9 A new EOFs hierarchy

The EOFs hierarchy we used in our experiments for Section 7.7 were exclusively
based on the decreasing order of their corresponding singular values. This
criterion may be considered as exploiting the model operator information since
the EOFs and the singular values are extracted from a sample covariance matrix
built from a set of state vectors.

We now propose a criterion to sort the EOFs based not only on the model
operator information but also on the observation operator which arises in (3.7).
Indeed, to favour possible improvements when solving the 4D-Var (3.6), it could
be interesting to detect the EOFs along which the function G varies the most.
To this goal, let li, i = 1, . . . ,m, denote the EOFs, with σi, i = 1, . . . ,m,
their corresponding singular values (see (4.22) and (4.30)), we compute the
differences

τi = ||G(x0)− G(x0 + li)||R−1 ,

for i = 1, . . . ,m, which measure the variation of the model G along each EOF,
and rank the EOFs following a decreasing order of the quantities

πi = τi + γ
maxi τi
maxi σi

σi, (7.13)

where maxi τi

maxi σi
is a scaling factor and γ > 0 is a weighting factor. This criterion

follows the philosophy developed in Lieberman et al. (2010), with the greedy
sampling. Note that since the operator G is not highly nonlinear, the distances
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τi do not depend too much on the state vector x0. It thus makes sense to use
the computed hierarchy all along Algorithm 7.5.

Figure 7.11 shows the values of πi, i = 1, . . . , 100, with γ = 5, for each (B-
smoothed) EOF li, i = 1, . . . , 100, for the five different experiments. Choosing
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Figure 7.11 — Criterion values for each EOF. Experiment 1 (top
left), experiment 2 (top right), experiment 3 (center left), experiment

4 (center right) and experiment 5 (bottom left).

a relatively large value for γ emphasizes the importance of the very first EOFs
associated to the largest singular values (see the left part of each picture).
On one hand, this allows to still favour the EOFs associated to the largest
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singular values to build the first subspace in Algorithm 7.5. On the other
hand, compared with the “natural” hierarchy, the πi-hierarchy allows to switch
faster to subspaces built using EOFs with a larger index (typically between 30
and 70 for the first three experiments), to which correspond larger variations
of G.

7.10 Numerical illustration

Coming back to the DFO approach and the iterated subspace method outlined
in Section 7.6, we illustrate and compare in this section the behavior of Al-
gorithm 7.5 when considering the two modifications proposed in the previous
sections. We first consider the separated effect of adding a smoothing by the
bachground matrix B and of using the EOFs hierarchy based on (7.13). We
next illustrate their cumulated effect. We consider exactly the same experi-
mental framework as in Section 7.7, using the same values for the parameters,
in particular the same limit of 1000 evaluations of the objective function Jk in
(7.12). Figure 7.12 shows the behavior of the basic method (solid lines, corre-
sponding to Figure 7.4), the basic method with B-smoothing (dotted lines), the
basic method with the πi-hierarchy (dot-dashed lines) and the basic method
with B-smoothing and the πi-hierarchy (dashed lines) on our set of five ex-
periments. Again, each dot on the graphs means that the step size threshold
has been reached in SID-PSM and a new subspace is explored. We first com-
ment on the numerical performance of each version before comparing the cost
of each modification. On the first three experiments, one clearly sees that each
modification improves the performance individually, while the cumulated effect
brings a further improvement. For the two last, larger, experiments, only the
smoothing by B improves the function decrease, while using the EOFs hierar-
chy based on (7.13) does not improve the subspaces compared with the natural
hierarchy. This explains why the cumulated effect of the two modifications is
(quasi) similar to that of using only the smoothing by B.

Considering now the cost of implementing each modification, the application
of B to an EOF is cheap compared to a function evaluation, so that smoothing
by B can be considered as a negligible operation. The cost of using the EOFs
hierarchy based on (7.13), however, is equivalent to 100 function evaluations,
since one computes G(x0 + li) for each of the 100 EOFs. If we compare the
function value reached after a same number of function evaluations, this extra
cost is damped for the three first experiments. Indeed, the function value after
900 function evaluations when using the πi-hierarchy is lower than that using
the natural hierarchy after 1000 function evaluations. The difference between
the values may even be significant, see the basic method (solid line) versus the
basic method with the πi-hierarchy (dot-dashed line) for the first experiment,
or the basic method with B-smoothing (dotted lines) versus the basic method
with B-smoothing and the πi-hierarchy (dashed lines) for all three experiments.
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Figure 7.12 — Convergence of the iterative subspace method. Ex-
periment 1 (top left), experiment 2 (top right), experiment 3 (center
left), experiment 4 (center right) and experiment 5 (bottom left).

For experiments 4 and 5, however, using the EOFs hierarchy based on (7.13)
is not profitable since it does not improve the function decrease.
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7.11 Numerical comparisons

The goal of this section is twofold. On one side, we compare the numeri-
cal performance of our derivative-free ISM method with a EnKF, the existing
derivative-free sequential counterpart. On the other side, we illustrate the fact
that one cannot expect the performance of derivative-free methods to be similar
or outperform methods using derivatives, even at comparable computational
cost.

