
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Program understanding in database reverse engineering

Henrard, Jean

Award date:
2003

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/d653e240-03e8-47b3-a11d-fec80bd08ec9

�����
���	
	�	�
��������	
���
��������
�����������
������������
�� �
���

���������	
���
�	
�	���	
�
�
���������������	��	����	�

Jean HENRARD

Thesis submitted for the degree of Doctor of Science
(Computer Science Option)

Jury :Professor Jean Fichefet, Institut d’informatique, FUNDP (President)
Professor Jean-Luc Hainaut, Institut d’informatique, FUNDP (Supervisor)
Doctor Rainer Koschke, Universität Stuttgart, Germany
Doctor Jean-Marc Petit, Université Blaise Pascal, Clermond-Ferrand, France
Professor Jean-Marie Jacquet, Institut d’informatique, FUNDP

August 2003

Acknowledgements
Even if my name is the only one to appears on the first page of this thesis, this work is a teamwork
of more than ten years.

First of all I would like to express my gratitude to my promotor, Professor Jean-Luc Hainaut, for his
endless advice about this work and for our numerous discussions about how to apply (transfer) our
scientific "theories" to real life problems. I would also like to include all my colleagues of the data-
base engineering laboratory both for the studious environment and the many asides we shared
about computers, house renovation, volleyball, children, etc. Special thanks to Didier Roland, Jean-
Marc Hick and Vincent Englebert for the co-development of the DB-MAIN CASE tool, with the
wish that this collaboration may continue many years outside the university.

In this thesis, I have tried to apply the theoretical aspect of the methodology to real problems
encountered in companies. That part of the thesis relies on many experiments conducted on data-
base and source codes provided by several companies. I also want to thank these companies for
allowing me to analyze some parts of their code and for contributing, without knowing it, to this
thesis.

It would have been impossible to finish this thesis without the support of my family and friends
during all those years. Thank you for listening to me while I was trying to explain what database
reverse-engineering (archeology, recovering program’s plans, understanding how a program works,
etc.) is and for encouraging me even if they sometimes had problems figuring out what I was trying
to achieve..

Special thanks to Marie-Berthe and Odile for their encouragement and patience during all those
years. For sharing their husband and father with this endless thesis and computers.

Many thanks to all of you!

Jean
Program Understanding in DBRE i

Acknowledgements
ii Program Understanding in DBRE

Abstract
For many years software engineering has primarily focused on the development of new systems and
neglected maintenance and reengineering of legacy applications. Maintenance typically represents
70% of the cost during the life cycle of a system. In order to allow an efficient and safe maintenance
of a legacy system, we need to reverse engineer it in order to reconstruct its missing or out-of-date
documentation. In data-oriented applications the reverse engineering complexity can be broken
down by considering that the database can be reverse engineered independently of the procedural
components.

Database reverse engineering can be defined as the process of recovering the database’s schema(s)
of an application from database declaration text and program source code that use the data in order
to understand their exact structure and meaning. A database reverse engineering methodology is
broken down into three processes: project preparation, data structure extraction that recovers the
database’s logical schema and data structure conceptualization that interprets the logical schema in
conceptual terms.

Data structure extraction is the most difficult process because it has to recover the database’s
complete structure from database declaration text and source code. When analyzing the source
code, it quickly appears that program understanding techniques are needed. Program understanding
is that software engineering domain that intends to gain knowledge about existing programs. We
have adopted and applied some of the techniques of this domain (variable dependency graph,
system dependency graph, program slicing) in order to help analysts to recover data structures and
constraints from the source code.

In order to validate our methodology and program understanding techniques, we have developed
tools to support them. Those tools have proved absolutely necessary to perform database reverse
engineering of medium to larger applications in reasonable time and at reasonable cost. To cut
down on the cost of large projects, we have stressed the need for automation to reduce the manual
work of the analyst. Our experience with real size projects has taught us that the management
aspects of a project are essential success factors. The management of a project comprises different
aspects such as database reverse engineering explanation, cost evaluation and database reverse
engineering result evaluation.
Program Understanding in DBRE iii

Abstract
iv Program Understanding in DBRE

Table of Contents
Acknowledgements . i

Abstract . iii

Table of Contents .v

CHAPTER 1 Introduction .1

General introduction 1
Scope and motivation of the thesis 4
The thesis 6
State of the art 6

Relational DMS 8
Hierarchical/network DMS 13
Standard files DMS 15
Generic methods 15
Others 17
Summary 18

Outline of the thesis 21

CHAPTER 2 Data schema specification. .23

Introduction 23
A wide-spectrum specification model 23

Conceptual specifications 24
Logical specifications 26
Physical specifications 28
Different levels of abstraction and different paradigms 29

DMS-specific data structure specification 29
The relational model 30
The network model 31
Program Understanding in DBRE v

Table of Contents
The standard file model 32
Other constructs 34

Schema transformation 35

CHAPTER 3 A generic methodology for database
reverse engineering39

Database reverse engineering is the reverse of forward engineering 39
The DBRE methodology 42
Data structure extraction 43

DDL code analysis 44
Physical integration 44
Schema refinement 44
Schema cleaning 45

Data structure conceptualization 46
Preparation 48
Basic conceptualization 50
Conceptual normalization 53
The data structure conceptualization transformations 54

Example 60

CHAPTER 4 Data structure extraction . 63

Introduction 63
The methodology 64

DDL code analysis 66
Physical schema integration 66
Schema refinement 68
Schema cleaning 68

Explicit/implicit constructs 69
Implicit structures and constraints 70
The information sources 75
Elicitation techniques 78
The conflicts 82
Refinement methodology 83

The refinement methodology 84
Hypothesis validation 85
How to decide that refinement is completed 86
Refinement strategy 87
Heuristics usage 88
Application to foreign key elicitation 89

CHAPTER 5 Program understanding in database reverse engineering
95

Program understanding 95
Program understanding in database reverse engineering 98
Program understanding difficulties 100
Program understanding techniques in DBRE 102
vi Program Understanding in DBRE

CHAPTER 6 Program understanding techniques 103

Introduction 103
Pattern matching 104
Variable dependency graph 105
Program slicing 108

Program slicing state of the art 108
Program dependency graph 110
The system dependency graph 111
Interprocedural slicing 115
Arbitrary control flow 119
SDG construction 122

The program slicing for embedded code 132
Select 134
Insert 135
Delete 136
Update 137
Cursor 138

Other SDG analysis / usage 139
Type inference 143
Graphical visualization of the program 144

CHAPTER 7 Using program understanding in DBRE147

Fine-grained structure, attributes aggregation, anonymous attributes 148
Variable dependency graph 148
System dependency graph 149

Meaningful names 149
Variable dependency graph 149
System dependency graph 150

Referential constraints and data dependencies 150
Variable dependency graph 151
System dependency graph 151

Array set type, exact cardinality and attribute identifier 153
Identifier 153
Restricted domain 153
Embedded SQL 154
Graphical visualization 155

CHAPTER 8 CASE support .157

The limits of current CARE tools 157
Requirements 158
The DB-MAIN CASE environment 161

User interface 162
DDL extractors 165
Pattern matching 166
Variable dependency graph 168
Program slicing 169
Referential key assistant 173
Program Understanding in DBRE vii

Table of Contents
Schema and object integration 175
Schema analysis 175
Transformation toolkit 176
Graph visualization 177

CHAPTER 9 Case study. 179

COBOL DBRE, manual process 180
Project preparation 180
Data structure extraction 181
Data structure conceptualization 189

COBOL DBRE, (semi-)automatic process 192
Data structure extraction 192
Data structure conceptualization 197

COBOL with embedded SQL 199
Project preparation 199
Data structure extraction 201
Data structure conceptualization 208

Real DBRE projects 209
COBOL 209
ADS - IDMS 211
Centural / SQL 213
IDEAL - Datacom-DB 214

CHAPTER 10 DBRE project management issues 217

DBRE justification 218
Information / training 219
Project cost evaluation 220
Automation 223

Limits of automation 224
Economic advantage of automation 225

Cost Vs. quality 226
DBRE project evaluation 227

CHAPTER 11 Conclusion . 229

Contributions 231
Comparison with related work 232

Methodology 232
Tools 233
Validation 233

Future work 233
viii Program Understanding in DBRE

Acronyms .235

References .237

ANNEX A DBRE tools user manual .1

Pattern definition language 1
Search for text pattern 4
Procedure triggered by a pattern 5
Dependency graph 10
Program slicing 14
Creating schema 16
Search a schema for referential constraints 19
Miscellaneous Voyager2 programs 29

ANNEX B Source code .35

Order.cob 35
Validation program (automatically generated) 39
 SQL-DDL code 42
Embedded code 43
Modified embedded code 48

ANNEX C Strange Data Structures / real case studies55

Chained lists 55
Hierarchical foreign key 62
Computed referential constraint (1) 65
Computed referential constraint (2) - Y2K 67
Computed referential constraint (3) 69
Create a temporary file 70
COBOL 73
History 76
Technical file 83

Complete physical schema 84
Conceptual schema 84

Is-a in SQL 84

ANNEX 4 Annex .89
Utilisation de db-main pour représenter les SDG 89
Screenshot 89
Code in figure 89
Words / dictionnary 89

Summary of the corrections 97
Explicitly state the thesis 97
Why do we need a generic model 97
Conflict between data structures 97
Probability of an hypothesis 97
COBOL procedure parameters 98
Complexity of the slicing algorithm 98
Miscellaneous corrections in the “Program understanding techniques” chapter 98
Program Understanding in DBRE ix

Table of Contents
Real case studies 98
Economic advantage of automation 99
x Program Understanding in DBRE

CHAPTER 1 Introduction
1.1. General introduction

For many years software engineering has primarily focused on the development of new systems.
Research and industrial efforts have concentrated on creating new and more efficient software
development methodologies and processes to increase the quality of the applications, to decrease
the time to market and to develop applications that really meet the demand of the customers. By
focusing on those aspects, maintenance, which is one of the major (in time and cost) activities of the
software cycle life, has been neglected. Maintenance typically represents 70% of the cost during the
life cycle of the system [Leintz et al.-1980]. All large programs would undergo significant mainte-
nance during their in-service phase. As changes are introduced into a system, its structure begins to
deteriorate. Members of the original and intervening programming teams disperse. The documenta-
tion, if any, gradually becomes outdated. Such systems, called legacy systems contain business
knowledge and mission-critical data. They become more and more difficult to change, correct,
enhance but they need to evolve to follow evolution in business such as new laws, new business
habits, new business opportunities, enterprise merges or absorption, new technologies, new soft-
ware architectures, etc.

Newly created companies, without legacies, can just purchase or develop new software that take
advantage of the latest technology like the web, client/server or open system standards (XML,
CORBA). But older companies have to deal with their existing legacy systems in which consider-
able effort has been invested, and the replacement of which can prove highly risky.

Brodie [Brodie et al.-1995] defines a legacy system as "any system that significantly resists modifi-
cations and changes. Typically, a legacy system is big, with millions of lines of code, and more than
10 years old." Bennett [Bennet-1995] defines it as a "large software system that we don’t know how
to cope with but that is vital to our organization".

Many legacy systems do not satisfy the flexibility and growth requirements of modern enterprises.
They were built with focus on efficiency rather than on interoperability and maintenance. They are
often badly documented. On the other hand, legacy systems are of great value because they incor-
porate important business knowledge and manage a vast amount of mission critical business data.
Program Understanding in DBRE 1

Introduction
This resistance to change increases the cost of the maintenance. Maintenance is defined by Corbi
[Corbi-1989] as "understanding and documenting existing systems; extending existing functions;
adding new functions; finding and correcting bugs; answering questions for users and operations
staff; rewriting, restructuring, converting, and purging software; managing the software of an
operational system, and many other activities that go into running a successful software system".

To reduce the maintenance cost, that can be up to 70% of the total life cycle cost of the application,
the enterprise has two solutions. The first one is to rebuild from scratch the entire system to meet
the new requirements. This strategy, called cold turkey [Brodie et al.-1995], carries substantial risk
of failure: such a project might require several years, during which the legacy system is likely to
evolve.

Even if we want to replace the current system, we need to acquire a deep knowledge of the old one,
because the new one needs to offer, at least, the same functionalities as the previous one and a lot of
the current business rules are not explicitly described in some documents but are implemented in
the system. For example, a given application obviously includes a function that computes mortgage
rates, but nobody understands how it does it. Even if one decides to rewrite the application from
scratch, an important part of the legacy system cannot be discarded, that is, its database. The list of
customers, orders, products and unpaid invoices cannot be lost, but must be migrated to the new
system. This migration clearly requires a deep understanding of the meaning of the data, their
format and how they are stored in the database.

For all these reasons, it is impossible or very risky to throw away all the legacy systems and to build
a new one from scratch.

Another strategy, called chicken little, is to migrate the legacy system by small incremental steps
until the desired long-term objective is reached. The analysis and migration of a sub-component to
new technologies while other legacy components remain unchanged is usually called reengineering.

To allow an efficient and safe maintenance of a legacy system, for which no precise and up-to-date
documentation exists and of which the existing team does not master all the aspects, we need to
reverse engineer it to reconstruct this missing documentation. The correct understanding of the
system is a strong prerequisite before any modification. For instance, this knowledge is needed to
evaluate the implication of the changes needed, to identify the parts of the system that will be
affected and finally the cost of the modifications. If the programmer responsible for the change only
has a partial view of the system, he cannot anticipate the implication of the change. The cost and the
time needed to perform it exceed the forecast. When the change has been applied, some other parts
of the system often do not work correctly anymore, so that the last change involves additional
correction, and so forth.

Tilley [Tilley-1996] defines reengineering as "the systematic transformation of an existing system,
or a part of it, into a new form to carry out quality improvements in operation, system capability,
functionality, performance, or evolvability at a lower cost, schedule, or risk to the customer".

To achieve reengineering, we need to understand the structure and interrelationships of the system,
through a process called reverse engineering. It has been defined by Chikofsky and Cross [Chikof-
sky-1990] as "the process to achieve understanding of the structure and interrelationships of a
subject system. It is a goal of reverse engineering to create representations that document the
subject and facilitate our understanding. As a process, reverse engineering can be applied to each of
the three principal aspects of a system: data, process, and control".
2 Program Understanding in DBRE

General introduction
In information systems, or data-oriented applications, i.e. in applications whose central component
is a database or a set of permanent files, the complexity can be broken down by considering that
files or databases can be reverse engineered (almost) independently of the procedural parts.

• The semantic gap between the so-called conceptual specifications and the physical implementa-
tion is most often narrower for data than for procedural code. For example, a COBOL field
structure is easier to understand than a COBOL procedure.

• The permanent data structures are generally the most stable part of the applications.

• Even in very old applications, the semantic structures that underlie the file structures are mainly
procedure-independent, though their physical structure is highly procedure-dependent.

• Reverse engineering the procedural part of an application is much easier when the semantic
structure of the data has been elicited.

It is therefore much more efficient to first concentrate on the reverse engineering of the applica-
tion’s data components than to cope with the whole application. The reverse engineering of the
data, called database reverse engineering (DBRE), is defined by Chikofsky and Cross [Chikofsky-
1990] as "[a process that] concentrates on the data aspect of the system that is the organization. It is
a collection of methods and tools to help an organization determine the structure, function, and
meaning of its data" or by Hainaut [Hainaut et al.-1993a] "[the process of] recovering the schema(s)
of the database of an application from DMS-DDL text and program source code that uses the data
(and from any relevant source) in order to understand their exact structure and meaning".

The recovery of the lost information about the data structure of an information system (IS) is mate-
rialized by the creation of new system documentation. This documentation needs to be recons-
tructed because it has never existed or has been lost or has deteriorated during years of maintenance
operations. Up-to-date and complete documentation is necessary for different purposes:

• Maintenance

For efficient maintenance it is necessary to have a complete understanding of the current system
to correctly evaluate the cost of a requested change. A global view of the system is also neces-
sary to identify side effects of a given modification.

• Database administration

A database administrator needs a good view of its database to evaluate the storage space needed
and to forecast its evolution. The knowledge of the program that uses the data can help him to
optimize (tune) the database to reach optimal response time.

• Data conversion

To perform some data conversion, as was required for the year 2000 or Euro, the analyst needs
to know the exact semantics of each field to know which one needs to be converted.

• Data migration

A common problem, that requires an in-depth knowledge of an application, is the migration of
the data from one database to another. This occurs when the hardware or software environments
change, in order to publish the data on the web, to set up an ERP solution or to merge two infor-
mation systems.

• Data extraction

The knowledge of the data semantics is important when we want to use our current database to
supply data to other information systems. Such extractions are used to populate datawarehouses
or data mining tools to support strategic decisions. Data extraction is also necessary to support
fashionable applications such as e-business and B2B.
Program Understanding in DBRE 3

Introduction
• Reuse

When users ask for a new function, it is important to know what the existing data structures are,
in order to prevent the creation of new data structures and thus the creation of redundancy.

• Evaluation of existing software

DBRE can also be used to assess the overall quality of software systems. A data structure with
significant design flaws indicates poorly implemented software. Thus it can represent one of the
evaluation criteria for a potential software product (homemade or vendor software).

1.2. Scope and motivation of the thesis

Experience quickly teaches us that recovering conceptual data structures can be much more
complex than merely analyzing the data description language code of the database. Data Descrip-
tion Language (DDL) is a part of the Database Management System1 (DMS) facilities intended to
declare or build the data structures of the database. Untranslated data structures and constraints, non
standard implementation approaches and techniques, old or esoteric DMS and ill-designed data
structures are some of the common difficulties that the analyst encounters when trying to under-
stand an existing database from operational components. Since the DDL code is no longer the
unique information source, the analyst is forced to refer to other documents and system components
that will prove to be more complex to analyze and less reliable. The most frequent sources of
problems have been identified [Anderson-1996], [Blaha et al.-1995], [Hainaut et al.-1993a], [Petit-
1996], [Premerlani et al.-1993] and can be classified as follows:

• Weakness of the DMS models

The technical model provided by the DMS such as CODASYL-like systems, standard file
managers and IMS DMS, can express only a small subset of the structures and constraints of the
intended conceptual schema. In favorable situations, these discarded constructs are managed in
procedural components of the application: programs, dialog procedures, trigger, etc. and can be
recovered through procedural analysis.

• Implicit structures

Such constructs have intentionally (or unintentionally) not been explicitly declared in the DDL
specification of the database for optimization reasons, due to an oversight, or in order to be
backwardly compatible with an older DMS. They have generally been implemented in the same
way as the constructs discarded due to the weakness of the DMS models such as mentioned
above.

• Optimized structures

For technical reasons, such as time and/or space optimization, many database structures include
non semantic constructs. In addition, redundant and unnormalized constructs are added to
improve response time.

• Awkward design

Not all databases were built by experienced designers. Novice and untrained developers, gene-
rally unaware of database theory and database methodology, often produce poor or even wrong
structures.

1. We use the term Data Management System (DMS) which encompasses DataBase Management System
(DBMS) and File Management System (FMS) such as COBOL file management libraries.
4 Program Understanding in DBRE

Scope and motivation of the thesis
• Obsolete constructs

Some parts of a database can be abandoned, and ignored by the current programs.

• Cross-model influence

The professional background of designers can lead to very peculiar results. For instance, some
relational databases are actually straightforward translations of IMS databases, of COBOL files
or of spreadsheets [Blaha et al.-1995]. A CODASYL database carelessly translated into a rela-
tional database can explicitly introduce DB-keys (physical record identifiers) as columns in the
new tables. Similarly, a COBOL record type looses its hierarchical field structure when trans-
lated into a single table.

• Inconsistent standard

These systems have been developed and maintained for many years (several decades in some
cases) and during which time the programming standards and methodologies, software and hard-
ware have changed. The system is no longer homogeneous, but appears to be a collection of
small subsystems, each one with its own characteristics. In some unfavorable cases, the system
uses several programming languages or more than one DMS. For example, systems where
COBOL indexed files coexist with a relational DMS are not infrequent.

• Size of the system

Systems integrate more and more business processes and are developed over many years. As a
result, such systems can be very large. For example, several million lines of code and more than
500 tables or record types is not exceptional. So, methods and techniques that seem fine for
small projects become useless for medium or large ones.

Our experience showed us that most of the implicit structures and constraints are buried into the
source code of the programs and that this code is often the most reliable place where such
constraints can be found. Analyzing program source codes requires sophisticated techniques
pertaining to the program understanding domain.

Müller [Müller-1996] defines program understanding (PU) or program comprehension as "the task
of building mental models of the underlying software at various abstraction levels, ranging from
models of the code itself to ones of the underlying application domain, for maintenance, evolution,
and re-engineering purposes".

This introduces an interesting apparent paradox: DBRE is often intended to provide a better under-
standing of a data intensive program while program understanding contributes to DBRE. In the
context of this thesis, the program understanding techniques that will be developed are not intended
to build a mental model of the whole system, but to enhance our comprehension of the persistent
data structure used by the application. In particular, we will study and develop three techniques,
namely programming pattern analysis, data flow analysis and program slicing.

It quickly appears that systematic methodologies, relying on rigorous techniques and on powerful
tools are necessary to successfully undergo such DBRE projects. In this thesis, we will present a
generic DBRE methodology that can be applied to any DBRE projects independently of the DMS
used. We have also developed tools that support this methodology, and that have been integrated
into the DB-MAIN CASE environment [Hainaut et al.-1996b].

One of the major failure factors is the inability to manage and master the high volume of informa-
tion, such as the source code of the programs and the data schemas. For instance, retrieving the
foreign keys of a 250 record type database, totaling 10,000 fields, processed by 250,000 lines of
Program Understanding in DBRE 5

Introduction
code, theoretically requires examining every pair of fields against each line of code, to check
whether this pair represents a foreign key/unique key pattern. Though clever heuristics can radi-
cally reduce this search space, powerful tools are indispensable to automate, at least partially, the
search for hidden constructs.

This thesis also explains why full automation of the whole DBRE process is often impossible. We
have noticed that no two DBRE projects are identical, nor even similar. Major aspects such as the
DMS (sometimes more than one), the programming language (quite often more than one), the
specific way to code constraints and to name objects (those rules may change in a given applica-
tion), can widely vary from one system to another one. For this reason, no predefined tool with
hardwired techniques and heuristics can cope with this variety of situation. Hence the need for a
programmable and extensible CASE environment through which analysts can develop new tools
quickly.

1.3. The thesis

In this thesis, we will prove that program understanding techniques and tools significantly contrib-
ute to good quality DBRE for real size projects.

To prove the thesis, we will develop a DBRE methodology that covers all the DBRE life cycle and
that can be applied to any kind of DBRE projects. In the context of this methodology, we will show
that the program’s source code is an up-to-date and complete source of information to recover the
database structure.

Due to the size and complexity of programs, techniques are necessary to understand the programs.
These techniques will be adapted to DBRE and tools will be developed to support the work of the
analyst.

Finally to prove that our methodology and its supporting tools are adapted to real size projects, we
will use them to solve real size case studies.

1.4. State of the art

Since 1980, a wide range of DBRE methods have been published. All of them consist of extracting
the conceptual schema from an operational legacy system. The conceptual schema can be expressed
in some variant of the entity-relationship model or of the object-oriented model (ODMG, UML,
OMT).

Each method exhibits its own rules and heuristics, produces its own outputs and requires specific
inputs and assumptions. Surprisingly, the amount of work on how to translate relational schemas
into a conceptual model outweighs the work on the mapping from other physical model. There can
be several reasons for this phenomenon. In the last few decades, a lot of work was done on the rela-
tional theory: (mathematical) formalization of the theory, methodology to design efficient relational
databases, transformation of a conceptual schema into relational structures. No such theoretical
background exists for network or hierarchical models and even less for standard files. Relational
6 Program Understanding in DBRE

State of the art
database design is taught in all schools, universities and professional training database courses, so
relational databases are supposed to be better designed than other (older) databases. Therefore, it is
easier to recover the original design. Modern relational databases allow the implementation of
almost all the constraints of the conceptual schema through foreign keys, primary keys, indexes
(unique or not) and null values. The constraints that are not explicitly expressed in the DDL
language are validated in the procedural part of the application using the data manipulation
language (DML or queries). Complex queries can be expressed using this DML, therefore to
recover the implicit constraints the analyst can only analyze the DML fragment without worrying
about the other procedural part of the application. In some favorable (academic) cases the physical
schema of the database contains all the constraints and thus does not require a program source code
or data analysis.

For less powerful models, in particular the standard files, the physical model expresses very few
constraints and makes it necessary to analyze the source code to recover the missing constraints.
This code analysis is not an easy task as will be shown in this thesis.

Relational databases usually work on modern computers, nowadays these computers are powerful
and disk accesses are very fast. Most of the relational database courses present the concept of
normalization and encourage the building of normalized databases. On the other hand legacy data-
bases are heavily optimized because when they were designed computers were expensive, and as a
consequence, the designer was asked to save disk space and disk access. Moreover, the program-
mers were not trained in database design and did not use standard design methods.

All these reasons, and the fact that researchers prefer to work with and to study modern languages,
explain why most of the DBRE methods address the problem of reverse engineering relational data-
bases.

Various criteria can be used to classify the DBRE methods. We note in particular the following:

• DMS supported

Most methods are specific to a DMS model.

• Target model

Methods express the conceptual schema according to a conceptual model. This model can be a
variant of the entity-relationship model (EER, ERC+, etc.) or some object-oriented model
(ODMG, UML, OMT, etc.).

• Prerequisites

Some methods have prerequisites regarding the database to be reverse engineered. The schema
must be in third normal form (3NF), attributes’ names must have some coherency (two attributes
with the same name represent the same thing and two attributes with different names have diffe-
rent semantics) or there is no error in the data.

• Thoroughness of domain semantics acquisition

Some methods require that the physical schema contains all the semantics (meaningful names,
all the identifier are present) and the analyst knows the domain to interpret the missing informa-
tion. Other methods analyze additional sources of information to retrieve the semantic missing
in the physical schema.
Program Understanding in DBRE 7

Introduction
• Heuristics and techniques used

Description of the heuristics and techniques employed during the reverse engineering process.
Some authors just explain some abstract heuristics, others give algorithms and tools are sug-
gested or implemented.

• Completeness and robustness

Legacy databases are real databases designed and maintained by real programmers. So these
databases are rarely (if ever) designed according to the textbook rules and methods. Due to their
maintenance, databases become inconsistent in object naming, some data structures are not used
anymore, they are optimized, they exhibit design flaws, etc. Any reverse engineering process
should be evaluated against these common characteristics. The completeness of a method is
achieved if the process addresses the possible method flaws of the method. The robustness of a
method represents how the method behaves when such flaws are present.

• Automation/user interaction

To use a method in a real project, it is important to know what part of the method can be auto-
mated and when the interaction with the user is necessary.

• Sources of information

There are a lot of information sources that can be analyzed (physical schema, program, data,
documentation, user knowledge, etc.). Most of the methods only use some of them.

In the remainder of this section different methods will be briefly presented. They have been
grouped according to the DMS they support.

1.4.1. Relational DMS

The first research efforts focused on transforming a relational schema with known primary keys and
foreign keys to a conceptual schema. These approaches used information on tables, column names
and primary keys. They did not specify the sources of information (the physical schema is given)
and had heavy prerequisites on the physical schema (3NF, meaningful names, etc.). Some works try
to recover an object-oriented conceptual schema and thus concentrate on the discovery of generali-
zation hierarchies.

A trend in recent work is to put more emphasis on the information acquisition phase. Different
sources of information for keys, foreign keys and inclusion dependencies are explored.

1.4.1.1. [Dumpala et al.- 1983]

[Dumpala et al.- 1983] is one of the earliest works where a description is given of how to map from
the relational, network and hierarchical model to a conceptual model. This method requires, as
input, logical schema in third normal form with information on (primary) keys and foreign keys.
The output is an entity-relationship model with attributes and relationship types.

The methodology is presented as an algorithm to transform the logical model. This algorithm is
based on the classification of the relations and the keys (primary keys, foreign keys). The different
classes are defined, but no algorithm to automatize this classification is given, it must be done
manually by the user.
8 Program Understanding in DBRE

State of the art
1.4.1.2. [Navathe et al.-1987]

[Navathe et al.-1987] method is an enhanced version of the mapping algorithms of [Dumpala et al.-
1983]. It requires, as input, the relations in third normal form and the key attributes which are used
in more than one relation must have the same name throughout the schema. The output is a concep-
tual schema expressed in an enhanced version of the entity-relationship model, called Entity-Cate-
gory-Relationship model (ECR), that introduces the concepts of subclasses and generalization
hierarchies.

The methodology classifies relations and attributes. The conceptual schema is generated much in
the same way as in [Dumpala et al.- 1983] except for the order of the phases and that the system
interacts heavily with the user. Supertypes are created for entity types that have the same primary
keys.

1.4.1.3. [Casanova et al.-1983]

[Casanova et al.-1983] method requires, as input, a relational schema with primary keys and foreign
keys. This schema is expected to come from the user. The target conceptual schema is an entity-
relationship model without complex objects nor generalization.

The method takes into consideration primary keys and foreign keys. Tables are split and merged
(fold) into entity types that each represent one item in the conceptual schema. An algorithm that
generates a schema is presented together with a formal proof that the generated schema is correct.

1.4.1.4. [Markowitz et al.-1990]

[Markowitz et al.-1990] method continues the formal approach taken in [Casanova et al.-1983]. It
requires, as input, the relational schema, key dependencies and key-based inclusion dependencies,
i.e. referential constraints. Relations are assumed to be in Boyce-Codd normal form. The output is
an extended entity-relationship (EER) model.

The methodology has four steps. The first one transforms relational schema into a form appropriate
for identifying EER object structures. The second step of the methodology examines relation-
schemes, functional dependencies and inclusion dependencies obtained after the transformations in
order to detect whether they satisfy a set of properties. The third step determines the type of object
interactions, such as weak-entity-set and specialization, for each inclusion dependency. The fourth
step derives a candidate EER schema using some mapping rules, finally the quality of generated
EER schema is examined.

This method is very demanding on the input. The main contributions of the work are the indepen-
dence from attribute names and the formalization of the mapping between schemas.

1.4.1.5. [Davis et al.-1987]

[Davis et al.-1987] method requires, as input, the relational schema in third normal form. It is not
specified how this schema is to be obtained. The target model is the entity-relationship model with
no complex objects nor generalization.
Program Understanding in DBRE 9

Introduction
Table with a single attribute as key and tables with a key containing multiple attributes (if all the
attributes of the key are a referential constraint or none of them) are translated into entity types.
Tables with dangling keys (a part of the attribute of the key is a referential constraint) are translated
into weak entity types with attached integrity constraints specifying that an instance of the weak
entity type cannot exist without a corresponding instance of the strong entity type on which it is
dependent. A table with a key that is a concatenation of primary keys of tables translated to entity
type is translated into a many-to-many relationship type. Relationship types with an order higher
than two are handled. If key attributes of a table that is translated into an entity type also appear as
non-key attributes in another table translated into an entity type, then a many-to-one relationship
type is created.

1.4.1.6. [Premerlani et al.-1993]

[Premerlani et al.-1993] method requires, as input, the data dictionary of the data description
language source, the data of application and the analyst must know the semantics of the application.
No assumptions are made on the relation and it copes with design optimization and bad design
implementation. The method adopts the Object Modeling Technique (OMT) notation for modeling
the conceptual schema.

Candidate keys are used rather than primary keys. Candidate keys are identified through an analysis
of unique indexes, automatic scanning of data and from the user knowledge. In a modern system,
the foreign keys may be present in the DMS. If not, foreign keys can be deduced by investigating
matching names, domain and data types. Join clauses in views embody information on foreign keys
as well as secondary indexes. Groups of foreign key attributes are searched for. A generalization
hierarchy may complicate the identification of foreign keys. Inclusion analysis is retrieved from an
analysis of the database extension.

A large number of data structures are searched for in the source schema and translated into the
target schema. Classes that are linked with a one-to-one association indicate a generalization.
Generalizations may have been implemented by pushing attributes of the supertype down to the
subtypes. Mutually exclusive groups of attributes indicate that the subtypes have been pushed up to
the supertype. Once a translation is generated, a large number of post-translation transformations
are advocated, i.e. fusion of vertical fragmented classes.

This method recognizes that all the constraints are not expressed into the physical schema. Other
sources of information, such as database extension, user knowledge, programs, need to be analyzed.

1.4.1.7. [Johannesson-1994]

[Johannesson-1994] method requires, as input, the relational schema, function dependencies and
inclusion dependencies. The input relations must be in third normal form. The output is given in an
entity-relationship model without complex objects but with generalization.

This method defines a set of transformations used to split relations that represent more than one
object type. Different relations representing the same object type are collapsed into one single rela-
tion. The principle of the schema mapping algorithm is to map each relation into an object type and
each inclusion dependency into either a generalization constraint or a relationship type. It is shown
that a generated conceptual schema can represent as much information as the original relational
schema. The method is based on the well-established concepts of relational database theory. It is
10 Program Understanding in DBRE

State of the art
very complete, in terms of the description of the reverse engineering steps, but with the drawback of
needing all keys and inclusion dependencies.

1.4.1.8. [Signore et al.-1994]

[Signore et al.-1994] method requires, as input, the relational schema, SQL and host language code.
The output is an entity-relationship model defining complex multivalued attributes and generaliza-
tion.

The methodology has three phases. The first phase identifies primary keys. If they are not present in
the relational schema, they are deduced from the source code. The user must verify their correct-
ness. The second phase is for the detection of the indicators of synonyms and referential constraints.
These indicators are searched for in the source code (host language and SQL queries), if not present
in the relational schema, and are then verified from integrity constraint enforcement in the code and
by the user. The last phase is the conceptualization. Using the indicators found in the previous
phases the conceptual model is derived.

It should be noted that this method is based on clues. The clues are adopted to cope with unusual
implementation techniques, optimization choices, poor data definition language and code errors,
among others. A possible tool to support this method is sketched.

1.4.1.9. [Chiang-1995]

[Chiang-1995] method requires, as input, a populated database. The relations are in third normal
form and key attributes with the same domain must have the same name in all tables, since the
names of key attributes are used to infer references between tables. If a non-third normal form
structure cannot represent more than one entity type, it must be decomposed into detailed modeling
structures manually. The input database contains any erroneous data instances in its key attributes.
The output is an extended entity-relationship (EER) model with generalization hierarchies.

The methodology has three major steps. The first one classifies relations and attributes, based on
the relational schema and its primary keys. In the second step, the inclusion dependencies (referen-
tial constraints) are searched for. The possible inclusion dependencies are automatically detected
based on the identifiers and the attributes’ names. Then, these inclusion dependencies are validated
by querying the database. Finally, the EER components are identified using a list of rules.

It differs from the articles mentioned above in that it addresses the problem of information acquisi-
tion and takes inclusion dependencies into consideration. It produces an EER model that is semanti-
cally richer than the relational schema.

The article presents a tool, Knowledge Extraction System (KES), that supports the method. This
tool is developed in Prolog and C and queries an ORACLE database.

1.4.1.10.[Ramanathan et al.-1996]

[Ramanathan et al.-1996] method requires, as input, a relational schema in third normal form with
primary key and foreign keys. The output is a schema using the Object Modeling Technique (OMT)
notation.
Program Understanding in DBRE 11

Introduction
The methodology is broken down into three steps. The first identifies the tables that correspond to
object-classes. The second step identifies the relationships. It defines three types of relationships:
associations, generalizations/specializations and aggregations. The last step identifies the exact
cardinalities of the associations. All the information required by the process comes mostly from the
information on primary keys and foreign keys. The method thus provides a great potential for auto-
mation, but no tool is presented.

The article gives some hints on how to cope with non 3NF schema when this denormalization
comes from an optimization process. It suggests how to resolve horizontal and vertical partitioning
optimization.

1.4.1.11.[Petit-1996]

[Petit-1996] method requires, as input, the relational schema with unique and not null constraints,
data instances and code (SQL queries). The output is an extended entity-relationship (EER) model.
The methodology analyzes conditions in queries and views to recover the foreign keys and the
functional dependencies. Then the schema is restructured to obtain a logical schema in the third
normal form. Finally the schema is translated into a conceptual schema and a domain expert vali-
dates this schema.

In [Lopes et al.-2002], this method is extended by the analysis of the logical navigation to recover
the inclusion dependencies. The logical navigation is the use of join columns, as an access path, to
navigate in a relational database. The tool, DBA companion, that discovers such constructs, is
presented.

1.4.1.12.Varlet [Jahnke et al.-1999], [Jahnke-1999]

The Varlet method requires, as input, all the available sources of information about a relational
database: declaration of the relational database (SQL-DDL), procedural code (embedded SQL),
extension of the database (the data), the documentation, etc. The output is an object-oriented
conceptual schema (OMT).

This method, named Varlet, consists of two main phases: schema analysis and conceptual schema
migration. In the schema analysis phase, the different parts of the database are analyzed to obtain a
consistent and complete logical data structure. In the conceptual migration phase, this logical data
structure is transformed into a conceptual schema.

The main contribution of this method is the use of a graphical language named Generic Fuzzy
Reasoning Nets (GFRN) to represent the analyst’s knowledge of the logical schema. GFRN specifi-
cations separate declarative knowledge from operational aspects. This approach allows uncertain
and inconsistent analysis results to be dealt with.

A prototype CARE environment has been developed that uses GFRN specifications and includes a
customizable front end.
12 Program Understanding in DBRE

State of the art
1.4.1.13.[Alhaij et al.-2001]

[Alhaij et al.-2001] method requires, as input, the physical schema with primary keys and foreign
keys and the user knowledge of the legacy database. The output is an object oriented schema, no
specific model is specified. The method translates the relational schema into an intermediate model
called Relational Intermediate Direct Graph (RIDG). The RIDG is a graph where each node repre-
sents a table and the edges show that there is a foreign key between two tables. The RIDG is trans-
formed into classes.

The paper also presents an algorithm to migrate the data from the relational database to the object
oriented database.

1.4.2. Hierarchical/network DMS

There are very few works on the DBRE of network and hierarchical databases and some of them are
an extension of work on relational databases. They only rely on the physical schema and user
knowledge and do not analyze the application programs nor the data.

1.4.2.1. [Dumpala et al.- 1983]

[Dumpala et al.- 1983] method requires, as input, the network or hierarchical physical schema. The
output is an entity-relationship schema.

The method to recover a network schema takes recursive set types into account. The transformation
is straightforward. Each record type is converted into an entity type, each set type into a relationship
type with the same cardinality constraint and each recursive link into a recursive relationship type.

The method to recover a hierarchical schema is done by a two step process. First, all trees in the
hierarchical schema are connected with respect to common, but eventually renamed record types.
The result is a network-like schema. Second, all record types are replaced by entity type and all
parent-child relationship types are replaced by relationship type.

1.4.2.2. [Fong et al. - 1993]

[Fong et al. - 1993] method requires, as input, the network or hierarchical physical schema and
relies on user expertise in the domain. The output conceptual schema is an extended entity-relation-
ship (EER) model.

The methodology to translate a network model into an EER model is divided into seven steps. 1)
Each record type is mapped to an entity type. 2) Each set is mapped to a binary relationship type.
The user has to determine its semantics (1-1, 1-N or isa and whether it is mandatory or not). 3)
Record types in network schema can form a loop such that two different navigation paths can be
used to access the same member record type. Either these two access paths carry different semantics
and both need to be kept, or both carry the same semantics, where there are two access paths for
some optimization and only one of them must be kept. The user must decide which access path
needs not to be mapped to EER model. 4) Derive N-N and N-ary relationship types. 5) Derive
Program Understanding in DBRE 13

Introduction
generalizations. 6) Map each record attributes to a corresponding entity type attribute. 7) Derive
entity type keys.

The methodology to translate a hierarchical model into a conceptual one is the same except that
step 3 is not applicable.

1.4.2.3. [Navathe et al.-1987]

[Navathe et al.-1987] method requires, as input, a hierarchical schema containing records and
parent-child relationship. The assumption is made that each record has a unique key field or identi-
fier. The output is an entity-category-relationship (ECR) model.

The methodology requires a preprocessing of the schema in order to simplify the structure. The
duplicate records as well as all pointer records are eliminated. The mapping process itself is
composed of seven steps. 1) Records representing an N-N relationship type are replaced by a rela-
tionship type. 2) The links, that represent an isa, are replaced by an isa hierarchy. 3) If the identifier
of a record contains the identifier of its parent record, then this record is said to be weak. 4) All the
records that represent an N-ary relationship type are transformed into an N-ary relationship type.
Steps 5 and 6 find different kinds of isa hierarchy (depending on whether the keys of the records are
the same or not). 7) All the remaining records are transformed into entity types and all the remain-
ing links are transformed into relationship types.

1.4.2.4. [Winans et al. - 1990]

[Winans et al. - 1990] method requires, as input, an IMS DBD and explicit behavior (the program
that updates the database). The output is an entity-relationship model.

This methodology collects the information present in the IMS DBD. Then the segments are trans-
lated into entity types and relationship types are created to represent the parent-child links. The
fields declared within the IMS DBD are translated into attributes of the appropriate entity type,
sequence fields are translated into identifiers. Finally, all the entity types are examined to determine
whether or not they can be combined. The behavior is used to add new constraints.

1.4.2.5. [Tangorra et al.-1995]

[Tangorra et al.-1995] method requires, as input, a hierarchical physical schema. The output is an
entity-relationship schema.

This methodology is broken down into four steps. In the first, each segment is translated into an
entity type with corresponding attributes and identifier. In the second step, the links in the hierarchi-
cal schema are translated into relationship types. Through a global entity-relationship schema
analysis, the third step recovers N-ary relationship types and N-N relationship types. Finally the
schema is restructured to make it more readable and meaningful.
14 Program Understanding in DBRE

State of the art
1.4.3. Standard files DMS

In the database reverse engineering community, most research is on the topic of reverse engineering
from a database (relational, network or hierarchical) into a conceptual (ER or OO) model. Less
research has been devoted to reverse engineering applications using a file system for persistent stor-
age.

1.4.3.1. [Davis et al. - 1985]

[Davis et al. - 1985] method requires, as input, a physical schema of the conventional files with file
reference keys (kind of foreign keys). The output schema is an entity-relationship model.

The methodology translates the conventional file schema into the Current Physical Model (CPM).
This CPM is composed of physical data units (PDU). PDU are created from record types, a
composite data item (connected to its parent PDU), repeating groups (connected to its parent PDU)
and an optional data item (REDEFINE, connected to its parent PDU). Each PDU is assigned to a
data item in the COBOL data structure as its key. A set of PDU reference keys between PDU is
derived based on the position of the PDU within the record type and partly given by the user.

The CPM is then translated into the conceptual schema. Each PDU is translated into an entity type,
the major task being to locate the relationship types.

An experimental expert system, AUGUST, assists database designers in the translation of a conven-
tional file system into a conceptual model.

1.4.3.2. [Anderson-1996]

[Anderson-1996] method requires, as input, COBOL source files. The output is an extended entity-
relationship model, called ERC+, that extends the entity-relationship model with multi-instantia-
tion, multivalued and complex objects.

This methodology recovers the third normal form schema of the database and then translates it into
an ERC+ schema. To recover the former schema, the references between records and the dependen-
cies must be identified. This is done by the construction of sets of variables that share the same
value, called spreading sets. The fields of record types that are used to represent references are
called anchors.

1.4.4. Generic methods

Methods are called generic if they are not specific to a particular DMS.

1.4.4.1. [Hainaut-1981]

[Hainaut-1981] method requires, as input, a logical schema in which all the constraints of the data-
base are expressed. The output is a binary entity-relationship model.
Program Understanding in DBRE 15

Introduction
This paper does not explicitly describe a DBRE method. It describes a set of reversible transforma-
tions from a binary entity-relationship model toward a DMS model. It uses relational and total DMS
models to illustrate the examples. It is shown that the proposed transformations are reversible so it
is possible to transform from an entity-relationship model to DMS model and the entity-relationship
model can be deduced back from the DMS model. Each transformation is formally described and
can be easily done automatically.

1.4.4.2. DB-MAIN [Hainaut-1991]

The DB-MAIN method requires, as input, all the information about the legacy database such as the
DDL, the source code, the data, the documentation, etc. It produces two outputs. The logical
schema, that is the schema the programmer must understand to be able to modify the legacy data-
base and the programs that modify the data. The second output is the conceptual schema as an
entity-relationship schema.

The method does not make any assumption about the language used by the legacy database nor its
level of optimization. The method is decomposed into two main processes. The first one, the data
structure extraction, produces the logical schema through the analysis of all the sources of informa-
tion available. It contains two sub-processes, the DDL analysis, that extracts all the constraints
declared in the DDL code, and the schema refinement, that extracts all the other constraints through
the analysis of the other sources of information. The second main process is the data structure
conceptualization. This process transforms the logical schema into the conceptual schema. It is
made up of three sub-processes. The de-optimization removes the optimizations of the schema. The
untranslation transforms the constructions specific to the DMS model into their conceptual equiva-
lent. Finally the conceptual normalization gives to the final schema the desired quality of a concep-
tual schema.

This method is applied to standard files, hierarchical DMS, network DMS and relational DMS.
There is a tool (DB-MAIN) that support the method.

1.4.4.3. MeRCI [Comyn et al.-1996]

The MeRCI method is not specific to a DMS model, but it is explained using the relational model.
This method requires, as input, the source code of the application: the declaration of the database
(SQL-DDL) and the procedural code of the application (with embedded SQL). The output is an
extended entity-relationship (EER) model with complex attributes and generalization/specializa-
tion.

The name of this method is MeRCI (Méthode de RétroConception Intelligente). This method is
made up of five steps. The first extracts the physical schema from the data dictionary, the DDL, the
views. The second step applies a set of physical reverse engineering rules to "deoptimize" the
physical schema. To detect the optimization they examine the DDL, SQL queries and the database
extension. The third step identifies entity types, relationship types and cardinalities through the
analysis of the embedded SQL, synonyms and references constraints. They enrich the indicators’
rules proposed by [Signore et al.-1994]. The fourth step recovers the generalization/specification
through the analysis of the queries and the data. The last step is the conceptualization that identifies
multivalued attributes, entity types and relationship types.

[Akoka et al.-1998] presents an expert system that implements the MeRCI method.
16 Program Understanding in DBRE

State of the art
1.4.5. Others

1.4.5.1. MeRCI-M [Akoka et al.-1999]

The MeRCI-M method is an extension of the MeRCI method [Akoka et al.-1998] to the reverse
engineering of a datawarehouse. It requires, as input, the logical schema of the datawarehouse (with
the different dimensions, variables and relations), it questions the users and it queries the data.
While the MeRCI method foresees the extraction of the physical schema and its deoptimization,
this is not yet implemented into MeRCI-M. Only the conceptualization process is presented.

The output is an extended entity-relationship model. The reverse engineering process is expressed
as a set of rules that transform the datawarehouse logical schema into its conceptual counter part.
These rules can be classified into three categories:

• The rules of "presumption" which emit a suspicion regarding the presence of a concept.

• The rules of "consolidation" which, by the exploration of a second source of information, rein-
force the suspicion.

• The rules of "confirmation" which establish the presence of the concept.

1.4.5.2. FORE [Lee et al.-2000]

The FORE method, called form driven object-oriented reverse engineering (FORE), captures the
form’s semantics to derive a conceptual object-oriented model. The conceptual model is expressed
via the object model on the CRC (class, responsibilities and collaborators) cards. A mapping is
proposed to produce an UML model (class and sequence diagram).

It states that most of the knowledge about business applications can be compiled from business
forms and the user’s interaction with a legacy system. This methodology is divided into two major
processes. The first, the form analysis, extracts the form structure and the user interaction with the
legacy application. The second process, the reverse engineering, recovers the conceptual schema
using the knowledge captured from the previous phase. The reverse engineering is divided into four
phases: form object slicing, object structure modeling, scenario design and model integration. The
form object slicing splits the form knowledge into semantic units according to the input types. The
objective of the object structure modeling phase is to identify objects from the result of the previous
phase. The scenario design phase produces an object process action scenario diagram. Finally the
model integration phase integrates the models.

1.4.5.3. [Tan et al.-1997]

[Tan et al.-1997] method recovers inclusion dependency by the analysis of the programs. It starts
from the observation that most (or all) of the inclusion dependencies in existing databases are
enforced in the programs which update the databases.

The proposed theory is based on the fact that the records in a database result from the executions of
the programs which update the database. Therefore dependencies can be inferred from the ways in
which the program updates the database. The proposed approach is divided into two processes,
recovery and validation. During recovery, inclusion dependencies are detected from dataflows
between a record manipulation instruction (read, write, update) and an output instruction (write,
Program Understanding in DBRE 17

Introduction
update) of another record. Validation checks if the inclusion dependencies found during the recov-
ery process are not violated by another program.

There are no tools to support this method but a formal proof of its correctness is given.

1.4.6. Summary

This section presents a table summarizing the characteristics of the methods presented. The DMS
column specifies the DMS supported by the method (R=relational, N=network, H=hierarchical and
gen=generic model). The target column gives the target conceptual model. The prerequisites
column enumerates the method prerequisites regarding the database to be reverse engineered. The
sem. recovery column gives the technique used to recover the semantics (if the semantics is recov-
ered) that is not expressed in the physical schema. The heuristic column lists the heuristics used by
the method to recover the conceptual schema. Transfo means that the conceptual schema is obtained
by the transformation of the physical schema. Most of the authors do not use the term transforma-
tion but the term rewriting, they create the conceptual schema by adding to this schema the objects
that correspond to the elements of the physical schema. For simplicity, we have grouped this in the
term transformation. The tool column gives the name of the tool that supports the method if it
exists. And finally the source info. column is the list of information sources used by the method.
18 Program Understanding in DBRE

State of the art
D
M

S
T

ar
ge

t
P

re
re

-
qu

is
it

es
Se

m
.

re
co

ve
ry

H
eu

ri
st

ic
s

T
oo

l
So

ur
ce

 in
fo

[D
um

pa
la

 e
t

al
.-

 1
98

3]
R

, N
, H

E
/R

Id
, F

K
-

tr
an

sf
o

su
gg

es
te

d
ph

ys
 s

ch

[N
av

at
he

 e
t

al
.-

19
87

]
R

, H
E

C
R

3N
F,

 n
am

e
-

tr
an

sf
o

-
ph

ys
 s

ch

[C
as

an
ov

a
et

 a
l.-

19
83

]
R

E
/R

Id
, F

K
-

tr
an

sf
o

-
ph

ys
 s

ch

[M
ar

ko
w

it
z

et
 a

l.-
19

90
]

R
E

/R
Id

, F
K

-
tr

an
sf

o
-

ph
ys

 s
ch

[D
av

is
 e

t
al

.-
19

87
]

R
E

/R
3N

F
-

-
-

ph
ys

 s
ch

[P
re

m
er

la
ni

 e
t

al
.-

19
93

]

R
O

M
T

-
us

er
 k

no
w

l-
ed

ge
sc

h
an

d
da

ta

an
al

ys
is

,
tr

an
sf

o

O
M

 T
oo

l
D

D
L

, d
at

a,

do
m

ai
n

kn
ow

le
dg

e

[J
oh

an
ne

ss
on

-1
99

4]
R

E
/R

3N
F

 w
it

h
in

cl
. d

ep
en

-
de

nc
ie

s

-
tr

an
sf

o
-

ph
ys

 s
ch

[S
ig

no
re

 e
t

al
.-

19
94

]
R

E
/R

-
co

de
 a

na
ly

si
s

co
de

 a
na

ly
-

si
s,

 T
ra

ns
fo

su
gg

es
te

d
D

D
L

, S
Q

L
,

co
de

[C
hi

an
g-

19
95

]
R

E
E

R
3N

F,
 n

am
e,

no

 e
rr

or
 in

da

ta

sc
h

an
al

ys
is

(n

am
e)

sc
h

an
d

da
ta

an

al
ys

is
,

tr
an

sf
o

ex
pe

rt
 s

ys
te

m
ph

ys
 s

ch
,

da
ta

, d
om

ai
n

kn
ow

le
dg

e

[R
am

an
at

ha
n

et
 a

l.-
19

96
]

R
O

M
T

3N
F,

 n
o

op
ti

-
m

iz
at

io
n,

 I
d,

F

K

-
tr

an
sf

o
su

gg
es

te
d

ph
ys

 s
ch

[P
et

it
-1

99
6]

R
E

E
R

-
qu

er
y

an
al

ys
is

qu
er

y
an

al
y-

si
s,

 T
ra

ns
fo

D
B

A

co
m

pa
ni

on
D

D
L

, D
M

L
,

da
ta

V
ar

le
t

[J
ah

nk
e

et
 a

l.-
19

99
],

 [
Ja

hn
ke

-1
99

9]
R

O
M

T
-

co
de

 a
nd

 d
at

a
an

al
ys

is
sc

h
an

al
ys

is
,

tr
an

sf
o

pr
ot

ot
yp

e
D

D
L

, D
M

L
,

da
ta

, d
oc

, .
..
Program Understanding in DBRE 19

Introduction
[A
lh

ai
j

et
 a

l.-
20

01
]

R
O

M
T

Id
, F

K
-

tr
an

sf
o

-
ph

ys
 s

ch
,

do
m

ai
n

kn
ow

le
dg

e

[F
on

g
et

 a
l.

-
19

93
]

N
, H

E
/R

-
-

tr
an

sf
o

-
ph

ys
 s

ch

[W
in

an
s

et
 a

l.
-

19
90

]
IM

S
E

/R
-

-
tr

an
sf

o
-

D
D

L
, c

od
e

[T
an

go
rr

a
et

 a
l.-

19
95

]
H

E
/R

-
sc

h
an

al
ys

is
tr

an
sf

o
-

 p
hy

s
sc

h

[D
av

is
 e

t
al

. -
 1

98
5]

F
E

/R
F

K
-

tr
an

sf
o

A
ug

us
t

ph
ys

 s
ch

[A
nd

er
so

n-
19

96
]

F
E

R
C

+
-

da
ta

fl
ow

 a
na

l-
ys

is
co

de
 a

na
ly

-
si

s,
 tr

an
sf

o
pr

ot
ot

yp
e

co
de

[H
ai

na
ut

-1
98

1]
G

en
E

R
lo

gi
ca

l s
ch

-
tr

an
sf

o
-

 lo
g

sc
h

D
B

-M
A

IN
 [

H
ai

na
ut

-
19

91
]

G
en

E
R

-
co

de
 a

nd
 d

at
a

an
al

ys
is

co
de

 a
nd

 d
at

a
an

al
ys

is
,

tr
an

sf
o

D
B

-M
A

IN
D

D
L

, c
od

e,

da
ta

, d
om

ai
n

kn
ow

le
dg

e

M
eR

C
I

[C
om

yn
 e

t a
l.-

19
96

]

G
en

E
E

R
-

co
de

 a
nd

 d
at

a
an

al
ys

is
co

de
 a

nd
 d

at
a

an
al

ys
is

,
tr

an
sf

o

pr
ot

ot
yp

e
D

D
L

, D
M

L
,

da
ta

D
M

S
T

ar
ge

t
P

re
re

-
qu

is
it

es
Se

m
.

re
co

ve
ry

H
eu

ri
st

ic
s

T
oo

l
So

ur
ce

 in
fo
20 Program Understanding in DBRE

Outline of the thesis
1.5. Outline of the thesis

This thesis is organized as follows. The next chapter describes a generic data structure model accor-
ding to which schemas of different abstraction levels and according to the most common paradigms
can be described precisely. It explains how the various concepts of physical, logical and conceptual
schema can be expressed in this model. Then, schema transformation operators that can model
inter-schema transitions are presented.

Chapter 3 introduces a generic database reverse engineering (DBRE) methodology as the reverse of
the database forward engineering. This method is divided in three processes (project preparation,
data structure extraction, data structure conceptualization) and produces two schemas (logical
schema and conceptual schema). The project preparation identifies the information available and
the resource needed. The data structure extraction process aims at rebuilding the logical schema of
the database through the analysis of all the information sources available. This schema is the view
the programmer has (or must have) of the database to correctly write or modify any program that
accesses the database. The data structure conceptualization process transforms the logical schema
into a conceptual schema.

Chapter 4 describes in detail the data structure extraction process. This process is divided in four
steps. The first, the DDL code analysis, extracts from the data description language script the
explicit structures and constraints in order to produce the raw physical schema. If more than one
raw physical schemas exist, the physical integration step integrates them into a single schema. The
schema refinement step enriches the integrated schema with explicit constraints revealed by the
analysis of the source code, the data, etc. Finally, the schema cleaning step discards the physical
constructs that are no longer needed. The main constraints that are searched for are described as
well as the elicitation techniques that are used to recover the constraints during the schema refine-
ment steps.

Chapter 5 shows that implicit constraints can be elicited through the analysis of the source code. It
is also stated that the source code is one of the most accurate and up-to-date sources of information
for the recovery the implicit constraints. Due to the difficulty and cost of source code analysis, the
analyst must have program understanding techniques and tools.

In chapter 6, program understanding techniques are adapted to help the analyst in his task of retrie-
ving the implicit constraints that are implemented in the programs. Five program understanding
techniques used to retrieve data constraints are presented: pattern matching, variable dependency
graph, program slicing, system dependency graph and graphical visualization.

Chapter 7 explores how the program understanding techniques presented in the previous chapter
can be used to retrieve the implicit constraints and structures presented in chapter 4. For the
constraints that are generally searched for, it is explained how the program understanding tech-
niques can be used and some hints are given on how the constraint discovery can be automated.

The DB-MAIN CASE tool is presented in chapter 8. To introduce the functionalities offered by
DB-MAIN, the limits of the current reverse engineering CASE (CARE) tools are described and the
requirements of an ideal CARE tool are given. It is shown how DB-MAIN fulfills these require-
ments and the CARE functions are explained.
Program Understanding in DBRE 21

Introduction
Chapter 9 contains three case studies that implement the techniques described in this thesis. These
case studies are small case studies that show different aspects of DBRE projects. The first case
study is a COBOL program and stores the data into files. This case study shows how such a project
can be done manually. The second case study is the same program as the previous one, but this time
most of the work is done automatically. The last case study is a COBOL program with embedded
SQL, to show how to cope with embedded code.

Chapter 10 tackles a less technical, but very important, aspect of DBRE projects namely manage-
ment and planning issues. DBRE projects are risky and costly projects that do not bring new func-
tionalities to the applications. Thus it is important for such projects to be supported by the managers
of the company and not only by the technical team. Another difficulty of DBRE projects is that
reverse engineering is not a well known process, so at the beginning of a new project it is necessary
to explain to the managers and to the technical team what DBRE is. The cost of such a project must
be evaluated. This cost evaluation utilizes many parameters such as the size of the database, the size
of the program, the programming language, the analyst’s experience, etc. The automation of the
different steps is presented as a way to decrease the cost of the DBRE.
22 Program Understanding in DBRE

CHAPTER 2 Data schema
specification
This chapter describes a generic data structure model according to which schemas can be described.
This model can represent schema at different abstraction levels and of the most common paradigms.
It explains how the various concepts of physical, logical and conceptual schema can be expressed in
this model. Then, schema transformation operators that can model inter-schema transitions are
presented.

2.1. Introduction

Database reverse engineering mainly deals with schema extraction, analysis and transformation. In
the same way as for any other database engineering process, it must rely on a model that contains a
rich set of data structures. This model must be able to describe data structures at different levels of
abstraction, ranging from physical to conceptual, and according to various modeling paradigms.
During DBRE, it is common to have parts of a schema of different levels of abstraction or of differ-
ent modeling paradigm. The chosen model must be able to represent such situations.

In addition, statically describing data structures is insufficient. We must be able to describe how a
schema has evolved into another one. For instance, a physical schema leads to a logical schema,
which in turn is translated into a conceptual schema. These transitions, which form the basic of
DBRE, can be explained in a systematic way through the concept of schema transformation.

2.2. A wide-spectrum specification model

In database development methodologies, the complexity is broken down by considering three
abstraction levels. The engineering requirements are distributed among these levels, ranging from
correctness to efficiency. At the conceptual level, the designer produces a technology-independent
specification of the information, expressed as a conceptual schema, relying on an ad hoc formalism,
called a conceptual model. At the logical level, the information is expressed in a model for which a
technology exists. For instance, the required information is organized in a relational or object-
Program Understanding in DBRE 23

Data schema specification
oriented logical schema. Since reverse engineering is concerned with legacy systems, we will also
consider network, hierarchical, relational, indexed files, shallow, inverted files logical schemas.
While a logical schema is based on a family of DMS models, a physical schema is dedicated to a
specific DMS. In addition to logical constructs, it includes technical specifications that govern data
storage, access mechanisms, concurrency protocols or recovery parameters. We will talk about
network logical schema and about, say, IDMS physical schema.

Schemas manipulated during DBRE usually contain parts in different levels of abstraction or model
abstraction. For example, the reverse engineered application can use COBOL files and an SQL
database together. Both data structures must be displayed on the same schema, to represent relations
between the data stored in the COBOL files and the one stored in the SQL database. For those
reasons, specific formalisms cannot be adopted for each of the abstraction levels. Instead, the
discussion will be based on a generic model that can easily be specialized in specific models. For
instance, this model hierarchy can be translated into UML/relational/oracle 9i, into ERA/CODA-
SYL/IDMS or into ORM/OO/Oracle ORDBMS design methodologies. These models are derived
from a unique model. The formal basis of this generic model has been developed in [Hainaut-1989].

For the ease of the presentation, the generic model will be presented according to the three levels of
abstraction (conceptual, logical and physical) in three different sections.

2.2.1. Conceptual specifications

In this thesis, all the conceptual schemas will be expressed using an extended entity-relationship
model.

A conceptual schema mainly specifies entity types (or objects classes), relationship types and
attributes. Entity type can be organized in isa hierarchies (organizing supertype and sub-types), the
hierarchy can be total and/or disjoint. Total (T) means that a supertype must be specialized in at
least one sub-type and Disjoint (D) means that a supertype can be specialized in at most one sub-
type. A isa hierarchy that is both total and disjoint is called it a partition (P). An entity type can
inherit from more that one entity type (supertype), this is called multiple-inheritance.

Entity types can comprise attributes that can be atomic or compound. The source value set of an
atomic attribute can be a basic domain (e.g., numeric, boolean, character, time, etc.), a user-defined
domain (e.g., VAT-number, address, URL, etc.) or an object class (in some OO models). A
compound attribute is an attribute that is decomposed into at least one attribute (atomic or
compound). Attributes are characterized with a cardinality constraint [i-j] stating how many values
can be associated with a parent instance (default is [1-1]). i is the minimum cardinality, i.e. the mini-
mum number of values that need to be associated and j is the maximum cardinality, i.e. the maxi-
mum number of values that can be associated. The following constraints on the values of i and j
must be satisfied

 and and
with N representing the infinity. If the minimum cardinality is 1, the attribute is said to be manda-
tory and if it is 0, the attribute is, then, said to be optional. If the maximum cardinality is equal to 1,
the attribute is single-valued and if it is greater than one, it is said multivalued.

A relationship type has two or more roles. Each role also has a cardinality constraint [i-j] that states
in how many relationships an entity will appear with this role. A relationship type with two roles is
called binary, while a relationship type with n>2 roles is generally called n-ary. Roles can be multi-

0 i N<≤ 0 j N≤< i j≤
24 Program Understanding in DBRE

A wide-spectrum specification model
domain, i.e. a role is connected to more than one entity type. Relationship types can also comprise
attributes.

Entity types and relationship types can have constraints (such as identifiers), made up of attributes
and/or remote roles. Those constraints are expressed through the concept of groups. A group is
made up of components, which are attributes, roles and/or other groups. A group represents a
construct attached to a parent object (entity type, relationship type or compound attribute). It is used
to represent concepts such as identifiers, exclusive or coexistence constraints:

• Primary identifier (id)

The components of the group make up the main identifier of the parent object. A parent object
can have at most one primary id; all its components are mandatory.

• secondary identifier (id’)

The components of the group make up a secondary identifier of the parent object. A parent
object can have any number of secondary identifier.

• coexistence (coex)

The components of the group must be simultaneously present or absent for any instance of the
parent object.

• exclusive (excl)

Among the components of the group at most one must be present for any instance of the parent
object.

• at-least-1 (at-lst-1)

Among the components of the group, at least one must be present for any instance of the parent
object.

• exactly-1 (exact-1)

Among the components of the group, one and only one must be present for any instance of the
parent object (= exclusive + at-least-1).

FIGURE 1. Example of a conceptual schema.

Entity type
Atomic attribute (with type
and length)
Compound attribute
Optional atomic attribute
Multivalued attribute
Primary identifier
Super type
Isa hierarchy
Sub-type
Role
Binary relationship type
Ternary relationship type

Processing unit

1-1

0-N

from

0-N1-1

0-N

detail
Qty: num (2)
id: ORDER

PRODUCT

D

SUPPLIER
Account: num (5)

PRODUCT
PNum: num (4)
Name: char (20)
Price: num (4)
id: PNum
Price_with_VAT

PERSON
PID: num (4)
Name: char (30)
Address: compound (74)

Num[0-1]: char (4)
Street: char (50)
City: char (20)

Phone[0-5]: char (12)
id: PID

ORDER
ONum: char (5)
Date: date (1)
id: from.CUSTOMER

ONum

CUSTOMER
Category: char (3)
Program Understanding in DBRE 25

Data schema specification
A processing unit is any dynamic or logical component of the described system that can be associ-
ated with a schema, an entity type or a relationship type. For instance, a process, a stored procedure,
a program, a trigger, a business rule or a method can each be represented by a processing unit.

Some of these constructs are illustrated in figure 1. This schema includes entity types PERSON,
CUSTOMER, SUPPLIER, ORDER and PRODUCT. PERSON has two disjoint (D) sub-types,
CUSTOMER and SUPPLIER. Relationship type from is binary while detail is ternary. Each ORDER
entity appears in exactly one from relationship (cardinality [1-1]). Entity types and relationship
types have attributes. For entity type PERSON, attribute Name is atomic, single-valued and manda-
tory. Address is a compound attribute. Its component Num is atomic, single-valued and optional
(cardinality [0-1]). Phone is multivalued and optional (cardinality [0-5]): there are from 0 to 5
values per entity.

{PID} is the primary identifier of PERSON. The identifier of ORDER is made of the role of the
external entity type from.customer and of local attribute ONum ({from.customer, ONum}). The
identifier of detail states that the relationship type detail is identified by its ORDER and its PROD-
UCT. There cannot exist more than one detail relationship with the same ORDER and PRODUCT
entity types.

2.2.2. Logical specifications

A logical schema comprises data structure definitions according to one of the commonly used fami-
lies of models: relational model, network model (CODASYL DBTG), hierarchical model (IMS),
shallow model (TOTAL, IMAGE), inverted file model (DATACOM/DB), standard file (COBOL,
C, RPG, BASIC), object-oriented model (Versant), object-relational (Oracle) to mention the most
important ones.

The logical specification use the same concepts, of the generic model, as the one presented in the
conceptual specification. Some of the concepts presented in the conceptual specification are not
allowed in some logical models. For example relationship types, compound attributes, multivalued
attributes, isa hierarchies are not allowed in the relational model. These concepts need to be
expressed by equivalent constructs allowed in the model. Some parts of the conceptual schema
cannot be translated into the logical one because the logical model is more restrictive. Those
constraints are noted as a textual annotation below the schema.

New constructs that appear at this level are:

• Special kinds of multivalued attribute

In the conceptual specification a multivalued attribute represents sets of values, i.e. unstructured
collections of distinct values. At the logical level there is six categories to implement a multival-
ued attribute:

� Set: unstructured collection of distinct elements (default).

� Bag: unstructured collection of (not necessarily distinct) elements.

� Unique list: sequenced collection of distinct elements.

� List: sequenced collection of (not necessarily distinct) elements.

� Unique array: indexed sequence of cells that can each contain an element. The elements are
distinct.

� Array: indexed sequence of cells that can each contain an element.
26 Program Understanding in DBRE

A wide-spectrum specification model
• Reference constraint (ref)

This is an inter-group constraint where the origin group is the reference group and the target
group is the referenced group. The referenced group must be an identifier (primary or second-
ary). Each instance of the first group must be an instance of the second group.

• Inclusion constraint (incl)

This is an inter-group constraint where each instance of the first group must be an instance of the
second group; since the second group does not need to be an identifier, the inclusion constraint is
a generalization of the referential constraint.

• Equality constraint (equ)

As the reference constraint, in addition, an inclusion constraint is defined from the second group
to the first one.

FIGURE 2. Logical schema, this relational schema is an approximate translation of the
schema of figure 1.

For instance, the schema of figure 2 can be considered as a possible relational translation of the
conceptual schema of figure 1. In this schema, all the relationship types and compound and multi-
valued attributes have been transformed to obtain a schema with only entity types, mandatory or
optional atomic single-valued attributes, primary identifiers, referential constraints and equality
constraints. Some constraints of the conceptual schema could not be expressed in this schema and
are kept as annotation; such as the disjoint property of the isa hierarchy.

Similarly, it is possible to design a network, hierarchical or object-oriented equivalent schema.
Since we want to discuss reverse engineering problems independently of the DMS model, we will
use general terms such as entity type, relationship type and attribute. For a specific model, these
terms will be translated into the specific terminology of the model. For instance, entity type will be
called table in relational schemas, segment types in hierarchical schemas, and data sets in shallow
schemas. A relationship type will be read set type in the network model, access path in the shallow
model and parent-child relationship in the hierarchical model.

Entity type
Atomic attribute

Primary identifier
Reference constraint

Optional attribute

Equality constraint

A PERSON could not be a
CUSTUMER and a SUPPLIER
(the isa hierarchy was "D")

SUPPLIER
PID: num (4)
ACCOUNT: num (5)
id: PID

ref

PRODUCT
PNUM: num (4)
NAME: char (20)
PRICE: num (4)
id: PNUM
Price_with_VAT

PHONE
PID: num (4)
PHONE: char (12)
id: PID

PHONE
ref: PID

PERSON
PID: num (4)
NAME: char (30)
ADD_NUM[0-1]: char (4)
ADD_STREET: char (50)
ADD_CITY: char (20)
id: PID

ORDER
PID: num (4)
ONUM: char (5)
DATE: date (1)
id: PID

ONUM
ref: PID

DETAIL
PID: num (4)
ONUM: char (5)
PRODUCT: num (4)
PRD_NAME: char (20)
PRD_PRICE_VAT: num (4)
QTY: num (2)
SUPPLIER: num (4)
id: PID

ONUM
PRODUCT

ref: SUPPLIER
equ: PID

ONUM
ref: PRODUCT

CUSTOMER
PID: num (4)
CATEGORY: char (3)
id: PID

ref
Program Understanding in DBRE 27

Data schema specification
The level of details of the logical schema must be sufficient to the programmer to write the
programs that use those data structures. So the needed level of detail differs from one model to the
other. For example, to write a program that uses a relational DMS, the programmer only needs to
know the entity type and attributes names, the identifiers and the referential constraints. On the
other end, if the application uses standard files, he needs to know the name of the entity types and
attributes, the identifiers and the foreign keys, like for the relational one. But he also needs to know
the name of the collections and the access keys.

2.2.3. Physical specifications

Finally, physical specifications can be expressed through a physical schema. Due to the large vari-
ety of DMS-dependent features, it is not easy to propose a general model of technical constructs. As
far as reverse engineering is concerned, two essential concepts will be considered that may bring
structural or semantic hints:

• Collection

Collection is an abstraction of file, data set, tablespace, dbspace and any record repository in
which data is permanently stored.

• Access key (acc)

Access key is a group that represents any path providing a fast and selective access to entity
types that satisfy a definite criterion. Such as indexes, indexed set (DBTG), access path, hash
files, inverted files, indexed sequential organizations all are concrete instances of the concept of
access key.

FIGURE 3. Physical schema. This schema grossly derives from the schema of figure 2.

Entity type
Atomic attribute

Identifier and
access key

Collection

Equality constraint

Access key

A PERSON could not be a
CUSTUMER and a SUPPLIER
(the isa hierarchy was "D")

SUPPLIER
PID: num (4)
ACCOUNT: num (5)
id: PID

ref acc

PRODUCT
PNUM: num (4)
NAME: char (20)
PRICE: num (4)
id: PNUM

acc
acc: NAME
Price_with_VAT

PHONE
PID: num (4)
PHONE: char (12)
id: PID

PHONE
acc

ref: PID

PERSON
PID: num (4)
NAME: char (30)
ADD_NUM[0-1]: char (4)
ADD_STREET: char (50)
ADD_CITY: char (20)
id: PID

acc

ORDER
PID: num (4)
ONUM: char (5)
DATE: date (1)
id: PID

ONUM
acc

ref: PID

DETAIL
PID: num (4)
ONUM: char (5)
PRODUCT: num (4)
PRD_NAME: char (20)
PRD_PRICE_VAT: num (4)
QTY: num (2)
SUPPLIER: num (4)
id: PID

ONUM
PRODUCT
acc

ref: SUPPLIER
acc

equ: PID
ONUM

ref: PRODUCT
acc

CUSTOMER
PID: num (4)
CATEGORY: char (3)
id: PID

ref acc

CUST_STO

CUSTOMER
SUPPLIER
PERSON
PHONE

PROD_STO

PRODUCT

ORD_STO

DETAIL
ORDER
28 Program Understanding in DBRE

DMS-specific data structure specification
These constructs have been given a graphical representation (figure 3). In database design and
development, other physical constructs can be of interest, such as page size, extent size, file size,
various fill factors, index technology, physical device and site assignments, etc. They will be
ignored in this presentation.

Figure 3 schema is made up of seven physical entity types and three collections. Collection
CUS_STO will store entity types CUSTOMER, SUPPLIER, PERSON and PHONE. The primary
identifiers are supported by an access key, denoted by the symbol acc. An access key is also associ-
ated with some foreign keys and another one is defined on plain column {NAME} (to optimize the
access to a product through its name).

Other technical details are not shown in this graphical representation, such as record clusters,
physical column sizes and coding schemes, page lengths, buffer management, index technologies
and parameters, etc. But they are stored as textual annotations.

The physical specification adds to the logical one all the information needed to implement effi-
ciently the database using a given DMS. The physical specification has particular characteristics
regarding its syntax, the constraints that can be expressed and its performances.

2.2.4. Different levels of abstraction and different paradigms

DBRE is an exploratory process that has to deal with existing (legacy) systems. The exploratory
aspect implies that at any steps of the process the analyst can discover a construct that he is not
looking for (opportunistic approach). He must be able to represent this construct in the schema. For
example, if during the analysis of the source code of the program, to refine the physical schema of a
relational database, he discovers that a table is a sub-type of another, he must be able to note it in the
physical schema even if it is a conceptual model concept.

DBRE tries to recover the conceptual schema of the persistent data of a legacy application. It is not
exceptional that a legacy system does not have only one database but several and possibly of differ-
ent paradigms. This may append because the system is old and functions have been added. These
added functions may require other data and the programmer has decided to create a new database
(of a different paradigm) to store them. Another origin for more than one database for an applica-
tion is the integration of different applications. At the beginning there was two different applica-
tions (possibly of different companies or departments) and these applications were merged into a
single application, but the databases were not merged into a single one.

For all those reasons, it is necessary that our model must be able to represent schemas with different
levels of abstraction and different paradigms.

2.3. DMS-specific data structure specification

This section describes how the generic model represents data structures that can be found in legacy
systems. Four different families of models will be studied: relational model (SQL), network model
(CODASYL), hierarchical model (IMS) and standard file model (COBOL). For each model, the
translation of the model concepts to the generic model concepts is described: how the data structure
Program Understanding in DBRE 29

Data schema specification
can be specified and what are the differences between the logical and the physical schema. We will
also describe how different implicit data structures and constraints can be specified.

FIGURE 4. Relational model concepts translation.

FIGURE 5. SQL physical schema with its corresponding creation SQL-DDL code.

2.3.1. The relational model

The relational model does not contain a relationship type. Only atomic single-valued attributes are
accepted, they are called columns and they can be optional or mandatory. The main explicit
constraints are the primary identifier, called primary key, the secondary identifier, called unique

Relational Model Generic model

Tablespace, Storage area, DBspace Collection

Table Entity type

Column Atomic single-valued attribute (.-1)

Column not null Mandatory attribute (1-1)

Column null Optional attribute (0-1)

Primary key Primary identifier

Index Access key

Unique index Secondary identifier and access key

Foreign key Reference group

create dbspace SUP_PROD;
create table SUPPLIER (
 PID numeric(4) not null,
 NAME char(20) not null,
 ADD_STREET char(40) null,
 ADD_CITY char(20) not null,
 TELEPHONE1 char(15) not null,
 TELEPHONE2 char(15) not null,
 TELEPHONE3 char(15) not null,
 TELEPHONE4 char(15) not null,
 TELEPHONE5 char(15) not null,
 primary key (PID))
 in SUP_PROD;
create table PRODUCT (
 PNUM char(5) not null,
 NAME char(20) not null,
 PRICE numeric(4) not null,
 SUPPLIER numeric(4) not null,
 primary key (PNUM),
 unique (NAME),
 foreign key (SUPPLIER) references SUPPLIER)
 in SUP_PROD;
create index ACC_SUPPLIER
 on SUPPLIER (ADD_CITY);
create index ACC_PRODUCT
 on PRODUCT (SUPPLIER);

SUPPLIER
PID: num (4)
NAME: char (20)
ADD_STREET[0-1]: char (40)
ADD_CITY: char (20)
TELEPHONE1: char (15)
TELEPHONE2: char (15)
TELEPHONE3: char (15)
TELEPHONE4: char (15)
TELEPHONE5: char (15)
id: PID

acc
acc: ADD_CITY

PRODUCT
PNUM: char (5)
NAME: char (20)
PRICE: num (4)
SUPPLIER: num (4)
id: PNUM

acc
id’: NAME

acc
ref: SUPPLIER

acc

SUP_PROD

SUPPLIER
PRODUCT
30 Program Understanding in DBRE

DMS-specific data structure specification
index and the referential constraint, called foreign key. Access keys can be declared with duplicates
or not and are called index or unique index. Each identifier is supported by an access key (index).
An entity type is called a table. A collection, called tablespace, storage area or dbspace depending
on the DMS, can contain more than one entity type.

The table of the figure 4 summarizes concepts translation between the generic model and the rela-
tional model. Figure 5 is an example of an SQL schema and of the SQL-DDL code used to create
such a database.

2.3.2. The network model

FIGURE 6. Network model concepts translation.

In the network model there is no isa hierarchy. A collection, called area, can contain more than one
entity type, called record, and an entity type can be stored in more than one collection. The
attributes, called fields, can be single-valued or multivalued (array), atomic or compound but they
are mandatory. The relationship types, called sets, are binary, one to many, cannot be cyclic and do
not contain attributes. The 0-N role is called the owner and the 0-1 (or 1-1) role is called the
member.

The network model has two kinds of access key, calc key and key. The calc key contains only
attributes. There is at most one all-attribute identifier per entity type, called calc key ... duplicate not
allowed. The second kind of access key, called key, contains one member role and at least one
attribute. The key ... duplicate not allowed is a secondary identifier.

The network model has a special entity type, called system, that contains no data. The system entity
type is use has the owner of an entity type that has no natural owner and for which it is necessary to
create a key.

Network Model Generic model

Area Collection

Record Entity type

Field Mandatory attribute (1-1)

Array (occurs I) Multi-valued attribute (I-I) - array

Calc ... duplicates not allowed Primary identifier and access key (contains
only attributes)

Calc ... Access key (contains only attributes)

Key is ... duplicates not allowed Primary identifier and access key (contains the
role of the owner and attributes)

Key is ... Access key (contains the role of the owner and
attributes)

Set Relationship type

Owner 0-N role

Member ?-1 role

If more than one member Multi-domain role
Program Understanding in DBRE 31

Data schema specification
Each entity type has an implicit technical identifier, called DBkey, that is the physical number of the
entity type which can be used to access the entity type. The DBkey is not explicitly represented in
the schema. If the DBkey needs to be represented (because it is referenced by a foreign key, for
example) a technical attribute, called DBkey, is added and declared as an identifier.

FIGURE 7. CODASYL physical schema with its corresponding creation CODASYL-DDL
code.

The table of figure 6 summarizes concepts translation between the generic model and the network
model. Figure 7 is an example of a CODASYL physical schema and of the CODASYL DDL code
used to create such a database.

2.3.3. The standard file model

The standard file model does not include the concept of relationship type nor that of foreign key.
The attributes, called fields, are single-valued or multivalued (array), atomic or compound and are
mandatory. Two fields or more can have the same physical position by the usage of the clauses
redefine or rename. A collection, called file, can include several entity types, called records. An
entity type can be in only one file.

AREA NAME IS SUP-PROD.
RECORD NAME IS SUPPLIER
 LOCATION MODE IS CALC USING (SUPP-ID)
 DUPLICATES ARE NOT ALLOWED
 WITHIN AREA SUP-PROD.
 02 SUPP-ID PIC 9(4).
 02 SUPP-NAME PIC X(20).
 02 SUPP-ADDRESS.
 04 SUPP-STREET PIC X(40).
 04 SUPP-CITY PIC X(20).
 02 SUPP-TELEPHONE PIC 9(5) OCCURS 5.
RECORD NAME IS PRODUCT
 LOCATION MODE IS VIA SUPP-PROD
 WITHIN AREA SUP-PROD.
 02 PROD-NUM PIC X(5).
 02 PROD-NAME PIC X(20).
 02 PROD-PRICE PIC 9(4).
SET NAME IS SYS-SUPP
 OWNER IS SYSTEM
 ORDER IS PERMANENT LAST.
 MEMBER IS SUPPLIER
 KEY IS (SUPP-CITY ASCENDING)

DUPLICATES ARE FIRST.
SET NAME IS SUPP-PROD
 OWNER IS SUPPLIER
 ORDER IS PERMANENT LAST.
 MEMBER IS PRODUCT
 KEY IS (PROD-NAME ASCENDING)

DUPLICATES ARE NOT ALLOWED.

0-1
member

0-N
owner

SYS-SUPP

0-1
member

0-N
owner

SUPP-PROD

SYSTEM

SUPPLIER
SUPP-ID: num (4)
SUPP-NAME: char (20)
SUPP-ADDRESS: compound (60)

SUPP-STREET: char (40)
SUPP-CITY: char (20)

SUPP-TELEPHONE[1-5]: num (5)
id: SUPP-ID

acc
acc: SYS-SUPP.owner

SUPP-ADDRESS.SUPP-CITY

PRODUCT
PROD-NUM: char (5)
PROD-NAME: char (20)
PROD-PRICE: num (4)
id’: SUPP-PROD.owner

PROD-NAME
acc

SUP-PROD

SUPPLIER
PRODUCT
32 Program Understanding in DBRE

DMS-specific data structure specification
FIGURE 8. Standard file model concepts translation.

FIGURE 9. COBOL physical schema example with its corresponding file declarations code.

The standard file model encompasses different types of file. In this section we only describe three
of them (sequential, relative and indexed). There are other types that are not used to store perma-
nent data but temporary elements, such as sort, merge and report files. The sequential file, as its
name suggests, is a file that can only be accessed sequentially. So, there is no identifier or access
key defined. In a relative file, the only means to access directly one of its entity types is through the
entity type number, called relative key. This entity type number is the only identifier of the record.
To represent a relative file, a technical attribute is added to the entity type that represents the record

Standard file Model Generic model

File Collection

Record type Entity type

Field Mandatory attribute (1-1)

Array (occurs I) Multi-valued attribute (I-I) - array

Record key Primary identifier and access key

Alternate record key without duplicate Secondary identifier and access key

Alternate record key with duplicate Access key

Redefine, rename Group with "redef" function

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT SUP ASSIGN TO "SUP"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS PID
 ALTERNATE RECORD KEY IS CITY WITH DUPLICATES.
 SELECT PROD ASSIGN TO "PROD"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS PNUM
 ALTERNATE RECORD KEY IS NAME.
DATA DIVISION.
FILE SECTION.
FD SUP.
01 SUPPLIER.
 02 PID PIC 9(4).
 02 NAME PIC X(20).
 02 ADDRESS.
 03 STREET PIC X(40).
 03 CITY PIC X(20).
 02 TELEPHONE PIC X(15) OCCURS 5 TIMES.
FD PROD.
 01 PRODUCT.
 02 PNUM PIC X(5).
 02 NAME PIC X(20).
 02 PRICE PIC 9(4).
 02 SUPPLIER PIC 9(4).

SUPPLIER
PID: num (4)
NAME: char (20)
ADDRESS: compound (60)

STREET: char (40)
CITY: char (20)

TELEPHONE[5-5] array: char (15)
id: PID

acc
acc: ADDRESS.CITY

PRODUCT
PNUM: char (5)
NAME: char (20)
PRICE: num (4)
SUPPLIER: num (4)
id: PNUM

acc
id’: NAME

acc

PROD

PRODUCT

SUP

SUPPLIER
Program Understanding in DBRE 33

Data schema specification
number and this attribute is the primary identifier of the record and it is supported by an access key.
In an indexed file, the user can define its own identifiers and indexes. The primary identifier, called
record key is supported by an access key. A secondary identifier, called alternate record key without
duplicate, is supported by an access key. Non identifying access keys are called alternate record key
with duplicate.

The table of figure 8 summarizes concepts translation between the generic model and the standard
file model. Figure 9 is an example of a COBOL physical schema with its declaration code counter-
part.

2.3.4. Other constructs

As shown in the previous pages, DMS models do not have very rich set of data structures and
constraints. A lot of constructs could not be expressed in the DMS model. For example, the
COBOL model does not have reference constraints nor relationship type. None of the DMS model
offers mechanism to indicate that there is some redundancy. It is not because the DMS model does
not offer some constraints that the programmer does not need them. In such situations, the program-
mer implements, implicitly, these constraints in the application program.

During DBRE, if the analyst discovers through some code or data analysis, a constraint or data
structure that does not belong to the DMS model, he must express it in the schema. If the constraint
exists in another DMS model or in the conceptual model, the other model notation is used. For
example, a reference constraint discovered during the analysis of COBOL files is noted as a refer-
ence group into the schema. Another example is an attribute of a relational database that can be
decomposed into several attributes (the address can be decomposed as street, city, zip code) is
represented as a compound attribute.

FIGURE 10. Computed reference constraint example.

It is necessary to define some techniques to represent non standard constraints, i.e. constraints that
do not appear in DMS models nor in text books but that programmer use. We have identified some
of them:

• Computed referential constraint (cfk)

In standard foreign key, the target and the origin of the foreign key have the same value. Some-
times a function is applied to the value of the origin to obtain the value of the target. For exam-
ple, in figure 10, invoice_date is the date of the invoice and year is the number of the year. The
later can be extracted from the invoice_date. The computed foreign key is represented by an
inter-group constraint where the first group is the reference group (noted cfk, for computed for-
eign key) and the second group is the reference identifier with the expression of the matching
function recorded as a annotation.

INVOICE
code
invoice_date
total
id: code
cfk: invoice_date

FISCAL_YEAR
year
id: year

year = the year of invoice_date
34 Program Understanding in DBRE

Schema transformation
FIGURE 11. Redundancy and data dependency constraint example.

• Redundancy constraint (rd)

A common optimization technique consist in copying some information from one record to
another. In the schema of figure 11, CUSTOMER.name is copied into ORDER.cus_name. The
redundancy constraint is represented as an inter-group constraint representing that the value of
the origin group is a copy of the target group. The target group has no specific type.

• Data dependency constraint (dd)

Data dependency is an inter-group constraint representing that every instance of the origin group
depends on the value of the target group. In the schema of figure 11 discount is data dependant
on category. The annotation gives the function to compute the value of discount.

• Obsolete / unused data structure

During the maintenance and evolution of the database, it is possible that some attributes or entity
types were created and are not used any more. It is important to mark these data structures as
obsolete to prevent any further analysis and to suggest to suppress them later, during some main-
tenance or migration process.

• Working data structure

Entity types or attributes found in the database can have no relation with the application domain,
they are working data structures. For example, it can be stored in an entity type the login and
password of the user of the application, the last customer’s number used. These data structures
are dependent on the way the application is implemented and not on the domain of the applica-
tion. For example, if the operating system offers some access control to the application, it is not
necessary to maintain an entity type with the login and password.

Other type of constraints can be found, for which no standard representation has been defined. It is
up to the analyst to define and document his own notations to represent them.

2.4. Schema transformation

Most database engineering processes can be modeled as data structure transformation. Indeed, the
production of a schema can be considered as the derivation of this schema from a (possibly empty)
source schema through a chain of elementary operations, called schema transformations. Adding a
relationship type, deleting an identifier, translating names or replacing an attribute with an equiva-
lent entity type, are all examples of basic operators through which one can carry out such engineer-
ing processes as building a conceptual schema [Batini et al.-1992][Batini et al.-1993], schema

If (category = "good")
then discount = 10%
else discount = 0%

ORDER
code
cus_code
date
cus_name
discount
id: code
ref: cus_code
rd: cus_name
dd: discount

CUSTOMER
id
name
address
category
id: id
 : name
 : category
Program Understanding in DBRE 35

Data schema specification
normalization [Rauh et al.-1995], DMS schema translation [Hainaut et al.-1993b][Rosenthal et al.-
1988][Rosenthal et al.-1994], schema integration [Batini et al.-1992], schema equivalence [D’Atri
et al.-1984][Jajodia et al.-1983][Kobayashi-1986][Lien-1982], data conversion [Navathe-1980],
schema optimization [Hainaut et al.-1993a][Halpin-1995] and others [Blaha-1996][De Troyer-
1993][Fahrner et al.-1995]. As it will be shown later on, they can be used to reverse engineer
physical data structure as well [Bolois et al.-1994][Casanova et al.-1984][Hainaut et al.-
1993a][Hainaut et al.-1993b][Hainaut et al.-1995].

FIGURE 12. Example of semantic-preserving transformations.

A (schema) transformation is most generally considered as an operator by which a source data
structure C is replaced with a target structure C’. Though a general discussion of the concept of
schema transformation would include techniques through which new specifications are inserted
(semantics-augmenting) into the schema or through which existing specifications are removed from
the schema (semantics-reducing), we will mainly concentrate on techniques that preserve the speci-
fication (semantics-preserving). A complete discussion about schema transformation can be found
in [Hainaut et al.-1993b]. Some examples of semantic-preserving transformations are given in
figure 12. The first transformation is the transformation of a relationship type into an entity type and
its inverse (figure 12.a). The second transform an attribute into an entity type by instance represen-
tation, in which each instance of A2 in each entity type is represented by an EA2 entity type and its
inverse (figure 12.b). Finally, figure 12.c shows the transformation of a relationship type into a
reference group and its inverse.

1-1

0-N

R_E3

1-1

0-N

R_E2

1-1

0-N

R_E1

R
A1
A2
id: R_E1.E1

R_E2.E2
R_E3.E3

E3E2E1

0-N

0-N

0-N
R

A1
A2

E3E2E1

E
A1
A2[1-5]
A3

1-11-5 R
E

A1
A3

EA2
A2
id: R.E

A2

0-N1-1 R

E2
B1
B2
id: B1

E1
A1

E2
B1
B2
id: B1

E1
A1
B1
ref: B1

 ⇔

 ⇔

 ⇔

a) Relationship type into an entity type.

b) Attribute into an entity type by instance representation.

c) Relationship type into a reference group.
36 Program Understanding in DBRE

Schema transformation
FIGURE 13. Transformation plan to transform a conceptual schema into its logical relational
equivalent.

Being functions, transformations can be composed in order to form more powerful operators.
Complex transformation combinations can be built through transformation plans which are high
level semi-procedural scripts that describe how to apply a set of transformations in order to fulfill a
particular task or to meet a goal. These scripts are composed of transformations that are executed if
some predicates (about properties of the schema) are satisfied. It is important to note that a transfor-
mation plan can be considered as a strategy for higher level transformation to be performed on a
whole schema. For example, the transformation plan to transform a conceptual schema in its logical
relational equivalent is given in figure 13.

This analysis leads to an important conclusion for the following: all engineering processes, be they
related to forward or reverse engineering, can be considered as schema transformations.

for each isa hierarchy (isa)
transform isa into relationship type

for each complex1 relationship type (rt)
transform rt into entity type

for each binary many-to-many relationship type (rt)
transform rt into entity type

while there is some multivalued or compound attribute
for each multivalued attribute (att)

transform att into entity type
for each compound attribute (att)

disaggregate att
for each relationship type (rt)

transform rt into reference group
(add technical identifier if necessary)

1. relationship type with more than one role or with attribute.
Program Understanding in DBRE 37

Data schema specification
38 Program Understanding in DBRE

CHAPTER 3 A generic methodology
for database
reverse engineering
The database reverse engineering (DBRE) methodology is introduced as the reverse of the database
forward engineering. A generic DBRE methodology is presented. This method is divided into three
processes: project preparation, data structure extraction and data structure conceptualization. And it
produces two schemas, the logical schema and the conceptual schema. The project preparation
identifies the components to be analyzed, the resources to be allotted and the planning. The data
structure extraction process aims at rebuilding the logical schema of the database. This schema can
be described as the database view the programmer has (or must have). The data structure concep-
tualization process tries to specify the semantic structure of the logical schema as a conceptual
schema.

3.1. Database reverse engineering is the reverse of
forward engineering

Since reverse engineering consists in recovering (among others) the conceptual schema from the
operation code, it is reasonable to consider that this process is just the reverse of forward engineer-
ing [Baxter-1997].

Reversing a hierarchically decomposable process consists in inverting the order of the sub-
processes, then replacing each sub-process with its inverse. For databases that have been developed
according to an ideal approach, the output of forward engineering, thus the input of reverse engi-
neering process, is of three kinds: Codeddl represents the DDL code, Codeext represents the non-
DDL code (part of the structure and constraints that are not expressed in the DDL code) and E(∆) is
the part of the specification that is lost during the forward engineering. The forward engineering is
composed of the following processes (left part of figure 14):

• Conceptual design

Produces the conceptual schema, a computer-independent description of the information struc-
tures to be implemented by the database. It is divided in two sub-processes:

� Conceptual analysis: translates user’s requirements in formal specifications.
Program Understanding in DBRE 39

A generic methodology for database reverse engineering
FIGURE 14. The main DBRE processes as the inverse of forward processes.

� Normalization: gives the conceptual schema desirable qualities such as normality, minimal-
ity, readability, clarity and compliance with corporate standards.

• Logical design

Transforms the conceptual schema into a DMS-compliant optimized logical schema (called
logical schema). This schema is expressed in the data model of the chosen DMS and it satisfies
operational criteria such as space and time performance. It is divided in two sub-processes

� Optimization: modifies the schema in order to give it better performance.

� Model translation: converts the schema into data structures that are compliant with the model
of the DMS.

Some constructs of the conceptual schema are not transformed into the logical schema (E(∆)).
This lost of semantics happens because the DMS model is weaker than the conceptual model
and some constructs are to complex (expensive) to express or the program does not know how to
express them.

• Physical design

Technical parameters are set and physical constructs are defined to generate the physical
schema.

Logical schema

Schema Refinement

Preparation

Conceptual schema

E(∆)

codeddl

codeext

Logical schema

L
og

ic
al

 D
es

ig
n

Conceptual schema

Normalization

Normalization

 Optimization

Model Translation Untranslation

De-optimization

Schema CleaningPhysical design

DDL-code Extraction

=

inv

inv

inv

inv

Database Forward Engineering Database Reverse Engineering

C
onceptualization

D
ata stuctructure

D
ata structure
E

xtraction

User requirements

Conceptual analysis

C
on

ce
pt

ua
l

D
es

ig
n

inv
Physical schema

Coding
40 Program Understanding in DBRE

Database reverse engineering is the reverse of forward engineering
• Coding

Produce an executable version of the database. Translate the DMS constructs into DMS-DDL
definition (called the codeddl) and non-DMS constructs into, e.g., procedural sections (called
codeext). Some constructs are not translated (intentionally or not) in code (E(∆)).

If DBRE is the reverse of those processes, it can be sketched graphically (figure 14) in order to
show the links with the forward process. The correspondence forward / reverse marked with "inv"
means that each process is the inverse of the other, while the symbol "=" indicates that they are of
the same nature. DBRE comprises two steps:

• Data structure extraction

Recover the logical schema from the operational code (codeddl and codeext). This consists in
uncoding the codeddl (DDL-code extraction) and uncoding the codeext (schema refinement).
Some parts of the non implemented specification (E(∆)) can be recovered during the schema
refinement through the analysis of other information sources such as the data, the user or pro-
gramer interview, etc. To obtain the logical schema, the physical design process should be
undone. This is fairly simple since the forward process consist in adding technical constructs to
the logical constructs; this sub-process is called schema cleaning.

• Data structure conceptualization

Recover the conceptual schema from the logical one, i.e. removing and transforming the optimi-
zation called de-optimization (reverse of the optimization), interpreting the logical constructs in
terms of their conceptual structures called untranslation (reverse of the model transformation)
and gives the conceptual schema desirable qualities (normalization).