To this aim, we consider three methods. The first is our implementation
of the derivative-free ISM Algorithm 7.5 including the B-smoothing and the
πi-hierarchy to sort the smoothed EOFs. The second method implements a
basic EnKF algorithm with perturbed observations (such as Algorithm 7.3 in
Section 7.3.2) and the last one is a classical Gauss-Newton implementation
along the lines of Algorithm 6.1 in Section 6.2.

The framework of experimentation is the same as that used in Section 7.7,
except that each experiment involves a sequence of data assimilation problems
corresponding to a sequence of data assimilation windows, to be as close as
possible to operational frameworks (see Table 7.3).

# n Length of window Number of windows
1 816 24 hours 6
2 3168 24 hours 6
3 12480 24 hours 3
4 49536 12 hours 3
5 197376 12 hours 1

Table 7.3 — Parameters of the 5 different experiments.

In order to compare the three methods, the same computational budget is
allocated. Since the computational cost is dominated by the model integration
(direct code), we allow for 500 model integrations per data assimilation problem
to solve. For the ISM method, this amounts to 500 function evaluations per
window. As in Section 7.7, 100 EOFs are computed, only once at the beginning
of the first window in our new framework. These EOFs are then smoothed by
B and sorted using the EOFs hierarchy based on (7.13) (hence for a cost of
100 function evaluations). These smoothed EOFs and their hierarchy are used
for all the windows, restarting from the beginning of the hierarchy for each
window. Note that from the second window (if any), no computational budget
has to be devoted to the π-hierarchy computation. The basic EnKF algorithm
with perturbed observations evolves over the windows with 500 members in the
ensemble, according to the budget. For the Gauss-Newton method, assuming
at the very worst that the tangent and adjoint codes need 5 times the execution
time of the direct code, a budget of 100 CG iterations can be used per window.
We have opted for a sequence of 5 incremental 4D-Var subproblems (3.8) at
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each window, applying 20 iterations of a preconditioned (by B) CG method for
each subproblem.

Figure 7.13 illustrates, for each of the 5 experiments, the root mean square
(RMS) error between the true state vector and its estimate computed by each
of the three methods over the windows. For reference purposes, a free model
run (without any data assimilation) is also plotted (dotted lines) on each figure.
Comparing first the derivative-free ISM method (solid lines) with the EnKF
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Figure 7.13 — Comparison with EnKF and Gauss-Newton. Experi-
ment 1 (top left), experiment 2 (top right), experiment 3 (center left),

experiment 4 (center right) and experiment 5 (bottom left).
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(dot-dashed lines), roughly speaking, one can say that the quality of their
final estimates is comparable for the 5 experiments, meaning that the pro-
posed derivative-free ISM approach is a competitive alternative to the EnKF
approach. At comparable computational cost, the final estimates computed
by the Gauss-Newton method (dashed lines) clearly outperforms those of the
dervative-free methods, corroborating the fact that exploiting the derivatives
when possible is a must.



Chapter 8

Numerical experiments with
NEMO

In this final chapter, the operational ocean model NEMO is described. Its
GYRE configuration is used to illustrate the numerical behavior of the re-
duced/preconditioned approach from Chapter 6 and of the derivative-free ap-
proach from Chapter 7.

8.1 Introduction

NEMO (Nucleus for European Modeling of the Ocean) is a flexible tool for
studying the ocean and its interactions with the other components of the earth
climate system (Madec, 2008). It is used for operational oceanography seasonal
forecast and climate researches. Its components provide numerical solutions of
ocean, sea-ice, tracers and biochemistry models. We briefly review its three
most important components:

• The OPA (Océan PArallélisé) component models the ocean dynamics and
thermodynamics (Madec et al., 1998). It integrates the Navier-Stokes
equations on a three spacial dimensional grid using some assumptions
made from scale considerations. At each time step, the zonal velocity, the
meridional velocity and the sea surface height are computed. Moreover,
two active tracers, namely the temperature and the salinity, are also
computed using a nonlinear equation of state which couples them to the
fluid velocity;

• The LIM (Louvain-la-Neuve sea-ice model) component is used for sea-ice
dynamics and thermodynamics (Vancoppenolle et al., 2012). It defines
a five-category sea ice thickness, enthalpy, salinity and age distribution

119
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model. The vertical ice growth and decay is determined by an energy
conserving thermodynamic model with one layer of snow and five layers
of ice. The model also includes a snow ice formation scheme.

• The TOP (Tracer in the Ocean Paradigm) component is used for biogeo-
chemistry (Ethé et al., 2006). It is a passive tracer package including a
transport component, and source/sink associated to biogeochemical mod-
els.