This approach seems correct if the application that is reengineered has been developed according to
an ideal approach. But a lot of applications have been developed according to some empirical
approach or have evolved. How can the suggested methodology be applied to such applications?

FIGURE 15. Two equivalent conceptual schema.

The purpose of the DBRE is not to recover the conceptual schema that was used during the concep-
tion of the database, but to recover a possible conceptual schema that expresses the semantics of the
database. More than one conceptual schema can specify the same database. All the schemas have
the same semantics, i.e. they represent the same domain. For example, the schemas of figure 15
both represent the same domain (orders, details and products) and are equivalent. To choose
between one of them as the conceptual schema is a matter of corporate standards, habits, method-
ological standard, etc. Thus, even if the conceptual schema never existed, it is possible to recover a
conceptual schema that represents the database.

A DBRE difficulty is that a part of the semantics may lie outside the system, i.e., it has not been
wired in the coded part of this system (E(∆)). The system (DMS, application, etc.) is not aware of
the existence of these constructs. This semantics can be found elsewhere, for instance in the envi-

0-N 0-NDETAIL

PRODUCTORDER

1-1

0-N

reference1-1

0-N

of

ORDER PRODUCT

DETAIL

id: reference.PRODUCT
of.ORDER

 ⇔
Program Understanding in DBRE 41

A generic methodology for database reverse engineering
ronment of the application, in the documentation or in the data. Therefore, the extraction process
needs to analyze other source of information than the code of the application.

FIGURE 16. General architecture of the reference database reverse engineering methodology.

3.2. The DBRE methodology

The general architecture of the reference DBRE methodology is outlined in figure 16.

Project preparation is a preliminary step, which aims at the identification and the evaluation of the
components to be analyzed, the evaluation of the resources necessary and the definition of the plan-
ning of the operations. Even if this step is not strictly a reverse engineering task but more a manage-
rial one, experience teaches us that managing the whole project and identifying the relevant
information sources is not an easy task and is crucial for the correct development of the project. The
project preparation is composed of the following processes:

• Identification of the relevant components and of their quality

The files, programs, screens, reports, forms, data dictionaries, repositories, program sources,
data, and documentation are identified and evaluated, not all the components bring the same
quality and quantity of information. For example, DDL gives very precise information and is
cheap to analyze, procedural source code gives also precise information but its analysis is quite
expensive. Documentation, if up-to-date and carefully written, can be very useful and cheap to
analyze (and even make the reverse engineering process useless!). When the documentation is
obsolete and/or not structured, its analysis can take times and, even worse, lead to false assump-
tions.

• Architecture recovery

It consists in drawing the main procedural and data components of the system and their relation-
ships.

• Project definition

It defines precisely the part of the application that will be analyzed and what are the expected
results. Usual only a part of the applications will be reverse engineered. It is important to define
precisely the border of the analyzed applications, because all the applications deeply interact and
it can be difficult to know if, for example, an entity type belongs to the analyzed application or

conceptual
schema

complete
logical schema

Project preparation

Data structure extraction

Data structure conceptualization

data programs DDL
42 Program Understanding in DBRE

Data structure extraction
not. It is also important to explain to the customer which results he can expect to avoid surprise/
conflicts during or after the project. The nature of the result must be specified (the expected
result will be a conceptual schema, a logical schema or a new database) and its weakness and
strength explained (for example, only the structure of the entity types will be discover).

• Resource identification

Evaluates the resources needed in terms of skill, work force, calendar, machine, tools and bud-
get.

• Operational planning

For each step of the project a completion date and a budget is given. It is important to schedule
some meeting where the state of the project is presented, the difficulties met are explained and
the planning can be adjusted.

The data structure extraction process aims at rebuilding a complete logical schema in which all the
explicit and implicit structures and properties are documented. The main difficulty is that many
constructs and properties are implicit, i.e. they are not explicitly declared, but they are implemented
in procedural sections of the programs. Recovering these structures uses all the available informa-
tion sources to extract explicit and implicit constructs.

The data structure conceptualization process tries to specify the semantic structures of this logical
schema as a conceptual schema. While some constructs are fairly easy to interpret (e.g., a standard
foreign key generally is the implementation of a one-to-many relationship type), others use tricky
implementation and optimization techniques.

3.3. Data structure extraction

This phase consists in recovering the complete logical schema, including all the implicit and
explicit structures and constraints. This schema can be described as the database view the program-
mer has (or must have) to develop new applications and to maintain them correctly. So this schema
contains a description of all the collections, the entity types and attributes of the database, with their
physical names and all the constraints, implemented or not, that the data must verify.

True database systems generally supply, in some readable and processable form, a description of
this schema (data dictionary contents, DDL text, etc.). Though essential information may be
missing from this schema, the latter is a rich starting point that can be refined through further anal-
ysis of the other components of the application (views, sub-schemas, screen and report layouts,
procedures, fragments of documentation, database content, program execution, etc.). The problem
is much more complex for standard files, for which no computerized description of their structure
exists in most cases. The analysis of each source program provides a partial view of the collection
and entity type structures only. For most real-world applications this analysis must go well beyond
the mere detection of the entity type structures declared in programs.
Program Understanding in DBRE 43

A generic methodology for database reverse engineering
FIGURE 17. General architecture of data structure extraction phase.

The main processes of data structure extraction are shown in figure 17.

3.3.1. DDL code analysis

This rather straightforward process consists in analyzing the data structure declaration statements
(in specific DDL) included in the schema creation scripts and/or application program declarations
(see annex for a detailed description of the DB-MAIN DDL code extractors). It produces a physical
schema, called raw physical schema. Extracting physical specifications from the system data dictio-
nary, such as DMS system catalog, is of the same nature as DDL analysis.

3.3.2. Physical integration

When more than one DDL source has been processed, the analyst is provided with several extracted
schemas. This can occur when the DMS does not provide a unique data dictionary. For example
each COBOL program declares the files it uses and thus each COBOL program declares a part of
the files used by the application. Other DMS, as CODASYL declares a global schema that gives the
list of the entity type and the identifier and access keys. The sub-schemas do not define the identi-
fiers and access keys but can declare different (more precise) data structures of the entity type. With
such DMS, the global schema and the sub-schema must be integrated. A last situation with several
physical schema is when the application uses several different databases of possibly different DMS.
The analysis of each database produces a physical schema and all those schemas need to be inte-
grated.

3.3.3. Schema refinement

The schema refinement process is a complex task through which various information sources are
searched for evidence of implicit or lost constructs. The explicit physical schema obtained so far is

Data structure
 extraction

Data structure
conceptualization

Complete
logical schema

programs

physical
schema

Conceptual
schema

DDL code
 analysis

Raw physical
 schema

Physical
integration

Schema
refinement

Complete
physical sch.

Complete
logical schema

Schema
cleaning

DMS-DDLphysical sch. ... dataprograms

D
at

a
st

ru
ct

ur
e

ex
tr

ac
ti

on

DMS-DDL

data other

Integrated
physical sch.

Preparation
44 Program Understanding in DBRE

Data structure extraction
enriched with these constructs, thus leading to the complete physical schema. The complexity of the
process mainly lies in the variety and in the complexity of the information sources. Indeed the
implicit constraints are hidden, among others, in procedural sections in the application programs,
JCL scripts, GUI procedures, screens, forms and reports, triggers and stored procedures. To perform
reverse engineering of one application, usually more than one of those potential sources of informa-
tion need to be analyzed and for each one there exists more than one way to express a constraint.
For example, in a COBOL program there are at least six different ways to validate a reference
constraint.

In addition, the non encoded part of the system must be analyzed as well because it can provide
evidence for lost constructs. This part includes file contents (the data), existing documentation,
experimentation (execution of the program), user and programmer interviews as well as the envi-
ronment behavior. Environment behavior are the constraints that are enforced by the environment
of the application. For example, the list of the customers is provided by another application that
verifies all the constraints and thus the current application does not validate that the customer
number is unique (an identifier). So it is impossible to discover the identifier of the customer by the
analysis of the current application.

3.3.4. Schema cleaning

This process transforms the complete physical schema into the complete logical schema by remo-
ving or transforming all the physical constructs into logical ones. All the physical constructs can be
discarded at this point because they do not provide any information about the database logical struc-
ture. They were useful for technical reasons such as optimizing the performance of the database or
implement some access mechanisms, due to DMS limitations. The main transformations that can
be applied are:

• Removing access keys.

• Removing collections.
Program Understanding in DBRE 45

A generic methodology for database reverse engineering
FIGURE 18. General architecture of the data structure conceptualization phase.

3.4. Data structure conceptualization

This second major phase addresses the conceptual interpretation of the logical schema. It consists
for instance in detecting and transforming or discarding non-conceptual structures, redundancies,
technical optimizations and DMS-dependent constructs and in interpreting them. The conceptual-
ization phase comprises three main processes, namely preparation, basic conceptualization and
conceptual normalization (figure 18).

• Preparation

The complete logical schema obtained so far may include constructs that must be identified and
discarded or transformed because they convey no semantics. There are two main kinds of such
constructs. The dead data structures are obsolete structures that have been carefully left in the
database by the successive programmers. The technical data structures have been introduced as
internal constructs of the programs and are not intended to model the application domain (pro-
gram counter, name of the last user, etc.).

• Basic conceptualization

The main objective of this process is to extract all the relevant semantic concepts underlying the
prepared logical schema. Two different problems, requiring different reasoning and methods,
have to be solved: schema untranslation and schema de-optimization.

The logical schema is the technical translation of conceptual constructs. Through schema
untranslation, the analyst identifies the traces of such translations and replaces them with their

Complete
logical schema

Preparation

De-optimization

Normalization

Untranslation

B
as

ic
C

on
ce

pt
ua

li
za

ti
on

Raw conceptual
schema

Conceptual
schema

D
at

a
st

ru
ct

ur
e

co
nc

ep
tu

al
iz

at
io

nPrepared
logical schema

Data structure
 extraction

Data structure
conceptualization

Complete
logical schema

programs

physical
schema

Conceptual
schema

DMS-DDL

data other

Preparation
46 Program Understanding in DBRE

Data structure conceptualization
equivalent conceptual constructs. Though each data model can be assigned its own set of trans-
lating (and therefore of untranslating) rules, two facts are worth mentioning. First, several data
models can share an important subset of translating rules (e.g. COBOL files and CODASYL
structures both have multivalued attributes but not optional attributes). Secondly, translation
rules considered specific to a data model are often simulated in other data models (e.g. foreign
keys in IMS and CODASYL databases). Hence the importance of generic approaches and tools.

The logical schema is searched for traces of constructs designed for optimization purpose, this
activity is called schema de-optimization. Four main families of optimization techniques should
be considered: discarding constructs, denormalization, structural redundancy and restructuring.

• Conceptual normalization

This process restructures the basic conceptual schema in order to give it the desired qualities one
expects from any final conceptual schema, such as expressiveness, simplicity, minimality, read-
ability, genericity, extensibility. For instance, some entity types are replaced with relationship
types or with attributes, is-a hierarchies are made explicit, names are standardized, etc.

FIGURE 19. Example of entity type transformed into attribute used in different process.

The transformations used in each step will not be detailed, but section 3.4.4 gives the list of all the
transformations used in reverse-engineering with their forward counterpart and in which process
they are usually used. Several of those transformations are not used only in one process and need to
be described more than once. For example, the transformation of an entity type into an attribute can
be used in the untranslation, the de-optimization and in the normalization processes, depending of
the DMS and the schema:

• Untranslation

A relational database does not support multivalued attribute. One solution to store a multivalued
attribute in a relational database is to transform it into an entity type. During the untranslation
process if the analyst find an entity type that contains only one attribute and has only one role of
cardinality 1-1, this entity type can be untranslated as an attribute (see figure 19.a).

0-N 1-1has
TELEPHONE
Num

CUSTOMER
Name ⇔

CUSTOMER
Name
Telephone[0-N]

1-11-N contains
ORDER

Ord_Num
id: Ord_Num

DETAIL
Prod_Num
Quantity
Price
id: contains.ORDER

Prod_Num

 ⇔

ORDER
Ord_Num
detail[1-N]

Prod_Num
Quantity
Price

id: Ord_Num
id(detail):

Prod_Num

a) Untranslation transformation.

c) Normalization transformation.

b) De-optimization transformation.

1-11-1 pic
Picture
File
Format

CUSTOMER
Name

CUSTOMER
Name
Picture

File
Format

 ⇔
Program Understanding in DBRE 47

A generic methodology for database reverse engineering
• De-optimization

If an entity type is accessed quite often and it contains a huge attribute that is rarely used, a com-
mon optimization is to transform this attribute into an entity type. For example, in figure 19.b, if
the CUSTOMER entity type contains the picture of the customer and this entity type is accessed
each time the customer orders a product to have its name, but the picture is used only once a
year. During the de-optimization an entity type that is connected by a one-to-one relationship
type can be transformed into an attribute.

• Normalization

An entity type, that plays only a 1-1 role and is dependent on the entity type to which it is con-
nected, can be transformed into an attribute during the normalization of the schema. For exam-
ple, in figure 19.c, DETAIL plays a 1-1 role with ORDER, it can be transformed as a multivalued
attribute of ORDER.

3.4.1. Preparation

This phase prepares the schema in such a way that it only contains structures and constraints that
are necessary to understand the semantics of the schema. They are two kinds of constructs that
need to be discarded: dead data structures and technical data structures.

In addition, this phase carries out cosmetic changes such as naming improvement and physical
construct removing. DMS impose restrictions about the name of the objects (not all the characters
are accepted, the length of the names is limited, names are case sensitive or not). A database has
been developed by several programmers and has been maintained, so the naming convention are not
always the same: synonyms have been used (in some entity type the customer term has been used,
in other the term buyer is used, etc.), more than on language has been used (mixture of English,
French and Dutch word). Through screen and report analysis meaningful names can be found. For
all those reasons it is necessary to rename the objects with meaningful name to have a more read-
able schema.

The logical schema still contains physical constructs that are useless in the conceptual schema such
as indexes files. These constructs can be removed.

FIGURE 20. Example of unnecessary attributes decomposition.

Some awkward parts of the schema can be also restructured. For example, during data structure
extraction, the structure of some attributes is refined. During this phase, unnecessary attribute
decomposition can be created. Figure 20.a shows the physical schema and the data structure decla-
ration used to refine the attribute Detail. The result (figure 20.b) gives the attribute Detail that is

ORDER
ord_id
detail
id: ord_id

ORDER
ord_id
detail

details[20-20]
ref-det-stk
ord-qty

id: ord_id

ORDER
ord_id
details[20-20]

ref-det-stk
ord-qty

id: ord_id

 ⇒ ⇒
01 DETAILS OCCURS 20 TIMES.
 03 REF-DET-STK PIC 9(5).
 03 ORD-QTY PIC 9(5).

a) Raw schema and vari-
able declaration.

b) Refined
schema.

c) Prepared
schema.
48 Program Understanding in DBRE

Data structure conceptualization
composed of only one attribute (Details). This unnecessary decomposition can be suppressed
(figure 20.c).

FIGURE 21. The local_num attribute is not used any more and can to be removed.

3.4.1.1. Dead data structures

The dead data structures are obsolete data structures, which have been carefully left in the database
by the successive programmers. These data structures typically appear during the evolution of the
applications. For example, a car seller gives to each of the vehicles he sells an identification
number and the car manufacturer also gives (another) identification number to the car. The two
numbers are needed, because when the order is created the manufacturer number is not yet known.
So the car description entity type contains two identifying attributes, see figure 21, one for the
number generated by the seller (Local_Num) and one for the number given by the manufacturer
(Manuf_Num). After some years, the car seller has a direct access to the manufacturer information
system and immediately knows the car number given by the manufacturer. So he decides to use
Manuf_Num as the only identifier, so the attribute Local_Num becomes redundant, but the program-
mer does not remove the attribute from the database, he just discard its uses. During the data struc-
ture extraction phase we have noticed that the field is not used anymore and it can be removed.

Another origin of dead data structure is that the programmer anticipates a possible evolution of the
application. For example, the programmer notices that the supplier has an E-mail address, while the
customer has none. He adds such a attribute to the customer entity type to anticipate a possible
evolution. Years later, this attribute was never used and it can be removed.

Programmers are reluctant to remove such data structures during classical maintenance because
they need to be sure that the data structures are not used any more and usually they only master a
part of the application. Another reason is that to remove a data structure (record or field), most of
the DMS (see [Hick-2001]) require the creation of a new database and to download the old data into
the new database. This is a non trivial operation: all the applications that use the data need to be
shutdown, it takes a lot of time (to download the data) and space (to create the temporary database).

For very big databases, with a lot of data, it cannot be done in one night. It has to be done during a
holiday where the enterprise is closed to perform this download.

Several hints can help to identify dead data structures. The main one is that they are not referenced
(read or write) by any programs or only by dead sections of programs. We can also notice that they
have no instances or their instances have not been updated for a long time.

3.4.1.2. Technical data structures

Technical data structures have been introduced as internal constructs by the programmer for techni-
cal reasons and are not intended to model the application domain. An example of such structures are

VEHICULE
Local_Num
Manuf_Num[0-1]
Type
Color
id: Local_Num
id’: Manuf_Num

VEHICULE
Manuf_Num
Type
Color
id: Manuf_Num

 →
Program Understanding in DBRE 49

A generic methodology for database reverse engineering
various program counters (number of records in a file, number of details in an order, etc.), name of
the last user, copy of screen layouts, the list of the messages text, program save points, etc.

FIGURE 22. A physical schema with its logical counterpart.

Those physical constructs need to be transformed into their logical counterpart (or removed). For
example, access path can be explicitly implemented in the database (figure 22.a) and can be trans-
formed into a single foreign key in the logical schema (figure 22.b).

3.4.2. Basic conceptualization

This process concentrates on extracting a first cut conceptual schema without worrying about
esthetical aspects of the result. Two kinds of reasoning have been identified, namely untranslation
and de-optimization. Though distinguishing between them may be arbitrary in some situations
(some transformation pertain to both).

The reader will probably be surprised that the processing of some popular constructs will generally
be ignored in this section. In fact, these problems have been discarded, except when they appear
naturally, since they are common to all DMS and there is no general agreement on whether they
must be recovered or not. Therefore they will be addressed in the conceptual normalization
process. As an example, we could interpret an identifying foreign key, that is, a unique key that
also is a foreign key, as the trace of a subtype/super-type relation. We prefer to transform it as a
mere one-to-one relationship type, which in turn will be interpreted, in the normalization phase,
either as a pure one-to-one relationship type or as entity type fragmentation or as a subtype/super-
type relation.

3.4.2.1. Schema untranslation

At first glance, this process seems to be the most dependent on the DMS model. Indeed a relational
schema, a CODASYL schema and a standard file schema, though they express the same conceptual
schema, are made up of quite different data structures. They have been produced through different
transformation plans and therefore should require different reverse untranslation rules as well.
However, it can be shown that these forward plans use a limited set of common primitive transfor-
mations [Hick-2000]. A set of about 30 elementary operations has proved sufficient to define logi-
cal design strategies for all past and current DMS, from COBOL standard files to OO-DBMS
([Hainaut et al.-1996a]). Since reverse engineering is basically the inverse of forward engineering, a
toolbox comprising the inverse of these forward transformations would count no more than one or
two dozens of operators.

CUSTOMER
cus-id
cus-first-ord[0-1]
...
id: cus-id
ref: cus-first-ord

ORD-CUS-LINK
o-c-id
o-c-cus
o-c-ord
o-c-next-link[0-1]
id: o-c-id
ref: o-c-next-link
ref: o-c-cus
ref: o-c-ord

ORDER
ord-id
ord-cus
...
id: ord-id
ref: ord-cus

ORDER
ord-id
ord-cus
...
id: ord-id
ref: ord-cus

CUSTOMER
cus-id
...
id: cus-id

a) The physical schema. b) The logical schema.
50 Program Understanding in DBRE

Data structure conceptualization
3.4.2.2. Schema de-optimization

Both conceptual and logical optimization processes will be considered as a whole since they use the
same set of transformations, though possibly through different strategies. Let us recall that we have
to find traces of four major families of optimization techniques based on schema transformations,
namely discarding constructs, structural redundancy, unnormalization and restructuration. They
must be precisely understood in order to reverse their effect. In particular, some of them are more
specifically fitted for some DMS than for others.

A. Discarding constructs

This optimization resorts to the part of the specification that is lost during the forward engineering
and should be addressed in the data structure extraction phase through the analysis of the data, the
environmental properties and the domain knowledge.

FIGURE 23. Example of expression (l.from.INVOICE.for.ORDER.OrderNumber
= l.for.LINE-of-ORDER.from.ORDER.OrderNumber) between two constructs that
do not express redundancy.

B. Structural redundancy

The main problem is to detect the redundancy constraint that states the equivalence or the derivabil-
ity of the redundant constructs. The expression of such constraint is of the form ,
where C is the designation of the redundant construct. Note that expressions such as

 generally do not express redundancy, but rather a pure integrity
constraint, in which case no construct can be removed. For example in figure 23, the schema can be
interpreted as follow. There can be several invoices for an order and an invoice is associated to only
one order. Each line of an invoice (LINE-of-INVOICE) corresponds to a (part) of the line of an order
(LINE-of-ORDER). There exist a cycle into the schema and we can wonder if there is some redun-
dancy in this cycle (a relationship type can be suppressed). But in this example, each relationship
type is necessary because the constraint "l.from.INVOICE.for.ORDER.OrderNumber
= l.for.LINE-of-ORDER.from.ORDER.OrderNumber" express the fact that for each line of an
invoice, the number of the order (OrderNumber) associated with the invoice is the same as the order
number of the line of the order to which the line of invoice is associated with. This is not a redun-

l in LINE-of-INVOICE :
 l.from.INVOICE.for.ORDER.OrderNumber
 = l.for.LINE-of-ORDER.from.ORDER.OrderNumber

1-1

0-N

from

1-1

0-N from

1-1

0-N

for

1-1

0-Nfor
ORDER

OrderNumber
id: OrderNumber

LINE-of-ORDER
ItemCode
Qty
id: from.ORDER

ItemCode

LINE-of-INVOICE
LineNumber
Qty
Amount
id: from.INVOICE

LineNumber

INVOICE
InvoiceNumber
Date
Amount
id: for.ORDER

InvoiceNumber

C f C1 …, Cn,()=

f1 Ci1
…, Cin

,() f2 Cj1
…, Cjn

,()=
Program Understanding in DBRE 51

A generic methodology for database reverse engineering
dancy, we could not suppress a relationship type, but an integrity constraint that need to be
expressed..

FIGURE 24. Example of structural redundancy elimination.

Figure 24 depicts the elimination of a composed relationship type and of a duplicate attribute. The
attribute ORDER.SalesMan has been recognized during the data structure extraction phase as dupli-
cate attribute that has the same value as REGION.SalesMan connected through the from relation-
ship type. The relationship type from was recognized as the composition of of and in. So those two
constructs can be removed.

FIGURE 25. Normalization redundancy elimination.

C. Normalization redundancy

An unnormalized structure is detected in entity type B by the fact that the determinant of a func-
tional dependency is not an identifier of B. Normalization consists of splitting the entity type by
aggregating the components of the dependency as illustrated in figure 25. Note that the relationship
type should be one-to-many (transforming an attribute into an entity type by value representation)
and not one-to-one, otherwise, there would be no redundancy.

D. Restructuration.

We will discus the reversing of some of the more specific restructuration techniques:

• Vertical partitioning optimization (split)

Entity types E1 and E2 are linked by a one-to-one relationship type and represent complemen-
tary properties (attributes or roles) of the same entity type.

For all O in ORDER:
 O.salesMan
= O.from.REGION.SalesManfrom = of.in

1-1

0-N

from

1-1

0-N

of

1-1

0-N in

ORDER
OrdId
Date
ItemCode
Qty
SalesMan
id: OrdId

CUSTOMER
CustId
Name
Address
id: CustId

REGION
Name
SalesMan
id: Name

 ⇔

0-N

1-1 of

0-N

1-1

in

REGION
Name
SalesMan
id: Name

ORDER_1
OrdId
Date
ItemCode
Qty
id: OrdId

CUSTOMER
CustId
Name
Address
id: CustId

EMPLOYEE
EmpID
Name
DepartName
Manager
id: EmpID
fd: DepartName

Manager

 ⇔ 1-N1-1 in

DEPARTEMENT
DepartName
Manager
id: DepartName

EMPLOYEE
EmpID
Name
id: EmpID
52 Program Understanding in DBRE

Data structure conceptualization
• Vertical merging optimization (merge)

Entity type E includes properties related to several entity types.

• Horizontal portioning optimization (HorPart)

Entity types E1 and E2 have the same properties and represent the same kind of entities.

• Horizontal merging optimization (AscInher)

Entity type E has unclear semantics that seem to encompass two similar but distinct entity cate-
gories.

These techniques introduce no redundancy, so it is optional to reverse them at this level. For
instance, similar reasoning will be found in the normalization phase.

3.4.3. Conceptual normalization

Let us first observe that what we call normalization generally does not encompass the relational
interpretation of the term. Indeed, relational normalization aims at removing redundancy anomalies,
therefore resorting to de-optimization reasoning.

The goal of the normalization transformations is to improve, if necessary, the expressiveness, the
simplicity, the readability and the extensibility of the conceptual schema. In particular, it tries to
make higher level semantic constructs (such as is-a relations) explicit. Whether such expressions
are desirable is a matter of methodological standard, of local culture and of personal taste. For
instance, a design methodology that is based on a binary, functional ER model (e.g. the Bachman’s
model of the seventies) will accept most of the conceptual schema obtained so far. More powerful
models will require the expression of, e.g. is-a relations or N-ary relationship types when relevant.
In addition, the final conceptual schema is supposed to be as readable and concise as possible,
though these properties basically are subjective.

Some constructs that need to be looked for and transformed:

• Relationship entity type (Et-Rt)

By this term, we mean an entity type whose aim obviously is to relate two or more entity types.
It will be transformed into a many-to-many and N-ary relationship type.

• Attribute entity type (Et-Att)

Such entity type has a small number of attributes only and is linked to one other entity type A
through a [1-j] role. All its attributes participate to its identifier.

• one-to-one relationship type (Merge)

It may express the connection between fragments B1 and B2 of a unique entity type B (vertical
partitioning).

• One or several one-to-one relationship types (Rt-Is-a)

If the relationship types show a common entity type A, they may express a specialization rela-
tion in which A is the supertype.

• Long entity type (Split)

An entity type that comprises too many attributes and roles can suggest a decomposition into
semantically homogeneous fragments linked by one-to-one relationship type.
Program Understanding in DBRE 53

A generic methodology for database reverse engineering
FIGURE 26. Decomposition of a N-ary relationship type through its [i-1] role.

• N-ary relationship type with a [i-1] role (Rt-Et + Merge)

It can be transformed into binary many-to-many relationship types (see figure 26).

• Entity type with common attributes and roles (Integration(common supertype))

If two entity types have common attributes and roles, they can be made the sub-types of a com-
mon supertype that inherits the common characteristics.

FIGURE 27. Defining subtype from coexistence subsets of optional attributes and roles.

• Groups of coexistent attributes and roles (Att-Et + Rt-Is-a)

Each coexistence group can be extracted as a subtype of the parent entity type (figure 27).

An in-depth analysis of is-a relations implementation can be found in [Hainaut et al.-1996c].

3.4.4. The data structure conceptualization transformations

In this section, the most important transformations used during the data structure conceptualization
process are presented. It presents, for each transformation, the step in which it can be used (U:
untranslation, D: de-optimization, N: normalization) and which forward transformation can lead to
the source construct and why the developer needs this transformation. A complete description of

 ⇔

0-N

0-1

0-N

rented

CLIENT

SALESMAN

EQUIPEMENT

1-1

0-Nby

1-10-1 is

1-1

0-Nto

SALESMAN

rentedEQUIPEMENT

CLIENT

0-N

0-1

to

0-N

0-1

by SALESMAN

EQUIPEMENT

coex: by.SALESMAN
to.CLIENT

CLIENT

⇔

STAFF
PID
Name
Address
Level[0-1]
Function[0-1]
Specialty[0-1]
coex: Level

Function
exact-1: Level

Specialty

P

STAFF
PID
Name
Address

WORKER
Specialty

EMPLOYEE
Level
Function

 ⇔
54 Program Understanding in DBRE

Data structure conceptualization
each transformation, with a detailed description of the pre and post conditions, can be found in
[Hick-2000].

3.4.4.1. Entity type to attribute (DN)

An entity type, that plays only one role can be transformed into an attribute.

Forward transformation. There are two transformations that can lead to this structure: transfor-
mation of an attribute into an entity type by representing the possible duplicate attribute instances
(by instance) or by representing the distinct attributes value (by value).

Those transformations are used during the normalization (N) to eliminate multivalued or compound
attributes because the corporate standard does not allow them. They are also used during the trans-
lation (U) and optimization (D) to eliminate some constructs.

3.4.4.2. Attribute aggregation (UN)

Aggregating several attributes, those contribute to the same domain concept, as a compound
attribute.

Forward transformation. Disaggregating a compound attribute. Such transformation is necessary
to comply with some DMS that does not support compound attributes, as relational DMS.

3.4.4.3. Attribute disaggregation (UN)

Disaggregating a compound attribute into its components, if the components are not of the same
concept domain.

Forward transformation. Some DMS require, as COBOL, that identifiers or access keys contain
only one attribute (U). So if an identifier or an access key is composed of more than one attribute,
the programmer aggregate them into a technical attribute.

 ⇔
1-N2-5 r

EA2
A2
id: A2

A
A1
A3

A
A1
A2[2-5]
A3

 ⇔

1-12-5 r

EA2
A2
id: r.A

A2

A
A1
A3

A
A1
A2[2-5]
A3

 ⇔
A

A1
A2_A21
A2_A22

A
A1
A2

A21
A22

 ⇔
A

A1
A2

A21
A22

A
A1
A21
A22
Program Understanding in DBRE 55

A generic methodology for database reverse engineering
3.4.4.4. Foreign key into relationship type (U)

Transforming a foreign key into its relationship type counterpart. In this section, we only present
the standard foreign key, according to which a set of attributes in an entity type is used to designate
elements in another entity type. A careful analysis of existing databases puts into light a surpri-
singly large variety of non standard forms of foreign keys. Most of them are quite correct and
perfectly fitted to the requirements the developer has in mind. However, their conceptual interpreta-
tion can prove much more difficult to formalize than the standard form. A complete discussion to
the concept of foreign key can be found in [Hainaut-1997a].

Forward transformation. The relationship types were transformed into foreign keys because most
of the DMS does not support relationship types.

3.4.4.5. List of attributes into a multivalued attribute (U)

A series of single-valued attributes, of same type and length, are transformed into a multivalued
attribute.

Forward transformation. Replacing a multivalued attribute with a series of single-valued
attributes that represent its instance. This transformation can be used if the DMS does not support
multivalued attributes, as relational DMS.

3.4.4.6. Single attribute into a multivalued attribute (U)

A single attribute is transformed into a multivalued one, the length of the original attribute must be
a multiple of the length of the target one.

Forward transformation. Replacing a multivalued attribute by a single-valued attribute that repre-
sents the concatenation of its instances. This transformation can be used if the DMS does not
support multivalued attributes, as relational DMS.

 ⇔
B

B1
B2
id: B1

A
A1
B1[2-5]
ref: B1[*]

0-N2-5 r

B
B1
B2
id: B1

A
A1

 ⇔
A

A1: char (6)
A21: char (5)
A22[0-1]: char (5)
A23[0-1]: char (5)

A
A1: char (6)
A2[1-3]: char (5)

 ⇔A
A1: char (6)
A2: char (15)

A
A1: char (6)
A2[3-3]: char (5)
56 Program Understanding in DBRE

Data structure conceptualization
3.4.4.7. Remove technical identifier (UD)

Remove the technical identifier of an entity type if this attribute is not a concept of the domain.

Forward transformation. A semantic-less attribute is added and made primary identifier of the
entity type. This can be necessary because an entity type does not have an identifier and the DMS
requires that each entity type has an identifier (U) or there is an identifier but its type is too long or
incompatible to use it as an identifier, e.g. as the target of a foreign key (D).

3.4.4.8. Object attribute into a relationship type (U)

Transforming an object attribute (reference or pointer) into a relationship type.

Forward transformation. Transforming a binary relationship type into an object attribute (refer-
ence or pointer). This can be useful if the target DMS is object oriented.

3.4.4.9. Relationship type into multi-domain role (N)

Transforming relationship types (whose roles participate in exactly one constraint) into the corre-
sponding relationship type with a multi-domain role.

Forward transformation. Transforming a multi-domain role into the corresponding relationship
types.

3.4.4.10.Multi-domain role into relationship type (UN)

Transforming a multi-domain role into the corresponding relationship types.

A
IDA
A1
A2
id: IDA
id’: A1

A
A1
A2
id: A1

 ⇒
 ⇐

 ⇔
B

B1
B2
id: B1

A
A1
B[2-5]: *B

2-5 0-Nr

B
B1
B2
id: B1

A
A1

 ⇔0-1
0-N
rl

r1

0-1

0-N
rl r2

C

exact-1: r2.rl
r1.rl

B

A

1-10-N
rl r

B

C

A

 ⇔ 0-1
0-N
rl

r1

0-1

0-N
rl r2

C

exact-1: r2.rl
r1.rl

B

A

1-10-N
rl r

B

C

A

Program Understanding in DBRE 57

A generic methodology for database reverse engineering
Forward transformation. Some DMS can represent multi-domain role, as the CODASYL multi-
member relationships.

3.4.4.11.Merge entity types (DN)

Merge two entity types connected by a one-to-one relationship type into one entity type.

Forward transformation. Splitting an entity type into two entity types connected by a one-to-one
relationship type. The entity type can be split because it has too many attributes and the schema is
more readable with two entity types (N). It can also be split to optimize the access time (D), if some
of the attributes are very often accessed and the other not very often. For example, the product
record contains the name of the product (name) and its picture (picture); name is used each time
product is accessed but picture is only used once per year to print the new product catalogue. Then
product is split into two parts, one with the attributes that are accessed very often and the other with
the remainder. Like that the record that is access very often is smaller and can be quickly loaded and
once a year it takes more time to retrieve the picture of the product.

3.4.4.12.Split an entity type (DN)

Splitting an entity type that contains attributes of different application domain concepts into two
entity types connected by a one-to-one relationship type.

Forward transformation. Merge two entity types connected by a one-to-one relationship type into
one entity type. The two entity types represent different application domain concepts but are
merged for optimization (D) purpose, if the program always need both concepts together.

3.4.4.13.Entity type into relationship type (N)

Transforming an entity type, which seems to be the representation of a relationship type, into a rela-
tionship type.

 ⇔1-1 1-1r
A

A1
A2

A’
A3
A4

A
A1
A2
A3
A4

 ⇔ 1-1 1-1r
A

A1
A2

A’
A3
A4

A
A1
A2
A3
A4

1-1

0-N

rc

1-1

0-N

rb

1-1

0-N

ra

CBA

r
R1
R2
id: ra.A

rb.B
rc.C

0-N

0-N

0-N
r

R1
R2

CBA

 ⇔
58 Program Understanding in DBRE

Data structure conceptualization
Forward transformation. Transforming a relationship type into an entity type. DMS does not
support relationship types with attributes and N-ary relationship types, they need to be transformed
into entity types.

3.4.4.14.Relationship type into is-a (N)

One-to-one relationship types with a common entity type are transformed into an is-a relation.

Forward transformation. Materializing an is-a relationship into relationship types. If the DMS
does not support is-a relations, they must be transformed. One of the possible transformations is to
materialize them by relationship types.

3.4.4.15.Common supertype (DN)

Transforming two entity types with common attributes or roles (attributes and roles representing
same concept) by the creation of a common supertype.

Forward transformation. The attributes and roles of the supertype of an is-a relation are copied
into each sub-type. If the DMS does not support is-a relations, they must be transformed. One of the
possible transformation is to copy all the attributes and roles of the supertype into its sub-types.

3.4.4.16.Integration (D)

Two entity types that represent the same application domain concept are merged into an entity type.

Forward transformation. An entity type is duplicated, both entity types represent the same appli-
cation domain concept. To reduce the size of a file, we can decide to horizontally partitioning it, i.e.
duplicate the structure and to store one instance in the first one and the other one in the other. For
example, to reduce the size of the file containing the orders, we can decide to store in one file the
current orders1 (stored on a fast disk) and the other ones that contain the archived orders (stored on
another disk or on a CD-Rom or on a tape).

C

C1
B

B1

A
A1
A2

1-1

0-1 c

1-1

0-1b

C
C1

B
B1

A
A1
A2 ⇔

 ⇔
B

A1
A2
A4

A
A1
A2
A3

C
A1
A2

B
A4

A
A3

 ⇔
B

A1
A2
B4

A
A1
A2
A3

A
A1
A2
A3
B4
Program Understanding in DBRE 59

A generic methodology for database reverse engineering
3.5. Example

This section presents a small DBRE example. The only source of information available is a frag-
ment of the COBOL source code of the application (file and record declarations and some proce-
dural code). Figure 28 sketches the DBRE process with the different products used and produced.

The first step analyzes the DDL code, i.e. translates the file declarations (the file-control of the
input-output section) and the record declarations (the file section) to produce the
physical schema. The select clauses are translated into collections, the record key’s into iden-
tifiers and the alternate record key with duplicate into an access key. The 01 level vari-
ables of the file section are translated into entity types with their respective sub-variables as
attributes.

This schema contains only the collections and entity types with access keys and identifiers, but no
referential constraints. Additional implicit constraints can be discovered (schema refinement)
through the procedural fragment analysis. The structure of CUS-DESC can be decomposed as
DESCRIPTION because there is an assignment instruction (move CUS-DESC to DESCRIPTION)
between CUS-DESC and DESCRIPTION and DESCRIPTION has a more precise decomposition
(decomposed into two sub-variables) than CUS-DESC (only a long string of characters). A referen-
tial constraint can be discovered through the analysis of the second part of the code fragment: the
user is asked for a CUS-CODE, if CUS-CODE exists in the CUSTOMER file (read) then it is copied
into ORD-CUS and the CUS record is stored into the file.

Now we have the complete logical schema, the data structure conceptualization transforms the logi-
cal schema into a conceptual schema:

• Preparation

Removing the indexes and collections. Before removing the collections, the entity types are
renamed as the collections, because the collections have more meaningful names. A COBOL
habit is to prefix fields by the name of the record to have unique names. So the common prefix
of the attributes be removed.

• Untranslation

Transforming the referential constraints into relationship type.

• Conceptual normalization

Disaggregating the compound attribute (CUS-DESC) and renaming objects.

1. Orders that are not already paid.
60 Program Understanding in DBRE

Example
FIGURE 28. Database reverse engineering example.

ORD
ORD-CODE
ORD-CUS
ORD-DETAIL
id: ORD-CODE

acc
ref: ORD-CUS

acc

CUS
CUS-CODE
CUS-DESC

NAME
ADDRESS

id: CUS-CODE
acc

CUSTOMER

CUS

ORDER

ORD

input-output section.
file-control.
Select CUSTOMER assign to "cus.dat"
 organisation is indexed
 record key is CUS-CODE.
Select ORDER assign to "ord.dat"
 organisation is indexed
 record key is ORD-CODE
 alternate record key is ORD-CUS
 with duplicates.

file section.
FD CUSTOMER.
01 CUS.
 02 CUS-CODE PIC X(12).
 02 CUS-DESC PIC X(80).
FD ORDER.
01 ORD.
 02 ORD-CODE PIC 9(10).
 02 ORD-CUS PIC X(12).
 02 ORD-DETAIL PIC X(200).

01 DESCRIPTION.
 02 NAME pic x(30).
 02 ADDRESS pic x(50).

move CUS-DESC
 to DESCRIPTION.

...

 accept CUS-CODE.
 read CUSTOMER
 invalid key
 go to c-not-found.
 move CUS-CODE
 to ORD-CUS.
 write CUS.
c-not-found.
 display "customer
 not found".

+

DDL code analysis

schema refinement

ORD
ORD-CODE
ORD-CUS
ORD-DETAIL
id: ORD-CODE

acc
acc: ORD-CUS

CUS
CUS-CODE
CUS-DESC
id: CUS-CODE

acc

CUSTOMER

CUS

ORDER

ORD

1-1

0-N

place

ORDER
Code
Detail
id: Code

CUSTOMER
Code
Name
Address
id: Code

da
ta

 s
tr

uc
tu

re

co
nc

ep
tu

al
iz

at
io

n

a) The collections and entity types declaration (DDL).

b) The physical schema. c) Procedural fragments.

d) The complete logical
schema.

e) The conceptual
schema.
Program Understanding in DBRE 61

A generic methodology for database reverse engineering
62 Program Understanding in DBRE

CHAPTER 4 Data structure
extraction
This chapter describes in detail the data structure extraction process. This process is divided in four
steps. The first, the DDL code analysis, extracts from the data description language script the
explicit structures and constrains in order to produce the raw physical schema. If more than one raw
physical schemas exist, the physical integration step integrates them into a single schema. The
schema refinement step enriches the integrated schema with explicit constraints revealed by the
analysis of the source code, the data, etc. Finally, the schema cleaning step discards the physical
constructs that are no longer needed. The main constraints that are searched for are described as
well as the elicitation techniques that are used to recover the constraints during the schema refine-
ment steps.

4.1. Introduction

The data structure extraction is the most crucial and difficult part of the DBRE. Data structure
extraction analyzes the existing (legacy) system to recover the complete logical schema. This chap-
ter details the data structure extraction processes and deeply analyzes the schema refinement
process. The schema refinement recovers the implicit constructs, i.e. the constructs that are not
explicitly declared in the DDL code. The implicit constructs that are looked for are enumerated and
analyzed. The possible sources of information used to recover the data structure are presented.
Techniques that can be used to recover implicit constructs through the analysis of the different
source of information are presented. Those techniques are called elicitation techniques.

Finally, a schema refinement methodology is presented. This methodology is a repetitive process
that searches for a possible missing constraint (called hypothesis) and tries to validate this hypothe-
sis. This process is iterated until no new hypothesis is discovered. The conditions to decide when all
the hypotheses have been discovered are discussed as well as how the elicitation techniques are
used to discover and to validate the hypotheses.
Program Understanding in DBRE 63

Data structure extraction
FIGURE 29. Data structure extraction.

4.2. The methodology

The main processes of the data structure extraction are the following (Figure 29).

• DDL code analysis

It analyzes the physical schema, DDL code or user views, in order to extract the explicit con-
structs and constraints. It provides the raw physical schema. This schema contains all the data
structures and constraints declared and only them.

• Physical integration

When more than one source has been processed, several raw physical schemas can be available.
All those schemas are integrated into a global one, giving the integrated physical schema.

• Schema refinement

The integrated physical schema obtained so far is enriched with implicit constructs that are
found through the analysis of the other sources of information as the procedural code, the screen
layout, etc. The result of the schema refinement is called the complete physical schema. This
schema is the memory of the whole data structure extraction phase; it contains all the data struc-
tures and constraints discovered. It contains the details about the physical implementation of the
database (as indexes, page size, etc.) and the structure of the data.

Physical schema

DDL code
 analysis

Physical
integration

Integrated
physical schema

Schema
refinement

Schema
analysis

Programs
understanding

Screens, forms
analysis

Data
Analysis

Other analysis
techniques

Complete
physical schema

Complete
logical schema

Schema
cleaning

DDL code User views

programs

data

forms

data dictionaries

proc. fragments

screens reports

execution

documentation

Raw
physical schema

S
ch

em
a

re
fi

ne
m

en
t

Integrated
physical schema

Complete
physical schema
64 Program Understanding in DBRE

The methodology
• Schema cleaning

Discards physical constructs that are no longer needed in order to get the complete logical
schema (or simply the logical schema).

The complete logical schema includes all the data structures and constraints discovered during the
data structure extraction. This schema may no longer be DMS compliant for at least two reasons. It
is the result of the refinement process, which enhances the schema with recovered constraints, these

COBOL statement Physical abstraction

select S assign to P collection S assigned to physical file P

record key is F primary identifier with attribute F;
and access key with field F.

alternate record key is F attribute F is a secondary identifier
and an access key.

alternate record key is F
with duplicates

attribute F is an access key.

fd S.
01 R

entity type R within storage S.

05 F pic 9(n) numeric attribute F of size n, associated with
its parent structure (entity type or compound
attribute).

05 F pic X(n) alphanumeric attribute F of size n, associated
with its parent structure (entity type or
compound attribute).

05 F1.
 10 F2 ...

compound attribute F1, with sub-attribute
F2, etc.

05 F ... occurs n times multivalued attribute F, with cardinality n-n.

FIGURE 30. Main abstraction rules for COBOL file structures.

SQL statement Physical abstraction

create dbspace S ... collection S.

create table T (...) in S entity type T within collection S.

F numeric(n) numeric attribute F with size n.

F char(n) character attribute F with size n.

... not null the current attribute as mandatory

primary key (F) primary identifier with attribute(s) F

... unique (F) secondary identifier with attribute(s) F

foreign key (F) references T attribute(s) F a foreign key referencing entity
type T.

create index on T(F) access key with attribute(s) F.

create unique index on T(F) secondary identifier with attribute(s) F;
access key with attribute(s) F.

FIGURE 31. Main abstraction rules for relational structures.
Program Understanding in DBRE 65

Data structure extraction
constraints are mainly constraints that cannot be expressed in the DMS. The complete logical
schema describes the structure of the persistent data of the application and in some application more
than one DMS is used. For example, some data are stored in COBOL files and others in a SQL data-
base. If two DMS do not have the same data model, the resulting complete logical schema is
compliant with none of the DMS.

On the other hand, this schema is still very close to the current implementation. It can be described
as the programmer’s view of the database with all the constraints and details needed to write or
modify programs that access the database.

4.2.1. DDL code analysis

This process clearly is the simplest one in the data structure extraction. It consists in deriving phys-
ical abstractions from each DDL construct. The set of rules is easy to state in most DMS, provided
the target abstract physical model includes a sufficiently rich set of features. It must be noticed that
each DDL, even in the most modern DMS, includes clauses intended to declare physical concepts
(e.g. indexes and clusters), logical concepts (entity types, attributes and referential constraints) as
well as conceptual concepts (identifiers). Separating the DMS constructs in the standard abstraction
levels is sometimes tricky (as in IMS for instance). Figure 30 and figure 31 show the main abstrac-
tion rules for converting COBOL and SQL-2 code into abstract physical structures. These conver-
sion rules should be adapted to the specificity of each DMS. Similar rule sets can be defined for
CODASYL, DL/1, TOTAL/IMAGE or OO data structures.

FIGURE 32. SQL-DDL and its physical abstraction.

Figure 32 shows a code fragment SQL-DDL and its corresponding physical abstraction.

Almost all CASE tools propose some kind of DDL code analysis for the most popular (generally
relational) DMS. Some of them are able to extract relational specifications from the system data
dictionary as well. Few can cope with non relational structures.

4.2.2. Physical schema integration

When more than one DDL source has been processed, the analyst is provided with several extracted
schemas. Let us mention some common situations: DBD1 and PSB2 (IMS), schema and sub-sche-
mas (CODADYL), file structures from each the application program (standard files), database

1. Database Description.

2. Program Specification Block.

create table CUSTOMER(
C_ID integer primary key,
C_DATA char(80));

create table ORDERS(
O_ID integer primary key,
OWNER integer,
foreign key(OWNER)
 references CUSTOMER);

 ⇒
ORDERS

O_ID: num (10)
OWNER: num (10)
id: O_ID
ref: OWNER

CUSTOMER
C_ID: num (10)
C_DATA: char (80)
id: C_ID
66 Program Understanding in DBRE

The methodology
schema, COBOL copy books (source code fragment that are included in the source program at
compile time) etc. All these schemas have some common elements and each one may include
specific elements not present in the other one. The final logical schema must include the specifica-
tions of all the partial views, through the physical integration process. This process differs from the
approaches proposed in the literature on the integration of conceptual views ([Garcia et al.-1995]).
In particular, we can identify three specific characteristics of physical schema integration.

FIGURE 33. Example of incompatible record declarations.

1. Each physical schema is a view of a unique and fully identified physical object, namely the leg-
acy database. Consequently, syntactic and semantic conflicts do not represent divergent user
views but rather insufficient analysis. There is a syntactic conflict if two declarations of the same
physical object are incompatible. For example figure 33 represents two COBOL declarations
that are incompatible because the structure of one of them is not included in the other one. A
semantics conflict occurs when the same physical object can represent different kind of informa-
tion with a different semantics.

FIGURE 34. Example of integration based on data’s offset and length.

2. Physical and technical aspects of the data can be used in correspondence heuristics, such as off-
set and length of data fields. For example, if two COBOL programs use the same physical file
(same file on the disk) but the declarations of the corresponding record types are not exactly the
same, the offset and length of the fields can be used to find a common representation as shown in
figure 34.

3. There may be a large number of such views. For instance, a set of COBOL files serving a portfo-
lio of 1000 programs units will be described by 1000 partial views. In addition, there is no global
schema available for these files. The latter will be recovered by integrating these views.

This process integrates only the elements of the different raw physical schema that are different
views of the same physical object, e.g. the same file on the disk. This process does not integrate
different physical objects that have the same semantic. For example, in an hospital, the health care
system records administrative information about the people in the patient entity type and the
invoice system records these information in the customer entity type. These two entity types are not
integrated during this process, but will be integrated during the conceptualization process.

01 ORD.
 02 ORD-NUM PIC X(5).
 02 ORD-DATA1 PIC X(15).
 02 ORD-DATA2 PIC X(15).

01 ORD-DET.
 02 ORDDET-NUM PIC X(5).
 02 ORDDET-LINE PIC X(5).
 02 ORDDET-DATA1 PIC X(20).
 02 ORDDET-DATA2 PIC X(5).

Program A

FD CUSTOMER.
01 CUST
 02 NUM PIC X(5).
 02 NAME PIC X(30).
 02 ADR PIC X(97).

Program B

FD CUSTOMER.
01 CLIENT.
 02 ID PIC X(5).
 02 NAME PIC X(30).
 02 STREET PIC X(60).
 02 ZIP PIC X(7).
 02 CITY PIC X(30).

CUSTOMER
ID
NAME
ADR

STREET
ZIP
CITY

+ ⇒
Program Understanding in DBRE 67

Data structure extraction
4.2.3. Schema refinement

The main problem of the data structure extraction phase is to discover and to make explicit, through
the refinement process, the structures and constraints that were either implicitly implemented or
merely discarded during the development process. The variety of implicit constructs can be very
large; the main implicit structures and constraints we are looking for are the following: entity type
and attribute disaggregation, identifier, referential constraints, functional dependency, meaningful
names, etc.

This process will be developed in section 4.8.

4.2.4. Schema cleaning

The complete logical schema includes all the data structures and constraints discovered during the
data structure extraction. It is still very close to the current implementation to describe the program-
mer view of the database. To fulfil those criteria, the complete physical schema cannot be deeply
reorganized to obtain the complete logical schema. For example, an object cannot be renamed,
otherwise the programmer could not write applications that access the database. Redundancies are
noted but cannot be suppressed, otherwise when the programmer modifies the program he will
forget to maintain the redundancy.

The constructs that can be modified or suppressed during the schema cleaning depend on the DMS
used. For example, for COBOL files, the indexes are needed, because to access the data, the
programmer has to specify which index to use. On the other hand, for a relational DMS, indexes
can be discarded because the programmer does not need to know the indexes to write programs that
access the data (queries).

FIGURE 35. Tables declaration with explicit foreign key.

FIGURE 36. Tables creation and implicit foreign key implementation.

create table CUSTOMER(
C-ID integer primary key,
C-DATA char(80))

create table ORDER(
O-ID integer primary key,
OWNER integer
foreign key(OWNER)

references CUSTOMER)

create table CUSTOMER(
C-ID integer primary key,
C-DATA char(80))

create table ORDER(
O-ID integer primary key,
OWNER integer)

a) Table declaration without foreign
key.

exec SQL
select count(*) in :ERR-NBR from ORDER
where OWNER not in
(select C-ID from CUSTOMER)

end SQL
...
if ERR-NBR > 0 then
display ERR-NBR,

’referential constraint violation’;
b) Procedural code fragment that verifies the validity of

the foreign key.
68 Program Understanding in DBRE

Explicit/implicit constructs
4.3. Explicit/implicit constructs

An explicit construct is a component or a property of a data structure that is declared through a
specific DDL statement. An implicit construct is a component or a property that holds in the data
structure, but that has not been declared explicitly. In general, the DMS is not aware of implicit
constructs, though it can contribute to its management (through triggers for instance). The analysis
of the DDL statements alone leaves the implicit constructs undetected. The most popular example
certainly is that of referential constraint, which we will use to explain this point. Let us consider the
code of figure 35 in which two tables, linked by a foreign key, are declared. This foreign key is an
explicit construct because a specific DDL statement has been used to declare it. On the other hand,
the code of figure 36.a is the declaration of two tables in which no referential constraint has been
declared and the code of figure 36.b represents a fragment of the application that strongly suggests
that column OWNER is expected to behave as a referential attribute. If the analyst is convinced that
this behavior must be taken for an absolute rule, then OWNER is an implicit referential attribute.

The problem is much more complex for standard files, for which no computerized description of
their structures and constraints exists in most cases. The analysis of each source program only
provides a partial view of the collection and entity type structures. All the other constraints need to
be represented and checked by other means such as procedural sections. Unfortunately, these prac-
tices are also common in (true) databases, where all the expressiveness of the DMS is not necessar-
ily used. For example, in the above example (figure 36), the referential constraint was not declared
in the DDL although it would have been possible.

By examining the expressive power of DMS, compared with that of semantics representation
formalism, and by analyzing how programmers work, we can identify five major sources of implicit
constructs.

• Structure hiding

Structure hiding concerns a source data structure or constraint S1, which could be implemented
in the DMS. It consists in declaring it as another data structure S2 that is more general and less
expressive than S1. In COBOL applications for example, a compound/multivalued attribute, or a
sequence of contiguous fields can be represented as a single-valued atomic attribute (e.g., a
filler). In a CODASYL or IMS database, a one-to-many relationship type can be implemented as
a many-to-many link, through a record/segment type, or can be implemented by an implicit ref-
erence attribute. In an SQL-2 database, some referential constraints can be left undeclared by
compatibility with older DMS (see the previous example). The origin of structure hiding is
always a decision of the programmer, who tries to meet requirements such as attribute reusabil-
ity, genericity, program conciseness, simplicity, efficiency. Structure hiding can also be the result
of bad practices such as poor programming practice, straightforward transformation of a legacy
system, disorganization that results from prolonged maintenance as well as consistency with leg-
acy components of the application.

• Generic expression

Some DMS offer general purpose functionalities to enforce a large variety of constraints on the
data. For instance, current relational DMS propose column and table check predicates, views
with check option, triggers mechanisms and stored procedures. These powerful techniques can
be used to program the validation and the management of complex constraints in a centralized
way. The problem is that there is no standard way to cope with these constraints. For instance,
constraints such as referential integrity can be encoded in many forms, and their elicitation can
prove much more complex than for declared foreign keys.
Program Understanding in DBRE 69

Data structure extraction
• Non declarative structures

Non declarative structures have a different origin. They are structures or constraints that cannot
be declared in the target DMS, and therefore are represented and checked by other means, exter-
nal to the DMS, such as procedural sections in the application programs or in the user interface.
Most often, the checking sections are not centralized, but are distributed and duplicated (fre-
quently in different versions), throughout the application programs. For example, standard files
commonly include referential constraints, though current DMS ignore this construct. In the same
way, CODASYL DMS do not provide explicit declaration of one-to-one relationship types,
which often are implemented as (one-to-many) set types and integrity validation procedures.

• Environmental properties

In some situations, the environment of the system guarantees that the external data to be stored
in the database satisfy a given property. Therefore, the developer has found useless to translate
this property in the data structure, or to enforce it through DMS or programming techniques. Of
course, the elicitation of such constraints cannot be based on data structure and program analy-
sis. For example, if the content of a sequential file comes from an external source in which
uniqueness is guaranteed for one of its attribute, then the database file inherits this property, and
an identifier can be asserted accordingly.

• Lost specifications

Lost specifications correspond to facts that have been ignored or discarded, intentionally or not,
during the development of the system. This phenomenon corresponds to flaws in the system that
can translate into corrupted data. However, lost specifications can be undetected environmental
properties, in which case the data generally are valid.

4.4. Implicit structures and constraints

This section describes some of the main implicit structures and constraints that can be found in
actual reverse engineering projects of various size and nature. It is important to keep in mind that
this analysis is DMS-independent. Indeed, almost all the patterns that will be discussed have been
found in practically all the types of database.

• Finding the fine-grained structure of entity types and attributes.

An attribute, or an entity type, declared as atomic, has an implicit decomposition, or is the con-
catenation of contiguous independent attributes. The problem is to recover the exact structure of
this attribute or of this entity type. This pattern is very common in standard files and IMS data-
bases, but it has been found in modern databases as well, for instance in relational tables.

FIGURE 37. Example of an attribute refinement.

01 C-addr.
02 C-num pic X(5).
02 C-street pic X(60).
02 C-city pic X(30).
02 C-zip pic X(6).

...
move Cust-addr to C-addr.

CUSTOMER
Cust-id
Cust-addr

CUSTOMER
Cust-id
Cust-addr

C-num
C-street
C-city
C-zip

 + ⇒

a) The raw entity
type.

c) The refined entity
type.

b) Some code fragment.
70 Program Understanding in DBRE

Implicit structures and constraints
For example, the extraction of the DDL gives the raw entity type of figure 37.a. There is some
procedural code that assigns an attribute to a variable with a finer decomposition (figure 37.b).
So that the schema can be modified to obtain the refined entity type (figure 37.c).

FIGURE 38. Example of optimization that merge two attributes into one.

The attribute and the target variable may have incompatible structures, such that one of the
structures is not included in the other one. There are three reasons for this incompatibility. The
first one is that there is an error in the program. The second one is an misunderstanding (error) in
the analysis of the information sources. The third one is that the attributes (or entity type) have
more than one usage, which is a common optimization technique. In legacy systems, the number
of files that can be opened simultaneously was limited, so to reduce the number of files used by
an application, different entity types were stored in the same file. For example, order headers
and order details were stored in the same file with the order details following their order header.
Another advantage was that it was easy and fast to access the details when the header was found.
Another optimization to save disk space used by an entity type is to use the same physical loca-
tion to store two attributes. This is possible if the two attributes are never present together
(exactly-one constraint). An attribute is added (Type in figure 38) to the entity type to know
which value is stored in the common attribute (Data). Type is tested (in the procedural code) to
know how to interpret the value contained into the Data attribute.

• Finding optional (nullable) attributes

Most DMS postulate that each attribute of each entity type has a value. In general, giving an
attribute no value consists in giving it a special value, to be interpreted as missing or unknown
value. Since there is no standard way to implement this constraint, it must be discovered
through, among others, program and data analysis.

Usually the programmer uses the high-value or low-value to represent the Null in a numeric
attribute and he fills alphanumeric attributes with space or some special character to represent an
alphanumeric Null value.

FIGURE 39. Example of an attribute aggregate.

PERSON
Name
Type
Professor[0-1]

Office
Telephone

Student[0-1]
Section
Level

exact-1: Professor
Student

P
STUDENT
Section
Level

PROFESSOR
Office
Telephone

PERSON
Name

01 Prof.
 02 Office pic x(3).
 02 Tel pic X(10).
01 Stud.
 02 Section pic x(11).
 02 Level pic x(2).
if Type = "P"
move Data to prof

else
move Data to Stude.

PERSON
Name
Type
Data

 ⇔ ⇔ +

CUSTOMER
Cus-num
Add-num
Add-street
Add-city
Add-zip

CUSTOMER
Cus-num
Address

Num
Street
City
Zip

 ⇒

b) Entity type with
attributes aggregate.

a) The raw entity
type.
Program Understanding in DBRE 71

Data structure extraction
• Finding attribute aggregates

A sequence of seemingly independent attributes are originated from a source compound
attribute which was decomposed. The problem is to rebuild this source compound attribute. This
is a typical situation in relational, RPG, IMS and TOTAL/IMAGE databases that impose flat
structures.

For example, figure 39.a contains attributes Add-num, Add-street, Add-city and Add-zip that are
obviously the different parts of an address. They have the same prefix (Add-) and domain
knowledge tells us that an address is composed of a number, a street, a city and a zip code. They
can be aggregated as the Address compound attribute (figure 39.b).

• Finding multivalued attributes

An attribute, declared single-valued, appears to be the concatenation of the values of a multival-
ued attribute. Or a list of single valued attributes of the same type and same length appear to be
the materialization of a multivalued attribute. The problem is to detect the repeating structure,
and to make the multivalued attribute explicit. Relational, RPG, IMS and TOTAL/IMAGE data-
bases, that cannot represent multivalued attribute, commonly include such constructs.

FIGURE 40. Example of single-valued and list of single valued attributes transformed into
multivalued attributes.

Telephones (figure 40.a) is 30 characters long. The associated code shows that it is split into an
array. So Telephones can be transformed into Telephone[3-3] of 10 characters (figure 40.b). In
figure 40.a, the list of attributes Name1, Name2 and Name3 can be transformed into a multival-
ued attribute (Name in figure 40.b).

• Finding multiple attribute and entity type structures

The same attribute, or entity type structure, can be used as a mere container for various kinds of
value.

For instance, a CONTACT entity type appears to contain entity types of two different types,
namely CUSTOMER and SUPPLIER.

• Finding entity type identifiers

The identifier (primary or secondary) of an entity type is not always declared. Such is the case
for sequential files or CODASYL set types.

An example of a pattern used to detect that there is an undeclared identifier in a sequential field,
is that the user is asked for the name of the customer. Then there is a loop that goes through the
file and the loop is exited when the first customer with the given name is found and no other cus-
tomer with that name is looked for.

• Finding identifiers of multivalued attributes

Structured entity types often include complex multivalued compound attributes. Quite often too,
these values have an implicit identifier.

E
Telephones: char (30)
Name1: char (20)
Name2: char (20)
Name3: char (20)

E
Telephone[3-3]: char (10)
Name[3-3]: char (20)

 ⇒

a) The raw entity
type.

b) The entity type with mul-
tivalued attributes.
72 Program Understanding in DBRE

Implicit structures and constraints
FIGURE 41. Example of identifier of a multivalued attribute.

For instance (figure 41), in each CUSTOMER entity type, there are no two PURCHASE com-
pound values with the same PRODUCT value.

• Finding referential constraints

In multi-file applications, there exist inter-file links, represented by referential constraints, i.e.,
by attributes whose values reference an entity type in another collection. The most common
form of referential constraint (called standard foreign key) is made of one or several mandatory
attributes. It targets the identifier of an entity type and both ends of the referential constraint are
defined on the same domain. In legacy systems there are not only standard foreign keys, but a lot
of tricky patterns such as optional, recursive or computed foreign key. For a complete discussion
about non standard foreign keys see [Hainaut-1997a].

For example, figure 32 shows an implicit referential constraint that is validated by some proce-
dural code.

FIGURE 42. Example of redundancy parallel to a referential constraint.

• Finding functional dependencies

As commonly recognized in the relational database domain, normalization is a recommended
property. Thus functional dependencies should not be found in ideal applications. However,
many actual databases include unnormalized structures, generally to get better performance.
Functional dependencies save disk access and computation but increase disk space needed and
complexity of the management rules that maintain the coherence of the data. For example (fig-
ure 42), storing the name of the customer (Ord-cus-name) and the total amount of the order
(Ord-tot) into ORDER entity type saves disk access to get the name of the customer and cpu
time to compute the total amount of the order when the invoice is printed. The drawbacks of this
optimization is when the list of the ordered products is updated, Ord-tot must be computed.
When the name of the customer changes (spelling error), all his orders need to be updated.

Redundancies are a special kind of functional dependencies where the function is the identity.
The value of the origin field is copied into the target one.

CUSTOMER

Name
...
Purchase[0-20]

Prod
Qty

id(Purchase):
Prod

Purchase

Prod Qty

P1 10

P15 1

P2 3

P3 5

P4 20

a) CUSTOMER
entity type.

b) A possible instance of
Purchase.

ORDER
Ord-id
Ord-cus
Ord-cus-name
Ord-tot
id: Ord-id
ref: Ord-cus
rd: Ord-cus-name

CUSTOMER
Cus-id
Cus-name
id: Cus-id
 : Cus-name

Referential
constraint
Redundancy

read CUS
invalid key go to Err.

move Cus-id to Ord-cus.
move Cus-name to Ord-cus-name.
...
write ORDER.
Program Understanding in DBRE 73

Data structure extraction

N

a

Functional dependencies are usually parallel to a referential constraints. In order to know which
entity type is the origin of the dependency, the program follows a referential constraint. For
example, in figure 42, there is a referential constraint from ORDER to CUSTOMER and Cus-name
is copied into Ord-cus-name (redundancy).

Be aware of the conclusion. If during the analysis of a program fragment a dependency is
detected between two attributes, it does not automatically mean that this data dependency is
always verified. This data dependency can be true at some moment but not all the time. This can
be seen as a business rule and must be documented.

FIGURE 43. An example of business rule.

Figure 43 gives an example of a very simple business rule. Each time a product is ordered, its
price (PRODUCT.Prod-price) is copied in the DETAIL.Det-price record (figure 43.a), so it
can be concluded that there is some data dependency. The analysis of product price (Prod-
price) modification (figure 43.b) shows that when the price of the product is changed for a
PRODUCT this change is not propagated to DETAIL.Det-price. It can be concluded that there
is no data dependency between Det-price and Prod-price as firstly assumed. The price
stored in Det-price is the price of the product at the order time and not the current price of the
product. This price is kept to compute the amount of the order at the price of the order time when
the invoice will be printed (perhaps several weeks later).

It is important to make the difference between data dependencies and business rules, because
attributes that are data dependent are removed, during the conceptualization process, whereas
the attributes that take part in a business rule must be kept.

• Finding sets behind arrays

Multivalued attributes are generally declared as arrays, because the latter is the most obvious, if
not the only construct available in host languages and DMS to store repeating values. Unfortu-
nately, an array is a much more complex construct than a set. Indeed, while a set is made up of
an unordered collection of distinct values, an array is a storage arrangement of partially filled,
indexed cells that can accommodate non distinct values. In short, an array basically represents
ordered collections of non distinct values with possible holes (empty cells). For each array, one
must answer three questions: are the values distinct? Is the order significant? What do holes
mean? Clearly, usage pattern and data analysis are the key techniques to get the answers.

• Finding exact minimum cardinality of attributes and relationship types

Multivalued attributes declared as arrays, have a maximum size specified by an integer, while
the minimum size is not mentioned, and is under the responsibility of the programmer. For
instance, attribute DETAIL has been declared as "02 DETAIL OCCURS 20", and its cardinality
has been interpreted as [20-20]. Further analysis has shown that this cardinality actually is [1-
20].

Business rule:
Stores the product price
at the order time.

PRODUCT
Prod-id
Prod-price
id: Prod-id
 : Prod-price

DETAIL
Det-ord
Det-prod
Det-price
ref: Det-ord
br: Det-price

ew-detail.
 accept Prod-id.
 read Prod
 invalid key go to Err.
 move Prod-id to Det-prod.
 move Prod-price to Det-price.
 write DETAIL.

Modif-prod-price.
 display "product id".
 accept Prod-id.
 read Prod
 invalid key go to Err.
 display "new price".
 accept Prod-price.
 rewrite PRODUCT.

) Detail creation. b) Product price modification.

 + ⇒
74 Program Understanding in DBRE

The information sources
• Finding exact maximum cardinality of attributes and relationship types

The maximum cardinality can be limited to a specific constant due to implementation con-
straints. Further analysis can show that this limit is artificial, and represents no intrinsic property
of the problem. For instance, an attribute cardinality of [0-100] has been proved to be implemen-
tation-dependent, and therefore relaxed to [0-N], where N means unlimited.

• Finding existence constraints

Sets of attributes and/or roles can be found to be coexistent, that is, for each entity type, they all
have a value or all are null. There are other similar constraints, such as exclusive (at most one
attribute is not null) and at least one (at least one attribute is not null). These constraints can be
the only trace of embedded attributes aggregates or of sub-type implementation.

For example in the CUSTOMER entity type there are Wedding-date and Spouse-name attributes.
It can be discovered that there is a coexistence constraint between these two attributes.

• Finding enumerated value domains

Many attributes must draw their values from a limited set of predefined values. It is essential to
discover this set.

A typical enumerated attribute is the Sex attribute that has {M, F} as domain value.

• Finding constraints on value domains

In most DMS, declared data structures are very poor as far as their value domain is concerned.
Quite often, though, strong restriction is enforced on the allowed values.

For example the ordered quantity of a product is a strict positive (>0) number but it is store into
a numeric attribute that allows negative value to be stored.

• Finding meaningful names

Some programming disciplines, or technical constraints, impose the usage of meaningless
names, or of very condensed names whose meaning is unclear. On the contrary, some applica-
tions have been developed with no discipline at all, leading to poor and contradictory naming
conventions. During data structure extraction, objects cannot be renamed, otherwise the com-
plete logical schema will not represent the current implementation. If more meaningful names
are found, they are noted in order to be able to rename the object during the data structure con-
ceptualization process.

For example, an attribute named Cus-F2 that is used to fill a screen field that is labeled "cus-
tomer name". It is noted that the attribute Cus-F2 represents the name of the customer and dur-
ing the data structure conceptualization it will be renamed Name or Cus-Name.

4.5. The information sources

To discover an implicit construct, the analyst generally cannot limit his analysis to one information
source. On the contrary he has to rely on all the possible information sources, such as: application
programs, data, HIM procedural fragments, screen and report layout, generic DMS code frag-
ments1, existing documentation, interviews, domain knowledge, operation environment knowledge,
etc.

1. Some DMS offer general functionality to enforce a large variety of constraints on the data.
Program Understanding in DBRE 75

Data structure extraction
The analyst needs to analyze several of those sources because none of them contains all the hints for
all the constraints. For example, some constraints are not implemented in the application program
because they are verified by some environmental properties (the input data are always correct, they
come from another fully reliable application). Constraints are not discovered by the data analysis
because there is some erroneous data. On the other hand, spurious constraints can be discovered in
the data because the set of data is too small, for example, an attribute is an identifier.

The most common sources are:

• DMS-DDL (schemas and views)

This is the database declaration statements, which specify the explicit structures and constraints.
The database can also contain some procedural code fragments, trigger, check or stored proce-
dure, that need to be analyzed to discover some implicit constraints (see generic DMS code frag-
ments below).

• Data dictionary/physical schema

The data dictionary contains the description of the actual state of the database structures and
constraints. Usually it is updated by the DMS itself and is the most up-to-date information
source. As the DMS-DDL statements, it contains the explicit data structures but also some pro-
cedural code.

• Generic DMS code fragments

Modern databases may include code sections that monitor the behavior of the database. Check/
assertion predicates, triggers and stored procedures are the most frequent. They generally
express in a concise way the validation of data structures and integrity constraints. As any code,
they are less easy to analyze since there is no standard way to code a specific integrity con-
straint. They implement implicit constraints.

• Application source code

Many data structures and constraints that are not explicitly declared are coded, among others, as
procedural sections of the programs. For this reason, one of the most important information
sources is the application program.

• Screen and report layout

A screen form or a structured report can be considered to be derived views of the data. The lay-
out of the output data as well as the labels and comments can bring essential information on the
data.

• Current documentation

In some reverse engineering projects, there is some kind of documentation available. Though
these documents are often partial, obsolete and even incorrect, they can bring useful informa-
tion. Of course, the comments that programmers include in the programs can also be a rich
source of information. Most DMS allow administrators to add short comment to each schema
object.

• External data dictionaries and CASE repositories

Third-party or in-house data dictionary systems allow data administrators to record and maintain
essential descriptions of the information resources of an organization, including the file and
database structures. They can provide informal but very useful description of the data with
which one can better grasp their semantics. The main problem with these sources is that they
generally have no automatic 2-way link with the databases, and therefore may include incom-
plete, obsolete or erroneous information. The same can be said of CASE tools, which can record
the description of database structures at different abstraction levels. While such tools can gener-
76 Program Understanding in DBRE

The information sources
ate the database definition code, they generally offer no easy way to propagate direct database
structure modifications into these schemas.

• Domain knowledge

It is inconceivable to start a reverse engineering project without any knowledge on the applica-
tion domain. Indeed, being provided with an initial mental model of the objectives and of the
main concepts of the application, the analyst can consider the existing system as an implementa-
tion of this model. The objective is then to refine and to validate this first-cut model. This is why
the analyst must have some deep domain knowledge or he must be in tight contact with a client
analyst that is assigned to the reverse engineering project. In this context, interviewing regular or
past users, developers or domain knowledge experts can be a fruitful source of information,
either to build a first domain model, or to validate the model elaborated so far.

• Data

The data themselves can exhibit regular patterns, or uniqueness or inclusion properties that pro-
vide hints that can be used to confirm or disprove structural hypotheses. The analyst can find
hints that suggest the presence of identifiers, referential constraints, attribute decomposition,
optional attributes, functional dependencies, existence constraints, or that restrict the value
domain of an attribute for instance.

• Non-database sources

Small volumes of data can be implemented with general purpose software such as spreadsheet
and word processors. In addition, semi-structured documents are increasingly considered as a
source of complex data that also need to be reverse engineered. Indeed, large text databases can
be implemented according to representation standards such as SGML, XML or HTML that can
be considered as special purpose DDL.

• Program execution

The dynamic behavior of a program working on the data gives information on the requirements
the data have to meet to be recorded in the files, and on links between stored data. In particular,
combined with data analysis, filled-in forms and reports provide a powerful examination means
to detect structures and properties of the data.

• DMS logs

Some DMS store in a log all the data access or queries performed with some statistics. The anal-
ysis of such log can be interesting to know which queries are performed, specially for DMS with
powerful query language such as SQL databases.

• Environment properties

The environment properties, as the DMS, the development tools, development language, pro-
gramming principle, the hardware used can imply some non functional requirements. Those
requirements can influence the way some constraints are verified or simply discarded.

• Application history

Who are the analysts who write and maintain the application, what are the different DMS and
programming languages used? This information can explain the techniques used to code some
constrains and data structures. For example, if the application was migrated from flat files to a
relational DMS, typical file structures are found and not relational one.

• Corporate practice

Some corporate have an in-house methodology and habit. Their knowledge can ease the data
structure extraction. For example, all the names of the identifier start by the keyword ‘id’, or at
the beginning of each procedure there is a comment describing its goal.
Program Understanding in DBRE 77

Data structure extraction
FIGURE 44. Some common dataflow.

4.6. Elicitation techniques

Though there exists a fairly large set of potentially implicit constructs and information sources,
there is a limited set of common analysis techniques. We describe some of them.

• Dataflow analysis

Examining in which variable data values flow in the program can put into light structural or
intentional similarities between these variables. For instance, if variable B, with structure Sb
receives its values from variable A, with structure Sa, and if Sb is more precise than Sa (Sb has a
finer decomposition), then A can be given structure Sb. The term flow must be taken in a broad
sense: if two variables belong to the same path in the dataflow, at some time, and in some deter-
mined circumstances, their values can be the same, or one of them can be a direct function of the
other. Figure 44 presents some common dataflow applied to the COBOL language.

More sophisticated, or less strict relations can be used as if A=B and Compute A*B to C.
Such patterns do not define equality of values between A and B, but rather a certain kind of sim-
ilarity. This dependency could imply that A and B have compatible value domains. We are not
only interested in direct relations between variables but also in transitive relations. For example,
Move A to B and Move B to C, imply the relation between A and B and between B and C, but
also the transitive relation between A and C.

• Programming clichés

Disciplined programmers carefully use similar standard patterns to solve similar problems.
Therefore, once the pattern for a definite problem has been identified (called programming cli-
ché), searching the application programs or other kind of procedural fragments for instances of
this pattern allows us to locate where problems of this kind are solved [Henrard et al.-1998a],
[Petit et al.-1994], [Quilici et al.-1997] and [Signore et al.-1994].

FIGURE 45. A cliché to detect a referential constraint.

For example, we can write a cliché (see figure 45) that matches one of the many algorithms to
validate the presence of a referential constraint in a COBOL program. Finding all the instances
of this cliché in a huge COBOL program (one million LOC, split in 100 text sources) can be
quickly done. Each time an instance of the cliché is found there is a strong evidence that there is
a referential constraint. Actual data names have been replaced with cliché variable names (pre-

Move A to B

Compute A*B to C

A

BCA C

B

Accept @org_id .
...
Read @orgin Key Is @org_id
Invalid Key Go To @error_label

...
Move @org_id to @targ_ref.
...
Write @target.
78 Program Understanding in DBRE

Elicitation techniques
fixed with @), the dots (...) represent any instructions and the italic words are the reserved
words of the language.

FIGURE 46. Example of program slice.

• Program slicing

This very powerful technique provides extracts (slices) from a large program according to
defined criteria [Weiser-1984]. Considering program P, a point p in P (e.g. an instruction) and an
object V (a variable or a record), the backward program slice of P with respect to the slicing cri-
terion <p, V> is the set of all statements of P that can contribute to the state of V at point p. In
other words, executing P and executing the slice give V the same value whatever the external
conditions of the execution (section 6.4). Figure 46.b is the slice of the program of figure 46.a
with respect to variable CUS-NAME and line 8.

This technique allows the analyst to reduce the search space when he looks for definite informa-
tion in large programs.

• Names analysis

Experimented programmers carefully chose the names they give to the entity types, attributes
and variables to ease program development and maintenance. They give meaningful names that
suggest the semantics and the function of the objects. The analysis of the name of the objects can
give very useful hints about the semantics and the structure of the data. In addition, this analysis
can detect synonyms (several names for the same object) and homonyms (same name for differ-
ent objects). Attributes called Total_Amount, Rebate, Shipment_cost or Average_Salary could be
derived attributes since they suggest values that usually are computed or extracted from refer-
ence attributes. Names can also include important meta-data, such as structural properties
(attribute names Add-City-Name, Add-City-Zipcode suggest a 3-level hierarchy), data type (Inte-
ger-Level), unit (Volume-Tons), language (Title-engl, Title-germ).

For example, a common usage is to prefix or suffix the identifier by one of the following key-
words: id, code, num, etc. Quite often the name of a reference attribute suggest the name of the
target attribute or entity type.

FD CUSTOMER.
01 CUS.
 02 CUS-NUM PIC 9(3).
 02 CUS-NAME PIC X(10).
 02 CUS-ORD PIC 9(2) OCCURS 10.

 ...
01 ORDER PIC 9(3).

 ...
1 ACCEPT CUS-NUM.
2 READ CUS KEY IS CUS-NUM.
3 MOVE 1 TO IND.
4 MOVE 0 TO ORDER.
5 PERFORM UNTIL IND=10
6 ADD CUS-ORD(IND) TO ORDER
7 ADD 1 TO IND.
8 DISPLAY CUS-NAME.
9 DISPLAY ORDER.

a) COBOL program P.

FD CUSTOMER.
01 CUS.
 02 CUS-NUM PIC 9(3).
 02 CUS-NAME PIC X(10).

1 ACCEPT CUS-NUM.
2 READ CUS KEY IS CUS-NUM.
8 DISPLAY CUS-NAME.

b) Slice of P with respect to CUS-NAME and
line 8.
Program Understanding in DBRE 79

Data structure extraction
• Physical structure

Some physical structures (address alignment, entity type offset, abnormally long attributes,
access keys, clusters, multi-record-types fields, etc.) may give hints on possible logical struc-
tures and constraints.

For example, identifiers are usually supported by a (unique) access key because objects are
accessed through their identifier. To optimize this access, the programmer usually declares an
access key. Another example is that abnormally long attributes are candidates to refinement into
compound or multivalued attributes.

• Screen and reports analysis

Screen and reports are used to present data and/or let users modify them. They are views of the
data, therefore, their structure generally gives important hints on the structure and semantic of
the data they transmit. Frequently, one screen panel includes data from several entity types.
Three kinds of information can be derived from the examination of screens and reports:

• Spatial relationships between data fields.

The way the fields are located on the screen may suggest implicit relationships.

• Labels and comments included in the panel

They bring information on the meaning, the role, meaningful name and the constraints of
each screen field.

• Discarded attributes.

An attribute that does not appear on the screen can lead to several conclusions:

• The attribute is an obsolete attribute that is not used anymore.

• The attribute can also be optional and has no value in this context.

• This attribute is redundant with another one that is already displayed in the form.

• This may mean that this attribute designates an information that is given by the context,
for instance about the customer of the order.

FIGURE 47. Dataflow between a dialog box and the entity types.

A screen layout can be examined as a stand-alone component, as suggested above. It can also be
analyzed as source/target data structures of the programs that use it to communicate with their
environment. Figure 47 shows a dialog box, used to enter a new order, with its associated entity

ORDER
Ord_id
Ord_cus
Ord_date
Ord_street
Ord_city
Ord_zip
id: Ord_id

DETAIL
Det_ord
Det_prod
Det_qty

CUSTOMER
Cus_id
Cus_name
Cus_street
Cus_city
Cus_zip
id: Cus_id
80 Program Understanding in DBRE

Elicitation techniques
types. The dataflow between the dialog box and the entity type is represented by arrows. There
are two sub panels that contain respectively a customer and the list of the order details. Each of
them is associated with an entity type. They can be analyzed as follow:

•Cus_id ID Ord_id

Cus_id is the identifier of CUSTOMER and it is copied into Ord_cus. So there may be a ref-
erential attribute from Ord_cus to Cus_id.

•(Cus_street, Cus_city, Cus_zip) Address (Ord_street, Ord_city, Ord_zip)

the three attributes are grouped under the same label (Address), so they can be aggregated.
Ord_street, Ord_city, Ord_zip are redundant attributes, they are copies of the corresponding
CUSTOMER attributes that are "parallel" to the referential constraint.

•Order n° Ord_id and Det_ord

suggests a referential constraint between Det_ord and Ord_id.

•Product Det_prod and Quantity Det_qty

more meaningful names can be noted for these two attributes.

•Ord_date

It does not receive its value from the dialog box. The source code must be analyzed to notice
that it receives its value from the system (the date of the day).

The refined schema is shown in figure 48.

FIGURE 48. The refined schema.

Data reports can be considered both as data structures and as populated views of the persistent
data. The first aspect is quite similar to that of screen layout: a report is a hierarchical data struc-
ture that makes relationships between data explicit. The second one relates to the data analysis
heuristics.

• Data analysis

Through the analysis of the contents of files and databases, some properties may be discovered
or some hypotheses can be supported, proved or disproved.

For example, if Order.O-cust is a referential attribute to Customer, then the referential integrity
should be satisfied and each of its values must identify a Customer record. The following SQL
query will check this condition by computing the number of violations:

 → →

 → →

 →

 → →

Redundant with
Cus_address

Name: Quatity

Name: Product

ORDER
Ord_id
Ord_cus
Ord_date
Ord_address

Ord_street
Ord_city
Ord_zip

id: Ord_id
ref: Ord_cus
rd: Ord_address

DETAIL
Det_ord
Det_prod
Det_qty
ref: Det_ord

CUSTOMER
Cus_id
Cus_name
Cus_address

Cus_street
Cus_city
Cus_zip

id: Cus_id
 : Cus_address

select count(*)
from Order
where O-cust not in (select Cid

 from customer)
Program Understanding in DBRE 81

Data structure extraction
However, the result, n, returned by this query must be interpreted with caution, because several
conclusions can be drawn from it, depending, among others, on the size of the data sample
which was analyzed:

• Program execution analysis

The principle is to analyze the reactions of the program to selected stimuli, for instance, in terms
of acceptance and rejection of input data and update queries. A running program also populates
the screen panels and printed reports. So it is strongly linked with screen and report layout anal-
ysis.

• Documentation analysis

When it still exists, and when it can be relied on, the documentation is the first information
source to use. Normally, collection structures, attribute description and particularly their roles
(such as referencing) should be documented. Before being used, the quality of the documenta-
tion should be assessed. Is it up-to-date? Does it describe the current version of the system or a
previous one? Which formalism does it use?

• Schema analysis

The analysis of working schema, i.e., the schema that is currently refined, can give hints about
which constraints still need to be found. For example, if an entity type is not connected to the
rest of the schema, with referential constraints or relationship types, it can suggest that there
must be some missing referential constraint that has this entity type as target or origin. The
schema analysis is quite easy to do because the schema is an abstraction of the database structure
and it is stored in a CASE tool that offers analysis facilities.

4.7. The conflicts

During the data structure extraction some conflicts or inconsistencies can arise. These conflicts can
have three different origins:

Outcome Interpretation

1. O-cust is a referential attribute.

2. Statistical accident, tomorrow, the result may
be different. O-cust is not a referential
attribute.

1. O-cust is not a referential attribute.

2. O-cust is a referential attribute, but the query
detected data errors.

3. O-cust is a conditional referential attributea.

a. A conditional referential constraint is a referential constraint that is
not always verified. It is only verified when some condition is satis-
fied: the reference attribute is null or another attribute has a given
value.

1. O-cust is not a referential attribute.

2. O-cust is a conditional referential attribute.

n 0=

0 n ε< <

0 n«
82 Program Understanding in DBRE

Refinement methodology
1. The same physical structure in the database can be used to materialize different logical concepts.
For example, the same character string can contain the address of the customer and at another
moment the label of the product, because the string is the parameter of a procedure that capital-
izes the characters of the string. Of course, this does not mean that the address and the label have
the same structure.

2. There can be an error in the application (program, screen or report layout, etc.) or in the database
(instance of the data that can lead to ignore an existing constraint or to find a spurious one). This
happen quite often, because many of the difficulties enumerated for the data structure extraction
are also present during the conception and the maintenance of the application. During the life
time of the application some constraints can be added or removed and those modifications may
be incompletely propagated to the entire program or data.

3. During the data structure extraction the analyst can also make some mistakes, i.e. misunder-
standing some parts of the code, ignore some constraints, etc. These missing constraints can also
lead to some conflicts.

The last two origins of conflicts are errors and will not be further discussed here, even if the proba-
bility to detect one of them (or both) in every project is very high (if not equal to one). Real applica-
tions are written by real programmers, they are maintained by real maintaineers and they are
analyzed by real analysts with all these human factors and reliability that can be imagined. We have
to keep in mind that information extracted from an existing system may be uncertain and incom-
plete.

A conflict (that is not an error but a misinterpretation) means that the physical construct is used to
represent two (or more) different logical concepts and/or that some constraints are missing.

An example of a physical construct that represents two different logical concepts could be a file that
contains two entity types with conflicting decompositions. This is a common practice in COBOL
(especially in old programs) because the number of opened files is limited and this permit to open
only one file where two can be necessary.

An example of a missing constraint would be a referential constraint between two entity types that
is not always verified. This can mean that the referential constraint is optional and its presence or its
absence depend of the value of another attribute.

4.8. Refinement methodology

The main problem of the data structure extraction phase is to discover and to make explicit, through
the refinement process, the structures and constraints that were either implicitly implemented or
merely discarded during the development process. The variety of implicit constructs can be very
large. This chapter presents a generic refinement methodology.

Due to the large amount of information to manipulate attempting an exhaustive search for all the
conceivable constraints is unrealistic. A methodology is needed that guides the analyst in his
constraints investigation.
Program Understanding in DBRE 83

Data structure extraction
FIGURE 49. The refinement methodology.

4.8.1. The refinement methodology

The refinement methodology will reduce the search space to the possible constraints. For example,
it is not realistic to query the data to check each attribute combination being an identifier. We have
to decide which attributes are potential identifiers depending on their names (containing a keyword
such as "code", "id", "num", etc.), their structure (mandatory), their position in the entity type (the
first attribute of the entity type), etc.

Figure 49 sketches the proposed Schema refinement method. In this figure rectangles represent
processes, ellipses represent the different products (schema, data passed form one process to the
others) and diamond shapes represent decision points. The execution flow is materialized by bold
arrows and plain arrows represent product usage. The schema refinement process receives the inte-
grated physical schema and all the information sources such as input and produces the complete
physical schema (see figure 29).

The schema refinement contains three processes:

• Hypothesis discovery

This process analyzes the working schema and all the sources of information to find a potential
missing construct or constraint, called hypothesis. Usually the hypothesis is discovered by the
analysis of the name, structure of the physical schema or by some inexpensive analysis of the
other sources of information. For example, a hypothesis can be "Ref-A of B is a referential
attribute to the identifier of A (Id-A)". The techniques used to discover this hypothesis can be
name analysis (Ref-A contains the keyword "ref" and the name of the referenced entity type, A)
or the structure analysis (length and type of Ref-A and Id-A are the same and Id-A is an identifier,
etc.).

Hypothesis
discovery

Schema
enhancement

Hypothesis
validation

New
hypothesis? Hypothesis?

proved

Data

Working
schema

Hypothesis

Validation
report

no

yes

no

yes

Integrated
physical schema

Complete
physical schema

Program
84 Program Understanding in DBRE

Refinement methodology
The purpose of this process is to guide the implicit constraint discovery. We focus our attention
on some potential constraints using some inexpensive analysis techniques.

• Hypothesis validation

The validation of the hypothesis discovered by the previous process is done by an in-depth anal-
ysis of the working schema and of some of the sources of information. This validation can
require heavy and expensive analysis, such as program understanding or data analysis. For
example, the analyst can use program understanding techniques to understand how the entity
type B, specially the attribute Ref-B, is managed by the program. At the end of this process the
analyst needs to be convinced that the hypothesis is valid or not.

• Schema enhancement

Based on valid hypotheses (proved correct) and the validation report, the corresponding con-
struct is added to the working schema. For example, in this example, the referential constraint
from Ref-A to Id-A is created.

The schema refinement is iterated until no new hypotheses are generated by the hypothesis discov-
ery process.

There is a pre and a post processing, not explicitly displayed in figure 49, that can be seen such as
the input and output parameters definition. The pre-processing copies the integrated physical
schema to obtain the working schema. Before the first iteration both schemas are the same. The
post-processing copies the working schema to obtain the complete physical schema.

It is always possible to find a new hypothesis, but a limit must be set to the hypothesis discovery.
One of those limits is that we are only interested by some kinds of constraints or constraints discov-
ered by some analysis techniques. Another limit is to stop when the discovery of a new hypothesis
or its validation become too expensive.

4.8.2. Hypothesis validation

A good practice is to apply as many heuristics as possible to validate (or disprove) a hypothesis. If a
heuristic succeeds that does not mean that the hypothesis is verified. For example, data analysis is
used to validate the hypothesis "A1 is an identifier of A" and this heuristics is applied on a small set
of data in which, by chance, all the value of A1 are unique. If the test is done again on a larger data
sample some non unique value of A1 may be found. On the opposite, if a heuristic fails, the hypoth-
esis is not necessarily disproved. For example, during the verification the hypothesis that there is a
referential constraint between two entity types and a source code, a fragment of code is found where
the referential constraint is not checked before the entity type is written. This does not mean that the
referential constraint does not exist, it can be a mistake in the program, the programmer forgot to
validate the referential constraint in this fragment of the code. Or this referential constraint is an
environment constraint and thus it is not validated by the program. Or it is an optional referential
constraint and the analyzed code fragment writes the entity type instances for which the referential
constraint is not present. This can be formalized as follows:

• Let h be an hypothesis on the existence of an implicit construct C (for example, attribute B2 of B

is a referential attribute to the identifier of A, A1); so far, h is stated with probability p0 < 11.

1. The probability (p0 and p1) do not have a numerical value but represent the trust the analyst has.
Program Understanding in DBRE 85

Data structure extraction
• The heuristics H is applied; h is now stated with probability p1:

� if H succeeds
p1 > p0; the existence of C is more certain, though p1 < 1.
For instance, in the example above, if there is an index on B2 it is one more evidence that B2
is a foreign key to the identifier A1 of A, but we are not yet completely certain.

� if H fails, one the three interpretations can hold:

• p1 = 0; h is disproved, the constraint C does not exist.
For example, half of the values of B.B2 are not in A.A1 value set, thus there is no referen-
tial constraint from B.B2 to A.A1.

• p1 < p0; h is less certain, but could still be proved through other heuristics.
For example, there is only one value of B.B2 (out of one million) that is not in A.A1 value
set. It cannot be concluded that there is no referential constraint, it is perhaps an error in
the data.

• H does not contribute to the search; p1 = p0.
For example, there is no data stored in B so no data violated the constraint and no data that
validated it!

Experience has exhibited some restrictions in the application of this method in real projects.
Analyzing all the information sources with all the heuristics generally proves too expensive, so that
the analyst has to determine which sources to analyze with which heuristics. There are no general
rules to decide which source of information to use, the analyst has to choose depending on what he
is looking for, what are the respective quality of the different sources of information, the tools avail-
able, etc.

This method considers that all the information sources are reliable. What about the result of a
heuristic applied on unreliable information (corrupted data, programming errors, etc.)? This is why
it is suggested to apply more than one heuristics and to analyze more than one source of information
because in real projects some unreliable information can be found. A hypothesis cannot be proved
by heuristics alone, it is up to the analyst to decide when he is convinced that the hypothesis is vali-
dated or invalidated. Hence the importance of the analyst’s skill and his knowledge of the applica-
tion domain.

During a hypothesis validation other constraints can be discovered, these constraints must be added
to the schema (the opportunistic approach [Tilley-1998]). For example, to validate a referential
constraint, the analyst analyzes a program slice. This slice contains, in additions to the validation of
the referential constraint, the instructions that verify that the value of the referential constraint is
unique (the attribute is also an identifier).

This method is presented as an algorithm, but it is far from being deterministic. The hypothesis
discovery and hypothesis validation processes heavily rely on the analyst skills and on the tools he
uses.

4.8.3. How to decide that refinement is completed

The ending condition is one of the most difficult and less formalized point of the refinement meth-
odology. It is impossible to know when all the implicit constraints have been discovered, because
there is no reference schema with which the current schema can be compared.
86 Program Understanding in DBRE

Refinement methodology
The analyst is never sure that he has found all the constraints. There is always some part of the code
that has not been analyzed or some heuristics that have not been applied.

So the analyst has to decide, with some methodological and economical guideline, that the refine-
ment process is terminated. An important element to decide if the refinement process is finished, is
to know before to start the DBRE project why the DBRE is done and what are the expected results.
The simplest DBRE project is to recover only the list of all the entity types with their attributes as
declared in the DDL. In such a project the refinement process is not done at all, the ending condi-
tion is always true. The result of such projects is the integrated physical schema. The final product
is an incomplete logical schema. This can be useful to make a first inventory of the data structures
used by an application to prepare another reverse engineering or maintenance project.

On the other hand, all the possible constraints may have to be recovered to get a complete view of
the database. This is necessary in migration or maintenance projects. For example, to add new func-
tionalities to an existing application, all the constraints of the database need to be known before any
modification. Otherwise, there is a risk to add some functions that corrupt the data.

Due to time and budget limitation, the analyst has to decide, in dialogue with the customer, what
kind of constraints he is looking for and which heuristics he is using. The customer has to explain to
the analyst what he wants to do with the DBRE results, the time and budget he can devote to this
project. Then the analyst can say if it is possible to perform the project within the given time and
budget. The analyst has also to explain the analysis techniques he will use and what are the weak-
ness and strengths of the proposed solutions.

4.8.4. Refinement strategy

To have a homogeneous result, it is preferable to search for constraints using heuristics on the
whole information source than to apply a lot of heuristics but only on a part of this source of infor-
mation. For example, it is preferable to use dataflow analysis on the complete source code, than to
apply dataflow analysis, program slicing, etc. on only some part of the source code. Indeed, if the
analyst applies a lot of heuristics on a subset of the information source that cover only a part of the
schema, the resulting schema will not be homogeneous. For some part of the schema a lot of
implicit constraints will be recovered while on another one very few (or none) of the implicit
constraints will be recovered. It is particularly difficult to use such a schema when a constraint is
not present. The analyst is never sure that the constraint is not present because this part of the
schema was not analyzed or because the constraint does not exist.

For example, when the analyst uses dataflow analysis to recover referential constraint. He applies
this techniques on the source code of the application. If there is an entity type that is not connected
to the rest of the schema, he can be confident that this entity type is not connected with another
entity type of the schema. But if he has chosen to apply dataflow analysis to only a part of the
source code of the application and there is an entity type that is not connected to the rest of the
schema. Does it mean that this entity type is not connected to another entity type or that the code
that materialize the connection with another entity type was not analyzed?
Program Understanding in DBRE 87

Data structure extraction
FIGURE 50. The techniques applied to discover constraint (D = hypothesis discovery, V =
hypothesis validation).