Besides that, NEMOVAR provides a full data assimilation framework for NEMO
with tangent and adjoint codes and the OASIS coupler allows to couple NEMO
with several atmospheric general circulation models. The NEMO software is
implemented in FORTRAN 90 with preprocessing and runs under UNIX. It
is optimized for vector computers and parallelized by domain decomposition
with MPI (Message Passing Interface). All inputs and outputs are done using
the NetCDF (Network Common Data Format) format. The directory tree of
NEMO is illustrated in Figure 8.1 where the three main directories and some
subdirectories are represented. The directory NemoBase contains the OPA, LIM
and TOP components, the directory NemoVar contains all the data assimilation
framework while the directory Work contains input and output files. Overall,
there are about 800.000 lines of codes written in 1500 files stored in 200 differ-
ent directories. The version of NEMO used for the numerical experiments is
9.0 (2005) and the version of Nemovar is 0.2 (2007).

There are 6 available configurations at the moment. For our numerical
experiments, the GYRE configuration is used. This configuration, that we
shortly describe for completeness, consists in an idealized double gyre that
mimics the North Atlantic circulation with its Gulf stream current. The basin
from 15◦N to 50◦N and from 85◦W to 55◦W is rotated with an angle of 45
degrees in order to capture the maximum length of the Gulf stream current
(see Figure 8.2). The basin has 3180 km length, 2120 km width and 4, 5 km
depth. The horizontal discretization grid is uniform with 32 points in the length
direction and 22 points in the width direction. The vertical discretization is
nonuniform with 31 vertical levels whose thickness varies from approximately
5 meters at the surface to 250 meters near the bottom. There are thus 32 ×
22 × 31 = 21824 grid points. They are represented in Figure 8.3 where the
grid points at the surface and at the bottom are plotted in blue and red,
respectively. The ocean model in its GYRE configuration is forced analytically
by a penetrative solar radiation with a Newtonian type net heat flux, with a
fresh water flux and with a wind stress which varies zonally and seasonally.
This model computes the sea level anomaly at the surface grid points and
the velocities (zonal and meridional) at each grid point. The evolution of two
tracers, namely the temperature and the salinity, is also computed at each grid
point. Thus, the size of the state vector is fixed to (1 × 32 × 22) + (4 × 32 ×
22 × 31) = 88000. To obtain an equilibrium where the main features of the
configuration (gyres and currents) are stable, the model is spun-up from rest
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Figure 8.1 — Directory tree for NEMO (illustrated with Lucyd-
Chart™).

for 100 years (thereafter counted as years 1 to 100). The four outputs of the
model at the sea surface for the year 100 are illustrated in Figure 8.4. From the
two first pictures, one can remark that the model simulates a stream function
with a large anticyclonic subtropical gyre and a weaker cyclonic subpolar gyre.

The length of the data assimilation window used for our numerical exper-
iments begins after the spin-up of 100 years and is fixed to 6 days. The time
step for the model integration is fixed to 5760 seconds, so that the number of
observation times considered amounts to 90. For the whole data assimilation
problem, there are 1946 measurements of temperature, 1297 measurements of
salinity and 2240 measurements of sea level anomaly, distributed in space and
time. No velocity observations are available. The runs have been performed
on an Intel Core 2 Duo (Dual Core 2.4 GHz) with 4096 KB of cache memory
and 2 GB of RAM memory. The CPU time to run the direct, the tangent and
the adjoint codes for 6 days is summarized in Table 8.1. The CPU time for a
product by the background error covariance matrix B is also given.

In Chapter 6, the Ritz-Galerkin starting point and the limited memory pre-
conditioner (LMP) have been presented as an attempt to accelerate further the
Gauss-Newton method further. Their behaviors have been numerically illus-
trated on a shallow water model in Section 6.5 and their positive impacts have
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Figure 8.2 — GYRE domain (illustrated with ArcGIS™).

Code CPU time
Direct 2.3 sec
Tangent 1.6 sec
Adjoint 2.2 sec
Product by B 0.04 sec

Table 8.1 — CPU times for the direct, the tangent and the adjoint
codes and for the product by B.

been exposed. In the next section, this reduced and preconditioned approaches
are illustrated using the NEMO framework.

8.2 Reduced and preconditioned approaches

The reduced and preconditioned approaches are based on the use of information
contained in the EOFs. The computation of such directions have been described
in Subsection 4.3.3 and relies on a set of vectors which are representative of
the variability of the system. In the NEMO framework, this set is constructed
using one state vector for each day of the 60th years (m = 365). The criteria
defined in (4.31) which estimates the percentage of variation accounted for by
the first r EOFs is shown in Figure 8.5. We see that retaining the first five
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Figure 8.3 — discretization grid.

EOFs enables to explain 82% of the system’s variability. As for the numerical
experiments on the shallow water model presented in Section 6.5, the size of
the subspace is fixed to r = 5. This choice is a good compromise since it allows
to account for most of the variation without increasing too much the dimension
of the subspace spanned by the selected EOFs.