4.8.5. Heuristics usage

In figure 50, we give, for each implicit constraint, the elicitation techniques that can be used to
discover it. We note if the technique is better suited for hypothesis discovery (D) or hypothesis vali-
dation (V). This table is not exhaustive (rigid). As usual it is possible to find some project where
hypothesis discovery or hypothesis validation can be performed by an heuristic that we have not
been noted. This table is the result of our experience and the analysis of the capabilities of the
different elicitation techniques.

da
ta

fl
ow

an

al
ys

is

cl
ic

hé
s

an
al

ys
is

pr
og

ra
m

sl

ic
in

g

na
m

e
an

al
ys

is

ph
ys

ic
al

st

ru
ct

ur
e

sc
re

en
/r

ep
or

t

da
ta

an

al
ys

is

pr
og

ra
m

ex

ec
ut

io
n

do
m

ai
n

kn
ow

le
dg

e

fine-grained structure
DV DV D DV V D

optional fields
V DV V DV D

field aggregates
DV DV D DV V DV D

multivalued fields
DV DV D D V DV D

multi structure
DV DV D V D

record identifiers
V V D D DV V DV D

field identifiers
V V D DV V DV D

foreign keys
DV V DV D D DV V DV D

functional
dependencies

DV V DV D DV V DV D

array / set
V V D DV V DV D

existence constraints
V V D DV v DV D

exact cardinality
V V DV V DV D

enumerate domains
DV V DV DV V DV D

const. on domain
V V DV V DV D

meaningful name
DV DV D DV DV D
88 Program Understanding in DBRE

Refinement methodology
For example, it is possible to imagine a program where all the optional attribute’s names are
suffixed by the keyword ’opt’. So name analysis can be used to discover the optional attribute. But
our experience shows us that this is improbable.

FIGURE 51. The concept of foreign key.

4.8.6. Application to foreign key elicitation

This section illustrate how the refinement methodology is applied to the referential constraint
discovery.

A referential constraint is an attribute (or combination thereof) of each value that is used to refer-
ence an entity type. The standard configuration of referential constraint B2 can be symbolized by
B.B2 >> A.A1, where B2 is a single-valued attribute (or a set of attributes) of entity type B and A1 is
the primary identifier of entity type A. B.B2 and A.A1 are defined on the same domain (figure 51).
However, practical referential constraint do not always obey the strict recommendations of the rela-
tional theory and richer patterns can be found in actual applications [Hainaut-1997a].

FIGURE 52. Foreign key elicitation, the source and final schema.

Let us base the discussion on the schema of figure 52, in which two entity types customer and
order may be linked by a referential constraint. It is assumed that c-id is the identifier of customer
and there should exist a referential constraint in order that would reference this identifier (in short,
the target identifier is known).

The refinement methodology is applied to find the referential constraint that exists between order
and customer. The remainder of the section is divided into two parts. The first one presents the
different techniques that can be applied to discover hypotheses. The second part applies the differ-
ent elicitation techniques to the hypothesis validation.

B
B1
B2
ref: B2

A
A1
id: A1

 ⇒
order

o-id: char (6)
o-date: char (8)
o-cust: char (5)
id: o-id

customer
c-id: num (5)
c-name: char (22)
address: char (32)
id: c-id

order
o-id: char (6)
o-date: char (8)
o-cust: char (5)
id: o-id
ref: o-cust

customer
c-id: num (5)
c-name: char (22)
address: char (32)
id: c-id
Program Understanding in DBRE 89

Data structure extraction
FIGURE 53. Excerpts from a program working on customer and order.

FIGURE 54. The dataflow graph of the code of figure 53.

4.8.6.1. Hypothesis discovery

A. Dataflow analysis

If a referential constraint holds between two entity types, then it should exist, in some program, a
dataflow between variables that represent the referential constraint and the target identifier. Consid-
ering assignments and equality relations in the code of figure 53, the dataflow graph of figure 54 is
computed. It shows that, at given time points, c-id and o-cust share the same value. It is reasonable
to think that this property is always verified, hence the hypothesis that attribute o-cust could be a
referential attribute is confirmed.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT CUSTOMER ASSIGN TO "CUST.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS C-ID.
 SELECT ORDER ASSIGN TO "ORDER.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS O-ID
 ALTERNATE RECORD KEY IS O-CUST
 WITH DUPLICATES.
DATA DIVISION.
FILE SECTION.
 FD F-CUSTOMER.
 01 CUSTOMER.
 02 C-ID PIC 9(5).
 02 C-NAME PIC X(22).
 02 C-ADDRESS PIC X(32).
 FD F-ORDER.
 01 ORDER.
 02 O-ID PIC X(6).
 02 O-DATE PIC 9(8).
* O-CUST REFERENCE CUSTOMER
 02 O-CUST PIC X(5).
WORKING-STORAGE SECTION.
 01 C PIC 9(5).

PROCEDURE DIVISION.

PRINT-REPORT SECTION.
ASK-CUST.
 DISPLAY "ENTER CUSTOMER NUMBER ".
 ACCEPT C.
 MOVE C TO C-ID.
 READ F-CUSTOMER
 INVALID KEY GO TO ERROR-1.
 MOVE C TO O-CUST.
 MOVE 1 TO END-CUST.
 PERFORM DISP-ALL-ORD UNTIL END-CUST=0

DISP-ALL-ORD.
 READ F-ORDER
 INVALID KEY MOVE 0 TO END-CUST.
 IF END-CUST = 1
 PERFORM DISPLAY-ORDER.

CREATE-ORD SECTION.
 DISPLAY "ENTER CUSTOMER NUMBER".
 ACCEPT C-ID.
 READ F-CUSTOMER
 INVALID KEY GO TO ERROR-2.
 MOVE C-ID TO O-CUST.
*ASKS FOR THE ORDER INFORMATION
 ...
 WRITE ORDER
 INVALID KEY GO TO ERROR-3.

C

o-custc-id
90 Program Understanding in DBRE

Refinement methodology
FIGURE 55. Example of a report that display customer and order.

B. Screens / forms / reports layout analysis

Reports can be considered a populated view of the persistent data. The analysis of the report of
figure 55 shows that below each customer there is a list of orders. This analysis suggests that there
is a referential constraint from order to customer.

FIGURE 56. An fragment of the application documentation.

C. Current documentation analysis

The code of figure 53 includes comments that suggest that o-cust is a referential constraint that
references customer.

There still exists some documentation written during the development of the application. Figure 56
shows an excerpt of the documentation of the application that describes o-cust as the referential
attribute that references c-id.

D. Domain knowledge usage

Everybody knows that customers place orders. Obviously, entity types customer and order should
be linked in some way.

E. Program execution analysis

The program refuses to delete a customer record because the customer still has pending order. This
behavior can be translated into the fact that order entity type depends on the customer entity type.

F. Physical structure analysis

A referential constraint is a mechanism that implements a link between entity types and is the priv-
ileged way to represent inter-entity relationships. We can assume with little risk that application

Customer : Smith
Order Date
1 1-1-200
5 1-10-2000
9 2-3-2001

Customer : Dupont
Order Date
2 3-2-2000
6 5-11-2000

customer

c-id pic 9(5)
c-name pic x(22)
c-address pic x(32)

order

o-id pic X(6)
o-date pic 9(8)
o-cust pic X(5)
Program Understanding in DBRE 91

Data structure extraction
programs will navigate on records following these relationships. Therefore, most referential
constraints will be supported by such access mechanisms as access key. Heuristics: an attribute
supported by an access key could be a referential attribute, specially when it is not an identifier. In
the example an access key (record key with duplicate) has been declared on o-cust.

Quite naturally, the candidate attribute should have the same domain of values, i.e. the same type
and length, as the identifier. However, some matching distortions can be found as far as lengths and
even types are concerned. Heuristics: the candidate referential attribute must match, strictly or
loosely, the identifier of the candidate referenced entity type. In our example, o-cust is declared as
pic X(5) and c-id is pic 9(5), the lengths are the same but the types are not. This is a common
COBOL habit to mix alphanumeric characters and numeric characters.

G. Name analysis

The name o-cust includes a significant part of the name of the target entity type (customer). This
suggests that o-cust references customer.

4.8.6.2. Hypothesis validation

During the hypothesis discovery process a potential referential constraint has been discovered.
Depending on the heuristic used the hypothesis can be formulated in two different ways:

• There is a referential constraint between CUSTOMER and ORDER.

• There is a referential constraint between CUSTOMER.O-CUST and ORDER.C-ID.

Usually, hypothesis validation heuristics are techniques that give reliable result but are more expen-
sive to apply.

A. Cliché analysis

To validate the referential constraint hypothesis, each WRITE (and REWRITE) instruction that stores
the origin entity type must match a referential constraint cliché. Indeed to enforce a constraint the
program must verifies it before storing the entity type.

There is half a dozen clichés which make it possible to detect a referential constraint in a COBOL
program. Cliché of figure 45 on page 78 matches with the CREATE-ORD section of the code of
figure 53.

B. Program slicing

To validate a referential constraint hypothesis, the analyst must check that each time the ORDER
entity type is stored there is a fragment of code that ensures that the referential constraint is verified.
This fragment of code must be executed before a WRITE (or REWRITE) instruction and it must
contain an access (READ) to the target entity type. Program slicing can be used to discover such a
fragment of code. The program slice computed with respect to a WRITE (or REWRITE) instruction of
the referential constraint entity type must contain a READ instruction to the target entity type. This
slice is analyzed to detect which attributes (in the origin entity type and in the target entity type) are
92 Program Understanding in DBRE

Refinement methodology
used to ensure the referential constraint. Such a program slice must be computed and analyzed for
each WRITE (or REWRITE) instruction to ensure that the referential constraint is always verified.

FIGURE 57. Program slice of program of figure 54 with respect to WRITE ORDER.

In the example of figure 53, the program slice is computed with respect to the WRITE ORDER
instruction (see figure 57). The analysis of this slice proves that before ORDER storage, the program
checks if O-CUST is an existing value of C-ID (the identifier of CUSTOMER).

FIGURE 58. Program that counts the number of O-CUST that does not appear in C-ID.

C. Data analysis

To validate a referential constraint through the data analysis, the database contents needs to be
queried to know the number of instances that violate the constraint. This can be easily done with
modern DMS as SQL. For such DMS it can be implemented as a query. For less powerful DMS (as
COBOL) a small program needs to be written to query the database.

The program of figure 58 counts the number of ORDER that violate the referential constraint. This
sample program does not only count the number of erroneous ORDER but also the total number of
ORDER. In the idealistic situation, where the data does not contain errors, the among of erroneous
data is enough to decide if the constraint is present or not. If the number of errors is 0 then the refer-
ential constraint is validated otherwise there is no referential constraint. On the other hand, in real
databases there are often errors in the data and thus it is useful to know the number of errors with
respect to the total number of instances. If the number of errors is very small with respect to the
total number of data, the analysis can assume that the referential constraint is verified.

CREATE-ORD SECTION.
 DISPLAY "ENTER CUSTOMER NUMBER".
 ACCEPT C-ID.
 READ F-CUSTOMER
 INVALID KEY GO TO ERROR-2.
 MOVE C-ID TO O-CUST.
*ASKS FOR THE ORDER INFORMATION
 ...
 WRITE ORDER
 INVALID KEY GO TO ERROR-3.

 MOVE 0 TO NUM-ERR.
 MOVE 0 TO NUM-ORD.
 MOVE 1 TO END-FILE.
 PERFORM READ-ORD UNTIL END-FILE = 0.
 DISPLAY "number of order: " NUM-ORD.
 DISPLAY "number of error: " NUM-ERR.

READ-ORD.
 READ F-ORDER NEXT
 AT END MOVE 0 TO END-FILE
 NOT AT END
 PERFORM VERIF-CUST.

VERIF-CUST.
 ADD 1 TO NUM-ORD.
 MOVE O-CUST TO C-ID.
 READ F-CUSTOMER
 INVALID KEY ADD 1 TO NUM-ERR.
Program Understanding in DBRE 93

Data structure extraction
D. Program execution

If the program rejects any tentative data entry concerning an order unless its o-cust value
appears as the c-id value of some customer record, then we can conclude that the program
enforces some kind of inclusion property between these value sets, which can be interpreted as
referential integrity.
94 Program Understanding in DBRE

CHAPTER 5 Program understanding
in database reverse
engineering
At first sight, it can be strange to use program understanding to perform DBRE. DBRE recovers the
data structure that is more or less independent from the programs. It is shown in this chapter that the
implicit constraints can be elicited through the analysis of the source code. The source code is one
of the most accurate and up-to-date sources of information for the recovery of the implicit
constraints. Due to the difficulty and expensiveness of source analysis, the analyst must have
program understanding techniques and tools .

FIGURE 59. Program understanding is the mapping between the program and the problem
domain.

5.1. Program understanding

Program understanding is the process of acquiring knowledge about a computer program [Corbi-
1989][Rugaber-1995][Tilley-1998b][von Mayrhauser et al.-1994][Young-1996]. Increased knowl-
edge enables such activities as reverse engineering, documentation, bug correction, enhancement
and reuse. Program understanding is not only understanding the code, but also the mapping
between program domain and problem domain (see figure 59).

Problem/
application

domain

Programming/
implementation

domain

P
ro

gr
am

un

de
rs

ta
nd

in
g

m
ap

pi
ng
Program Understanding in DBRE 95

Program understanding in database reverse engineering
While efforts are underway to automate the understanding process, such significant amounts of
knowledge and analytical power is required that today program understanding is largely a manual
task.

In [Rugaber-1995], Rugaber explains that program understanding is difficult because it must bridge
different conceptual areas. He describes five gaps that need to be bridged:

1. Application domain and program

Programs are solutions to problem situations from some application domain. It is the job of the
person trying to understand the program to reconstruct the mappings from the application
domain to the program.

2. Physical machines and abstract descriptions

Computer programs are incredibly detailed. One of the jobs of the analyst is to decide, from all
the programs details, which are the important concepts (abstraction).

3. Coherent models and incoherent artifacts

During the design the program is constructed as a coherent set of details. Through maintenance
activities such as porting, bug fixing and enhancement, the original structure of the program may
have deteriorated. The analyst needs to detect the high level structure of the program when the
original purpose of the program may have change.

4. Hierarchical world of program and associative nature of human cognition

Computer programs are highly formal. Human cognition seems to work associatively. The pro-
cess of human understanding is controlled by expectations derived from the application domain
and the programming knowledge. A program is understood to the extent that the reverse engi-
neer can build up correct high level chunks from the low level details evident in the program.

5. Bottom-up program analysis and top-down synthesis

When an experienced analyst looks at a program, he detects patterns that indicate the intent of
some section of code (bottom-up). At the same time, he has some idea of the overall purpose of
the program and how it might be accomplished (top-down). The difficulty is that both of these
activities need to proceed at the same time, in a synchronized fashion.

Most program understanding work is currently done by humans. To understand a program three
kinds of actions can be taken [Corbi-1989]:

• Read about it: the analyst can read (or analyze) any kind of documentation available about the
program. The problem is that the documentation does not always exist and when it exists it is not
necessarily up-to-date, correct or well written.

• Read it: the analyst can read (or analyze) the code itself. Usually the code is the primary source
of information because it is the only really accurate representation of the system.

• Run it: an interesting source of information about a program is its execution to analyze (through
some tracing processes) how it work on real data.

In order to study the program understanding process, it is important to look at the human factors
involved in comprehension. The cognitive aspect [Corbi-1989] [Tilley-1998b] of program under-
standing is the study of the problem-solving behavior of software engineers engaged in understand-
ing tasks. Three theories appear in the literature: the bottom-up, the top-down and the opportunistic
one. In the bottom-up theory, by reading the code, an analyst essentially iteratively abstracts a
higher-level understanding of the program by recognizing and then naming more and more of the
program. The top-down theory proposes that programmers use their own experience and repeatedly
96 Program Understanding in DBRE

Program understanding
try to confirm their expectations or the basic of what they believe the design to be. Now, when they
pick up the code, they look for where these elements occur and fill in their belief of what the design
most probably is. If something is missing or radically different from his expectations, the surprise
causes some new experience to be stored for the next encounter. The opportunistic theory says that
understanding is a mixture of top-down and bottom-up strategies. Understanding a program
involves a knowledge base (which represents the expertise and background knowledge of the
analyst), a mental model (which is an encoding of the analyst’s current understanding of the
program) and an assimilation process.

Because the productivity of software engineers varies by more than an order of magnitude, the strat-
egies of successful practitioners are of great interest in producing methodologies, tools and tech-
niques that better support program understanding. These tools proceed from straightforward textual
analysis to the dynamic analysis of executing programs. The main program analysis techniques are
the following:

1. Textual analysis

One of the simplest ways to understand a program is to manually flip through source code or to
search for a given string.

2. Syntactic analysis

The syntactic analysis is performed by a parser that decomposes a program into expressions and
statements. The result of the parser is stored in a structure called an abstract syntax tree (AST)
that is the basic of most sophisticated program analysis tools. Because an AST is a tree, it can be
traversed or queried.

3. Control flow analysis

There are two forms of control flow analysis. Intraprocedural analysis provides a determinator
of the order in which statements can be executed (sequence, condition, loop, etc.) within a pro-
gram. Interprocedural analysis determines the calling relationship among the program unit, as
call graph.

4. Dataflow analysis

The dataflow analysis is the analysis of the flow of the values from variables to variables
between the instructions of a program. To compute the dataflow of a program the variables
defined and the variables referenced by each instruction must be known. A variable is defined
by an instruction, if the instruction modifies the value of the variable (e.g. through an assign-
ment). A variable is referenced by an instruction when its value is used by the instruction (e.g. a
variable that appears in a conditional instruction). Dataflow analysis is concerned with answer-
ing questions related to how definition flows are used in a program.

5. Slicing

The slice of a program with respect to program point p and variable v consists of all the program
statements and predicates that might affect the value v at point p. This concept was originally
discussed by M. Weiser [Weiser-1984], see 6.4.

6. Cliché recognition

A cliché is a programming pattern. The program source code can be searched for these pattern.
An example of a cliché is a pattern describing loops for performing linear search.

7. Abstract interpretation

The basic idea behind abstract interpretation is to approximate (usually undecidable) properties
by using an abstract domain instead of the actual domain of computation. As a consequence, the
program as a whole can be given an approximated meaning, hopefully capturing interesting
Program Understanding in DBRE 97

Program understanding in database reverse engineering
properties while leaving out irrelevant detail as much as possible.

8. Dynamic analysis

The analysis techniques described so far have all been static that is they are performed on the
source code of the program. It is also possible to gain increased understanding by systematically
executing a program. This process is called dynamic analysis.

Such support mechanisms can manage the complexities of program understanding by helping the
analyst extract high-level information from low-level code. These support mechanisms free
analysts from tedious, manual and error-prone tasks such as code reading, searching and pattern-
matching by inspection.

5.2. Program understanding in database reverse
engineering

At first glance, it can be strange to use program understanding to perform DBRE. In the introduc-
tion of this thesis, we have explained that we restrict ourselves to the DBRE because it can be
performed more easily than the reverse engineering of the procedural part of the application and
because the database is independent from the application. Moreover the understanding of the under-
lying database can ease the understanding of the whole program.

Some authors only use the DDL, the physical schema or data themselves to reverse engineer the
database. This approach can be valid if the DMS is powerful enough to express all the constraints
and the programmer has used all the expressiveness of the DMS when he has developed the appli-
cation. In such situations all the constraints are explicitly declared and there is no implicit
constraint. Such condition can be verified in some modern and well designed (academic?) data-
bases. But it can not be assumed in general and certainly not for legacy system.

Legacy DMS do not offer a rich set of constraints and the programmer needs to express complex
constraints as referential constraints, data dependency, multivalued attributes, etc. Thus the
programmer implement these constraints as implicit constraints (non declarative structure). As said
in the previous chapters, even constraints or data structures that can be explicitly declared in the
DMS are not always declared and are implicitly implemented (structure hiding). Constraints are not
explicitly declared in the DMS for numerous reasons: reusability, genericity, simplicity, efficiency,
poor programming practice, previous version of the DMS does not support such constraints, disor-
ganization that results from prolonged maintenance [Tilley-1998b].

All the implicit constraints are recovered during the data structure extraction and more precisely
during the schema refinement process. Without the recovery of the implicit constraints DBRE only
produces another (graphical) view of the physical schema. The DBRE takes all its significance if it
enhances the semantic of the physical schema to produce the conceptual schema.

All the DBRE processes, except the schema refinement, are quite well known. The DDL analysis is
studied since the early 80’s (see 1.4) and there exist many commercial tools to perform it. The data
structure conceptualization is taught in schools and universities and there exist commercial tools to
support it. But there exists very little research to tackle the schema refinement. The only implicit
constraint discovery techniques usually suggested by some methodologies is the analyst domain
98 Program Understanding in DBRE

Program understanding in database reverse engineering
knowledge or some knowledge about the program. But they do not suggest how this knowledge is
acquired!

In real projects also most of the refinement process relies on the analyst’s knowledge and on a lot of
manual work.

The schema refinement process gives very important added values to the logical schema. Since
1992, some authors have recognized that the procedural part of the application programs is an
essential source of information to retrieve data structures ([Anderson-1996], [Hainaut et al.-1993a],
[Joris et al.-1992] and [Petit-1996]) and that understanding some programs aspects is one of the
keys to fully understand the data structure. In data-oriented applications, many (if not all) data
structures and constraints that are not explicitly declared are coded, among others, as a procedural
section of the program. The code is the only really accurate representation of the system.

The data in a database are the result of the executions of the programs which update the database.
Therefore all the implicit constraints can be inferred from the ways that the programs update the
database. If the database satisfies some constraints before the execution of a program and still satis-
fies these constraints after the execution, then the program must verify that the modified data do not
violate the constraints. Thus a program must validate all the constraints before modifying the data.
Some constraints can also be found through the analysis of programs that only access the data and
do not modify them. Indeed when a program reads data, to print a report or display results on a
screen, it uses some of the database constraints. For example, if there exists a referential constraint
between the CUSTOMER entity type and the ORDER entity type, this referential constraint is used,
to access to find the customer when the invoice is printed.

The program source code is an accurate and up-to-date source of information. Programs are the
only way for the users to access the data so all the constraints that the programmer wants to enforce
must be present in the code. Programming languages are very precise and deterministic, there is
only one interpretation of what a fragment of program is doing. The knowledge acquired through
the analysis of the code is quite sure. The source code is an up-to-date source of information
because it is used to generate (compile) the application.

The drawback of source code analysis is that it is a difficult and expensive task. The difficulty
comes from the fact that the programs are written using legacy languages that the analyst needs to
master. The analyst needs to have a deep understanding of the language to understand programs that
have been written by other programmers. The analyst must also have a good knowledge of the
forward engineering process to understand the code produced by other programmers. The size of
the application is also a source of difficulties. It is not rare to have application of several 100000
LOC.

For all those reasons, the program text source is a very useful source of information in which we
can discover a lot of implicit construct during the data structures extraction. But to use this source
of information effectively, the analyst needs program understanding techniques and tools.

Another asset of procedural code analysis is that it can help in the comprehension of the data’s
semantics. The understanding of the business rules, the data manipulation algorithms give impor-
tant hints to understand the meaning of the data and thus to increase the domain knowledge of the
analyst.
Program Understanding in DBRE 99

Program understanding in database reverse engineering
5.3. Program understanding difficulties

The analysis of the program source is a complex and tedious task. This is due to the fact that proce-
durally-coded data constructs are spread in a huge amount of source files, can be duplicated, and
also because there is no standard way to code a definite structure or constraint.

As an example of this, there is only one way to declare explicitly a referential constraint in SQL-
DDL (...foreign key <column> reference <table>), it is done only once (in the database
declaration) and the constraint is always satisfied. This declaration is easy to detect in the DDL
code. Once it has been found, the analyst is sure that the constraint is present and he can add it to the
schema without any other verification.

FIGURE 60. Four different fragments of code that verify the same referential constraint.

On the other hand, there are many different ways to implement an implicit referential constraint.
Each time an occurrence of one of the entity types that take place in the constraint is modified,
inserted or deleted, code that validates the constraint must be produced. The code is scattered in the

new-order1.
 display "customer number".
 accept CUS-ID.
 read CUS key CUS-ID
 invalid key go to error.
 move CUS-ID to ORD-CUS.
 display "order number".
 accept ORD-ID.

 write ORDER.

new-order2.
 display "customer number".
 accept ORD-CUS.
 move ORD-CUS to CUS-ID.
 read CUS key CUS-ID
 invalid key go to error.
 display "order number".
 accept ORD-ID.

 write ORDER.

new-order3.
 display "customer number".
 accept WO-ORD-CUS.
 move WO-ORD-CUS to CUS-ID.
 read CUS key CUS-ID
 invalid key go to error.
 move WO-ORD-CUS to ORD-CUS.
 display "order number".
 accept ORD-ID.

 write ORDER.

ORD
ORD-ID
ORD-CUS
...
id: ORD-ID
ref: ORD-CUS

CUS
CUS-ID
...
id: CUS-ID

new-order4.
 display "customer number".
 accept WO-ORD-CUS.
 move WO-ORD-CUS to CUS-ID.
 read CUS key CUS-ID
 invalid key move 0 to FIND-CUS
 not invalid key move 1 to FIND-CUS.
 if FIND-CUS
 move WO-ORD-CUS to ORD-CUS
 display "order number"
 accept ORD-ID

 write ORDER
 end-if.
100 Program Understanding in DBRE

Program understanding difficulties
application and can be different. To be sure that the constraint is always verified, the analyst needs
to check all the fragments of code that modify, insert or delete the entity types.

Figure 60 presents four fragments of COBOL code that verify the same referential constraint
(between ORDER and CUSTOMER) before the recording of a new ORDER (implicit constraint), and we
can easily imagine other algorithms to validate this referential constraint that uses go to. From the
user point of view, those four fragments verify exactly the same constraint. The pattern (or cliché)
to search for the discovery of the referential constraint is different in each example. In the first one
the dataflow is from CUS-ID to ORD-CUS, in the second one it is the opposite. In the third one an
intermediate variable (WO-ORD-CUS) is used and the dataflow is from this variable to CUS-ID and
to ORD-CUS. This shows the different usage patterns that must be checked to detect very similar
constraint; there are many other ways to verify a referential constraint in a source code. Those
examples are simple because they are entirely written in COBOL and these code fragments are
adjacent lines of code that only validate the referential constraint. It is easy to imagine that the
complexity can increase if the instructions are spread over different paragraphs that perform many
other verifications. So the analyst has to gather the pertinent instructions by the analysis of thou-
sands of lines of codes, following the control flow (if, go to, perform). This complexity can
also be increased by the use of some embedded DMS queries (as SQL). The analyst (and the tool)
needs to understand (parse) two different languages. To understand programs with embedded DMS
queries, another difficulty is that the DMS physical schema is not declared in the programs. The
physical schema must be extracted from the DMS-DDL and the analyst must do the mapping
between the physical schema and the program’s variables.

Each programmer has his personal way(s) to express the constraints (variable naming, comments
usage, algorithm, code presentation) depending on his skill, his programming experience, his mood.
This will increase the understanding difficulty because the analyst has to first discover how the
programmer has worked. For example, if the programmer uses a variable (cus-name) to store two
different information (the customer name and the product name) to save memory space, it can be
very difficult to read (understand) the code. The constraints coding also depends on the program-
ming language, the target DMS, the enterprise rules (naming convention, comments usage, features
of the DMS used), the level of optimization needed, the history of the application (the maintenance
process, the different migrations), the tools used. For example, if the name of the origin of a refer-
ential attribute contains the name of the target attribute or entity type, it can ease this referential
constraint discovery. But if both attributes have meaningless names, it can be very difficult to
understand the referential constraint validation code.

The same section of code can be used to validate several constraints. For example, if the ORDER
entity type contains a multivalued attribute to store the products ordered and if a product can only
be ordered once per order. The section of code, that validates a new product added to the order,
must check that the new product is a valid product and that the product was not already ordered in
the current order. The analyst needs to dissociate the different constraint validations.

FIGURE 61. Example of optional referential constraint.

for s in STUDENT:
s. Country = "Belgium"
iff
s. School = SCHOOL. SchoolName

STUDENT
Name
Country
School
ref: School

SCHOOL
Name
id: Name
Program Understanding in DBRE 101

Program understanding in database reverse engineering
If the constraints are not explicitly declared in the database, each module (or function) that modifies
the data must verify them. Thus the validation code is duplicated and each occurrence of the valida-
tion can be coded differently. Quite often at least one of the validation code does not verifies the
same constraints as the other. This can have different interpretations. It is possible that the analyst
has misunderstood the constraint and must find another interpretation that includes all the code
fragment. For example, if a code fragment validates the referential constraint shown in figure 61
and another one does not validate it. It can also be interpreted as the fact that the referential
constraint is optional, it is only present if the STUDENT.Country attribute is equal to "Belgium",
otherwise STUDENT.School does not reference SCHOOL.Name. Another reason for which two
fragments of code do not implement the same constraint, is that there are errors in one of them.

5.4. Program understanding techniques in DBRE

We do not need to retrieve the complete program specification; we are merely looking for evidence
that are relevant to find the undeclared structures and constraints on persistent data. More precisely,
we are looking for evidence of the implicit structures and constraints described in chapter 4 as
attributes refinement and aggregation, referential constraints and exact cardinalities, to mention
only a few.

Several industrial projects (see 9.4) have proved that powerful program understanding techniques
and tools are essential to support data structure extraction process in realistic size DBRE projects.

We have studied and adopted some program understanding techniques that ease the discovery of
those implicit constraints. These program understanding techniques are:

• Pattern matching: the search for patterns in a source text.

• Variables dependency graph: this is a graph where the nodes represent variables of the program
and the arcs are relations (usually dataflow) between the variables.

• Program slicing: extract from a program only the lines necessary and sufficient to understand
the value of a variable at a given instruction.

• Program visualization: different representations (call graph, data flow diagram,...) of a program.

All those techniques will be studied in detail in the following chapter.
102 Program Understanding in DBRE

CHAPTER 6 Program
understanding
techniques
Program understanding techniques can be adapted to retrieve the implicit constraints on data that
are implemented in the programs. This chapter presents five of those techniques used to understand
the mentioned data constraints: pattern matching, variable dependency graph, program slicing,
system dependency graph and graphical visualization of programs.

6.1. Introduction

As said in the previous chapter, program understanding has been developed by the software engi-
neering communities to acquire knowledge about programs for debugging, maintenance, enhance-
ment and reuse. Many techniques have been developed to help the analyst in the comprehension of
the existing programs.

This thesis focuses on the program understanding used in database reverse engineering. To perform
this task, the analyst does not need to understand all the aspects of the program but wants to map the
persistent data usage to a database schema. This chapter presents different program understanding
techniques that can be used to better understand how the persistent data are used and which
constraints, on those data, are ensured by the program. Different program understanding techniques,
that can be used to better understand how the persistent data are manipulated, are studied:

• Pattern matching

Search of patterns (strings) in source code.

• Variable dependency graph

A graph that represents the relation between the variables.

• Program slicing

Decomposition technique that extracts from program statements relevant to a particular compu-
tation. An extension of program slicing to analyze programs with embedded SQL is also pre-
sented.
Program Understanding in DBRE 103

Program understanding techniques
• System dependency graph analysis

The system dependency graph is the program representation used by program slicing. It is possi-
ble to imagine other usage (querying) of the system dependency graph than to compute slices.

• Graphical visualization of program

Some aspect of the program architecture as call graph, data usage, can be visualized as graphs.

6.2. Pattern matching

The simplest program understanding technique is to search for a string in the text sources. The tech-
nique presented to search for a string in a text source is not a simple string searching tool, but a
more sophisticated pattern matching engine. The term pattern is used and not just string, as in a text
editor, because a pattern describes a set of possible strings. It can include wildcard, characters
ranges, multiple structures and variables and can be based on other defined patterns. For example, a
simplified version of the COBOL assignment (Move A to B) can be defined as the characters
"MOVE", followed by at least one separator (space, new line, tab,...), followed a COBOL variable
(that must be defined before), followed by at least one separator, followed by the characters "TO",
followed by at least one separator, followed by a second COBOL variable.

We have defined a Pattern Definition Language (PDL) has been defined to describe the patterns.
This language is close to the BNF notation; it defines the following structures (the complete PDL
syntax can be found in the annex A.1.1):

• Terminal segment

A string that is matched as it is, the matching is case sensitive or not.

• PDL variable

This is a variable name that is assigned to an already defined pattern. If a variable with the same
name appears more than once in a pattern, then each occurrence of the variable must have the
same value. A value can be assigned to the variable, before the search takes place, to specialize
the pattern. The value that matches to the variable can be used by other processors.

• Range of characters

Matches any character belonging to the range.

• Optional segment

This segment can be matched to the empty string.

• Repetitive segment

This segment can appear more than once.

• Choice segment

It must match one of the segments of the choice.

• Regular expression

Pattern can contain grep regular expression ([Robbins-2002]).

• Pattern

A pattern definition can contain a reference to an already defined pattern.
104 Program Understanding in DBRE

Variable dependency graph
 The COBOL assignment can be expressed in PDL as follow:

move ::= "MOVE" - @var_1 - "TO" - @var_2;

where move is the name of the pattern, "MOVE" and "TO" are two terminal segments, -, var_1,
var_2 are patterns defined before and @var_1 and @var_2 are two PDL variables.

Several program understanding tools use the pattern matching engine: search of a pattern, link the
execution of a program to a pattern, variable dependency graph (see section 6.3).

The pattern matching searches for a given pattern in a text or in the description of the object of the
current schema. The user can ask to search for the next occurrence of the pattern or to select all the
occurrences of the pattern in the current document.

It is possible to associate the execution of a procedure to a pattern. Each time a pattern matches, the
procedure is executed with the variables of the patterns as input parameters of the procedure. This
can be very useful to automate a process: generate a report with the pattern found or creates
constraints each time the pattern is found. For example, if we have a SQL database where the views
materialize sub-types of tables, the views are defined as follow:

create view
as select (...)
from <table>
where <column> = <string>;

We’d like to create an is-a relation between the table and its views. The SQL extractor will create an
entity type for each view and put its definition into the technical description (see section 8.3.2 of
chapter 8). So we can search for the following pattern in the technical description of the database
schema

is-a ::= "from" - @table - "where" - @column ~ "=" ~ @string;

and link it to a procedure that will create the is-a relation between the table (variable table) and
the current entity type.

6.3. Variable dependency graph

In DBRE, it is often useful to know to which other variables (or attributes) an attribute of the data-
base is connected. For example, it can be very useful to refine the attributes decomposition. If an
attribute is mapped to a variable that is decomposed in sub-variables, we can conclude that the
attribute can be decomposed as the variable. It is useful to have a weak, easy to compute, version of
a dataflow diagram, called variable dependency graph (VDG). In this graph, each variable of the
program is represented by a vertex, while an arc (directed or not) represents a direct relation
(assignment, comparison, etc.) between two variables. If there is a path from variable A to variable
C in the graph, then there is, in the program, a sequence of statements such that the value of A is in
relation with the value of C.

The very meaning of the relation between variables is defined by the analyst depending on the type
of relation materialized by the arcs. The interpretation of the variable A being in relation with vari-
able C can be one of the following: the structure of one variable is a variant of the other one, the
Program Understanding in DBRE 105

Program understanding techniques
variables share the same values, they denote the same real world object, there is a dependency
between the two variables, etc.

To construct this graph, it is only needed to search the program for definite statement patterns.
Without worrying to write a complete parser that analyzes the whole program. Figure 62.b illus-
trates the variable dependency graph of the program fragment shown in figure 62.a.

FIGURE 62. The variable dependency graph.

In DB-MAIN, the relation is defined as a pattern in which the two variables in relation are repre-
sented by two PDL variables (var_1 and var_2). The patterns used to construct figure 62.b graph
are displayed in figure 62.c.

The usage of the variable dependency graph can lead to three kinds of silence and to two kinds of
noise.

FIGURE 63. Example of silence in variable dependency graph due to variable decomposition
unawareness.

The first source of silence lies in the relations that are represented by the arcs. If we use assignment
statements only, then all the other instructions that contribute to the dataflow (compute, multiply,
string,...) are ignored. This kind of silence can be reduced by increasing the number of statements
we are looking for.

The second source of silence is that the graph is not aware of the structure of the variables. Figure
63 gives an example where such silence appears. The decomposition of B in B1 and B2 is not repre-
sented, so that the path between (A1, A2) and C remains undetected.

...
MOVE A TO B.
...
MOVE B TO C.
...
IF (C = D)
...

a) The code fragment.

A B

C D

b) The VDG.

move::="MOVE" - @var_1 - "TO" - @var_2;
compare::=@var_1 - rel_op - @var_2 ;

c) The patterns.

01 A1 PIC X(10).
01 A2 PIC X(10).
01 B.
 02 B1 PIC X(10).
 02 B2 PIC X(10).
01 C PIC X(20).
MOVE A1 TO B1.
MOVE A2 TO B2.
MOVE B TO C.

A1 A2

B1 B2

B C

??

b) The VDG.a) The code fragment.
106 Program Understanding in DBRE

Variable dependency graph
FIGURE 64. The dependency between A-I and B-J is implemented using a test (if).

Finally, ignoring control flow can also generate silence. For example in figure 64, the result of the
test on A-I (if(A-I="T")) is necessary to discover the dependency (a computed dependency)
between A-I and B-J. The value of B-J is influenced by the value of A-I. The corresponding
VDG is empty because there is no assignment between variables in this example, but there is a
dependency. The last two kinds of silence are very difficult to address with this technique.

FIGURE 65. Example of variable dependency graph noise.

Noise can be generated because the graph only represents dataflow and not the control flow. There
exist variables that are connected by a path in the graph though they are not in relation at execution
time. As show in figure 65, there is a path between variables A and D in the graph, but they are not
in relation during the execution. Between the assignment for A to B and the assignment from B to D,
there is an assignment that overwrites the value of B.

The second source of noise is that if a variable represents a record field, it does not necessarily
contain a value that appears in the database. Let us consider the following tricky program:

... where A1 is an attribute of entity type A and B1 of entity type B. The graph shows a relation
between A1 and B1, so we can conclude erroneously that there is a dependency between the entity
types A and B. The value of A1 that is assigned to B2 is not a value stored into entity type A, but a
constant, so it is erroneous to conclude that there is a dependency between both entity types.

fd A.
01 REC-A.
...
02 A-I... .

fd B.
01 REC-B.
...
02 B-J... .

0 Main.
1 read A
2 if(A-I = “T”)
3 move “c1” to B-J

else
4 move “c2” to B-J.
5 write REC-B.

MOVE A TO B
..............
MOVE B TO C
..............
MOVE E TO B
..............
MOVE B TO D

A E

B

C D

a) The code fragment. b) The VDG.

A1

B1

READ A.
MOVE "cst" TO A1.
MOVE A1 TO B1.
WRITE B.
Program Understanding in DBRE 107

Program understanding techniques
6.4. Program slicing

This section describes the program slicing developed in the DB-MAIN CASE tool. This slicing tool
analyzes COBOL program, so it needs to analyze programs with procedures and arbitrary control
flow (go to).

In the DB-MAIN program slicing tool, a program is represented by a graph (the system dependency
graph) and the slicing problem is simply a vertex-reachability problem, and thus slices may be
computed in linear time in the number of edges when the graph is already computed. The computa-
tion of the graph is more expensive. As said earlier, we are interested in interprocedural slicing with
arbritary control flow, generating a slice of an entire program, where the slice crosses the bound-
aries of procedural calls and with go to’s. For the interprocedural slice, we use uses the system
dependency graph to represent the program and the algorithm to compute the slice that was
described by S. Horwitz et al. in [Horwitz et al.-1990]. It uses the augmented system dependency
graph as proposed by Ball et al. in [Ball et al.-1992] to resolve the orthogonal problem of the slicing
of procedure with arbitrary control flow.

The remainder of this section is organized as follows. Section 6.4.1 is a brief state of the art of the
different slicing techniques. Section 6.4.2 provides background material, including the definition of
control flow graph and program dependence graph. Section 6.4.3 presents the system dependency
graph. Section 6.4.4 discusses the slicing algorithm. Section 6.4.5 provides information about the
augmented SDG to resolve the problem of procedures with arbitrary control flow. Section 6.4.6
describes how to construct the augmented SDG from the COBOL source text.

6.4.1. Program slicing state of the art

Program slicing is a decomposition technique that extracts from a program the statements relevant
to a particular computation. Informally, a slice provides the answer to the question "What program
statements do potentially affect the computation of variable V at point p?"

The slice of a program with respect to program point p and variable V consists of all statements and
predicates of the program that might affect the value of V at point p. This concept, originally
discussed by M. Weiser in [Weiser-1984], can be used to debug programs, maintain programs,
understand programs behavior. The task of computing program slices is called program slicing.
Weiser claims that a slice corresponds to the mental abstractions that people make when they are
debugging a program.

Various slightly different notions of program slices have been proposed, as well as number of meth-
ods to compute slices. Features of programming languages such as procedures, arbitrary control
flow, composite data types and pointers each require a specific solution. An important distinction is
that between static and dynamic slice. The former notion is computed without making assumptions
regarding a program’s input, whereas the latter relies on some specific test case.

A complete overview of the difference notion of slicing and of the computation methods can be
found in [Binkley et al.-1996] and [Tip-1994].
108 Program Understanding in DBRE

Program slicing
6.4.1.1. Static slicing

In Weiser’s approach, slices are computed by computing consecutive sets of indirectly relevant
statements, according to dataflow and control flow dependencies. Only statically available informa-
tion is used for computing slices; hence, this type of slice is referred to as a static slice. In Weiser’s
terminology, a slicing criterion is a pair <p,V>, where p is a program point and V is a subset of the
program’s variables. Computing a slice from a control-flow graph is a two-step process. First requi-
site dataflow information is computed. The dataflow information is the set of relevant variables at
each point p. The second step identifies the statements of the slice. These include all points p that
assign to a variable relevant at p and the slice taken with respect-to any predicate statement that
directly controls p’s execution.

An alternative method for computing static slices was suggested by Ottenstein and Ottenstein
[Ottenstein et al.-1994], who restate the problem of static slicing in terms of a reachability problem
in a program dependence graph (PDG). A PDG is a directed graph with vertices corresponding to
statements and control predicates, and edges corresponding to data and control dependencies. The
slicing criterion is identified with a vertex in the PDG, and a slice corresponds to all PDG vertices
from which the vertex under consideration can be reached. Various program slicing approaches
utilize modified and extended versions of PDGs as their underlying program representation.

The slices mentioned so far are computed by gathering statements and control predicates by way of
a backward traversal of the program, starting at the slicing criterion. Therefore, these slices are
referred to as backward slices. Horwitz et al. were the first who introduced the notion of forward
slicing in [Horwitz et al.-1990]. A forward slice consists of all statements and control predicates
dependent on the slicing criterion.

Interprocedural slicing as a graph reachability problem requires extending the PDG and it also
requires modifying the slicing algorithm. [Horwitz et al.-1990] introduced the term system depen-
dence graph (SDG) for the dependence graphs that represent multi-procedure graphs. See section
6.4.3 for a complete description of the system dependence graph.

[Ball et al.-1992] and [Choi et al.-1994] present two methods for slicing in the presence of arbitrary
control flow (programs containing go to’s). Both methods require modifying the control depen-
dence subgraph of the PDG, but not the slicing algorithm. See section 6.4.5 for a complete descrip-
tion of the Ball et al. method.

In the presence of pointers (and procedures), situations may occur where two or more variables
refer to the same memory location; this phenomenon is commonly called aliasing. Algorithms for
determining potential aliases can be found in [Choi et al.-1993] and [Landi et al.-1992]. Slicing in
the presence of aliasing requires a generalization of the notion of data dependence to take potential
aliases into account.

6.4.1.2. Dynamic slicing

Korel and Laski introduce the notion of dynamic slicing [Korel et al.-1988]. In the case of dynamic
slicing, only the dependences that occur in a specific execution of the program are taken in account.
An alternate view of the difference between static and dynamic slicing is that dynamic slicing
assumes a fixed input for a program, whereas static slicing does not make assumptions regarding
Program Understanding in DBRE 109

Program understanding techniques
the input. The availability of run-time information makes dynamic slices smaller than static slices,
but limits their applicability to that particular input.

Agrawal et al. presented the first algorithm for finding dynamic slices using dependence graphs
[Agrawal et al.-1991].

Hybrid approaches are a combination of static and dynamic information used to compute slices.

6.4.2. Program dependency graph

Different definitions of program dependence representations were proposed, depending on the
intended application, and share the common feature of having an explicit representation of data
dependencies (see below). The "program dependence graphs" defined in [Ottenstein et al.-1994]
introduced the additional feature of an explicit representation for control dependencies (see below).

The program dependence graph (PDG) for program P, denoted by GP, is a directed graph whose
vertices are connected by several kinds of edge. The vertices of GP represent the assignment state-
ments and control predicates that occur in program P. In addition, GP includes three other categories
of vertices:

1. There is a distinguished vertex called the entry vertex.

2. For each variable x for which there is a path in the standard control flow graph for P on which x
is used before being defined, there is a vertex called the initial definition of x. This vertex repre-
sents an assignment to x from the initial state. The vertex is labeled "x := InitialState(x)".

3. For each variable x named in P’s end statement, there is a vertex called the final use of x. It rep-
resents an access to the final value of x computed by P, and is labeled "FinalUse(x)".

The edges of GP represent dependencies among program components. An edge represents either
control dependence or data dependence. Control dependence edges are labeled either true or false,
and the source of a control dependence edge is always the entry vertex or a predicate vertex. A
control dependence edge from vertex v1 to vertex v2 means that, during execution, whenever the
predicate represented by v1, is evaluated and its value matches the label on the edge to v2, then the
program component represented by v2 will eventually be executed if the program terminates.

A data dependence edge from vertex v1 to vertex v2 means that the program’s computation might be
changed if the relative order of the components represented by v1, and v2 were reversed.
110 Program Understanding in DBRE

Program slicing
FIGURE 66. A program and its PDG. The solid arrows represent control dependence edges
and dashed arrows represent data dependence edges.

Example. Figure 66 shows a program and its corresponding program dependency graphs. The
solid arrows represent control dependence edges and dashed arrows represent data dependence
edges.

The algorithm to construct the PDG will be presented in section 6.4.6.

6.4.3. The system dependency graph

The system dependence graph, an extension of the dependence graphs defined in section 6.4.2,
represents programs in a language that includes procedures and procedure calls.

The definition of the system dependence graph (SDG) models a language with the following prop-
erties:

1. A complete system consists of a single (main) program and a collection of auxiliary procedures.

2. Procedures end with return statements instead of end statements (as defined in section 6.4.2). A
return statement does not include a list of variables.

3. Parameters are passed by value-result.

Further assumptions are made that there are no call sites of the form P(x, x) or of the form P(g),
where g is a global variable. The former restriction sidesteps potential copy-back conflicts. The
latter restriction permits global variables to be treated as additional parameters to each procedure;
thus, we do not discuss global variables explicitly in this section.

A system dependence graph includes a program dependence graph, which represents the system’s
main program, procedure dependence graphs, which represent the system’s auxiliary procedures
and some additional edges. These additional edges are of two sorts: (1) edges that represent direct
dependencies between a call site and the called procedure, and (2) edges that represent transitive
dependencies due to calls.

Extending the definition of dependence graphs to handle procedure calls requires representing the
passing of values between procedures. When procedure P calls procedure Q, values are transferred

WORKING-STORAGE SECTION.
01 s pic 99.
01 i pic 99.

PROCEDURE DIVISION.
ENTRY.
 MOVE 0 TO s.
 MOVE 1 TO i.
 PERFORM UNTIL i>11
 ADD i TO s
 ADD 1 TO i.
 DISPLAY s.
 DISPLAY i.
 STOP RUN.

stop rundisplay i

display s

add 1 to iadd i to s

perform until i>11

move 1 to i

move 0 to s

ENTRY
Program Understanding in DBRE 111

Program understanding techniques
from P to Q by means of intermediate temporary variables, one for each parameter. A different set
of temporary variables is used when Q returns to transfer values back to P. Before the call, P copies
the values of the actual parameters into the call temporaries variables; Q then initializes local vari-
ables from these temporaries variables. Before returning, Q copies return values into the return
temporaries variables, from which P retrieves them.

FIGURE 67. SDG with the new kinds of vertices and edges named.

This model of parameter is represented in procedure dependence graphs through the use of five new
kinds of vertices (see figure 67). A call site is represented using a call-site vertex; information trans-
fer is represented using four kinds of parameter vertices. On the calling side, information transfer is
represented by a set of vertices called actual-in and actual-out vertices. These vertices, which are
control dependent on the call-site vertex, represent assignment statements that copy the values of
the actual parameters to the call temporaries variables and from the return temporaries variables,
respectively. Similarly, information transfer in the called procedure is represented by a set of verti-
ces called formal-in and formal-out vertices. These vertices, which are control dependent on the
procedure’s entry vertex, represent assignment statements that copy the values of the formal param-
eters from the call temporaries variables and to the return temporaries variables, respectively.

Using this model, data dependencies between procedures are limited to dependencies from actual-in
vertices to formal-in vertices and from formal-out vertices to actual-out vertices. Connecting proce-
dure dependence graphs to form a system dependence graph is straightforward, involving the addi-
tion of three new kinds of edges:

1. A call edge is added from each call-site vertex to the corresponding procedure-entry vertex.

2. A parameter-in edge is added from each actual-in vertex at a call site to the corresponding for-
mal-in vertex in the called procedure.

3. A parameter-out edge is added from each formal-out vertex in the called procedure to the corre-
sponding actual-out vertex at the call site.

Call edges are a new kind of control dependence edge; parameter-in and parameter-out edges are
new kinds of data dependence edges.

Another advantage of this model is that flow dependencies can be computed in the usual way, using
data-flow analysis on the procedure’s control-flow graph. That graph includes vertices analogous to
the actual-in, actual-out, formal-in and formal-out vertices of the procedure dependence graph. A
procedure’s control-flow graph starts with a sequence of assignments that copy values from call
temporaries to formal parameters and ends with a sequence of assignments that copy values from

P
i = 1;
call Q(i);
print i;

Q(j)
j = j + 1;

j_out=jj=j+1j=j_in

i=j_outQj_in=i

print icall Qi=1

P

call edge

param-in edge param-out edge

actual-out

call site

proc. entry
actual-in

formal-in formal-out
112 Program Understanding in DBRE

Program slicing
formal parameters to return temporaries. Each call statement within the procedure is represented in
the procedure’s control-flow graph by a sequence of assignments that copy values from actual
parameters to call temporaries, followed by a sequence of assignments, which copy values from
return temporaries to actual parameters.

An important question is which values are transferred from a call site to the called procedure and
back again. This point is discussed further in section 6.4.4, which presents a strategy where the
results of interprocedural data-flow analysis are used to omit some parameter vertices from proce-
dure dependence graphs. For now, it is assumed that all actual parameters are copied into the call
temporaries and retrieved from the return temporaries. Thus, the parameter vertices associated with
a call from procedure P to procedure Q are defined as follows (GP denotes the procedure depen-
dence graph for P):

FIGURE 68. A program and its corresponding SDG. The PDG are connected with parameter-
in, parameter-out and call edges.

b_out := b

b := b_out

display idisplay smove 0 to s

s_in := s s := s_outi_in := i i := i_out

until i>11

perform proc-a

move 1 to i

principal

s_out := s

i_out := imove z to i

z_in := z z := z_out

perform proc-incmove b to z move a to s

a_in := a a := a_outb_in := b

perform proc-add

i := i_in move i to bs := s_in move s to a

proc-a

z_out := zmove a to z

a_in := a a := a_outb_in := b

perform proc-addmove 1 to bz := z_in move z to a

proc-inc

a_out := ab := b_in

add b to a.

a := a_in

proc-add

principal.
 move 0 to s.
 move 1 to i.
 perform proc-a until i>11.
 stop run.

proc-a.
 move s to a.
 move i to b.
 perform proc-add.
 move a to s.
 move b to z.
 perform proc-inc.
 move z to i.

proc-add.
 compute a = a + b.

proc-inc.
 move z to a.
 move 1 to b.
 perform proc-add.
 move a to z.
Program Understanding in DBRE 113

Program understanding techniques
In GP, subordinate to the call-site vertex that represents the call to Q, there is an actual-in vertex
for each actual parameter e of the call to Q. The actual-in vertices are labeled r_in := e, where r
is the formal parameter name.

For each actual parameter a that is a variable (rather than an expression), there is an actual-out
vertex. These are labeled a := r_out for actual parameter a and corresponding formal parameter
r.

The parameter vertices associated with the entry to procedure Q and the return from procedure Q
are defined as follows (GQ denotes the procedure dependence graph for Q):

For each formal parameter r of Q, GQ contains a formal-in vertex and a formal-out vertex. These
vertices are labeled r := r_in and r_out := r, respectively.

Example. Figure 68 shows a COBOL program and its corresponding system dependence graph,
connected with parameter-in edges, parameter-out edges and call edges. Edges representing control
dependencies are shown as plain lines, edges representing intraprocedural data dependencies are
shown using dashed lines; parameter-in edges, parameter-out edges, and call edges are shown using
bold lines. In COBOL programs there are only global variables and there is no parameter passed by
procedure call (PERFORM). Since the SDG graph does not accept global variables, we simulate them
through parameters of procedure calls. All the variables that are initialized before the procedure call
and that are used by the procedure are represented as formal-in vertex. All the variables that are
modified by the procedure and that are used outside the procedure are represented as formal-out
vertex.

Using the graph structure defined as far, interprocedural slicing could be defined as a graph-reach-
ability problem, and the slices obtained would be imprecise. This method does not produce as
precise slices as possible because it fails to account for the calling context of a called procedure.

Example. This can be illustrated using the graph shown in figure 68. In the graph-reachability
vocabulary, the problem is that there is a path from the vertex of procedure main labeled "s_in := s"
to the vertex of main labeled "i: = i_out", even though the value of i after the call to procedure proc-
a is independent of the value of s before the call. The source of this problem is that not all paths in
the graph correspond to possible execution paths (e.g., the path, greyed in figure 68, from vertex
"s_in := s" of main to vertex "i := i_out" of main corresponds to procedure proc-add being called
by procedure proc-a, but returning to procedure proc-inc).

To overcome this problem, an additional kind of edge is added to the system dependence graph to
represent transitive dependencies due to the effects of procedure calls. The presence of transitive-
dependence edges permits interprocedural slices to be computed in two passes, each of which is
cast as a reachability problem.

The system dependence graph is constructed by the following steps:

1. For each procedure of the system, construct its procedure dependence graph.

2. For each call site, introduce a call edge from the call-site vertex to the corresponding procedure-
entry vertex.

3. For each actual-in vertex v at a call site, introduce a parameter-in edge from v to the correspond-
ing formal-in vertex in the called procedure.

4. For each actual-out vertex v at a call site, introduce a parameter-out edge to v from the corre-
sponding formal-out vertex in the called procedure.
114 Program Understanding in DBRE

Program slicing
5. At all call sites that call procedure P, introduce flow dependence edges that represent transitive
dependence due to the effects of procedure calls. Such edges are called def-order edges.

FIGURE 69. The complete SDG of figure 68 program.

Example. Figure 69 shows the complete system dependence graph for figure 68 program. Control
dependencies are represented using plain arrows; intraprocedural flow dependencies are repre-
sented using dashed arrows; transitive interprocedural data dependencies (corresponding to subor-
dinate characteristic graph edges) are represented using dashed, bold arcs; call edges, parameter-in
edges, and parameter-out edges (which connect program and system dependence graphs together)
are represented using bold arrows.

The construction of the SDG will be explained in section 6.4.6.

6.4.4. Interprocedural slicing

This section describes how to perform an interprocedural slice using the system dependence graph
defined in section 6.4.3.

The difficult aspect of interprocedural slicing is keeping track of the calling context when a slice
"descends" into a called procedure.

b_out := b

b := b_out

display idisplay smove 0 to s

s_in := s s := s_outi_in := i i := i_out

until i>11

perform proc-a

move 1 to i

principal

s_out := s

i_out := imove z to i

z_in := z z := z_out

perform proc-incmove b to z move a to s

a_in := a a := a_outb_in := b

perform proc-add

i := i_in move i to bs := s_in move s to a

proc-a

z_out := zmove a to z

a_in := a a := a_outb_in := b

perform proc-addmove 1 to bz := z_in move z to a

proc-inc

a_out := ab := b_in

add b to a.

a := a_in

proc-add
Program Understanding in DBRE 115

Program understanding techniques
The key element of this approach is the use of the edges that represent transitive data and control
dependencies from actual-in vertices to actual-out vertices due to procedure calls. The presence of
such edges permits to sidestep the "calling context" problem; the slicing operation can move
"across" a call without having to descend into it.

Suppose the goal is to slice system dependence graph G with respect to some vertex s in procedure
P; Phases 1 and 2 can be characterized as follows:

Phase 1. Phase 1 identifies vertices that can reach s, and are either in P itself or in a procedure that
calls P (either directly or transitively). It follows flow edges, control edges, call edges and parame-
ter-in edges. Because parameter-out edges are not followed, the traversal in Phase 1 does not
"descend" into procedures called by P. The effects of such procedures are not ignored, however; the
presence of transitive flow dependence edges from actual-in to actual-out vertices (subordinate-
characteristic-graph edges) permits the discovery of vertices that can reach s only through a proce-
dure call, although the graph traversal does not actually descend into the called procedure.

Phase 2. Phase 2 identifies vertices that can reach s from procedures (transitively) called by P or
from procedures called by procedures that (transitively) call P. It follows flow edges, control edges
and parameter-out edges. Because call edges and parameter-in edges are not followed, the traversal
in Phase 2 does not "ascend" into calling procedures; the transitive flow dependence edges from
actual-in to actual-out vertices make such "ascents" unnecessary.

Both Phases 1 and 2 traversed the system dependence graph to find the set of vertices that can reach
a given set of vertices along certain kinds of edges. The traversal in Phase 1 follows flow edges,
controls edges, call edges, and parameter-in edges, but does not follow parameter-out edges. The
traversal in Phase 2 that follows flow edges, control edges, and parameter-out edges, but does not
follow, call edges, or parameter in edges.
116 Program Understanding in DBRE

Program slicing
FIGURE 70. The example program’s SDG is sliced with respect to the formal-out vertex for
parameter z in procedure proc-inc. The vertices marked by Phase 1 of the slicing
algorithm as well as the edges traversed during this phase.

Figure 70 and figure 71 illustrate the two phases of the interprocedural slicing algorithm. Figure 70
shows the vertices of the example system dependence graph of figure 69 that are marked during
Phase 1 of the interprocedural slicing algorithm when the system is sliced with respect to the
formal-out vertex for parameter z in procedure proc-inc. Edges "traversed" during Phase 1 are also
included in figure 70.

b := b_out

i_in := i i := i_out

until i>11

perform proc-a

move 1 to i

principal

z_in := z

perform proc-incmove b to z

b_in := b

perform proc-add

i := i_in move i to b

proc-a

z_out := zmove a to z

a_in := a a := a_outb_in := b

perform proc-addmove 1 to bz := z_in move z to a

proc-inc
Program Understanding in DBRE 117

Program understanding techniques
FIGURE 71. The vertices marked by phase 2 of the slicing algorithm as well as the edges
traversed during this phase are shown in boldface.

Figure 71 adds (in boldface) the vertices that are marked and the edges that are traversed during
Phase 2 of the slice.

b_out := b

b := b_out

i_in := i i := i_out

until i>11

perform proc-a

move 1 to i

principal

i_out := imove z to i

z_in := z z := z_out

perform proc-incmove b to z

b_in := b

perform proc-add

i := i_in move i to b

proc-a

z_out := zmove a to z

a_in := a a := a_outb_in := b

perform proc-addmove 1 to bz := z_in move z to a

proc-inc

a_out := ab := b_in

add b to a.

a := a_in

proc-add
118 Program Understanding in DBRE

Program slicing
FIGURE 72. The complete slice of the example program’s system dependence graph sliced
with respect to the formal-out vertex for parameter z in procedure proc-inc.

The result of an interprocedural slice consists of the sets of vertices identified by Phase 1 and Phase
2 and the set of edges induced by this vertex set. Figure 72 shows the completed example slice
(excluding def-order edges.)

6.4.5. Arbitrary control flow

A lot of COBOL programs, especially legacy ones, contain Go To statements (arbritary control
flow) that are not correctly handled by the algorithm of Horwitz et al. [Horwitz et al.-1990] as
shown in the following example. The problem of slicing in presence of arbritary control flow is
orthogonal to the multiple procedures problem discussed in the previous sections. The SDG is
augmented as suggested by Ball and Horwitz in [Ball et al.-1992].

b_out := b

b := b_out

i_in := i i := i_out

until i>11

perform proc-a

move 1 to i

principal

i_out := imove z to i

z_in := z z := z_out

perform proc-incmove b to z

b_in := b

perform proc-add

i := i_in move i to b

proc-a

z_out := zmove a to z

a_in := a a := a_outb_in := b

perform proc-addmove 1 to bz := z_in move z to a

proc-inc

a_out := ab := b_in

add b to a.

a := a_in

proc-add
Program Understanding in DBRE 119

Program understanding techniques
FIGURE 73. A program with its control flow graph (CFG), its program dependency graph
(PDG) and the correct slice with respect to display p.

Example. Consider the program shown in figure 73.a. Figure 73.b shows the standard control flow
graph (CFG) for this program and figure 73.c shows the program dependence graph that corre-
sponds to this CFG. The bold part of the figure 73.c indicates the vertices that would be identified
by our slicing algorithm with respect to the statement display p. Figure 73.d shows the correct slice
with respect to the statement display p with in bold the lines that are not marked by our slicing algo-

go to break

multiply i by p

add i to ssubstract 1 form i

if(p>highvalue)add 1 to i

display pdisplay sdisplay iperform...more 0 to imove 1 to p move 0 to s

entry

exit

multipy i by p

add i to s

go to break

if(p > highvalue)add 1 to i

display p

display s

display i

subtract 1 form i

perform until (i>=n)

move 0 to i

move 1 to p

move 0 to s

entry1 move 0 to s.
2 move 1 to p.
3 move 0 to i.
4 perform until (i >= N)
5 add 1 to i
6 if(p > highvalue) then
7 subtract 1 from i
8 go to break
9 end-if
10 add i to s
11 multiply i by p.
12break.
13 display i.
14 display s.
15 display p.
16 stop run.

2 move 1 to p.
3 move 0 to i.
4 perform until (i >= N)
5 add 1 to i
6 if(p > highvalue) then
8 go to break
9 end-if
11 multiply i by p.
12break.
15 display p.

a) The program. b) The CFG.

c) The PDG.

d) The correct slice.
120 Program Understanding in DBRE

Program slicing
rithm. It is clear that the result of the slicing algorithm does not satisfy the semantic goal of program
slicing because for some value of N and highvalue, different final values of p will be output by the
original program and by the slice.

The problem with the slicing algorithm is that if does not correctly detect when unconditional
jumps in the program (such as go to) are required in the program projection. Simply including a
vertex for the go to in the CFG does not solve the problem. The slicing algorithm will still omit
the go to because there is no path from the go to vertex to the vertex that represent the statement
display p. In fact, the go to vertex has no outgoing edges, so it will not be included in any slice
other than the slice with respect to the go to itself.

The new slicing algorithm itself is similar to the previous one in that it uses the program depen-
dency graph to identify the program components in the slice.

The important difference between the two algorithms is that the new one uses an augmented control
flow graph (ACFG) from which the PDG is build. In particular, jump statements are explicitly
represented as a pseudo-predicate vertex. The jump vertex’s true-successor is the target of the jump
and its false-successor is the vertex that represents the jump statement’s continuation (that is, the
vertex that would be the jump vertex’s successor if it was a "no-op" rather than a jump).

Representing a jump statement this way causes it to be the source of control dependence edges in
the PDG. This in turn allows the jump vertex to be included in the set identified by the slicing algo-
rithm.
Program Understanding in DBRE 121

Program understanding techniques
FIGURE 74. The augmented CFG and its corresponding PDG.

Example. The augmented CFG and the correct PDG of figure 73.a program are displayed in figure
74. The bold part of the figure indicates the vertices that would be identified by our new slicing
algorithm with respect to display p.

6.4.6. SDG construction

A slicing algorithm based on Horwitz et al. [Horwitz et al.-1990] and Ball and Horwitz [Ball et al.-
1992] has been presented. During this presentation, it has been sketched that the slicing problem is
quite easy (graph traversal) when the SDG is used, but the SDG computation is not a trivial task.
This section will present how to compute this SDG from a COBOL program source code.

The different steps of the SDG construction are the following:

1. COBOL program parsing to obtain the Abstract Syntax Tree (AST).

2. Augmented control flow graph (ACFG) construction from the AST.

3. Computation of the post dom graph from the ACFG.

4. Construction of the PDG using the ACFG and the post dom graph.

5. Construction of the SDG using the PDG.

go to break

exit

multipy i by p

add i to s

if(p > highvalue)add 1 to i

display p

display s

display i

subtract 1 form i

perform until (i>=n)

move 0 to i

move 1 to p

move 0 to s

entry

go to break

multiply i by p

add i to ssubstract 1 form i

if(p>highvalue)add 1 to i

display pdisplay sdisplay iperform...more 0 to imove 1 to p move 0 to s

entry
122 Program Understanding in DBRE

Program slicing
FIGURE 75. Example of the need to manipulate part of a variable (cus-address).

FIGURE 76. Variable declaration and its internal representation.

6.4.6.1. General consideration

This section will present some general considerations about how we represent variables.

During the SDG construction and its querying, variables comparison is needed (check if a variable
is included in another one) to compute variable unions and intersections. Variable names are not
necessary, except to display the results. Sometimes, only a part of a variable needs to be manipu-
lated. For example, in figure 75, display wk_street depends on the 60 first characters of cus-
address.

To ease those computations, the variables are represented as their physical position relatively to
their ancestor (level 01 variable). Figure 76 gives an example of a variable declaration and its inter-
nal representation.

6.4.6.2. The abstract syntax tree

The abstract syntax tree (AST) represents the program as a tree where each vertex represents an
instruction. The (oriented) arcs represent the syntactic or nested successor of the instruction, vertex
can have one or two successors. If a vertex has two successors, the arcs are labeled true and false.

It is not necessary to be able to reconstruct the original program from its control flow graph or its
system dependency graph. So the instructions representation can be simplified. There are only 10
types of instructions:

• Read: instruction that reads a file.

• Write: instruction that writes or modifies a file (as WRITE or REWRITE).

• If: a test.

• While: a loop.

• Call: a procedure call (COBOL PERFORM).

• Paragraph: a COBOL paragraph name.

• Section: a COBOL section name.

01 cus-address pic X(100).
01 wk-address.
 02 wk-street pic X(60).
 02 wk-city pic X(30).
 02 wk-zip pic X(10).

move cus-address to wk-address.
display wk-street.

01 V
 02 V1 PIC X(2).
 01 V2.
 03 V21 PIC X(3).
 03 V22 PIC X(4).

1 2 5 93 6
V1 V2

V21 V22

variable ancestor start stop
V V 1 9
V1 V 1 2
V2 V 3 9
V21 V 3 5
V22 V 6 9
Program Understanding in DBRE 123

Program understanding techniques
• End: an instruction that terminate the program (STOP RUN).

• go to: a GO TO instruction.

• Normal: all the other instructions.

For each instruction, there are two lists of variables: the ones that are used (referenced) by the
instruction (Ref) and the list of the variables that are or may be affected (defined) by the instruction
(Def).

In the abstract syntax tree and in the CFG each instruction has a pointer to its next instruction (the
next instruction of the go to is the instruction that follows syntactically). The while, call and go to
instructions have a pointer to the next instruction executed (to the loop body for the while). The
read, write and if instructions have two next instructions (the true and false successor).

6.4.6.3. The augmented control flow graph

A control flow graph (CFG) is a directed graph that satisfies the following conditions. The CFG
has three types of vertices: Fall-through vertices (either assignment statements or output state-
ments), which have one successor, predicate vertices, which have one true-successor and one false-
successor, and an EXIT vertex, which has no successors. The root of the CFG is the ENTRY
vertex, which is a predicate that has the EXIT vertex as its false-successor. Every vertex is reach-
able from the ENTRY vertex, and the EXIT vertex is reachable from every vertex. Edges in the
CFG are labeled; the outgoing edges of a predicate vertex are labeled true or false (as appropriate)
and the outgoing edge of a fall-through vertex is labeled null.

The augmented control flow graph (ACFG) [Ball et al.-1992] is a CFG in which a Go To is repre-
sented as a pseudo-predicate vertex (that always evaluates to true). The Go To vertex’s true-succes-
sor is the target of the jump, and its false-successor is the vertex that represents the jump statement’s
continuation (that is, the vertex that would be the jump vertex’s successor if it was a "no-op" rather
that a jump).

To compute the ACFG of each procedure, we parse the program to obtain an abstract syntax tree
(AST) of the program using the classical compiler techniques [Aho et al.-1989]. This AST can be
easily transformed into the ACFG.

In a COBOL program a procedure can be a section or a paragraph, but a paragraph or a section can
also represent a label that is the target of a go to statement. So the same instruction can belong to
several execution paths. We have decided, to facilitate the computation, to duplicate such code, so
the same instruction is part of the ACFG of the section and of the ACFG of the paragraph.
124 Program Understanding in DBRE

Program slicing
FIGURE 77. Program with a paragraph that is part of a section and called as an independent
procedure.

Example. Consider figure 77.a program in which the paragraph P2 is executed as a part of section
S2 (PERFORM P2). To facilitate the computation of the SDG the representation of P2 is duplicated
in the AST (figure 77.b).

FIGURE 78. Abstract syntax for the AST with attributes that define the ACFG.

Figure 78 presents an attribute grammar for our AST [Ball et al.-1992], in which the attributes are
used to define the translation from an AST to its ACFG. Each production in the grammar is of the
form " ", where op is an operator name and each is a non-terminal. Every non-
terminal has two synthesized attributes entry and call and an inherited attribute cont. Entry and cont

SECTION S1.
P1.
 PERFORM S2.
...
SECTION S2
P2.
 ...
P3.
...
 PERFORM P2.

PROCEDURE S1.
 PERFORM S2.
...
PROCEDURE S2.
...
 PERFORM P2.
PROCEDURE P2.
...

a) The original program. b) Program in which P2 code
has been duplicated.

proc =
Procedure(seq){

proc.entry=Pred("ENTRY",seq.entry, seq.cont)
proc.cont=seq.cont=FallThrough("EXIT", null)

};

seq =
NullSeq(){

seq.entry = seq.cont
}

| Sequence(stmt seq1){
seq.entry = stmt.entry
stmt.cont = seq1.entry
seq1.cont = seq.cont

};

stmt =
While(exp seq) {

stmt.entry = Pred("expr", seq.entry, stmt.cont)
seq.cont = stmt.entry

}
| Normal(expr){

stmt.entry = FallThrough("expr", stmt.cont)
}

| IfThen1(expr seq){
stmt.entry = Pred("expr", seq.entry, stmt.cont)
seq.cont = stmt.cont

}
| IfThenElse2(expr seq1 seq2){

stmt.entry = Pred("expr",seq1.entry,seq2.entry)
seq1.cont = seq2.cont = stmt.cont

}
| Paragraph(ID) {

stmt.entry = stmt.cont
insert(ID, stmt.entry)

}
| GoTo(ID){

stmt.entry =
Pred("GoTo ID", lookup(ID), stmt.cont)

}
| Call(ID){

stmt.entry = FallThrough("call ID", stmt.cont)
stmt.call = ID
}

1. IfThen represents a If, a Read or a Write with only a
true-successor without false-successor.

2. IfThenElse represents a If, a Read or a Write with a
true-successor and a false-successor.

x0 op x1…xk()= xi
Program Understanding in DBRE 125

Program understanding techniques
represent vertices in the ACFG and call is only valued for the Call vertex; it is used to store the
name of the called procedure. The constructor creates a predicate vertex with text t and
true-successor v and false-successor w, while the constructor creates a fall-through
vertex with text t and successor v. A global symbol table (with operators insert and lookup) is used
to manage the control flow between Go To and Paragraph.

FIGURE 79. Algorithm to compute the post-dominates.

6.4.6.4. The post-dominators computation

Let v and w be vertices in an ACFG. Vertex w post-dominates v iff and w is on every path from
v to the Exit vertex.

The algorithm to compute the post-dominance is based on the algorithm to compute dominance
[Aho et al.-1989]. If N is the set of the vertices of the ACFG and is the Exit vertex of the graph
then at the end of the algorithm of figure 79, d belongs to iff d post-dominates n.

FIGURE 80. The post-dominator computed by the algorithm and the post-dominator tree.

Example. Figure 80 is the results of the algorithm applied to figure 74 ACFG.

pred t v w, ,()

FallThrough t v,()

 do

until one of the change
 do

 do

D ne() ne{ }=

n N ne{ }–∈()∀ D n() N=

D n()

n N ne{ }–∈()∀

D n() n{ } D p()

p succ n()∈
∩∪=

n N∈()∀ D n() D n() n{ }–=

v w≠

ne

D n()

n

16:Exit
15:display p
14:display s
13:display i
11:multiply i by p
10:add i to s
8: go to break
7: subtract 1 from i
6: if(p > highvalue)
5: add 1 to i
4: perform until (i>=N)
3: move 0 to i
2: move 1 to p.
1: move 0 to s
0: Entry

16
15, 16
14, 15, 16
4, 13, 14, 15, 16
4, 11, 13, 14, 15, 16
13, 14, 15, 16
8, 13, 14, 15, 16
13, 14, 15, 16
6, 13, 14, 15, 16
13, 14, 15, 16
4, 13, 14, 15, 16
3, 4, 13, 14, 15, 16
2, 3, 4, 13, 14, 15, 16
16

D n() exit

move 0 to s

move 0 to i

display i

display p entry

move 1 to p

perform until (i>=n)

display s

if(p > highvalue)

multipy i by p

go to break

subtract 1 form iadd 1 to i

add i to s
126 Program Understanding in DBRE

Program slicing
6.4.6.5. The PDG construction

The PDG computation is divided in two parts. The control dependencies and the data dependencies
computation.

Control dependencies. Given the post-dominator tree, we can determine control dependencies by
examining certain ACFG edges and annotating vertices on corresponding post-dominator tree paths
[Ferrante et al.-1987]. Let S consist of all edges (A,B) in the ACFG such that B is not an ancestor of
A in the post-dominator tree (i.e., B does not post-dominate A). Let L denote the least common
ancestor of A and B in the post-dominator tree. By construction, we cannot have L equal B.

Either L is A or L is the parent of A in the post-dominator tree.

• L = parent of A. All vertices in the post-dominator tree on the path from L to B, including B but
not L, are control dependent on A.

• L = A. All vertices in the post-dominator tree on the path from A to B, including A and B, are
control dependent on A.

After all edges in S have been examined, all control dependencies have been determined.

FIGURE 81. The control dependencies computation.

The algorithm of figure 81 computes [Aho et al.-1989] as the set of the vertices control depen-
dent on n ([Aho et al.-1989]).

FIGURE 82. The vertices marked control dependent and the control dependence edges.

Example. Figure 82 represents the vertices marked by our algorithm for each couple of S.

Data dependencies. To compute the data dependencies edges in the PDG, we need to know for
each vertex, n, the vertices that define the variables referenced in vertex n (n.def). The dataflow
information can be expressed as the following equation [Aho et al.-1989]:

and it can be interpreted as "information at the end of a vertex (Out(n)) are produced inside the

C = the ACFG’s arcs; N = the ACGF’s vertices
T = post-dominator tree’s arcs
S =

 do
A B,() A B(,) C∈ and A B(,) / T∈{ }

n N∈∀ D n() ∅=

A B(,) S∈∀
L predecessor A() in T=

D A() n n on the path from L to B in T and B L≠{ }=

D n()

S vertices marked control dependent on

(0,1)
(4,5)
(6,7)
(6,10)
(8,10)

1,2,3,4,13,14,15
5,6
7,8
4,10,11
4,10,11

0: Entry
4: perform until (i >= N)
6: if(p > highvalue)
6: if(p > highvalue)
8: go to break

Out n() Prod n() In n() Supp n()–()∪=
Program Understanding in DBRE 127

Program understanding techniques
vertex (Prod(n)) or are present before the vertex (In(n)) and are not suppressed (Supp(n)). In our
implementation Prod(n) = Supp(n) = n.def.

The vertices that define the variables referenced in a vertex n (n.ref) are .

In(n) can be computed, if the ACFG (without the false-successor of Go to) is known, using the
following equation:

FIGURE 83. In and Out computation algorithm.

The algorithm in figure 83 computes In and Out for each vertex of the ACFG.

FIGURE 84. In and Out computed by figure 83 algorithm (in 6 iterations).

In n() n.ref∩

In n() Out p()

p Pred n()∈
∪=

N = ACFG without the Go To false-successors
 do

while some Out(n) change
 do

n N∈∀
Out n() n.def=

n N∈∀
In n() Out p()

p Pred n()∈
∪=

Out n() Out n() In n() n.def–()∪=

n n.def n.ref In(n) Out(n)

1: move 0 to s
2: move 1 to p.
3: move 0 to i
4: perform until (i>=N)
5: add 1 to i
6: if(p > highvalue)
7: subtract 1 from i
8: go to break
10:add i to s
11:multiply i by p
13:display i
14:display s
15:display p

s
p
i

i

i

s
p

i
i
p
i

i,s
i,p
i
s
p

s(1)
p(2)s(1)
i(3,5)p(2,11)s(1,10)
i(3,5)p(2,11)s(1,10)
i(5)p(2,11)s(1,10)
i(5)p(2,11)s(1,10)
i(7)p(2,11)s(1,10)
i(5)p(2,11)s(1,10)
s(10)i(5)p(2,11)
i(3,5,7)p(2,11)s(1,10)
i(3,5,7)p(2,11)s(1,10)
i(3,5,7)p(2,11)s(1,10)

s(1)
p(2)s(1)
i(3)p(2)s(1)
i(3,5)p(2,11)s(1,10)
i(5)p(2,11)s(1,10)
i(5)p(2,11)s(1,10)
i(7)p(2,11)s(1,10)
i(7)p(2,11)s(1,10)
s(10)i(5)p(2,11)
p(11)s(10)i(5)
i(3,5,7)p(2,11)s(1,10)
i(3,5,7)p(2,11)s(1,10)
i(3,5,7)p(2,11)s(1,10)
128 Program Understanding in DBRE

Program slicing
FIGURE 85. PDG’s data dependencies edges of figure 66 program.

Example. The result of the algorithm applied to figure 74 ACFG (without the false-successor of Go
to) is given in the figure 84 and the PDG’s data dependence arcs are shown in figure 85.

6.4.6.6. The SDG construction

When the PDG of each procedure has been constructed, the construction of the SDG is quite easy.
The SDG can be constructed as follows:

• For each call site (call vertex in the PDG), a call edge is added from the call site vertex to the
corresponding procedure entry vertex. The actual-in and actual-out vertices are connected to the
call site vertex.

• For each actual-in vertex v at the call site, introduce a parameter-in edge from v to the corre-
sponding formal-in vertex in the called procedure.

• For each actual-in vertex v at the call site, introduce a parameter-out edge to v from the corre-
sponding formal-out vertex in the called procedure.

• At all call sites that call procedure P, introduce flow dependence edges that represent transitive
dependences due to effects of procedure calls. The flow dependence edges are quite easy to
compute for COBOL program because the is no recursivity in the procedure calls. So the proce-
dures can be sorted to compute the flow dependence edges.

6.4.6.7. The complexity of the slicing algorithm

The complexity of the slicing algorithm must be divided in two parts. The first part is the complex-
ity of the SDG construction and the second one is the complexity of the slicing algorithm itself once
the SDG is computed. They are dissociated because the SDG is computed only once and stored to
compute all the slices needed.

A. Complexity of the SDG construction

The complexity of the SDG construction is the sum of the complexity of each step of its construc-
tion as presented in section 6.4.6.

The cost of constructing the SDG can be expressed in terms of the parameters given hereafter:

go to break

multiply i by p

add i to ssubstract 1 form i

if(p>highvalue)add 1 to i

display pdisplay sdisplay iperform...more 0 to imove 1 to p move 0 to s

entry
Program Understanding in DBRE 129

Program understanding techniques
• #LOC The largest number of LOC in a single procedure.

• #Params The largest number of formal parameters in any procedure.

• #VAR The largest number of variable in any procedure.

• #E The largest number of edges in a single PDG.

• #P The number of procedure in the system.

The AST construction complexity

The complexity of the construction of the AST of a single procedure is linear in the number of
LOC.

O(AST)=O(#LOC)

The ACFG construction complexity

The complexity of the construction of the ACFG of a single procedure is linear in the number of
vertices in the AST, thanks to the use of the attributed grammar. The number of vertices in the AST
is of the same order as the number of LOC.

O(ACFG)=O(#LOC)

The post-dominator tree construction complexity

The algorithm to compute the post-dominator tree of a single procedure is given in figure 79. This
algorithm can be divided in three steps (the initialization, the iteration and the termination). The
complexities of the initialization and of the termination are linear in the number of vertices of the
ACFG. The number of vertices of the ACFG is of the same as the number of vertices of the AST,
which is of the same order as the number of LOC. So the complexity is linear in the number of
LOC.

The complexity of the inner loop of the iteration is also linear in the number of vertices of the
ACFG. The complexity of the iteration itself (until one of the D(n) change) can be evaluated as
follows. If a D(n) changes then its number of elements decreases, because it is the intersection of
elements. During the initialization each D(n) has #LOC elements. At each iteration at least one D(n)
is modified, i.e., its number of elements decreases at least by one. In the worse case the loop exist
when all the D(n) are empty. So the complexity of the outer-loop is O(#LOC2).

The total complexity of the post-dominator tree construction of a single procedure is

O(post-dominator) = O(initialization) + O(iteration) + O(termination)

= O(#LOC) + O(#LOC3) + O(#LOC)

=O(#LOC + #LOC3)

The control dependencies construction complexity

The algorithm to compute the control dependencies of a single procedure is given in figure 81. The
size of S is at most the number of edges of ACFG. Each vertices of ACFG has at most two succes-
130 Program Understanding in DBRE

Program slicing
sors (a true and a false branch). So the size of S is at most two times the number of vertices of
ACFG (=).

The complexity of the construction of D(A) is linear in the size of the post-dominator tree
(=). The complexity of the construction of the control dependencies for a single procedure
is

The data dependencies construction complexity

The algorithm to compute the data dependencies of a single procedure is given in figure 83. The
complexity of the initialization is linear in the size of the ACFG (=O(#LOC)).

The maximum number of elements of in(n) for any n is equal to , because at most all
the variables can be defined in each vertex. If an in(n) changes, its number of elements increases by
one, because it is an union. So the complexity of the iteration is

because each in(n) has at most () values and at each iteration at least one of the in(n) is
incremented by one and there is #LOC n.

So

The PDG construction complexity

The complexity of the PDG construction is the sum of the complexity of the above graph construc-
tions, i.e., AST, ACFG, post-dominator tree, control dependencies, data dependencies.

O(PDG)=O(AST) + O(ACFG) + O(post-dominator) + O(control dependencies)
+ O(data dependencies)

The SDG construction complexity

The complexity of the SDG construction is the complexity of each PDG construction, plus the
complexity of the creation of the transitive dependence edges.

To determine the dependencies among the parameters of a procedure, the slice with respect to each
formal-out is computed. These dependencies are copied to the actual-out to produce the transitive

2 #LOC⋅

O #LOC()

O control dependencies() O 2 #LOC #LOC⋅ ⋅()=

O #LOC
2

()=

#VAR #LOC⋅

O #VAR #LOC #LOC⋅ ⋅()

O #VAR #LOC
2⋅()=

#VAR #LOC⋅

O Data dependencies() O #LOC #LOC
2

#VAR⋅+()=

O #LOC() O #LOC() O #LOC O #LOC
3

()+() O #LOC
2

() O #LOC #LOC
2

#VAR⋅+()+ + + +()=

O #LOC #LOC
2

#LOC
3

#LOC
2

#VAR⋅+ + +()=
Program Understanding in DBRE 131

Program understanding techniques
edges. The complexity to compute the slice with respect to a formal-out is linear in the size of the
PDG (), because the slice is computed by the traversal of the PDG.

The complexity to compute the dependencies among of the parameters of a procedure is

O(#Params . (#LOC + #E)

The complexity to compute the SDG is

O(SDG)=#P . O(PDG) + O(#P . #Params . (#LOC + #E))

=O(#P . (#LOC + #LOC2 + #LOC3 + #LOC2 . #VAR + #Params .(#LOC + #E)))

B. Complexity of the slice computation

An interprocedural slice is performed by two traversals of the SDG, starting from some initial set of
vertices. The cost of each traversal is linear in the size of the SDG

O(slicing)=O(#P . (#LOC + #E))

6.5. The program slicing for embedded code

Many legacy COBOL applications do not only use standard files, but also store and manipulate data
from DMS. To understand the programs and to recover the implicit constraints of these databases, it
is necessary to make the link between the program variables and the database entity types and
attributes.

For IDMS/CODASYL DMS, the COBOL language provides built-in instructions (GET, STORE,
FIND,...) to access the database and thus those instructions are already analyzed by the program
slicing. The only things to add is an option in the program slicing to load the definition of the phys-
ical schema referenced by the SUB-SCHEMA SECTION of the DATA DIVISION. This physical
schema is obtained through the DDL analysis.

For other DMS, such as SQL or IMS, COBOL does not have built-in data access instructions. To
access those DMS, the programmer writes embedded instructions in the program. An embedded
instruction belongs to another language, in this case the DMS-DML, that is used in the main
program language, called the host language. The DMS manufacturer provides a pre-processor (pre-
compiler) that translates those embedded DMS-DML instructions into COBOL calls to external
functions (programs) that implement the access to the DMS. The difficulties with the embedded
instructions is that they are not standardized and thus vary from one DMS to the other and they do
not conform to the host language syntax. For example, in an SQL embedded instructions block,
each instruction is ended by a ";" while in a COBOL program there is no explicit instruction separa-
tor. In SQL, identifiers can contain "_" but no "-" while the reverse holds in COBOL.

Another difficulty, when analyzing programs with embedded code, is that the physical schema is
not explicitly declared in the program itself. But the physical schema is necessary to understand the
instructions that access the database. The physical schema is obtained through the analysis of the
DDL. To compute program slices for a program that contains embedded code, the SDG has to be

O #E #LOC+()
132 Program Understanding in DBRE

The program slicing for embedded code
produced. This SDG must represent control and dataflow of the COBOL and of the embedded
language. To produce such a SDG, a parser that understands COBOL and the embedded language
has to be written. To get around these difficulties, we propose to use a preprocessor that translates
the embedded instructions into their equivalent COBOL instructions. These instructions are equiva-
lent in that the SDG computed with those instructions or with the embedded instructions is the
same. To stress the fact that those instructions do not really implement the embedded code but give
an equivalent SDG, two new instructions are added to the COBOL grammar [Sellink et al.-2000].

• DIRECT-MAP var-1 TO var-2

DIRECT-MAP has the same behavior as the COBOL MOVE, where var-1 and var-2 must be of
compatible type, the value of var-1 is assigned to var-2.

• INDIRECT-MAP list-var-1 TO list-var-2

All the variables of list-var-1 are referenced and all the variables of list-var-2 are
defined by the instruction INDIRECT-MAP. But the values of the variables of list-var-1 are
not assigned to the variables of list-var-2.

To illustrate the preprocessing step, we will apply it to COBOL with embedded SQL instructions.
The embedded SQL instructions that need to be analyzed to understand dataflow and control flow
of a program are select, insert, update, delete, declare cursor, open and fetch.

The data exchange between the program and the DMS is done through host variables. The DMS
uses output host variables to pass data and status information to the program. The program uses
input host variables to pass data to the DMS.

To express the translation rules, some functions, that extract host variables and column name from
SQL expressions, are needed:

• input-couple(exp)

The list of the couples (h-v, c), such that h-v is an input host variable used in an SQL expres-
sion exp and c is the column associated with h-v in exp.

• output-couple(exp)

The list of the couples (h-v, c), such that h-v is an output host variable used in an SQL expres-
sion exp and c is the column associated with h-v in exp.

• host-var(list-couple)

The list of the host variables contained in list-couple. list-couple is a list of couples
(h_v,c), where h_v is an input host variable and c is a column. list-couple is usually pro-
duced by input_output(exp) or output_couple(exp).

• column(list-couple)

The list of columns contained in list-couple. list-couple is a list of couples (h_v,c), such
as h_v is an input host variable and c is a column. list-couple is usually produced by
input_output(exp) or output_couple(exp).

• output-host-var(exp)

The list of all the output host variables used in exp and that do not appear in host-var(output-
couple(exp)). This function is useful because there exist some output host variables that are not
associated with a column, such as the status variables (telling if the query is correct or suc-
ceeds,...) or aggregation queries such as

select count(x) into :nbr from customer

the variable nbr is associated with no column.
Program Understanding in DBRE 133

Program understanding techniques
FIGURE 86. The CUSTOMER table.

To illustrate the translation process, the simple database schema of figure 86, will be used.

FIGURE 87. The algorithm to translate a select query (query).

6.5.1. Select

A select query is translated in three parts. The first one represents the direct mappings between
the input host variables and their corresponding columns. Those mappings appear in the where
clause of the query. The second part is the indirect mapping from the columns associated with the
input host variables (column(input-couple(query))) to the columns associated with the output host
variables and the output host variables not associated with a column
(). The last part represents the direct mapping
between the selected columns and their corresponding output host variables (output-couple(query)).
These last mappings appear in the select ... into clause of the query. The algorithm to trans-
late a select query is given in figure 87.

The translation may appear complicated but the resulting SDG has two interesting properties. The
first one (that is the minimum requirement of the SDG) is that it is possible to compute a correct
program slice for any instruction of the program. This slice contains the queries that influence the
value of the variable for which the slice is computed and the slice also traverses the query, i.e., the
slice contains also the instructions that influence the query. The second property of this SDG, is that
the columns of the database that are used appear explicitly in the SDG. This is not necessary to
compute a correct program slice, because the program does not know those columns since they are
external to the program. But it is very important in the context of DBRE to know which column is
linked to which host variable.

CUSTOMER
NUM
NAME
ADDR

for each (h-v,c) in input-couple(query)
 generate(DIRECT-MAP h-v TO c)

generate(INDIRECT-MAP column(input-couple(query))

 TO column(output-couple(query)) output-host-var(query))

for each (h-v,c) in output-couple(query)
 generate(DIRECT-MAP c TO h-v)

 ∪

column input-couple query()() output-host-var query()∪
134 Program Understanding in DBRE

The program slicing for embedded code
FIGURE 88. A program fragment with a select query, its translation and SDG.

Figure 88.a is a fragment of a COBOL embedded SQL program, figure 88.b is the translation of the
fragment and figure 88.c is the corresponding SDG. The bold lines of figure 88.b are the lines that
belong to the slice computed with respect to the display CUS-NAME instruction.

FIGURE 89. The algorithm to translate an insert instruction (insert).

6.5.2. Insert

An insert instruction can be easily translated as a direct mapping between each input host vari-
able and its corresponding column and an indirect mapping between the columns and the status
variables (SQLCODE). The algorithm to translate an insert instruction is given in figure 89.

As in the select translation, if we only need a correct SDG to understand the program and we are
not interested in its relation with the database, the translation can be simplified.

87

654321

a) The program fragment. b) The translation.

c) The SDG.

accept CUS-NUM.
exec sql
 select NAME, ADDR
 into :CUS-NAME, :CUS-ADDR
 from customer
 where NUM = :CUS-NUM
end-exec
if (SQLCODE = 0) THEN
 display CUS-NAME
 display CUS-ADDR.

1 accept CUS-NUM.
2 direct-map CUS-NUM to NUM.
3 indirect-map NUM

to NAME ADDR SQLCODE.
4 direct-map NAME to CUS-NAME.
5 direct-map ADDR to CUS-ADDR.
6 if (SQLCODE = 0) THEN
7 display CUS-NAME
8 display CUS-ADDR.

for each (h-v,c) in input-couple(insert)
 generate(DIRECT-MAP h-v TO c)

generate(INDIRECT-MAP column(input-couple(insert))
 TO output-host-var(insert))
Program Understanding in DBRE 135

Program understanding techniques
FIGURE 90. A program fragment with an insert instruction, its translation and SDG.

Figure 90.a is a fragment of a COBOL embedded SQL program that contains an insert instruc-
tion. Figure 90.b is its translation and figure 90.c the corresponding SDG.

FIGURE 91. The algorithm to translate a delete instruction (delete).

6.5.3. Delete

A delete instruction can be translated as a direct mapping between each input host variable and its
corresponding column that appears in the where clause and an indirect mapping between the
columns and the status variable (SQLCODE). The algorithm to translate a delete instruction is
given in figure 91.

87654321

9

a) The program fragment. b) The translation.

c) The SDG.

accept CUS-NUM.
accept CUS-NAME.
accept CUS-ADDR.
exec sql
 insert into CUSTOMER
 (NUM, NAME, ADDR)
 values (:CUS-NUM,
 :CUS-NAME, :CUS-ADDR)
end-exec
if (SQLCODE = 0) THEN
 go to ERR-INSERT.

1 accept CUS-NUM.
2 accept CUS-NAME.
3 accept CUS-ADDR.
4 direct-map CUS-NUM to NUM.
5 direct-map CUS-NAME to NAME.
6 direct-map CUS-ADDR to ADDR.
7 indirect-map NUM NAME ADDR

To SQLCODE.
8 if (SQLCODE = 0) THEN
9 go to ERR-INSERT.

for each (h-v,c) in input-couple(delete)
 generate(DIRECT-MAP h-v TO c)

generate(INDIRECT-MAP column(input-couple(delete))
 TO output-host-var(query))
136 Program Understanding in DBRE

The program slicing for embedded code
FIGURE 92. A program fragment with a delete instruction, its translation and SDG.

Figure 92.a is a fragment of a COBOL embedded SQL program that contains a delete instruction.
Figure 92.b is its translation and figure 92.c the corresponding SDG.

FIGURE 93. The algorithm to translate an update instruction (update).

6.5.4. Update

An update query can be translated in two parts. The first one represents the direct mapping
between the input host variables and their corresponding columns. This mapping appears in the
where clause and in the update clause. The second is the mapping between the columns associ-
ated with the input host variables (column(input-couple(update))) and the output host variables not
associated with a column (output-host-var(update) = SQLCODE). The algorithm to translate an
update query is given in figure 93.

a) The program fragment. b) The translation.

5

4321

c) The SDG.

accept CUS-NUM.
exec sql
 delete CUSTOMER
 where NUM = :CUS-NUM
end-exec
if (SQLCODE = 0) THEN
 go to ERR-DELETE.

1 accept CUS-NUM.
2 direct-map CUS-NUM to NUM.
3 indirect-map NUM

to SQLCODE.
4 if (SQLCODE = 0) THEN
5 go to ERR-DELETE.

for each (h-v,c) in input-couple(update)
 generate(DIRECT-MAP h-v TO c)

generate(INDIRECT-MAP column(input-couple(update))
 TO output-host-var(update))
Program Understanding in DBRE 137

Program understanding techniques
FIGURE 94. A program fragment with an update instruction, its translation and SDG.

Figure 94.a is a fragment of a COBOL embedded SQL program that contains an update instruc-
tion. Figure 94.b is its translation and figure 94.c the corresponding SDG.

6.5.5. Cursor

The difficulty of the cursor translation is that there are four instructions (declare cursor, open,
fetch and close) that cannot be translated individually. The translation of the declare cursor
instruction does not produce any mapping (or SDG vertices). But it declares the input host-variables
and the columns that will be used by the other instructions (open, fetch). The open instruction is
translated as the mapping between the input host variables and the corresponding column as
declared in the cursor. The fetch instruction is translated by the mapping between the selected
columns, defined in the cursor and the output host variables of the into clause of the fetch instruc-
tion. And finally, the close is not translated because it does not generate any mapping.

FIGURE 95. The algorithm to translate the open and fetch instructions that use the cursor
declared by declare-cur instruction.

Figure 95.a is the algorithm that translates an open instruction and figure 95.b is the algorithm that
translates a fetch instruction.

a) The program fragment. b) The translation.

7

654321

c) The SDG.

accept CUS-NUM.
accept CUS-NAME.
exec sql
 update CUSTOMER
 set NAME = :CUS-NAME
 where NUM = :CUS-NUM
end-exec
if (SQLCODE = 0) THEN
 go to ERR-UPDATE.

1 accept CUS-NUM.
2 accept CUS-NAME.
3 direct-map CUS-NUM to NUM.
4 direct-map CUS-NAME to NAME.
5 indirect-map NUM NAME

to SQLCODE.
6 if (SQLCODE = 0) THEN
7 go to ERR-UPDATE.

for each (h-v,c) in
 input-couple(declare_cur)
 generate(DIRECT-MAP h-v TO c)

generate(INDIRECT-MAP
 column(input-couple(declare_cur))
 TO output-host-var(declare_cur))

a) The algorithm to translate the open instruction.

generate(INDIRECT-MAP
 column(input-couple(declare_cur))
 TO column(output-couple(declare_cur

 fetch)

 output-host-var(fetch))

for each (h-v,c) in

 output-couple(declare_cur fetch)

 generate(DIRECT-MAP h-v TO c)

b) The algorithm to translate the fetch
instruction.