We illustrate the impact of the Ritz-Galerkin starting point (6.28) and of
the LMP (6.31) when the subspace spanned by L0 is defined by the five first
dominant EOFs. The same experimental framework is considered by allowing
three outer Gauss-Newton iterations with five inner CG iterations to solve each
linear system. Figures 8.6 shows the history of the nonlinear and incremental
cost functions for the three outer iterations (the nonlinear with markers and
the incremental with lines). Note that the nonlinear function value is available
only at outer iterations when a linearization is performed in the Gauss-Newton
algorithm. For the incremental cost functions, the curves are placed one after
the other in sequence and the inner iterations are cumulated. The dash-dot
curve is obtained using a basic Gauss-Newton algorithm with the background
covariance matrix B as preconditioner in the CG method. The dotted curve
and the dashed curve are obtained using the same approach, but with the
Ritz-Galerkin starting point (6.28) for the first system. No second-level pre-
conditioner has been added to generate the dotted curve, while the LMP (6.31)
has been used as second-level preconditioner to get the dashed curve. A first
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look at this picture shows that the 4D-Var function is much more nonlinear
that the one from the shallow water model (compare with Figure 6.3, for ex-
ample). The nonlinear gaps make the optimization more hazardous since a
decrease in the quadratic function is less related to a decrease in the nonlin-
ear 4D-var function. Remembering that the computation of the Ritz-Galerkin
starting point requires five matrix-vector products and that the LMP is avail-
able without any extra cost, it makes sense to compare the results obtained
after 15 cumulated inner iterations of the basic approach (last circle) with that
obtained after 10 cumulated inner iterations of the two others (next to last dot
and square). One can see that the Ritz-Galerkin approach (with or without
the LMP) does not make an improvement for the same computational effort
(15 matrix-vector products).

We have addressed this failure by performing an extra linearization after
the computation of the Ritz-Galerkin starting point. The results are presented
in Figure 8.7. Note that now the first quadratic function minimized for the
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Figure 8.5 — Percentage of explained system’s variability.
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Figure 8.6 — Convergence curves with the NEMO framework.

Ritz-Galerkin approach (with or without the LMP) is not the same that the
one for the basic 4D-Var because an extra linearization has been performed.
With this extra linearization, the Ritz-Galerkin starting point improves the
method as the next to last dot is lower than the last circle. Moreover, the
free-available LMP gives a stronger improvement as the next to last square is
lower than the next to last dot.
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Figure 8.7 — Convergence curves with an extra linearization after the
Ritz-Galerkin starting point.

8.3 Derivative-free approach

In Chapter 7, an attempt to solve the 4D-Var problem using a derivative-free
approach has been presented. This method is based on the construction of a
sequence of well-chosen and low dimensional subspaces and exploits reduction
techniques using EOFs. The numerical results presented in Section 7.10 and
7.11 show that it is a promising approach. In this section, we illustrate the
behavior of the proposed approach in the NEMO framework by beginning with
a short study about the quality of the EOFs.

The oscillatory behavior of the EOFs has been analyzed in Section 7.8 on
the two-dimensional shallow water model. We have illustrated that the EOFs
corresponding to the largest singular values are smoother than the EOFs cor-
responding to the smallest singular values which are generally oscillating. The
same conclusion can be drawn for NEMO and is illustrated in Figure 8.8,
where the components of the sea surface temperature for the first and the 10th
EOFs have been plotted. While the first EOF is very smooth, one observes
an oscillatory and discontinuous behavior already in the 10th EOF. As in the
shallow water case, a smoothing based on the background error covariance ma-
trix B reduces effectively this inconvenient behavior (see Figure 8.9). Once the
smoothed EOFs have been calculated, it is possible to compute the πi-hierarchy
based on (7.13), for i = 1, . . . , 365 that induces a new order in the EOFs. The
criterion values (7.13) are presented in Figure 8.10.
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Figure 8.8 — EOF number 1 (left) and EOF number 10 (right) .

Figure 8.9 — EOF number 10 smoothed by B.

The main result of this section is presented in Figure 8.11, where the
four different strategies (basic method, basic method with B-smoothing, basic
method with the πi-hierarchy and basic method with B-smoothing and the πi-
hierarchy) of the ISM method are compared. For this experiment, we consider
the same experimental framework as in Sections 7.7 and 7.10, using the same
values for the parameters, except that the limit on the number of function
evaluations has now been increased to 2000. One clearly sees that each mod-
ification improves the performance individually, while the cumulated effect of
using the B-smoothing and the πi-hierarchy brings a further improvement and
avoids a stagnation in the decrease process of the function. Considering now
the cost of implementing each modification, the application of B to an EOF
is cheap compared to a function evaluation (see Table 8.1), so that smoothing
by B can be considered as a negligible operation. The cost of using the EOFs
hierarchy based on (7.13), however, is equivalent to 365 function evaluations.
But if we compare the function value reached after a same number of function
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Figure 8.10 — Criterion value for each EOF.
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Figure 8.11 — Results of the ISM method for the four strategies.

evaluations, this extra cost is damped (see Table 8.2). Indeed, the function
value after 1635 function evaluations when using the πi-hierarchy is lower than
that using the natural hierarchy after 2000 function evaluations for both cases
(with and without B-smoothing). The difference between the function values
may even be significant, see on Figure 8.11 the basic method with B-smoothing
(dotted lines) versus the basic method with B-smoothing and the πi-hierarchy
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(dashed lines).

Method Function value
No smoothing 59420
No moothing + πi-hierarchy 58720
B-smoothing 57340
B-smoothing + πi-hierarchy 51590

Table 8.2 — The function value after a budget of 2000 function eval-
uations.

To our knowledge, no EnKF has been implemented and validated in the
NEMO framework. The development of such a filter in a real operational
model is not straightforward and its validation is a difficult task requiring a
twin experiment framework. For these reasons, the comparison between the
ISM method and a basic EnKF, such the one presented on a shallow water
model in Section 7.11, is not possible on the NEMO framework at the moment.
However, we can compare the ISM method with the classical Gauss-Newton
method available in the data assimilation framework of NEMO. As in the shal-
low water model, we illustrate the fact that the derivative-free approach cannot
outperform the Gauss-Newton method, even at a comparable computational
cost. To draw this conclusion, we first analyze the computational cost of the
Gauss-Newton method in terms of 4D-Var function evaluations. At each outer
loop, a model integration is performed to evaluate the 4D-Var function and
to build the linearization (see Algorithm 6.1). This cost is equivalent to one
4D-Var function evaluation. Moreover, at each inner loop, the derivative of
the incremental 4D-Var is computed (to be used in the CG-like method), re-
quiring one call to the tangent code and one to the adjoint code. Assuming
from Table 8.1 that one inner iteration costs two 4D-Var function evaluations
(since the tangent and adjoint codes require roughly the same computational
cost than the direct code), one can then consider that the cost of one outer iter-
ation amounts to twice the number of inner iterations plus one. The results of
the Gauss-Newton method are presented in Figure 8.12 when three outer loops
with five inner loops each are performed (thus with an associated cost of 11 4D-
Var function evaluations per outer iteration). The 4D-Var function is evaluated
four times (the four circles), giving three function value decreases. The com-
putational cost to obtain each of these decreases in terms of 4D-Var function
evaluations (using the above assumption) are summarized in Table 8.3. The
corresponding decreases in the function are compared with those obtained for
the best variant of the ISM method (with B-smoothing and the πi-hierarchy)
at the same computational cost (using the results from Figure 8.11). The re-
sults of this table are represented in Figure 8.13. It clearly shows, for the
same computational cost, the low performance of the ISM method compared
to the Gauss-Newton method. If we now extend the computational budget
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Figure 8.12 — Convergence of the Gauss-Newton method.

Computational cost Function value
Gauss-Newton ISM

1 81720 81720
12 63370 72570
23 47670 68750
34 42580 66340

Table 8.3 — Computational cost and function value.
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for the ISM method, we can observe (from Figure 8.11) that it needs 280 func-
tion evaluations to reach the same decrease than the one obtained after the first
outer iteration of Gauss-Newton (see Table 8.3). It means that the ISM method
needs more than 20 times the number of 4D-Var function evaluations used to
obtain the same function decrease. Moreover, with a budget of 2000 function
evaluations, the ISM method does not even reach the decrease obtained after
the second outer iteration of the Gauss-Newton method.
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Conclusions and Perspectives

Marine and weather forecasts are used daily to make economic decisions mainly
in agriculture, energy and transportation industries. In the last twenty years,
major improvements have been performed to collect more observations with
radars and satellites, to model accurately the earth system and to combine
these information properly for producing forecast. By doing so, a five-day
weather forecast of today is as reliable as a two-day weather forecast 20 years
ago.

The research work described in this thesis was concerned with the develop-
ment and the study of new optimization methods for solving data assimilation
problems with application in oceanography. More particularly, we have devel-
oped a reduced-preconditioned and a derivative-free approach for solving the
4D-Var problem. In the next two paragraphs, both kinds of developments are
reviewed and the results are summarized. At the same time, we also suggest
some possible directions for future research works.

A reduced and preconditionned approach

Motivated by the theoretical equivalence between the SEEK filter and a reduced
variant of the 4D-Var problem, we have investigated the use of information
contained in the dominant Empirical Orthogonal Functions (EOFs) to further
accelerate the Gauss-Newton method used to minimize the 4D-Var function.
We have first derived an appropriate starting point for the conjugate gradient-
like (CG) method which is used to solve the first linear system in the sequence
generated by the Gauss-Newton method. This starting point is the solution of
a reduced incremental 4D-Var problem and is equivalent to the Ritz-Galerkin
starting point with respect to the selected EOFs. In order to further exploit
the EOFs information computed to obtain the Ritz-Galerkin starting point, we
have then proposed a “second-level preconditioner” from the Limited-Memory
Preconditioner (LMP) class introduced by Gratton et al. (2011). The combi-
nation of these two improvements have been numerically assessed using, firstly,
an academical shallow water model and, secondly, the GYRE configuration of

133



134 Conclusions and Perspectives

the NEMO framework. We have shown, in both cases, that the combination
accelerates the convergence of the incremental method.

However, a larger set of data assimilation problems using an operational
configuration over the whole ocean is needed to perform a rigorous quantitative
study. Further research could investigate the use of informations (such as Ritz
pairs or descent directions) gained when solving systems by the CG method
to enrich the LMP based on the EOFs for the next systems in the sequence
generated by the Gauss-Newton method.