 ∪
 ∪

 ∪
138 Program Understanding in DBRE

Other SDG analysis / usage
FIGURE 96. A program fragment with cursor manipulation instructions, its translation and SDG.

6.6. Other SDG analysis / usage

In the previous sections, program slicing was presented as a SDG traversal. In this section other
SDG querying (traversal or visualization) will be presented.

The SDG is a representation of the program that contains all the control flows, dataflows and vari-
able usages of the program. Program slicing is only one way to query it, but many other usages of
this program representation can be considered. The SDG is easier to query than the program itself
because it is an abstract representation stored as a graph and it is almost independent from the
programming language. Therefore, many of the graph traversal techniques can be used. Because it

a) The program fragment b) The translation.

876

5

432

1

9

10 11

c) The SDG.

 exec sql
 declare C_ORD cursor for
 select NUM, ADDR
 from CUSTOMER
 where NAME = :CUS-NAME
 end-exec.
LIST-ORD.
 exec sql
 open C_ORD end-exec.
 perform READ-ORD

until SQLCODE NOT = 0.
 exec sql
 close C_ORD_SEQ end-exec.

READ-ORD.
 exec sql
 fetch C_ORD
 into :CUS-NUM, :CUS-ADDR
 end-exec.
 if SQLCODE = 0
 display CUS-NUM
 display CUS-ADDR.

1 LIST-ORD.
2 direct-map CUS-NAME to NAME.
3 indirect-map NAME to SQLCODE.
4 perform READ-ORD

until SQLCODE NOT = 0.

5 READ-ORD.
6 indirect-map NAME

to NUM ADDR SQLCODE.
7 direct-map NUM to CUS-NUM.
8 direct-map ADDR to CUS-ADDR.
9 if SQLCODE = 0
10 display CUS-NUM
11 display CUS-ADDR.
Program Understanding in DBRE 139

Program understanding techniques
is language independent, once querying techniques and tools have been developed, they can be
reused for other languages. The first SDG querying is some variant of the program slicing traversal
restricted to data dependency arcs.

A dataflow program slicing can be defined as the program slicing where only the data dependency
(data dependency, parameter-in, parameter-out) edges are used (the control edges are discarded). If
a dataflow program slice, computed with respect to the instruction A, contains the instruction B, it
means that there is a dataflow between some parts of variable of B to some parts of variable of A.
This slicing technique gives incomplete slices, because it does not follow control edges. But it can
be useful to find which variables are assigned to the slicing criterion variable to solve structure
hiding problems such as decomposition of fields, anonymous fields and procedurally controlled
foreign keys.

FIGURE 97. The variable dependency graph and the SDG of a program fragment.

This querying technique gives more precise results than the variable dependency graph. The latter is
constructed by an analysis of each instruction independently of the other one and does not take into
account the control flow between instructions. The SDG construction uses the control flow of the
program and thus, if there is no execution path between two instructions, it will never create a data-
flow arc between them. In figure 97, the variable dependency graph shows that there is a dataflow
between A and C (through B), but this dataflow is impossible because each instruction is in a differ-
ent branch of the test and it is impossible to execute both instruction sequentially. On the other
hand, the SDG does not discover this dataflow, because it is aware that both instructions are in
different branches of the test.

A data dependency edge from vertex v to vertex w means that there is a variable defined in v that is
referenced by w. If an instruction contains more that one variable (or a compound one), it is impos-
sible to know (in the SDG as defined until now) which variables influence the dataflow. So, if we
follow the data dependency edges, it is possible to reach some vertex from which there is no data-
flow to the slicing criteria.

1 if (...)
2 move A to B
3 else
4 move B to C.

A

C

B

a) The program
fragment.

b) The VDG. c) The SDG.

42

1

140 Program Understanding in DBRE

Other SDG analysis / usage
FIGURE 98. A program and its corresponding SDG.

For example, the dataflow slice of figure 98, with respect to the instruction move D1 to E and
variable D1, contains all the program lines. But there is no dataflow nor control flow from move B
to C2 to the slicing criteria. This is because move D1 to E only references the first 10 characters
of D (D1). move C to D defines all the characters of D and references all the characters of C. The
first 10 characters of C are defined in move A to C1 and the last 5 in move B to C2. In the
instruction move C to D, the first character of C is assigned to the first character of D, the second
character of C is assigned to the second character of D, etc. Thus there is no dataflow between move
B to C2 and move D1 to E, but the SDG only stores the variable defined and referenced by a
vertex and not which referenced variable influence (dataflow) which of the defined variables.

To increase the precision of this technique, each instruction can be analyzed to determine which
parts of the variable are used. This technique is called dataflow program slicing with variable
follow-up. To compute this result, a path in the data dependency graph is chosen and this path is
walked backward. For each vertex, on the path, a new parameter, loc_ref, is added. loc_ref is the list
of the variables referenced by the current vertex and that influence the slicing criteria, i.e. there is a
dataflow between loc_ref and the slicing criteria variable. loc_ref is computed recursively starting
from the slicing criteria. loc_ref of the slicing criteria vertex (the last one) is initialized with the slic-
ing criterion variables. To compute ni.loc_ref for the previous vertex (with ni the current vertex), we
compute the intersection between ni.loc_ref and ni-1.def and substitute the variables with the corre-
sponding one of ni-1.ref.

01 A pic X(10).
01 B pic X(5).
01 C.
 02 C1 pic X(10).
 02 C2 pic X(5).
01 D.
 02 D1 pic X(10).
 02 D2 pic X(10).
01 E pic X(10).

move A to C1.
move B to C2.
move C to D.
move D1 to E.

move D1 to E

move C to D

move B to C2move A to C1

A B

C

D

E

a) The variables declaration.

b) The program fragment.

c) The dataflow between
variables.

d) The SDG without con-
trol flow.
Program Understanding in DBRE 141

Program understanding techniques
FIGURE 99. Attribute dependency detection using dataflow program slicing.

Figure 99 shows an example of this dataflow program slicing with variable follow-up. This tech-
nique gives very precise results with no noise, but there is some silence because it does not use the
control flow edges of the SDG.

This technique works very well when there is a direct mapping between the referenced variables
and the defined variable, as in move A to B instruction, where the first byte of A is assigned to the
first byte of B and so on. However with the instruction compute A = B * C, it is very difficult, or
impossible, to know which part of B and C goes into which part of A. Instructions such as compute
are called indirect mapping instructions. When a dataflow program slice with variable follow-up is
computed and it goes through a vertex that represents an indirect mapping. Compute loc_ref as the
variable referenced by the current vertex and the slicing criteria is impossible for a indirect
mapping, because it is not possible to know which part ofthe referenced variable influence which
part of the defined variable. So for an indirect mapping, loc_ref receives the list of the variables
referenced in the vertex

FIGURE 100. A paragraph that validates a foreign key and its SDG.

fd A.
01 REC-A
03 A1 X(20).
03 AI.
04 AI1 X(10).
04 AI2 X(10).

fd B.
01 REC-B.
03 B1 X(15).
03 BJ X(10).

01 W1.
02 W10 X(10).
02 W11 X(10).

01 W2 X(10).

0Main.
1 read A.
...

2 move AI to W1.
...

3 move W11 to W2.
4 move W10 to W2.
...

5 move W2 to BJ.
...

6 write B.

1.loc_ref: A[31-41]

2.loc_ref: A[31-41]

3.loc_ref: W1[11-20]

5.loc_ref: W2[1-10]

6.loc_ref: B[1-25]

b) The dataflow.

A

W1

W2

B

AI

W11

BJ

AI1

a) The program. c) loc_ref.

11109865

74321

0

0 new-order4.
1 display "customer number".
2 accept WO-ORD-CUS.
3 move WO-ORD-CUS to CUS-ID.
4 read CUS key CUS-ID
5 invalid key move 0 to FIND-CUS
6 not invalid key move 1 to FIND-CUS.

7 if FIND-CUS
8 move WO-ORD-CUS to ORD-CUS
9 . display "order number"
10. accept ORD-ID

11 write ORDER
 end-if.
142 Program Understanding in DBRE

Type inference
The analysis of the data dependency edges alone is sometimes insufficient to understand a program
and to discover constraints. For example, the code of figure 100 implements a referential constraint
between ORD and CUS, but if only the data dependency edges of the SDG are analyzed, the foreign
key is not discovered. The value of ORD-CUS does not take its value from CUS but from WO-ORD-
CUS. But if the control dependency edges are also used, as in classical program slicing with respect
to line 11 and ORD-CUS, instruction 11 depends on 8, which depends on 7, through a control edge.
Instruction 7 receives its value from 5 or 6 that are control dependent form 4 (read CUS). So
through this path that uses control and data dependency edge the foreign key can be discovered.

To extend the dataflow program slicing with variable follow-up to the usage of control dependency
edges, the same rules are used as for the data dependency edges and when a control dependency
edge is traversed backward, the loc_ref receives the list of the variables referenced in the vertex.

Until now all different SDG walk through algorithms presented are pre-defined algorithm (built-in a
tool). It can also be useful to offer some kind of SDG querying language or SDG visualization tools
to help the analyst to analyze the SDG. Such querying languages must offer primitives to select the
vertices that define or reference a given variable, to select all the vertices that can be reached from
the current one by following some kind of edges, to select vertices of a given type, etc. The visual-
ization of the SDG is very difficult because of the large number of vertices and edges, so a realistic
SDG visualization must only display some selected (with the querying language) vertices and
edges.

6.7. Type inference

The basic idea of type inference ([Moonen - 2002]) is simple: if the value of a variable is assigned
or compared to another variable, we want to infer that these two variables should have the same
type. A type can play a number of roles: indicating the set of values that is allowed for a variable;
grouping variables that represent the same kind of entities; hiding the actual representation used;
providing a signature of a procedure.

The COBOL language does not support the notion of types. It is not possible to separate type defi-
nitions from variable declarations. When two variables need the same structure, this structure is
repeated. The size of the data division makes difficult to determine if a structure repetition is acci-
dental or whether it is intentional. Finally the absence of explicit types leads to lack of abstraction,
since there is no way to hide the actual representation of a variable into same type name.

In DBRE, type inference can be useful to find new decompositions of attributes, data dependencies
between two (groups of) attributes. If an attribute is of a given type and this type has a more precise
decomposition, it is possible to refine this attribute such as the type definition. If two attributes are
of same type, this is a hint that there is a potential dependency between these attributes.

To be able to analyze the types of the variables it is necessary to infer (automatically) the type of the
variables. Moneen ([Moonen - 2002]) describes how type relation can be derived from the state-
ments in a single COBOL program, and how this approach can be extended to system-level analysis
leading to inter-program dependencies.
Program Understanding in DBRE 143

Program understanding techniques
He defines three primitive types: 1) elementary types such as numeric values or strings; 2) arrays;
3) records. Initially every declared variable gets a unique primary type.

By looking at the expressions occurring in statements, an equivalence relation between primitive
types can be inferred.

By looking at the assignments, a subtype relation can be inferred between primitive types. From an
assignment of the form move u to v, it can be inferred that the type of u is a subtype of the type
of v.

In addition to inferring type relations within individual programs, type relations can be derived at
the system-wide level. The types of the actual parameters of a program call (listed in the USING
clause) are subtypes of the formal parameters (listed in the LINKAGE section) and that variables
read form or written to the same file or table have equivalence types.

6.8. Graphical visualization of the program

To perform program understanding, the analyst needs tools to easily represent and manipulate
graphs. The graphs can be used to represent many different kinds of information, such as:

• Inter-program call graph: the vertices represent programs and the edges the call between two
programs.

• Intra-program call graph: represents the call relations between the procedures inside a program
(perform in COBOL).

• Database usage graph: the vertices are of two types (the programs and the collections/entity
types) and the edges link the programs with the collections/entity types they use. The edges are
labeled according to their usage (input, output or update).

• JCL graph: represents the chain of execution of the different programs with the files they use.
Vertices are programs or files and the edges represent program chains and file usage.

• Hyperlink graph: the vertices represent documents and the edges the hyperlinks between the
documents. This kind of graph can be useful for the analysis of Web documents.

This list of graphs is far from being complete and some of them can be combined, as the call graph
and database usage. Some projects may need some particular graphs. The analyst needs flexible
techniques and tools that allow representing almost any kind of graphs [van Deursen et al.-1998].
Those graphs can have different kinds of vertices and of edges. Those graphs are usually huge and
complex. For example a call graph with 500 vertices is not exceptional. So the analyst need drawing
and analysis help.

The drawing tools must offer functions to help laying out the graph such as minimizing the number
of edges crossing, sorting the vertex by level, vertices alignments. But they must also offer some
display functions as to color the vertices and the edges, to annotate them (visible annotations or
invisible that can be used by further functions). Navigation functions are useful in big schemas to
go from one vertex to the other through an edge.

Besides drawing tools the analyst needs analysis tools. For small graphs, the analyst can easily
discover visually the graph’s property, i.e. count the number of vertices, how many procedures call
144 Program Understanding in DBRE

Graphical visualization of the program
a given one, find all the vertices that are reachable directly or indirectly from a given one, whether
there exist some disconnected sub-graphs, etc. But in large graphs, he needs tools such as some
statistical functions, functions to marks the vertices reachable directly or indirectly from a given
one, functions to analyze or search vertices and edges of a given type.

Graphical visualization of the program can give very important hints about the structure of the
program. But for large systems with several hundreds of programs the analyst can be flooded by the
size and the complexity of these graphs. He needs help (tools) to manipulate and query these
graphs.
Program Understanding in DBRE 145

Program understanding techniques
146 Program Understanding in DBRE

CHAPTER 7 Using program
understanding in
DBRE
All the program understanding techniques presented in the previous chapter are general techniques,
they are usually used by software engineers or maintainers to understand what a program is doing
and how it is done. The scope of this thesis is not to understand the program itself but to use
program understanding techniques to recover the implicit constraints that are enforced by the proce-
dural part of the application.

This chapter explores how those program understanding techniques can be used to retrieve the
implicit constraints and structures presented in section 4.3. For the most interesting constraints, the
one who are generally searched for, it is explained how those techniques can be used and some hints
are given on how the constraints discovery can be automated.

FIGURE 101. Example of incompatible attributes decomposition.

01 REC-A.
 02 A-ID
 03 A-CUS PIC X(5).
 03 A-NUM PIC X(5).
02 A-DATA PIC X(40).
...
01 CUS-INFO.
 02 CUS-NAME PIC X(30).
 02 CUS-BIRTH-D PIC X(10).
01 ORD-INFO.
 02 ORD-DATE PIC X(10).
 02 ORD-SALSEMAN PIC X(30).

MOVE CUS-ID TO A-CUS.
MOVE SPACE TO A-NUM.
MOVE CUS-NUM TO A-NUM.
MOVE CUS-INFO TO A-DATA.
WRITE A-REC.
...
MOVE ORD-CUS TO A-CUS.
MOVE ORD-NUM TO A-NUM.
MOVE ORD-NUM TO A-NUM.
MOVE ORD-INFO TO A-DATA.
WRITE A-REC.

CUS-INFO ORD-INFO

A-DATA

CUS-INFO

ORD-INFO

A-DATA

a) The source code. b) The variable depen-
dency graph.

c) The variables decomposition.

if A-NUM = space then
 CUS-INFO

P

REC-A
A-ID

A-CUS
A-NUM

ORD-INFO
ORD-DATE
ORD-SALSEMAN

CUS-INFO
CUS-NAME
CUS-BIRTH-D

d) The refined data structure.
Program Understanding in DBRE 147

Using program understanding in DBRE
7.1. Fine-grained structure, attributes aggregation,
anonymous attributes

Fine-grained structures, attributes aggregations and anonymous attributes are grouped in the same
section because the same methods and techniques are used to detect them.

To discover a fine-grained structure using program understanding, the analyst has to find an
attribute that has the same structure as a variable for which there exists a finer decomposition.
Sometimes, the structure of both variables are incompatible, i.e. none of the structures is included in
the other one. For example, in figure 101.b, there is a path in the variable dependency graph
between CUS-INFO and A-DATA and thus the structure of A-DATA can be refined as CUS-INFO
structure. There is another path in the variable dependency graph between ORD-INFO and A-DATA
that has A-DATA as target. But the structure of CUS-INFO and ORD-INFO are incompatible. ORD-
INFO is divided into 10+30 characters and CUS-INFO is divided into 30+10 characters (figure
101.c). There are at least two reasons for this incompatibility. The first one is that there is an error in
the program. The second one is that the analyst misunderstood the program and needs to find
another modelization for this data structure. In this example, the entity type REC-A is used to store
two different kinds of information, the customer and the order. REC-A must be modeled as two
different entity types (figure 101.d).

To discover attributes to be aggregated there must exist a variable in a program that is decomposed
as the attribute. To refine (give a name and a decomposition) an anonymous attribute, a new decom-
position of the parent (an attribute or an entity type) of the anonymous attribute is searched.

FIGURE 102. Example of attributes decomposition.

7.1.1. Variable dependency graph

Usually the relations used to construct the variable dependency graph are the assignment and the
comparison operators. With these relations, the variable dependency graph can been seen as a
simplified dataflow graph. The advantage of such variable dependency graph is that it is quite easy
to compute, because a complete parser is not needed, only some instructions need to be parsed. The
variable dependency graph is well appropriate to analyze some esoteric legacy language for which
there does not exist a complete grammar and no parser is available. The drawback is that the vari-

01 REC-A.
 02 A-CODE PIC X(5).
 02 A-DATA PIC X(100).

01 W-DATA PIC X(100).

01 ADDR.
 02 NUM PIC X(5).
 02 STREET PIC X(60).
 02 CITY PIC X(25).
 02 ZIP PIC X(10).

MOVE A-DATA TO W-DATA.
MOVE W-DATA TO ADDR.

REC-A
A-CODE
A-DATA

REC-A
A-CODE
A-DATA

NUM
STREET
CITY
ZIP

a) The source code. c) The raw
schema.

d) The refined
schema.

A-DATA W-DATA ADDR

b) The variable dependency graph.
148 Program Understanding in DBRE

Meaningful names
able dependency graph is not a complete dataflow graph because some path in the graph can be
infeasible during a correct execution of the program (see section 6.3).

If two variables are connected (directly or indirectly) in the variable dependency graph, then both
variables are in relation, the analyst has to check if there exists a dataflow between these variables
to determine if this is not noise generated by the variable dependency graph.

If the variables are in relation and the structure of the first one is finer than the structure of the other,
the structure of the second one can be refined as the structure of the first one. For example, in the
variable dependency graph of figure 102.b, computed with respect to the code of figure 102.a, A-
DATA and ADDR are in relation and the structure of ADDR is finer than the one of A-DATA. Then the
structure of A-DATA can be refined as the one of ADDR (figure 102.d).

7.1.2. System dependency graph

To know if there exists another decomposition for an attribute, the program slice with respect to this
attribute (and its storage instruction) can be computed and analyzed to see if the attribute is in rela-
tion with a variable that has another structure. Classical program slicing with the control flow is not
necessary, the dataflow program slicing is sufficient because only the variables that are connected
to the selected attribute in the dataflow are of interest.

This can be easily automated by other SDG querying techniques that for each entity type storage
instruction and each attribute, give the list of the variables (and their structure) from which there is
a dataflow to or from the attribute.

7.2. Meaningful names

To find more meaningful names for entity types and attributes, the analyst needs to know the names
of the variables that have different names, but have the same semantics (contains at some moment
the same value). Another ways to find names is to look at the message displayed by the application
or the comment in the source code.

He has to note the more meaningful name, but he must not change the attribute’s name because
during the data structure extraction process the logical schema must contains the original names;
otherwise the programmer can have great difficulties to make the link between the current databases
and programs and the logical schema.

This process is impossible to automate because the concept of meaningful is very subjective.

7.2.1. Variable dependency graph

If an attribute or an entity type is connected, directly or indirectly, in the variable dependency graph
to variables, the analyst should decide that the name of one of the other variables is more meaning-
ful than the attribute or entity type name.
Program Understanding in DBRE 149

Using program understanding in DBRE
7.2.2. System dependency graph

To find another name for an attribute (or an entity type), a program slice with respect to this
attribute can be computed and analyzed to find a more meaningful name in the slice. Dataflow
program slicing with variable follow-up is a good means to reduce the search space because only
the variables assigned to the attribute are of interest and thus the control flow of the program is
useless.

Program slicing can also be used to find in which context a variable is used by analyzing the
messages displayed by the program slicing and the comments in the source code.

FIGURE 103. Two examples of procedurally verified referential constraint.

7.3. Referential constraints and data dependencies

Referential constraints can be seen as a special kind of data dependency. To find data dependencies,
the analyst is searching for relations between two attributes (or groups of attributes).

There are two situations where a referential constraint can be detected. The first one is the referen-
tial constraint validation, where before the value of the referential constraint is stored (entity type
modification, insertion or deletion) there must be some code that validates the value of the referen-
tial constraint (see figure 103.a). To validate the value of a referential attribute, the program reads
the target entity type to check if there is a value of the target identifier. To detect such a referential
constraint, a slice is computed with respect to the storage instruction and to validate the referential
constraint, this slice must contains a read instruction of the target entity type.

The other situation where a referential constraint can be detected is during its usage, as in report
generation (figure 103.b), because referential constraints can be viewed as a constraint but also as a
navigation mechanism [Lopes et al.-2002]. To access the referenced entity type, the value of the
referential attribute is used to access the referenced entity type through its identifier or in the other
way, the value of the identifier of the first entity type is used as an access key to the second one,
with respect to the referential attribute. To detect a referential constraint usage, a program slice is
computed with respect to a read instruction and the attribute(s) that is used as an access key. This
slice must contain another read instruction.

accept A-CODE.
read REC-A
 invalid key go to ERR.
...
move A-CODE to B-REF-A.
...
write B.

read REC-B.
...
move B-REF-A to A-CODE.
...
read REC-A.

REC-A
A-CODE
...
id: A-CODE

REC-B
B-CODE
B-REF-A
id: B-CODE
ref: B-REF-A

A

REC-A

B

REC-B

A-CODE B-REF-A A-CODEB-REF-A

a) Referential constraint vali-
dation.

b) Referential constraint
usage (navigation). c) The refined schema.
150 Program Understanding in DBRE

Referential constraints and data dependencies
7.3.1. Variable dependency graph

Data dependencies and referential constraints can be discovered by the variable dependency graph
if there is a path between attributes. Figure 103 shows two examples of variable dependency graphs
with their respective code that can be used to detect a referential constraint. As suggested by this
example the direction of the arcs in the graph does not influence the direction of the referential
constraint (or the data dependency). If two nodes (variables) are connected (directly or indirectly),
it means that there is a relation between these two nodes. The analyst is responsible to interpret the
relation (referential constraint, data dependency).

The variable dependency graph generates noise and silence that the analyst has to deal with. The
noise can be easily detected by further analysis of the schema structure, domain knowledge, data
and program code. But as usual, the silence is difficult to detect. One way to reducing the danger of
the silence is to understand its origin and which kinds of constraints are not discovered.

Variable dependency graph generates silence because it does not use the control flow and does not
know the variable structure. The lack of control generates a lot of silence in the detection of referen-
tial constraint validations, because referential constraint validation relies a lot on control (to check
if the referential attribute is present in the target entity type). But it produces less silence in referen-
tial constraint usage, when they are used to navigate in the database. So variable dependency graph
can be a good choice to detect referential constraint in report generation modules.

There is less silence in data dependency detection because the target of the dependency is
constructed from the origin, using mainly assignment (redundancy) and some computations. The
main source of silence is the ignorance of the data structure of the variables.

7.3.2. System dependency graph

When a slice (with respect to a store or a read instruction) contains a read instruction, the probabil-
ity to have a referential constraint is high, but the slice must be analyzed to determine between
which attributes there is a referential constraint. It is up to the analyst to determine which attribute
is used by the referential constraint. This validation is not difficult because the search space is
reduced. He knows between which entity types there is a potential referential constraint and with
the name, type and length of the attributes and domain knowledge he can easily discover the refer-
ential attribute.

Dataflow program slicing with variable follow-up can be used to know which attributes are in rela-
tion and thus gives more precise results to the analyst. It produces few silences for referential
constraint usage because this usually only relies on dataflow. But it can produce silence in the case
of referential constraint validation, because the validation often relies on control flow.

Data dependency as referential constraint is characterized by a relation (dataflow) between two
entity types. The target of a referential constraint is an identifier of the entity type and data depen-
dency is usually parallel to a referential constraint. They are parallel and in the same direction in the
sense that if there is a data dependency between two entity types there must exists a referential
constraint between these two entity types.
Program Understanding in DBRE 151

Using program understanding in DBRE
FIGURE 104. An example of data dependency.

For example in figure 104, there exists a referential constraint between ORD-CUS-CODE and CUS-
CODE and a data dependency between ORD-CUS-NAME and CUS-NAME. The data dependency is
parallel to the referential constraint because to fill the value of ORD-CUS-NAME, the program needs
to know in which CUS to look.

As for the referential constraint, the slice with respect to a store instruction contains a read instruc-
tion, usually the same read instruction that is used to verify the referential constraint since the data
dependency is parallel to the referential constraint. If program slicing is used, the slice has to be
analyzed to know which attributes are in relation. So for the referential constraint, a more precise
result can be obtained using program slicing with variable follow-up. If the identifier of the read
entity type is copied into the stored entity type, there is a great chance that it is a referential
constraint otherwise it can be a data dependency.

Usually data dependency can only be detected during insertion and modification of an entity type.
Data dependency is an optimization technique used to save disk access, to prevent to read the other
entity type. When the entity type is read, the other entity type referenced by the referential
constraint does not need to be read.

FIGURE 105. Example of non permanent data dependency.

Be aware of the conclusion, if program slicing detects that some attributes are in relation, it does not
automatically mean that there is some data dependency. It can be some kind of business rule that
can be documented but that is out the scope of the DBRE; it is more a part of the software reverse
engineering. Sometimes data dependency is only verified at some moment, but it is not always veri-
fied. For example (figure 105), if ORD records the price of the ordered products (ORD-DET-PRICE),
copied from the PROD entity type, but when the price of the product changes (in CHANGE-PROD-

...
MOVE ORD-CUS-CODE TO CUS-CODE.
READ CUSTOMER
INVALID KEY GO TO CUS-ERR.

MOVE CUS-NAME TO ORD-CUS-NAME.
...
WRITE ORD
INVALID KEY ...

ORD
ORD-NUM
ORD-CUS-CODE
ORD-CUS-NAME
...
id: ORD-NUM
ref: ORD-CUS-CODE
rd: ORD-CUS-NAME

CUS
CUS-CODE
CUS-NAME
...
id: CUS-CODE
 : CUS-NAME

FD ORDER.
01 ORD.
 ..
 02 ORD-DETAILS OCCURS 10.
 03 ORD-DET-PROD PIC X(3).
 ...
 03 ORD-DET-PRICE PIC 9(3).
FD PRODUCT.
01 PROD.
 02 PROD-CODE PIC X(3).
 ...
 02 PROD-PRICE PIC 9(3)

NEW-ORD.
 ...
 MOVE ORD-DET-PROD(IND) TO PROD-CODE.
 READ PRODUCT KEY IS PROD-CODE
 INVALID KEY GO TO PROD-ERR.
 MOVE PROD-PRICE TO ORD-DET-

PRICE(IND).
 ...
 WRITE ORD
 INVALID KEY ...

CHANGE-PROD-PRICE.
 READ PRODUCT.
 ACCEPT PROD-PRICE.

 REWRITE PROD.
152 Program Understanding in DBRE

Array set type, exact cardinality and attribute identifier
PRICE paragraph), ORD-DET-PRICE is not changed, to know the price of the product at the order
time. This is not a data dependency. This proves that all the data usage needs to be analyzed to be
sure of a constraint and not only one usage!

7.4. Array set type, exact cardinality and attribute
identifier

To find the set type and exact cardinality of a multivalued attributes the analyst needs to compute
the program slice with respect to the store instruction and the multivalued attribute and then
analyzes the slice to understand the algorithm used to fill the attribute. Does the user have to give at
least one element or not (to find the exact minimal cardinality)? Does the user has to fill the entire
attribute or can he stops when he wants (to find the exact maximum cardinality)? Is there an order
or are there two elements with the same value in the attribute (find the set type)?

All this requires a lot of manual (and intellectual) work to understand the filling algorithm. There is
no suggestion how to automate this process.

7.5. Identifier

To check an implicit identifier (attribute(s)’ value is not yet present), the program has to read
(sequentially) the existing instances of the entity type before it can write the new instance into the
database to check. If the program slice is computed with respect to the write instruction and the
whole entity type, the slice must contain a read instruction that reads the entity type itself. The
analyst needs to check that the entity type is read to verify that the current value is not present in the
database. This pattern (a write depending of a read of the same entity type) can also be the material-
ization of a recursive referential constraint.

7.6. Restricted domain

An attribute is of a restricted domain if the slice computed with respect to the store instruction and
the attribute contains some tests that check the validity of the attribute’s domain.
Program Understanding in DBRE 153

Using program understanding in DBRE
7.7. Embedded SQL

FIGURE 106. Example of program with embedded SQL.

In the previous chapter, an extension of the SDG has been presented to analyze the behavior of
embedded code. This extended SDG, as presented, can be used to understand the program with
embedded code but it is useless to analyze the embedded code itself.

For example, the analysis of the figure 107 SDG (that represent the program of figure 106) shows
that the execution of the fetch instruction (lines 15-17) depends of the SQLCODE returned by the
select (line 7) and thus the value of the order.num attribute (line 4). This is a hint that there is a
referential constraint between detail.order and order.num. But the two other referential
constraints between order and customer and between detail and product are not visible in
the SDG because they are materialized by the embedded SQL queries (the select and the cursor
declaration) and thus are not coded in the procedural part of the code.

disp_ord.
 display "ord-num?".
 accept ORD-NUM.
 exec SQL
 select c.name, o.ord_date
 into :CUS-NAME, :ORD-DATE
 from c customer, d order
 where c.num = o.customer
 o.num = : ORD-NUM
 end-exec.
 if(SQLCODE = 0)
 display "Cust name : " CUS-NAME
 display "Order date : " ORD-DATE
 display "Price Quantity"
 exec SQL
 declare cursor ord_detail
 select p.price, d.qty
 from p product, d detail
 where p.num = d.product
 d.order = :ORD-NUM
 end-exec
 exec SQL
 open ord_detail
 end-exec
 perform read-detail
 until SQLCODE not= 0
 end-if.

read-detail.
 exec SQL
 fetch ord_detail
 into :PROD-PRICE, :DET-QTY
 end-exec.
 display PROD-PRICE DET-QTY.
......

0 disp_ord.
1 display "ord-num?".
2 accept ORD-NUM.
3 direct-map ORD-NUM to o.num.
4 indirect-map o.num

 to c.name o.ord_date SQLCODE.
5 direct-map c.name to CUS-NAME.
6 direct-map o.ord_date to ORD-DATE.

7 if(SQLCODE = 0)
8 display "Cust name : " CUS-NAME
9 display "Order date : " ORD-DATE
10 display "Price Quantity"

11 direct-map ORD-NUM to d.order
12 indirect-map d.order

 to p.price d.qty SLQCODE.
13 perform read-detail

 until SQLCODE not= 0
 end-if.

14 read-detail.
15 indirect-map to SQLCODE.
16 direct-map p.price to PROD-PRICE.
17 direct-map d.qty to DET-QTY.

18 display PROD-PRICE DET-QTY.
......

a) The original code fragment. b) The transformed code fragment.
154 Program Understanding in DBRE

Graphical visualization
FIGURE 107. The SDG of figure 106.b source code.

To analyze embedded code, it is suggested to work in two steps. During the first one, each block of
embedded code is analyzed individually [Petit-1996]. The purpose of this analysis is to extract from
each embedded instruction the data structures and constraints implicitly implemented in this
instruction. For example, if there is a join is an SQL query, then it can be interpreted as a referential
constraint or a data dependency. This embedded code analysis need to be supported by tools such as
tools to extract embedded code from the host language source code, pattern matching to find
specific patterns (join, string manipulation, etc.) in the embedded code.

The second step is the analysis and the understanding of the program itself. To perform this analy-
sis, classical SDG analysis is applied on the extended SDG. Only the host language program is
analyzed without to worry about the embedded language. This is used, among other thing, to under-
stand the links between the different embedded instructions.

7.8. Graphical visualization

Call graphs and database usage graphs can be very useful during project preparation [von
Mayrhauser et al.-1993]. They allow the analyst to have an overview of the application, its compo-
nents, and its complexity and to have a coarse idea of the time and budget needed to perform the
DBRE. The analysis of those graphs is also a good way to know if the customer gives all DDL
declarations and all the sources code indispensable to perform the DBRE.

During the data structure extraction call graphs and database usage graphs can be used to discover
the general architecture of the application. This architecture helps the analyst in overall understand-
ing of the application and to know which modules need to be analyzed (modules that modify the
database) in priority.

The size and complexity of call graphs or usage graphs can be huge (several thousands of nodes and
edges). This size and complexity prevent to display (or print) such graph. To overcome this, we

18

1098

171615

14

13

131211

7654321

0

Program Understanding in DBRE 155

Using program understanding in DBRE
suggest to query the graphs to retrieve pertinent information. The query can produce some statisti-
cal results such as the number of node of a given type, the number of edges of a given type, the
maximum number of edges per node, etc. Another possible result of a query is to extract a
subgraph, such as all the nodes and vertices that can be reach from a given type, etc.

Graphs are a good medium to communicate with the customer and to generate reports.
156 Program Understanding in DBRE

CHAPTER 8 CASE support
Database reverse engineering appears as a demanding activity according to several dimensions: the
size and variety of the information sources, the number and complexity of the elicitation techniques
and the complexity of the target data structures. To perform efficiently a DBRE project, the analyst
needs CASE tools to support his work. A CASE tool offering a rich toolset for reverse engineering
is often called a CARE (Computed-Aided Reverse Engineering) tool. This tool can help the analyst
during all the phases of a project and must be based on a common repository that stores all the
information manipulated by the analyst (source code, schemas, etc.).

This chapter translates the characteristics of DBRE activities in CASE tool requirements and
presents our implementation of a CASE tool that includes specific DBRE-oriented features.

FIGURE 108. Simplified DBRE methodology proposed by most current CARE tools.

8.1. The limits of current CARE tools

It is interesting to use the methodology presented at the beginning of this thesis as a reference
model against which existing methodologies can be compared, in particular, those used by the
current CARE tools. Figure 108 summarized these methodologies as follows:

D
S

ex
tr

ac
tio

n

complete
logical schema

conceptual
schema

DMS-DDL

DDL code
 analysis D

S
co

nc
ep

tu
al

iz
at

io
n

schema
untranslation

schema
normalization

raw conceptual
schema

complete
logical schema
Program Understanding in DBRE 157

CASE support
• Data structure extraction

Most current CARE tools parse DMS-DLL schemas only (DDL code analysis). All the other
sources are ignored and must be processed manually. For instance, these tools are unable to col-
lect the multiple views of a COBOL application and to integrate them to produce the global
COBOL schema. To minimize this drawback, most CARE tools only analyze some modern
DMS-DDL such as various SQL dialects.

• Data structure conceptualization

Current CARE tools focus mainly on untranslation (schema untranslation) and offer some
restructuring facilities (schema normalization). These processes often are merged and are per-
formed without any user intervention (fully automated). Therefore the analyst cannot drive the
conceptualization process and he is provided with no tools to perform any transformation to the
proposed schema. All performance-oriented constructs, as well as most non standard database
structure (see [Blaha et al.-1995] and [Premerlani et al.-1993]) are completely beyond the scope
of these tools.

8.2. Requirements

This section states some of the most important requirements an ideal DBRE support environment (a
CARE tool) should meet. These requirements are the result of the analysis of the specific character-
istics of the DBRE process and of the experience acquired during several DBRE projects of real
size applications.

• Flexibility

Observation: Reverse engineering activities differ from more standard engineering activities.
Reverse engineering a database is basically an exploratory and often unstructured activity. Some
important aspects of higher level specifications are discovered (sometimes by chance) and are
not deterministically inferred from the operational specification.

Requirements: The tool must allow the analyst to follow flexible working patterns, including
unstructured ones. It should be methodology-neutral unlike forward engineering tools. In addi-
tion, it must be highly interactive.

• Extensibility

Observation: Each project is different: new problems, new languages, new DBMS, new coding
rules, etc. So each project requires specific reasoning and techniques. DBRE appears as a learn-
ing process.

Requirements: Specific functions should be easy to develop, even for one-shot use. Existing
functions must be easily integrated in new ones.

• Source multiplicity

Observation: DBRE requires a great variety of information sources: DDL, data (from files, data-
bases, spreadsheets,...), program sources code, program execution, program output, screens/
reports layout, CASE repository, documentation (paper and computer-based), interview, domain
knowledge, etc.

Requirements: The tool must include browsing and querying interfaces for these sources. Cus-
tomizable functions for automatic and assisted specification extraction should be available for
each of them.
158 Program Understanding in DBRE

Requirements
• Text analysis

Observation: DBRE requires browsing through huge amounts of text, and searching them for
specific patterns, following static execution paths and dataflows and extracting program slices.

Requirements: The CARE tool must provide sophisticated text analysis processes. The latter
should be language independent, easy to customize and to program, and tightly coupled with the
specification processing functions.

• Program understanding

Observation: The code of the application is one of the major sources of information, since most
implicit constraints must be implemented in the code to ensure the validity of the data.

Requirements: The analyst heavily needs program understanding tools such as dataflow analy-
sis, program slicing. Those tools could deal with very large program, legacy languages and must
be easily customizable to other languages. The dilemma with the program understanding func-
tions is that their precision depends on their dependency on the language. A language specific
processor, such as program slicer, provides much better results than generic ones.

• Name processing

Observation: Object names in the operational code are an important knowledge source. But
these names often happen to be meaningless (e.g. REC001-R018) or at least less informative
than expected (e.g. INV-QTY, QOH) due to the use of strict naming conventions. Many applica-
tions are multilingual1, so data names may be expressed in several languages. In addition, multi-
programmer development, long live time and maintenance, often induce non consistent naming.
Names used in the programs and databases need to be used to name the objects in the physical
schema to keep it synchronized with programs. During the conceptualization phase the physical
names can be replaced by more meaningful ones.

Requirements: The tool must includes sophisticated name analysis and processing functions. It
must be also possible to keep the correspondence between the physical name of the objects and
their more meaningful version in the conceptual schema.

• Links with other CASE processes

Observation: DBRE is seldom an independent activity. For instance, forward engineering
projects frequently include reverse engineering of some existing components; reverse engineer-
ing share important processes with forward engineering (e.g. conceptual normalization); reverse
engineering is a major activity in broader processes such as migration, engineering and data
administration.

Requirements: A CARE tool must offer a large set of functions, including those that pertain to
forward engineering.

• Openness

Observation: There is (and probably will be) no available tool that can satisfy all corporate
needs in application engineering. In addition, companies usually already make use of one or
more CASE tools, software development environments, DBMS, 4GL.

Requirements: A CARE tool must communicate easily with the other development tools, e.g. via
querying hooks, communications with a common repository or by exchanging specifications
through a common file format (XMI [XMI - 2002], GXL [Winter - 2002], XIML [Puerta et al.-
2002]).

1. For instance, Belgium commonly uses three legal languages, namely Dutch, French and German. And
English is often used by programmers as a common language.
Program Understanding in DBRE 159

CASE support
• Flexible specification model

Observation: As in any CAD activity, reverse engineering applies on incomplete and inconsis-
tent specifications. However, one of its characteristics makes it intrinsically different from
design processes: at any time, the current specifications may include components from different
abstraction levels. For instance, a schema may include referential constraints as well as relation-
ship-types.

Requirements: The specification model must be wide-spectrum and provides artifacts for com-
ponents of different abstraction levels.

• Genericity

Observation: Tricks and implementation techniques specific to some data models have been
found to be used in other data models as well (e.g. referential constraints are frequent in IMS and
CODASYL databases). Therefore, many reverse engineering reasoning and techniques are com-
mon to the different data models used by current applications

Requirements: The specification model and the basic techniques offered by the tools must be
DMS-independent, and therefore highly generic.

• Multiplicity of views

Observation: The specifications, whatever their abstraction level (e.g. physical, logical or con-
ceptual), are most often huge and complex. Only one graphical view of the schema with some
zoom-in and zoom-out is not enough to view and manipulate schemas. The analyst needs to
examine and to browse through the information in several ways, according to the nature of the
information he tries to obtain.

Requirements: The CARE tool must provide several ways of viewing both source texts and
abstract structures (schemas). Several different views (graphical and textual) are needed with
powerful browsing functionalities and navigation functions (e.g., going from the origin of a for-
eign key to its target).

• Rich transformation toolset

Observation: Actual database schemas may include constructs intended to represent conceptual
structures and constraints in non standard ways and to meet non functional requirements (perfor-
mance, distribution, modularity, access control, etc.). These constructs are obtained through
schema restructuration techniques. They are discovered during the data structure extraction
phase and need to be transformed during the data structure conceptualization phase.

Requirements: The CARE tool must provide a rich set of schema transformation techniques. In
particular, this set must include operators which can undo the transformation commonly used in
practical database designs. The proposed transformations must preserve the semantics of the
schema or at least warn the analyst when this semantics has changed.

• Traceability

Observation: A DBRE project includes at least three sets of documents: the operational descrip-
tions (e.g. DDL, source code), the logical schema and the conceptual schema. The forward and
backward mapping between these specifications must be precisely recorded. The forward map-
ping specifies how each conceptual (or logical) construct has been implemented in the opera-
tional (or logical) specification, while the backward mapping indicates of which conceptual (or
logical) construct each operational (or logical) construct is an implementation.

Requirements: The repository of the CARE tool must record all the links between the schemas at
the different levels of abstraction. More generally, the tool must ensure the traceability of the
reverse engineering processes.
160 Program Understanding in DBRE

The DB-MAIN CASE environment
• Automation

Observation: DBRE projects manipulate huge volume of information (source codes, texts) and
the analyst needs to perform the same operation many times. The manual analysis is error prone.

Requirements: The CARE tool must have powerful automation techniques. This automation can
be built-in (i.e. functions that perform several of elementary actions) or available through some
scripting function, so that the analyst can build his own tools.

8.3. The DB-MAIN CASE environment

DB-MAIN is a general purpose database CASE and meta-CASE environment that includes DBRE
and program understanding tools. Its main goal is to support all the database application engineer-
ing processes, ranging from database development to system evolution migration and integration.
Further detail on the whole approach can be found in [Hainaut et al.-1994].

The environment has been developed by the database engineering laboratory of the University of
Namur (LIBD), Belgium, as part of the DB-MAIN project. As far as DBRE support is concerned,
the DB-MAIN CASE tool has been designed to address as much as possible the requirements
developed in the previous section. Extensions are being developed towards federated database
methodology through the InterDB project [Thiran et al.-2000], data migration through Data Migra-
tion project [Delcroix et al.-2001] and methodological support for temporal database (TimeStamp
project [Detienne et al.-2001]). More specifically it includes the following functions, components
and capabilities:

• Classical functions to access, browse, create, update, copy, analyze and store the specifications
(schemas and texts).

• Representation of the project history: processes, schemas, views, source texts, reports, generated
programs and their relationships.

• A generic, wide-spectrum repository: the repository can store conceptual, logical and physical
schemas and texts. It can represent entity relationship and UML models. Schema objects and
text lines can be selected, marked, aligned, colored, copied and pasted.

• Semantic and technical annotations (text) can be attached to each specification object.

• Multiple views of the specifications (four hypertext and two graphical) with zoom-in and zoom-
out. Some of the views are particularly intended for very large schemas.

• A tool box of about thirty semantics-preserving transformation operators which provide a sys-
tematic way to carry out such activities as conceptual normalization, or the development of opti-
mized logical and physical schemas from conceptual schema and conversely (i.e. reverse
engineering).

• The code generators generate the DDL code for such DMS as SQL, CODASYL, IMS and
COBOL. There are three built-in SQL generators and an advanced one, written in Voyager2,
generates checks, triggers and stored procedures to maintain additional constraints. XML-DTD
and XML-schema generators have also been developed.

• Different report generators, from the simplest one that produces the same output as the current
textual view, to a more sophisticate report in RTF with sophisticated page layout.

• Code parsers extracting physical schema from SQL, ODBC, COBOL, CODASYL, IMS DDL
and XML-DTD.
Program Understanding in DBRE 161

CASE support
• Text analysis tools such as pattern matching.

• Program understanding tools such as program slicing and variable dependency graph.

• Name processing to clean, normalize, convert or translate the names of selected objects.

• A history manager which records the engineering activities of the analyst and which makes their
further replay possible.

• Import and export of specifications in a readable textual format.

• A series of assistants, which are expert modules in specific kinds of tasks or in classes of prob-
lems and which are intended to help the analyst in frequent, tedious or complex activities. It
allows the analyst to develop scripts that automate frequent processes. Six assistants are avail-
able at present: global transformations (elementary and advanced), schema analysis, schema
integration, text analysis and reference key analysis and discovery.

• Process modeling: specific methods can be defined and enforced by the tool. A method is
defined by a MDL (Method Definition Language) script, compiled as a part of the repository,
then enacted by the method engine [Roland et al.-2000].

• Extensibility: new functions, such as specific report and code generators, DDL analyzers or
specifications checkers, can be developed in Voyager2 [Englebert-2000]. This language allows
the CASE engineer to develop new functions, which will be seamlessly incorporated in the tool
without any modification of the tool kernel. Voyager2 is a complete 4th-generation language that
offers predicative access to the repository, easy analysis and generation of external texts, defini-
tion of recursive functions and procedures, a sophisticated list manager and direct access to the
build-in functions (as the transformations). It makes the rapid development of complex func-
tions possible.

• New properties can be dynamically added to the objects. Each type of object has built-in proper-
ties (e.g. attributes have a name, a type, a length, etc.). It is possible to add new properties to any
type of object of the repository. For example, it is possible to add a property (eng_name) to the
entity types that contains the name of the entity type in english.

• The behavior of the tools can be modified by the addition of pre- and post-processing functions
(as triggers written in Voyager2) to the creation, deletion and transformation of the objects.

The remainder of this section will present in more detail the aspects and components of the DB-
MAIN tool which are directly related to DBRE activities.

8.3.1. User interface

Besides fairly standard graphical user interface, DB-MAIN offers additional formats that can be
useful for large schemas.

The tool allows the creation, modification, examination and analysis of the specifications. It must
be able to process large schemas (e.g. 500 record types with 10000 fields) and texts (e.g. beyond
100000 LOC).

It quickly appeared that more than one way of viewing schemas is necessary. For instance, a graph-
ical representation of a schema allows an easy detection of certain structural patterns (as N-ary rela-
tionship types) and manipulation of small to medium schemas. But positioning objects of large and
complex schemas can prove difficult. It can take more than two hours to position the objects of a
schema of about 300 entity types and 300 relationship types. A textual representation is better
suited than the graphical one to analyze name correspondences and similarities and to browse
162 Program Understanding in DBRE

The DB-MAIN CASE environment
through large schemas. This is especially true in DBRE, where the schema can be very large and is
extracted from the DDL, without any predefined graphical positions.

DB-MAIN currently offers three different kinds of schemas (extended entity relationship, UML
class diagram and processing). The entity relationship and UML class diagrams represent data
schema in their respective model. In the graphical and textual views objects can be marked and
colored. Graphical views have zoom-in, zoom-out and alignments functions. The selected, marked
and colored objects are kept from one view to the other.

FIGURE 109. The six different extended entity-relationship views offers by DB-MAIN.

8.3.1.1. Entity relationship schema

Figure 109 presents the 6 views of an extended entity relationship schema (4 hypertext and 2 graph-
ical).

The four extended entity-relationship textual views with hyperlinks are:

• Textual-compact: sorted list of entity types, relationship types and collections.

• Textual-standard: same as the compact one with attributes, roles, groups, processing units and
is-a relations.

• Textual-extended: same as the standard one with the domain of the attributes and entity types -
relationship types cross-references.

• Textual-sorted: sorted list of all the objects (entity types, relationship types and attributes)
names.
Program Understanding in DBRE 163

CASE support
The hypertext views provide an easy way to navigate through a schema by following the roles,
foreign keys and is-a relations, i.e., going from an entity type to its neighbor relationship types and
vise-versa.