A derivative-free approach

Evaluating derivatives in operational data assimilation problems is challenging
as one needs to compute the Jacobian of the model operator and its transpose,
which implies the derivation of a tangent linear and adjoint code. The Ensemble
Kalman Filter (EnKF) provides a suitable derivative-free alternative by using
a Monte-Carlo implementation on the Kalman filter equations. However, no
derivative-free variant of the variational approach has been proposed so far (to
the knowledge of the author of this research). Our derivative-free Iterative Sub-
space Method (ISM) minimizes the 4D-Var function by building a sequence of
subspaces from information contained in the EOFs and exploring each of them
using a coordinate-search method. Two strategies to improve the quality of
the subspaces have been presented. The first one is based on smoothing tech-
niques applied to the EOFs while the second gives a new EOFs hierarchy for
the construction of the subspaces. Numerical tests on an academical shallow
water model have shown that the ISM method is a competitive alternative to
a basic EnKF method since it produces final estimates with comparable qual-
ity at similar cost. This conclusion could not be extended using the GYRE
configuration of the NEMO framework due to the lack of an EnKF implemen-
tation in this framework. Nevertheless, a comparison with the Gauss-Newton
method (using derivatives) shows that the ISM method needs more than 20
times more function evaluations that the Gauss-Newton method to obtain the
same function decrease. It corroborates the fact that exploiting the derivatives
when possible is imperative.

Since it is a first derivative-free attempt to solve the 4D-Var problem, dif-
ferent research perspectives are possible. As previously, it could be interesting
to assess this method on a larger set of data assimilation problems with the aim
of reinforcing the numerical experimentations. Although one cannot expect the
performance of derivative-free methods to be comparable to that of methods
based on derivatives, future research works may be investigated to narrow this
gap. The derivative-free solver SID-PSM used for the subspace minimization in
Chapter 7 depends on multiple parameters. It could be interesting to perform
a study on their optimal values and to see if it is possible to tune some of them.
It would also be worth investigating whether another derivative-free algorithm
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which takes the underlying nature of the problem into account could be more
suitable.

Finally, it is our hope that the work described in this thesis will be useful
in future algorithmic developments for solving data assimilation problems.
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Contributions

Our contribution is the study and the design of new efficient optimization
methods for solving data assimilation problems. These numerical methods draw
their theoretical foundations from the connection between the SEEK filter and
its reduction technique. We summarize our contributions below:

• The theoretical connection between the SEEK filter and a reduced variant
of the 4D-Var problem has been proven;

• An appropriate starting point with a powerful limited memory precon-
ditioner has been derived for the incremental approach. They have been
successfully implemented in the operational ocean model NEMO where
numerical simulations have been performed using the GYRE configura-
tion.

• Smoothing techniques and selection criteria have been developed to build
a sequence of appropriate low dimensional subspaces which are used
by a derivative-free solver for minimizing the 4D-Var function. This
approach have been successfully implemented in the operational ocean
model NEMO where numerical simulations have been performed using
the GYRE configuration.

These contributions are the subjects of two papers:

• S. Gratton, P. Laloyaux, A. Sartenaer, and J. Tshimanga. A reduced and
limited-memory preconditioned approach for the 4D-var data assimilation
problem. Quarterly Journal of the Royal Meteorological Society, 137:452-
466, 2011a.

• S. Gratton, P. Laloyaux and A. Sartenaer. Derivative-free optimization
for large-scale nonlinear data assimilation problems. Quarterly Journal
of the Royal Meteorological Society, In preparation.

137



138 Contributions



Main notations and abbrevia-
tions

Matrices, vectors and operators

m Number of vectors in an EOF analysis . . . . . . . . . . . . 48
N Number of observation times in a data assimilation window . 14
n Size of the state vector . . . . . . . . . . . . . . . . . . . . . . 7
p Size of the observation vector y . . . . . . . . . . . . . . . . 14
pi Size of the observation vector yi . . . . . . . . . . . . . . . . 10
t0 Initial time of a data assimilation window . . . . . . . . . . . 14
tN Final time of a data assimilation window . . . . . . . . . . . 14

Space dimension and constant parameters

B Background error covariance matrix (Rn×n) . . . . . . . . . 15
εoi Error in the observation yi (Rpi) . . . . . . . . . . . . . . . . 10
εxi error in the true state vector xti (Rn) . . . . . . . . . . . . . 31
Hi Linear observation operator at time ti (Rpi×n) . . . . . . . . 10
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i Jacobian matrix of Hi at xk (Rpi×n) . . . . . . . . . . . . . 20
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Appendix A

Calculus

A.1 Matrix pseudo-inverse

A square matrix has an inverse if and only if its determinant is not equal to
zero. The goal of matrix pseudo-inverse is to obtain a matrix that can serve
as the inverse in some sense for a wider class of matrices than invertible ones.
There are various kinds of matrix pseudo-inverses. The most widely known is
called the Moore–Penrose pseudo-inverse (Golub and Van Loan, 1996).
Definition For A ∈ Rn×m, the Moore–Penrose pseudo-inverse, hereafter just
called pseudo-inverse, is defined as the matrix A+ ∈ Rm×n satisfying all of the
following four criteria:

• AA+A = A,

• A+AA+ = A+,

• (AA+)T = AA+,

• (A+A)T = A+A.

This pseudo-inverse exists and is unique for any matrix (Golub and Van Loan,
1996). Its construction is based on the rank decomposition of A. Assume
that k 6 min(n,m) denotes the rank of A, then A can be decomposed as
A = A1A2, where A1 ∈ Rn×k and A2 ∈ Rk×m are of rank k. The pseudo-
inverse is given by

A+ = A+
2 A+

1 = AT
2 (A2AT

2 )−1(AT
1 A1)−1AT

1 .

This general definition can be simplified for special matrix cases. We illustrate
this for three special cases. If the matrix A is full column rank, i.e., the m
columns of A are linearly independent, the pseudo-inverse is given by

A+ = (ATA)−1AT .
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If the matrix A is full row rank, i.e., the n rows of A are linearly independent,
the pseudo-inverse is given by

A+ = AT (AAT )−1.

Finally, if A has orthonormal rows or columns, the pseudo-inverse is simply
given by the transpose of the matrix,

A+ = AT .

To compute numerically the pseudo-inverse in a simple and accurate way, the
Singular Value Decomposition (SVD) can be used. This decomposition is given
by

A = UΣVT ,

where the columns of the orthogonal matrix U ∈ Rn×n are the left singular
vectors, the columns of the orthogonal matrix V ∈ Rm×m are the right singular
vectors and Σ ∈ Rn×m is a diagonal matrix containing the singular values of
A. The pseudo-inverse is then computed as

A+ = VΣ+UT ,

where the matrix Σ+ is obtained by taking the inverse of each nonzero element
on the diagonal, leaving the zeros in place, and transposing the resulting matrix.
In numerical computations, only the diagonal elements larger than some small
tolerance are taken to be nonzero.

A.2 Sherman–Morrison–Woodbury formula

The Sherman–Morrison–Woodbury (SMW) formula says that the inverse of a
rank-k correction of some matrix can be computed by doing a rank-k correction
to the inverse of the original matrix. Assuming a matrix A ∈ Rn×n of rank n
and a perturbation UCV of rank k with C ∈ Rk×k of rank k, U ∈ Rn×k and
V ∈ Rk×n, the SMW formula is given by

(A + UCV)−1 = A−1 −A−1U
(
C−1 + VA−1U

)−1 VA−1. (A.1)

Note that in the above equation the matrix C−1 + VA−1U is assumed to be
invertible. There is another useful equality which transforms the inverse of a
matrix of rank n into the inverse of a matrix of rank k. It is given by

(A−1 + UC−1V)−1UC−1 = AU(C + VAU)−1. (A.2)

Assuming that A−1 + UC−1V and C + VAU are invertible, the proof is
straightforward using simple linear algebra calculus.
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Proof. — From the equality

U + UC−1VAU = U + UC−1VAU

and performing two different factorizations, we obtain

UC−1(C + VAU) = (A−1 + UC−1V)AU.

Left-multiplying by (A−1+UC−1V)−1 and right-multiplying by (C+VAU)−1

each side of the equation leads to

(A−1 + UC−1V)−1UC−1(C + VAU)(C + VAU)−1

= (A−1 + UC−1V)−1(A−1 + UC−1V)AU(C + VAU)−1,

which gives the desirable result by simplification.

A.3 Derivative rules

We recall some useful results of matrix calculus and derivative rules. Firstly,
suppose that x ∈ Rn is a column vector and that f : Rn → R : x  f(x) is
a scalar function of x. The derivative of a scalar function with respect to a
vector is given by the gradient of the function,

∇xf(x) =


∂f(x)
∂x1
...

∂f(x)
∂xn

 (A.3)

which is assumed to be a column vector. Using (A.3), we can compute the
derivative of a dot product between x and a constant vector y ∈ Rn,

∇x
(
xTy

)
= y, (A.4)

and the derivative of a quadratic function xTBx with B ∈ Rn×n,

∇x
(
xTBx

)
= Bx + BTx. (A.5)

If the matrix B is symmetric, the last result is simply 2Bx. The derivative of
a quadratic function shifted by a constant vector b ∈ Rn is given by

∇x
(
(x− b)TB(x− b)

)
= B(x− b) + BT (x− b), (A.6)

which is equal to 2B(x − b) if the matrix B is symmetric. A last useful rule
can be deduced,

∇x
(
(Gx− b)TB(Gx− b)

)
= GTB(Gx− b) + GTBT (Gx− b), (A.7)
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where G ∈ Rn×n is a constant matrix. If the matrix B is symmetric, this result
is simply 2GTB(Gx− b).

Secondly, one can be interested by computing the derivative of a vector with
respect to another vector. To this aim, suppose that

F : Rn → Rm : x : F (x) =

 f1(x)
...

fm(x)

 ,

then the derivative of F is given by the Jacobian matrix which is defined as

∇xF (x) =


∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

. . . ∂fm(x)
∂xn

 .

Thirdly, it is possible to calculate the derivative of a function depending on
a matrix. Suppose that h : Rn×p → R : X  h(X) is a scalar function of the
matrix X. The derivate of h with respect to X is given by

∇Xh(X) =


∂h(X)
∂X11

. . . ∂h(X)
∂X1p

...
. . .

...
∂h(X)
∂Xn1

. . . ∂h(X)
∂Xnp

 .

Assuming two constant vector a ∈ Rn and b ∈ Rp, we obtain from the definition
that

∇X
(
aTXb

)
= abT . (A.8)

It is also possible to deduce the derivative of the trace of a product of matrices.
Suppose that C ∈ Rp×p is a constant matrix, then the trace of XCXT is given
by

h(X) = tr(XCXT ) =
n∑
i=1

p∑
j=1

p∑
k=1

XikCkjXij

and we have
∇X

(
tr(XCXT )

)
= XCT + XC. (A.9)

If the matrix C is symmetric, this results is simply 2XC.
Finally, it is possible to derive a matrix with respect to another matrix.

Since the definition of this differentiation process involves heavier notations,
only one useful example is given. Assume that X ∈ Rn×p and that D ∈ Rp×n,
we have

∇X (XD) = DT . (A.10)
Other derivative formula with further calculation details can be found in Simon
(2006).



Appendix B

Theory of constrained optimi-
zation

We recall an interesting and useful result about the minimization of a function
under equality constraints. Assume that we have the following minimization
problem {

min
x∈Rn

f(x)
s.t. ci(x) = 0, i = 1, . . . ,m,

(B.1)

where f and ci, i = 1, . . . ,m are scalar functions. We are interested by finding
a strict local solution x∗ of (B.1), i.e., a feasible point x∗ with a neighborhood
N such that f(x) > f(x∗) for all feasible points x 6= x∗ in the neighborhood.
The theorem of second-order sufficient optimality conditions gives conditions to
obtain such a solution. Before presenting it, we need to define the Lagrangian
function

L : Rn+m → R : (x,λ) L(x,λ) = f(x)−
m∑
i=1

λici(x), (B.2)

where λ ∈ Rm is the Lagrangian multiplier vector.

Theorem B.1 Suppose that for some feasible point x∗ ∈ Rn there is a
Lagrange multiplier vector λ∗ such that the Karush–Kuhn–Tucker (KKT)
conditions

∇xL(x∗,λ∗) = 0
ci(x) = 0 i = 1, . . . ,m
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are satisfied. Suppose also that

wT∇2
xL(x∗,λ∗)w > 0

for all w ∈ Rn such that ∇xci(x∗)Tw = 0. Then x∗ is a strict local
solution of (B.1).

There are other theorems which treat optimality conditions of optimization
problems. They are not presented in this work since they are not used but can
be found in Nocedal and Wright (2006).

Theorem B.1 which states second-order sufficient optimality conditions for
the problem (B.1) can be easily generalized for problems where the objective
function and the constraints depend on a matrix instead of a vector. Assume
that

h : Rn×p → R : X h(X)
di : Rn×p → R : X di(X), i = 1, . . . ,m,

The solution of {
min

X∈Rn×p
h(X)

s.t. di(X) = 0, i = 1, . . . ,m,
(B.3)

is given by Theorem B.1 where the derivatives with respect to a vector are
replaced by derivatives with respect to a matrix (see Appendix A.3). In the
following, we illustrate this generalization in the particular case of{

min
X∈Rn×p

h(X)
s.t. XA−B = 0,

(B.4)

where A ∈ Rp×n and B ∈ Rn×n are constant matrices. One can remark that
the constraints are given under the form of a matrix equation which defines
implicitly n2 linear constraints on the values of X. To apply Theorem B.1, the
linear constraints are stated independently such that

dkl(X) =
p∑

m=1
X(k,m)A(m, l)−B(k, l), k, l = 1, . . . , n,

where the notation (i, j) designates the matrix element at the ith row and the
jth column. The Lagrangian function (B.2) is then given by

L(X,Λ) = h(X)−
n∑
k=1

n∑
l=1

Λ(k, l)
[

p∑
m=1

X(k,m)A(m, l)−B(k, l)
]
, (B.5)
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where Λ ∈ Rn×n is the Lagrangian multiplier matrix. It can be rewritten in a
shorter way as

L(X,Λ) = h(X)−
n∑
l=1

Λ(:, l)T [XA(:, l)−B(:, l)] , (B.6)

where (:, l) denotes the lth column of a matrix. Using the formula (A.8), the
differentiation of (B.6) with respect to X is then given by

∇XL(X,Λ) = ∇Xh(X)−
n∑
j=1

Λ(:, j)A(:, j)T

= ∇Xh(X)−ΛAT

and the final KKT conditions are

∇Xh(X)−ΛAT = 0
XA−B = 0.

(B.7)