The two extended entity-relationship graphical views are:

• Graphical-compact: graphical representation of the entity-types, relationship types, roles and
collections.

• Graphical-standard: same as the compact one with the attributes, groups, processing units and
groups. It is possible to customize the views by displaying or hiding the domain of the attributes,
the attributes, the processing units and the groups.

8.3.1.2. Processing schema

Processing schemas are used to represent processes. Three kinds of nodes are provided: processing
unit, internal data objects and external data objects, as well as three kinds of relations: call, decom-
position and in-out.

A processing unit describes any processing components of an application or of an information
system. According to the level of abstraction at which the description has been developed, a
processing unit can model a task, an organization function, an activity, a procedure, a program, a
predicate, a trigger and even a mere statement.

An internal data object can be a data type, a variable, a constant or any object known by the
processing units of the schema but that is local to this schema. An internal object can be used as
input or output of processing units.

A data object used in a processing schema that has been defined in a data schema is called an exter-
nal data object, such as entity types, attributes, collections or relationship types. For instance, a
procedure that reads CUSTOMER entities (described in a data schema) appears in a processing
schema where CUSTOMER is declared external.

Relations describe how a processing unit relates to other processing units and to internal and exter-
nal data objects. There are three kinds of relations.

FIGURE 110. Example of the different relations in a processing schema.

dddd

New ProductList OrdersNew OrderNew Customer

Order System

i

o

c

i

o

cc

READ_PROD

WRITE_DETREAD-CUS

NEW-ORD

ORDER.detail

PRODUCT

CUSTOMER

ORDER

a) Decomposition relations.

b) Call and in-out relations.
164 Program Understanding in DBRE

The DB-MAIN CASE environment
A processing unit can be made up of several components which are themselves processing units
(dotted lines figure 110.a), this relation is called decomposition.

The call relation states that a processing unit calls, or uses services from, other processing units
(labelled "c" in figure 110.b).

A processing unit can use/read data objects and create/delete/update others, these relations are
called in-out (labelled "i" for input; "o" for output; "u" for update in figure 110.b). Data objects can
be internal (local to the schema) or external (defined in an other schema).

FIGURE 111. The five different processing views offers by DB-MAIN.

Figure 111 presents the five views of a processing schema:

• Textual compact: sorted list of processing units and data objects (internal and external).

• Textual standard: same as compact one with the relations between processing units and data
objects.

• Textual extended: same as the standard one with relations cross-references.

• Textual sorted: sorted list of all the objects (processing units and data objects).

• Standard graphical: graphic representation of the processing units and data objects with the rela-
tions.

8.3.2. DDL extractors

The DB-MAIN CASE includes DDL extractors for popular DMS, such as COBOL, IMS, CODA-
SYL, SQL, ODBC, Access and XML-DTD. Some of these extractors (COBOL, IMS, CODASYL,
Program Understanding in DBRE 165

CASE support
SQL and ODBC) are built in the CASE tool kernel and other (Access and XML-DTD) are external
modules written in Voyager2. For additional DMS, specific extractors can be developed in
Voyager2.

These processors create an abstract schema expressing the physical concepts of the DDL text or of
the data dictionary that declares the data structures. These extractors produce one schema per DDL
analyzed or can store all the definitions in the same schema. If the extractors cannot interpret some
part of the code, such as the body of the SQL triggers, they store them in the description of the
corresponding object so that they can be analyzed by post processors.

8.3.3. Pattern matching

The simplest way to find some definite information in a program source code is to search the
program source text for some patterns or clichés. DB-MAIN pattern matching can include wildcard,
characters ranges, multiple structures, variables and can be based on other defined patterns.

For example, patterns can be defined to match any numeric constant, or the various kinds of
COBOL assignment statement or some select-from-where SQL queries.

The DB-MAIN pattern matching function allows searching text files, object names or object
descriptions for definite patterns expressed in a Pattern Definition Language (PDL). The left hand
side of the pattern (left of the ’::=’) is the name of the pattern and the right hand side is its defini-
tion and is terminated by a ’;’. The definition of the pattern can contain regular expressions (à la
grep), wildcard, character ranges, multiple structures, variables (preceded by the @ symbol) and
other defined patterns. Pattern definitions cannot contain forward references, i.e,. all the patterns
used in a pattern definition must be defined before.

FIGURE 112. Patterns definition for detecting COBOL assignment. ’-’ designates any non-
empty separator, ’var’ any alphanumeric string beginning with a letter (a variable
name).

As an illustration, figure 112 is the definition of the pattern move that matches a COBOL assign-
ment. The pattern ’-’ is defined as a regular expression (/g"...") which represents one or more
(+) separators (space, tabulation or newline). The pattern var, that represents a COBOL variable
name, is defined as a regular expression which matches any alphanumeric string beginning with a
letter. var_1 and var_2 are defined as var. The COBOL assignment, move, is defined as the
string "move" followed by a non-empty separator (-), followed by a COBOL variable (var_1),
followed by a non-empty separator (-), followed by the string "to", followed by a non-empty sepa-
rator (-), followed by a COBOL variable (var_2). The matching values of var_1 and var_2 are
stored into two PDL variables named var_1 and var_2. The value of those two variables can be
used by other tools. For example, they can be passed as parameter to a Voyager2 procedure.

- ::= /g"[/t/n]+";
var ::= /g"[a-zA-Z][-a-zA-Z0-9]*";
var_1 ::= var;
var_2 ::= var;
move ::= "move" - @var_1 - "to" - @var_2 ;
166 Program Understanding in DBRE

The DB-MAIN CASE environment
The PDL variables can also be instantiated before the search takes place to reduce the search space.
For example, if we do not want to find any assignment, but only those that assign a value to the
variable Cus-Name, var_2 can be instantiated to Cus-Name before the search takes place.

FIGURE 113. The search tool dialog box.

The search tool (figure 113) allows to select a pattern and to instantiate the variables. The search
can take place in an external text or in a schema (name or description of the objects). This search
tool is mainly used for visual inspection: it selects the next matching string or it can select all the
matching strings in the product (select all).

FIGURE 114. Example of pattern impossible to write in PDL.

The first experiments have quickly taught us that pattern-matching works fine for locally concen-
trated patterns, but can prove difficult to use for large patterns. It is not possible to write a pattern
that contains an expression that matches any string not including an expression. For example, it is
not possible to write a pattern that detects any SQL join. Figure 114.a shows a SQL join and figure
114.b shows a pseudo-pattern which would be necessary to detect if. The current pattern matching
engine does not offer any way to express the "any-but" expression.

A Voyager2 procedure can be attached to a pattern in such a way that each instantiation of this
pattern triggers the execution of the procedure. The procedure uses the PDL variables as input
parameters. In this way, the analyst can build powerful custom tools that perform automatically
some actions each time a pattern is detected (see annex A section A.2 for more detail).

select *
from CUTOMER, ORDER
where CUSTOMER.NAME = ’Dupont’
 and CUSTOMER.CUS-CODE
 = ORDER.ORD-CUST;

! ::= any_but("where");
§ ::= any_but(";");
join ::=
 "from" ! (@T1 ! @T2| @T2 ! @T1)
 "where" § @T1 "." @C1 -
 = - @T2 "." @C2;

a) A SQL join. b) A pseudo-pattern to match a SQL join.
Program Understanding in DBRE 167

CASE support
FIGURE 115. The variable dependency graph dialog box.

FIGURE 116. Example of patterns used to compute the variable dependency graph in a COBOL
program. Variables @var_1 and @var_2 define the nodes while the edges are
built from the instantiation of the patterns.

8.3.4. Variable dependency graph

The variable dependency graph (see figure 115) tool builds a graph whose nodes are the variables
of the program to be analyzed and the edges are relationship between these variables. These rela-
tionships are defined by selecting PDL patterns with two variables named var_1 and var_2, the
edges may be directed and if so, they are directed from var_1 to var_2. For instance, figure 116
displays patterns that can be used to build a graph in which two nodes are linked if their correspond-
ing variables appear simultaneously in a single assignment statement, in a redefinition declaration,
in an indirect write statement or in comparisons.

This tool can be used to solve structure hiding problems such as the decomposition of attributes,
anonymous attributes and procedurally controlled referential constraint.

FIGURE 117. Example of node that are directly and indirectly connected to A.

Two visualization formats of the variable dependency graph are available. The first one is contex-
tual. The analyst selects (clicks on the variable with the mouse’s right button) a variable in the
source code, in the declaration or in the procedural code, then all the occurrences of variables

move ::= "move" - @var_1 - "to" - @var_2 ;
redefine ::= @var_1 - "redefines" - @var_2;
write ::= "write" - @var_2 - "from" - @var_1;
if ::= "if" - @var_1 - rel_op - @var_2;

A

B

D

E F

I

G

H

C

168 Program Understanding in DBRE

The DB-MAIN CASE environment
connected, directly or indirectly, to the selected variable are colored in the source code. The nodes,
that are connected indirectly to the selected node, are the nodes that can be reached from the
selected node by following the edges forward and the nodes that can be reached from the selected
node by following the edges backward. For example, figure 117 shows the nodes that can be
reached directly and indirectly from A, namely B, C, E, F, G. Nodes I, D and H are not part of this set.

FIGURE 118. Example of variables belonging to the variable dependency graph shown in
context.

With this visualization technique the analyst can observe the variables in their context, i.e., he can
see the comments and the instructions that use the variables. But in large programs, he only has a
partial view of all the variables connected.

The second view is graphical and represents the graph itself. In this view, it is easy to observe the
cluster of variables in connection. The analyst has a global view of the dataflow of the program.
This view, that does not belong to the kernel of DB-MAIN, can be built by saving the graph, then by
using the processor depend.oxo to create the dependency graph as an entity-relationship schema
(see annex A section A.4.3 for detail).

8.3.5. Program slicing

FIGURE 119. Example of program slice.

190NEW-ORD.
191* new order input
192 DISPLAY "NEW ORDER".
193 DISPLAY "ORDER NUMBER : "
194 WITH NO ADVANCING.
195 ACCEPT ORD-CODE.
196
197 MOVE 1 TO END-FILE.
198 PERFORM READ-CUS-CODE
199 UNTIL END-FILE = 0.
201 MOVE CUS-CODE TO ORD-CUSTOMER.
...

210 WRITE ORD

211 INVALID KEY DISPLAY "ERROR".
216READ-CUS-CODE.
217* order customer input
218 DISPLAY "CUSTOMER NUMBER : "
219 WITH NO ADVANCING.
220 ACCEPT CUS-CODE.
221 MOVE 0 TO END-FILE.
222 READ CUSTOMER INVALID KEY
223 DISPLAY "NO SUCH CUSTOMER"
224 MOVE 1 TO END-FILE
225 END-READ.
Program Understanding in DBRE 169

CASE support
FIGURE 120. The dialog box used to select with respect to which variable the program slice
must be computed.

DB-MAIN offers a program slicing tool for COBOL programs. The user selects an instruction and
one or more variables referenced by the instruction. The program slicing tool identifies and colors
the program slice with respect to the selected instruction and the list of variables. The tool colors
the lines of the slice in the complete source code. This makes it possible to examine the slice in
context. For example, figure 119 shows a part of a program that includes the program slice
computed with respect to line 210 and ORD-CUSTOMER, shown in bold. The context of the slice
makes it possible to analyze related information such as comments and error messages (lines 218
and 223).

To use the program slicing, the user selects a line in the source code and uses the Assist / Text anal-
ysis / program slicing command. The program slicing tool asks with respect to which variable the
slice must be computed (figure 120) and then colors the lines bellowing to the slice.

Functions to mark, color and copy the lines of a slice are available to extract the program slice and
to store it in a separate file.

This program slicing tool is very useful for visual inspection of the code, but it is not adapted for
large projects with thousands of slices to compute and to analyze in hundreds of different source
codes. So there exists a "command line" (Windows and Unix) version of the program slicing that
can be used in shell scripts and run on a powerful machine. The command line has numerous
options (see annex A, section A.5) to designate the input and output files and format, the starting
lines and variables, etc.

For example, to detect data dependency the "command line" program slicing can be used to find all
the variables that are referenced in a write instruction and that received their value from a variable
defined in a read instruction, i.e., an attribute of the read entity type. To compute such slices for the
order.cob program, the analyst can execute the following command.

slice -v -s write -c read -a var -o order.dep order.cob
The options of this command can be interpreted as follows. -v computes the variable follow-up
program slicing. -s write computes the program slicing with respect to each write (or
rewrite) instruction and its record. -c read checks if there is a read (or start) instruction in
the slice. If the slice does not contain a read instruction, it is not memorized. -a var option is
used to display (into the output file) the variables of the read and write instruction between which
there is a dataflow. -o order.dep specifies that the output must be saved in the order.dep file.
170 Program Understanding in DBRE

The DB-MAIN CASE environment
FIGURE 121. Example of the output of the program command line program slicing tool.

FIGURE 122. Fragment of the program to understand the dependency between line 208 and
196.

An extract of the order.dep file is shown in figure 121. The first part (figure 121.a) can be inter-
preted as the existence of a program slice with respect to line 196 (WRITE ORD) that contains a read
instruction (line 208) and there is a dataflow between CUS-CODE (origin) and ORD-CUSTOMER
(current). The instructions used to detect this dataflow are given by the flow line and are displayed
in figure 122.

FIGURE 123. Fragment of the program to understand the dependency between the line 226
and 196.

begin : 208
end : 196
origin: CUSTOMER (1-12) key CUS-CODE
current ORDERS (11-22) ORD-CUSTOMER
flow : 208,187,196

begin: 226
end: 196
origin: LIST-DETAIL (1-5) REF-DET-STK
current: ORDERS (23-27) ORD-DETAIL
control: STOCK (1-5) key STK-CODE
control: EXIST-PROD (1-1)
flow: 226,227,228,245,194,196

a) Dataflow only result. b) Result with control flow.

208 READ CUSTOMER INVALID KEY ...
187 MOVE CUS-CODE TO ORD-CUSTOMER.
196 WRITE ORD...

FD ORDERS.
 01 ORD.
 02 ORD-CODE PIC 9(10).
 02 ORD-CUSTOMER PIC X(12).
 02 ORD-DETAIL PIC X(200).

01 LIST-DETAIL.
 02 DETAILS OCCURS 20 INDEXED BY IND.
 03 REF-DET-STK PIC 9(5).
 03 ORD-QTY PIC 9(5).
01 EXIST-PROD PIC 9.

225 MOVE PROD-CODE TO STK-CODE.
226 READ STOCK INVALID KEY
227 MOVE 0 TO EXIST-PROD.
228 IF EXIST-PROD = 0
230 ELSE
231 PERFORM ...
245 MOVE PROD-CODE
 TO REF-DET-STK(IND-DET)
194 MOVE LIST-DETAIL TO ORD-DETAIL.
196 WRITE ORD
Program Understanding in DBRE 171

CASE support
FIGURE 124. The SDG of the figure 123.

The second part (figure 121.b) is more difficult to understand because fully understanding the rela-
tion between the read instruction (line 226) and the write instruction (line 196) requires not only
dataflow analysis but also control flow analysis. The instructions used to detect this dependency are
displayed in figure 123. To find this dependency, the program slicing uses two control flow edges
(see figure 124). The first one goes from line 226 to 227: the read (line 226) can be seen as a test,
to test if the record key is valid or not. The second one goes from line 228 to 231 to 245: the else
part of the if statement is a perform (line 231) that calls UPDATE-ORD-DETAIL in which REF-
DET-STK receives its value. The two lines beginning by control in figure 121.b give the variables
that are used in the two tests (line 226, 228). The current line gives the attribute of the ORDER
entity type that receives the value. It is not the whole attribute ORD-DETAIL but only a part of it,
from byte 28 to 32 relatively to the beginning of ORDER.

This result shows that there is a dependency between the value of STK-CODE (the primary key of
STOCK) and a part of ORDER but this is not a dataflow. The analyst has to analyze manually the
program to understand the dependency. In this example, at line 225 (not part of the slice between
line 226 and 196) STK-CODE receives its value from PROD-CODE and if STK-CODE (so PROD-
CODE) is an existing value then PROD-CODE is moved to REF-DET-STK (line 245) and REF-DET-
STK is moved to ORDER (line 194). This suggests that there is a referential constraint between STK-
CODE and REF-DET-STK.

For real size project, as in this example, the interpretation of the result of variable follow-up
program slicing that contains control dependencies is not easy. The interpretation of variable
follow-up program slicing with only data dependency is straightforward. Most of the foreign key
can be discovered by only analyzing the variable follow-up program slicing computed with data
dependency.

245

231

228

227

226225224

196194
172 Program Understanding in DBRE

The DB-MAIN CASE environment
8.3.6. Referential key assistant

FIGURE 125. Referential constraint assistant dialog (manager component).

Referential constraints are one of the most important structures to elicit in almost every DBRE
projects. A dedicated analyzer helps the analyst to discover potential referential constraints by the
analysis of the database schema. The referential key assistant implements the most common heuris-
tics. This assistant is divided in two components, namely, the constraint manager and the search
engine. The first one (figure 125) is the component manager; it is used to give the search strategies
and to create the referential constraints:

• The target or the source of the referential constraint must be taken from a list of groups. This list
can be made up of all the selected groups or the marked group or all the identifiers (primary or
not) or all the schema’s groups or a list of groups given by a Voyager2 function.

• The other end of the referential constraint must match a group of this list. These matching rules
are given in the second dialog box described hereafter.

• The Create button is used to create the current referential constraint.

• The Create all button is used to create all the suggested referential constraints.

• The Remove button is used to remove the current referential constraint from the list of suggested
referential constraints.

• The Advanced button calls a Voyager2 procedure that receives all the suggested referential con-
straints as input parameter. This procedure can be used to create the referential constraints, print
a report, query the database, etc.
Program Understanding in DBRE 173

CASE support
FIGURE 126. Referential constraint assistant dialog (search engine).

FIGURE 127. Example of a "hierarchical" referential constraint.

The matching rules (figure 123) are the following:

• The type of the target of the foreign key (prim id, any id and any group).

• Structure matching rules: both ends have the same total length or each component has the same
length and/or same type. The hierarchical matching rule is used when the identifier may contain
a role as in CODASYL databases. For example, in figure 127, a product is identified by the
supplier of the product (the role) and a number (prod-id). In detail, if we want to create
a foreign key that reference a product, we need to reference sup-id (det-sup) and prod-id
(det-prod).

• Name matching rules: the name of the reference key must include a keyword, some (or all) the
characters of the target entity type name or some (or all) the characters of the target key name.

• Skip existing reference key.

• Accept attributes: the source of the foreign key is not a group.

• Accept multivalued foreign key.

• More...: the analyst can define his own matching function in Voyager2.

When all the strategy parameters are given, the first dialog box displays the list of possible referen-
tial constraints. To create one of these referential constraints, the analyst can select it and click on
the Create button. If he wants to create all of them, he can click on the Create all button.

1-1

0-N

R

supplier
sup-id
id: sup-id

product
prod-id
id: R.supplier

prod-id

detail
det-sup
det-prod
ref: det-sup

det-prod
174 Program Understanding in DBRE

The DB-MAIN CASE environment
8.3.7. Schema and object integration

DB-MAIN offers two integration tools. The first one integrates two schemas and relies only on the
name and type of the objects. It integrates two entity types (or relationship types) if they have the
same name and then applies the same rule for their attributes. It also produces an integration report
that contains the list of the objects integrated as well as additional information.

FIGURE 128. The integration assistant.

Schema integration also requires processors that are able to detect semantic correspondences. In the
second integration assistant (figure 128), the analyst selects two objects (in the same schema or not)
he wants to integrate. He chooses the strategy he wants to use (merge one of the objects in the other,
create a common super-type, link them by a one-to-one relationship type, etc.) and for each attribute
or role, he decides if it has a counterpart in the other object. This integration assistant can give very
precise results but heavily relies on the analyst’s knowledge of the application domain.

8.3.8. Schema analysis

The schema analysis assistant is dedicated to the structural analysis of schemas. It uses the concept
of submodel, defined as a restriction of the generic specification model. This restriction is
expressed by a boolean expression of elementary predicates stating which specification patterns are
valid, and which ones are forbidden. An elementary predicate can specify situations such as the
following: "entity types must have from 1 to 100 attributes", "relationship types have from 2 to 2
(exactly 2) roles", "entity type names are less than 18 characters long", "names do not include
spaces", "there are no compound attributes", "there are no access keys". A submodel appears as a
script that can be saved and loaded. Predefined submodels are available: normalized ER, binary ER,
relational, CODASYL, etc. Customized predicates can be added via Voyager2 functions.
Program Understanding in DBRE 175

CASE support
The schema analysis assistant offers two functions, namely check and search. Checking a schema
consist in detecting all the constructs which violate the selected submodel while the search function
detects all the constructs which comply with the selected submodel.

8.3.9. Transformation toolkit

DB-MAIN proposes a three-level transformation toolset that can be used freely, according to the
skill of the user and the complexity of the problem to be solved. These tools are neutral and generic,
in that they can be used in any database engineering process. As far as DBRE is concerned, they are
mainly used in data structure conceptualization processes. More precisely, the following three
levels of transformation are available.

• Elementary transformations

Transformation T is applied to selected object O.

With these tools, the user keeps full control on the schema transformation since similar situa-
tions can be solved by different transformations. E.g, a multivalued attribute can be transformed
in many different ways (into an entity type by value or by instance, into a list of single attributes,
into a long single attribute, etc.). The current version of DB-MAIN offers a toolset of about 30
elementary transformations.

• Global transformations

Transformation T is applied to all the objects of a schema that satisfy predicate P.

FIGURE 129. The global transformation assistant.
176 Program Understanding in DBRE

The DB-MAIN CASE environment
FIGURE 130. The global advanced transformation assistant.

Such a transformation is carried out through a processor that allows the analyst to define T and P
independently. DB-MAIN offers two such tools. The first one, the global transformation assis-
tant (figure 129), offers a list of predefined predicates with their corresponding transformation
(transform all the "relationship entity types" into relationship types, transform all referential
constraints into relationship types, etc.). In the second one, the advanced global transformation
assistant (figure 130), the analyst select a transformation and defines a selection predicate to
express on which object the transformation must be applied.

• Model-driven transformations.

All the constructs of a schema that do not comply with a given model are processed through a
transformation plan.

Such an operator is defined by a transformation plan, which is an algorithm comprising global
transformations, which is proved (or assumed) to make any schema comply with the model. The
DB-MAIN global transformation assistants offer scripting facilities through which the analyst
can develop his own transformation plan. Some predefined script are also provided (to transform
a conceptual schema into a relation schema, to transform a relational schema into a conceptual
schema, etc.).

8.3.10.Graph visualization

The processing schema can be used to represent call graphs, usage graphs, etc. DB-MAIN offers the
necessary tools to manipulate (data and processing) schema and to mark and color their elements.
The analyst can add dynamic properties, stereotypes and annotations to represent the different kinds
of nodes (processing units can represent programs, procedures or modules) and edges.

Creating call graphs by hand can be very long and painful. To automate such graph creation from
the program sources code, specific extractors are needed but such extractors can be difficult to write
and need to be change for each language. To fulfil this, a Voyager2 program (graph_tr.oxo) has
been developed that reads an input file, which describes the schema. It can be used to create any
Program Understanding in DBRE 177

CASE support
processing schema that contains processing units, data-objects, call edges, decomposition edges and
input/output edges. Such a file can be easily created with scripting language, such as grep/awk or
perl. The file format is neutral (see its description in annex A section A.6), so it can be used for any
graph and it is easily generated from any programs or other JCL scripts.
178 Program Understanding in DBRE

CHAPTER 9 Case study
This chapter presents three small case studies. These case studies are not real programs but we have
designed them to illustrate some difficulties that are meted in real projects. The first two recover the
complete physical and conceptual schemas of the files used by the same COBOL program. The first
one does it manually while the second one does it semi-automatically.

The first example shows the amount of work necessary to reverse engineer a small application. The
analyst has to use the same tools several times and the tools he uses do not provide him with the
constraints he is looking for. He still has to analyze manually the source code to recover the
constraints. An advantage of this approach is that he gains an in-depth knowledge of the applica-
tion. This knowledge can allow him to retrieve some constraints such as exact cardinality of arrays.

The second example illustrates the fact that the analyst can obtain hints about specific constraints
faster. But to interpret the results of the automatic tools, he has to understand how the results were
generated. One of the limitations of the automatic approach is that not all the constraints can be
recovered this way.

The last case study concerns a COBOL program with embedded SQL. The program offers the same
functionalities as the programs of the first two case studies, but it uses a SQL database instead of
COBOL files to store the data. This case study illustrates the difficulty to analyze programs with
embedded instructions. The analyst has to work in two phases. In the first one, he retrieves the
constraints contained in the embedded instructions. During the second phase, he analyzes the link
between the embedded code and the host language.

The last part of this chapter is devoted to a brief overview of the real case studies that we have per-
formed in companies. We do not give the code nor the database. We do not present the resolution of
the case studies themselves neither for evident confidentiality and space limitation. We present the
context of each case study: the language analyzed, the size of the system, the constraints searched
for and the results obtained.
Program Understanding in DBRE 179

Case study
9.1. COBOL DBRE, manual process

This section describes how to perform a small COBOL DBRE project manually. The expected
results of this project is to produce the complete logical schema and the conceptual schema. The
project is not performed entirely manually we use the tools offered by the DB-MAIN CASE tool
(DDL extractors, variable dependency graph, program slicing and transformation toolbox).

We have two sources of information, the source code and the data. The source code is a small (300
LOC) COBOL program that manages the customers, the products and the orders of a hypothetical
company. The data are stored into indexed COBOL files. We can access the current data to make
some tests and we can rely on the fact that the data contain no errors.

9.1.1. Project preparation

In this project, the preparation process is very simple since there is only one source code file (see
the complete source code in annex B section B.1) and the files that contain the data.

FIGURE 131. General architecture of the program, i.e. the procedure call and data usage
graph.

The procedure call graph and data usage graph (figure 131) can be used to get a general overview of
the program and to identify the paragraphs that access the data.

ccc

ccc ccc

o

c

ou o

ccc c c

i

c

ii i

c

i

c

c

MAIN

INIT PROCESS CLOSING

NEW-CUS NEW-STK NEW-ORDLIST-CUS LIST-STK LIST-ORD

READ-ORD

DISPLAY-DETAIL

READ-STKREAD-CUS READ-CUS-CODE READ-DETAIL

READ-PROD-CODE

UPDATE-ORD-DETAIL

UPDATE-CUS-HIST

INIT-HIST

STOCK ORDERSCUSTOMER
180 Program Understanding in DBRE

COBOL DBRE, manual process
9.1.2. Data structure extraction

9.1.2.1. DDL code analysis

The COBOL DDL code is composed of two distinct parts of the program source:

• The file-control paragraphs of the input-output section of the environment division
(lines 6-20) declare the files used as well as their organization, their access keys and their identi-
fiers.

• The FD paragraphs of the file section of the data division (lines 24-40) declare the record
types (called physical entity types) with their fields (physical attribute) decomposition and the
type and the length of the fields.

FIGURE 132. The raw physical schema extracted from the COBOL program.

Figure 132 represents the raw physical schema obtained by the DB-MAIN COBOL extractor (File -
Extract - COBOL).

9.1.2.2. Physical integration

There is only one raw physical schema in this project, so the physical integration is needed.

9.1.2.3. Schema refinement

During schema refinement, the physical schema is analyzed to discover hypotheses about the fine-
grained structure of entity types and attributes, finding referential constraints, finding sets behind
arrays, finding exact cardinalities of attributes and finding identifiers of multivalued attributes.
Each hypothesis will be validated through program code and data analysis. Validated hypothesis
will be added to the schema.

A. Finding the fine-grained structure of entity types and attributes

Some attributes have an unusual length, which suggests that it could be possible to find a fine-
grained structure for them.

STK
STK-CODE: num (5)
STK-NAME: char (100)
STK-LEVEL: num (5)
id: STK-CODE

acc

ORD
ORD-CODE: num (10)
ORD-CUSTOMER: char (12)
ORD-DETAIL: char (200)
id: ORD-CODE

acc
acc: ORD-CUSTOMER

CUS
CUS-CODE: char (12)
CUS-DESCR: char (80)
CUS-HIST: char (1000)
id: CUS-CODE

acc

CUSTOMER

CUS

ORDERS

ORD

STOCK

STK
Program Understanding in DBRE 181

Case study
Hypothesis discovery. In this example, We state that the attributes that have a length greater than
50 are good candidates to be refined. This rule concerns CUS-DESC, CUS-HIST, ORD-DETAIL
and STK-NAME.

Of course the limit of 50 is completely arbitrary. Attributes longer than 50 may be atomic, such as a
name or a book title. On the other hand, attributes smaller than 50 can be compound such as a date
that is stored in a 8 character variable, that can be decomposed in day, month and year.

Hypothesis validation. To validate a decomposition hypothesis, we will use the variable depen-
dency graph computed for assignment instructions. The dependency graph (Assist - Text analysis -
Dependency) is computed for the pattern "move" - @var_1 - "to" - @var_2. As explained
in chapter 8, section 8.3.4, DB-MAIN displays the variable dependency graph in context, that is, in
the source code.

We select one by one the "long" attributes and verify to which other variables each of them is
connected. If a "long" attribute is connected, directly or indirectly, to a variable that has a fine-
grained structure, then the hypothesis is validated and the structure of the variable is assigned to the
attribute. The analysis of the variable dependency graph shows us that:

• CUS-DESC is connected to DESCRIPTION and DESCRIPTION has the following decomposition
(line 43 - 47)

01 DESCRIPTION.
02 NAME PIC X(20).
02 ADDR PIC X(40).
02 FUNCT PIC X(10).
02 REC-DATE PIC X(10).

• CUS-HIST is connected to LIST-PURCHASE and LIST-PURCHASE has the following decompo-
sition (line 49 - 52)

01 LIST-PURCHASE.
02 PURCH OCCURS 100 TIMES INDEXED BY IND.

03 REF-PURCH-STK PIC 9(5).
03 TOT PIC 9(5).

• ORD-DETAIL is connected to LIST-DETAIL and LIST-DETAIL has the following decomposi-
tion (line 54 - 57)

01 LIST-DETAIL.
02 DETAILS OCCURS 20 TIMES INDEXED BY IND-DET.

03 REF-DET-STK PIC 9(5).
03 ORD-QTY PIC 9(5).

• STK-NAME is not present in the graph, because this attribute does not appear in any assignment,
so we can conclude that there is no decomposition for STK-NAME.
182 Program Understanding in DBRE

COBOL DBRE, manual process
FIGURE 133. The schema with fine-grained structure.

Schema enhancement. The schema can be enhanced with the new decompositions of CUS-DESC,
CUS-HIST and ORD-DETAIL (figure 133).

B. Finding referential constraints

Though there are no referential constraints or relationship types between the different entity types,
we can guess that such links should exist between CUSTOMER, ORDER and STOCK.

FIGURE 134. The configuration of the referential constraint assistant to discover the potential
referential constraints.

STK
STK-CODE: num (5)
STK-NAME: char (100)
STK-LEVEL: num (5)
id: STK-CODE

acc

ORD
ORD-CODE: num (10)
ORD-CUSTOMER: char (12)
ORD-DETAIL: compound (200)

DETAILS[20-20] array: compound (10)
REF-DET-STK: num (5)
ORD-QTY: num (5)

id: ORD-CODE
acc

acc: ORD-CUSTOMER

CUS
CUS-CODE: char (12)
CUS-DESCR: compound (80)

NAME: char (20)
ADDR: char (40)
FUNCT: char (10)
REC-DATE: char (10)

CUS-HIST: compound (1000)
PURCH[100-100] array: compound (10)

REF-PURCH-STK: num (5)
TOT: num (5)

id: CUS-CODE
acc
Program Understanding in DBRE 183

Case study
Hypothesis discovery. We make the assumption that the program was well designed and that some
naming conventions have been used. To discover potential referential constraints, we analyze the
schema to find potential referential constraints that have an identifier as target, both sides have the
same type and same length and the name of the referential attribute contains the name of the target
entity type.

The referential constraint assistant (Assist - Referential key) can be used to discover such potential
referential constraints. The figure 134 shows the configuration of the assistant to perform this task.
The assistant suggests the following potential referential constraints, specified by their source and
target attributes:

• ORD.ORD-CUSTOMER CUS.CUS-CODE

• CUS.CUS-HIST.PURCH.REF-PURCH-STK STK.STK-CODE

• ORD.ORD-DETAIL.DETAILS.REF-DET-STK STK.STK-CODE

• STK.STK-LEVEL STK.STK-CODE

Hypothesis validation. We then use program slicing. To validate a referential constraint, the
analyst must verify that before each (RE)WRITE instruction of the source entity type, the referential
constraint is verified. For this, we compute the program slice with respect to the write instruction of
the entity type and the referential attribute origin. If the slice contains an instruction that reads the
target entity type and there is a validation of the value of the referential attribute (it is an existing
value of the target identifier), then the referential constraint is assumed to be verified.

FIGURE 135. Program slice with respect to write ORD (line 196) and ORD-CUSTOMER.

ORD.ORD-CUSTOMER CUS.CUS-CODE

To validate the first referential constraint (ORD.ORD-CUSTOMER CUS.CUS-CODE), we
search all the instructions that modify ORD ((RE)WRITE ORD). In this program there is only one
such instruction at line 196. We compute the program slice with respect to the write ORD instruc-
tion (line 196) and ORD-CUSTOMER. The program slice is displayed in figure 135; we only display
(as in the remainder of the chapter) the line of the slice and the line with respect to which the slice is
computed is in bold. The slice shows that the procedure READ-CUS-CODE is executed until END-
FILE is equal to 0 (line 184). In READ-CUS-CODE, the user is asked for a CUS-CODE value (line
206) and the file CUSTOMER is read to check if this value of CUS-CODE exist otherwise END-FILE
is set to 1 (line 208-211). So after the execution of READ-CUS-CODE, CUS-CODE contains a value
that exists in the file CUSTOMER. CUS-CODE is copied to ORD-CUSTOMER (line 187) and the record
is written into the file. This proves the existence of the referential constraint.

 →

 →

 →

 →

183 MOVE 1 TO END-FILE.
184 PERFORM READ-CUS-CODE

UNTIL END-FILE=0.
187 MOVE CUS-CODE TO ORD-CUSTOMER.
196 WRITE ORD

203 READ-CUS-CODE.
204 DISPLAY "CUSTOMER NUMBER "
205 WITH NO ADVANCING.
206 ACCEPT CUS-CODE.
207 MOVE 0 TO END-FILE.
208 READ CUSTOMER INVALID KEY
209 DISPLAY "NO SUCH CUSTOMER"
210 MOVE 1 TO END-FILE
211 END-READ.

 →

 →
184 Program Understanding in DBRE

COBOL DBRE, manual process
FIGURE 136. Program slice with respect to write ORD (line 196) and ORD-DETAIL.

ORD.ORD-DETAIL.DETAILS.REF-DET-STK STK.STK-CODE

To validate the foreign key (ORD.ORD-DETAIL.DETAILS.REF-DET-STK STK.STK-CODE),
once again we need to know the instruction that modifies ORD, as for the previous referential
constraint. We compute the program slice with respect to write ORD (line 196) and ORD-DETAIL
(figure 136). We observe that the READ-DETAIL procedure is performed until END-FILE equal 0 or
IND-DET equal 21 (maximum number of elements of DETAILS array plus one). In READ-DETAIL
a product code (PROD-CODE) is asked (line 215). If it is 0 then END-FILE is set to 0 and the
message of line 214 says that "0 = end". This mean that the user can stop to specify products when
he wants, so the cardinality of the array DETAILS actually is [0-20]. If PROD-CODE is different of 0,
READ-PROD-CODE is performed. READ-PROD-CODE checks if PROD-CODE is an existing value of
STK-CODE. If it does not exist in the file STOCK, an error message is displayed ("no such prod-
uct", line 229) and a new product number is asked; else UPDATE-ORD-DETAIL is performed.

FIGURE 137. The situation at any moment in the loop [238-243].

In UPDATE-ORD-DETAIL, the loop [238-243] goes through the DETAILS array. IND-DET is the
index of the first unused cell of DETAILS (all the elements before IND-DET have a value different
of 0) and NEXT-DET is the number of the current element (see figure 137). The loop has two ending
conditions:

1. NEXT-DET < IND-DET AND REF-DET-STK(NEXT-DET) = PROD-CODE

190 SET IND-DET TO 1.
191 MOVE 1 TO END-FILE.
192 PERFORM READ-DETAIL
193 UNTIL END-FILE = 0 OR IND-DET=21.
194 MOVE LIST-DETAIL TO ORD-DETAIL.
196 WRITE ORD
213 READ-DETAIL.
214 DISPLAY "PRODUCT CODE (0=END):".
215 ACCEPT PROD-CODE.
216 IF PROD-CODE = 0
217 MOVE 0 TO REF-DET-STK(IND-DET)
219 MOVE 0 TO END-FILE
220 ELSE
221 PERFORM READ-PROD-CODE.
223 READ-PROD-CODE.
224 MOVE 1 TO EXIST-PROD.
225 MOVE PROD-CODE TO STK-CODE.
226 READ STOCK INVALID KEY
227 MOVE 0 TO EXIST-PROD.
228 IF EXIST-PROD = 0
229 DISPLAY "NO SUCH PRODUCT"
230 ELSE
231 PERFORM UPDATE-ORD-DETAIL.

233 UPDATE-ORD-DETAIL.
234 MOVE 1 TO NEXT-DET.
235 DISPLAY "QUANTITY ORDERED "
236 WITH NO ADVANCING
237 ACCEPT ORD-QTY(IND-DET).
238 PERFORM UNTIL
239 (NEXT-DET < IND-DET AND
240 REF-DET-STK(NEXT-DET)=PROD-CODE)
241 OR IND-DET = NEXT-DET
242 ADD 1 TO NEXT-DET
243 END-PERFORM.
244 IF IND-DET = NEXT-DET
245 MOVE PROD-CODE
246 TO REF-DET-STK(IND-DET)
248 SET IND-DET UP BY 1
249 ELSE
250 DISPLAY "ERROR: ALREADY ORDERED".
271 LIST-ORD.
273 CLOSE ORDERS.
275 MOVE 1 TO END-FILE.
276 PERFORM READ-ORD UNTIL END-FILE=0.

 →

 →

I
N
D
-
D
E
T

REF-DE-STK

N
E
X
T
-
D
E
T

used part

1 20
Program Understanding in DBRE 185

Case study
REF-DET-STK(NEXT-DET) is an element of the already filled part of DETAILS and it is equal
to PROD-CODE (the current product), i.e., the customer tries to order a second time the same
product in the order.

2. IND-DET = NEXT-DET

It has reached the first non used element of DETAILS.

FIGURE 138. Program slice with respect to write CUS (line 127) and CUS-HIST.

FIGURE 139. Program slice with respect to rewrite CUS (line 201) and CUS-HIST.

If the second condition is satisfied (line 244), then PROD-CODE is assigned to REF-DET-
STK(NEXT-DET) (line 245-246) and IND-DET is incremented by one (line 248), otherwise an error
message is displayed (line 250). This means that the referential constraint is validated. REF-DET-

108 NEW-CUS.
126 PERFORM INIT-HIST.
127 WRITE CUS.

294 INIT-HIST.
295 SET IND TO 1.
296 PERFORM UNTIL IND = 100
297 MOVE 0 TO REF-PURCH-STK(IND)
298 MOVE 0 TO TOT(IND)
299 SET IND UP BY 1
300 END-PERFORM.
301 MOVE LIST-PURCHASE TO CUS-HIST.

183 MOVE 1 TO END-FILE.
184 PERFORM READ-CUS-CODE

UNTIL END-FILE = 0.
188 MOVE CUS-HIST TO LIST-PURCHASE.
190 SET IND-DET TO 1.
191 MOVE 1 TO END-FILE.
192 PERFORM READ-DETAIL
199 MOVE LIST-PURCHASE
200 TO CUS-HIST.
201 REWRITE CUS
203 READ-CUS-CODE.
204 DISPLAY "CUSTOMER NUMBER "
205 WITH NO ADVANCING.
206 ACCEPT CUS-CODE.
207 MOVE 0 TO END-FILE.
208 READ CUSTOMER INVALID KEY
209 DISPLAY "NO SUCH CUSTOMER"
210 MOVE 1 TO END-FILE
211 END-READ.
213 READ-DETAIL.
214 DISPLAY "PRODUCT CODE (0=END):".
215 ACCEPT PROD-CODE.
216 IF PROD-CODE = 0
217 MOVE 0
218 TO REF-DET-STK(IND-DET)
219 MOVE 0 TO END-FILE
220 ELSE
221 PERFORM READ-PROD-CODE.
223 READ-PROD-CODE.
224 MOVE 1 TO EXIST-PROD.
225 MOVE PROD-CODE TO STK-CODE.
226 READ STOCK INVALID KEY
227 MOVE 0 TO EXIST-PROD.

228 IF EXIST-PROD = 0
229 DISPLAY "NO SUCH PRODUCT"
230 ELSE
231 PERFORM UPDATE-ORD-DETAIL.
233 UPDATE-ORD-DETAIL.
234 MOVE 1 TO NEXT-DET.
238 PERFORM UNTIL
239 (NEXT-DET < IND-DET AND
240 REF-DET-STK(NEXT-DET)=PROD-CODE)
241 OR IND-DET = NEXT-DET
242 ADD 1 TO NEXT-DET
243 END-PERFORM.
244 IF IND-DET = NEXT-DET
247 PERFORM UPDATE-CUS-HIST
248 SET IND-DET UP BY 1.
252 UPDATE-CUS-HIST.
253 SET IND TO 1.
254 PERFORM UNTIL
255 REF-PURCH-STK(IND) = PROD-CODE
256 OR REF-PURCH-STK(IND) = 0
257 OR IND = 101
258 SET IND UP BY 1
259 END-PERFORM.
263 IF REF-PURCH-STK(IND)
264 = PROD-CODE
265 ADD ORD-QTY(IND-DET) TO TOT(IND)
266 ELSE
267 MOVE PROD-CODE
268 TO REF-PURCH-STK(IND)
269 MOVE ORD-QTY(IND-DET)TO TOT(IND).
289 MOVE ORD-DETAIL TO LIST-DETAIL
186 Program Understanding in DBRE

COBOL DBRE, manual process
STK is a local identifier of DETAILS, because the user cannot order twice the same product in the
same order. DETAILS is an array that is managed like a set, because there is no gap in the array (the
first attribute is used, then the second, then the third, etc.) and the user can order the product in the
order he wants (there is no sequencing criterion).

CUS.CUS-HIST.PURCH.REF-PURCH-STK STK.STK-CODE

To validate the foreign key (CUS.CUS-HIST.PURCH.REF-PURCH-STK STK.STK-CODE),
we have to compute and to analyze two program slices, because there is a write CUS at line 127
and a rewrite CUS instruction at line 201. We have to analyze both slices to be sure that they vali-
date the same constraints.

Figure 138 shows the program slice with respect to write CUS (line 127) and CUS-HIST. The
procedure INIT-HIST is called once and all the element of PURCH are set to 0. INIT-HIST initial-
izes the PURCH array and 0 is used to represent the null value. So the cardinality of the array is not
[100-100] but [0-100]. The referential constraint is trivially verified by the code fragment since the
array is empty!

Then, we compute the second program slice with respect to write CUS (line 201) and CUS-HIST
(figure 139). As in the slice of the first referential constraint, after the execution of READ-CUS-
CODE, CUS-CODE contains a validated value. CUS-HIST is copied into LIST-PURCH (line 188).
The analysis of the paragraphs READ-DETAIL, READ-PROD-CODE and UPDATE-ORD-DETAIL is
the same as that performed for the second referential constraint. So, when UPDATE-CUS-HIST is
performed (line 247) PROD-CODE contains a validated value of STK-CODE and ORD-QTY(IND-
DET) contains the ordered quantity of the product PROD-CODE.

FIGURE 140. The situation at any moment in the loop [254-259].

The loop in UPDATE-CUS-HIST (line 254-259) goes through the PURCH array. The unused cells of
PURCH have their REF-PURCH-STK component set to 0 and IND is the number of the current
element (see figure 140). The loop has three ending conditions:

1. REF-PURCH-STK(IND) = PROD-CODE

The loop has found the current product in the customer history (product already ordered).
2. REF-PURCH-STK(IND) = 0

It has reached the first REF-PURCH-STK equal to 0, i.e.; the product is not present in the cus-
tomer history (product not already ordered).

3. IND = 101

It has reached the end of the array.

ORD-QTY(IND-DET) (the ordered quantity) is added to TOT(IND) (line 265) if PROD-CODE is
already present in the REF-PURCH-STK (at the IND element), otherwise the first free element of the
array (IND) is filled with the PROD-CODE (line 267) and ordered quantity (line 269). This validates
the referential constraint (all the REF-PURCH-STK not equal to 0 are valid values of STK-CODE)
The exact cardinality of the array is [0-100], because there can be unused elements filled with 0.

 →

 →

0 0

I
N
D

 0≠ used part=

REF-PURCH-STK
1 100
Program Understanding in DBRE 187

Case study
REF-PURCH-STK is a local identifier of LIST-PURCH, because when the loop has found a matching
element, it stops searching, as if no other similar element could be found. With the same reasoning
as for DETAILS, we show that PURCH actually is a set.

FIGURE 141. Program slice with respect to write STK (line 157) and STK-LEVEL.

STK.STK-LEVEL STK.STK-CODE

The last referential constraint to check is (STK.STK-LEVEL, STK.STK-CODE). Without any
program analysis, it can be seen that STK-LEVEL cannot be a foreign key. The matching rule is
satisfied because COBOL programmers often prefix the field name by the name of the record type
to get unique names. But to be sure, we can compute the program slice with respect to write STK
(line 157) and STK-LEVEL (figure 141). In the slice, we can see that STK-LEVEL value is given by
the user (line 154) and there no validation is carried out

Logical schema validation. The referential constraints and the local identifier of the multivalued
attributes can also be validated through the data analysis. To analyze the data, we write a COBOL
program that queries the file contents and produces a report.

Schema enhancement. Through the validation of the hypothesis about the referential constraints,
we have discovered three referential constraints and several other properties about the multivalued
attributes:

• The three referential constraints are (ORD.ORD-CUSTOMER, CUS.CUS-CODE), (CUS.CUS-
HIST.PURCH.REF-PURCH-STK, STK.STK-CODE) and (ORD.ORD-DETAIL.DETAILS.REF-
DET-STK, STK.STK-CODE).

• The exact cardinality of DETAILS is [0-20].

• REF-DET-STK is the local identifier of DETAILS.

• DETAILS is a set and not an array.

• The exact cardinality of PURCH is [0-100].

• REF-PURCH-STK is the local identifier of PURCH.

• PURCH is a set and not an array.

We were not looking for multivalued attributes properties, but we discovered them during the vali-
dation of the referential constraints. This is called the opportunistic approach.

145 NEW-STK.
154 DISPLAY "LEVEL "

WITH NO ADVANCING.
155 ACCEPT STK-LEVEL.
157 WRITE STK

 →
188 Program Understanding in DBRE

COBOL DBRE, manual process
FIGURE 142. The complete physical schema.

All the discovered constraints are added to the physical schema to obtain the complete physical
schema (figure 142).

9.1.2.4. Schema cleaning

Considering that the logical schema includes all the constraints that must be known by the program-
mer, the logical schema of a COBOL set of files includes access keys and entity collections (files).

The physical schema of figure 142 is also the complete logical schema.

9.1.3. Data structure conceptualization

9.1.3.1. Preparation

This phase prepares the schema such that it contains only structures and constraints that are neces-
sary to understand the semantics of the schema.

A. Name processing

The name of the objects are the names given by the programmers (as recovered during data struc-
ture extraction), who have used some naming rules. Now the names can be changed to give more
information on the named objects:

• Remove common prefixes

A common naming conversion in COBOL consists in prefixing each attribute name by the name
(or a short name) of the entity type. This is useful in large programs to ensure the uniqueness of
the attribute names. Those prefixes do not give any information, so that they can be removed
(Transform - Change prefix).

STK
STK-CODE: num (5)
STK-NAME: char (100)
STK-LEVEL: num (5)
id: STK-CODE

acc

ORD
ORD-CODE: num (10)
ORD-CUSTOMER: char (12)
ORD-DETAIL: compound (200)

DETAILS[0-20]: compound (10)
REF-DET-STK: num (5)
ORD-QTY: num (5)

id: ORD-CODE
acc

ref: ORD-CUSTOMER
acc

ref: ORD-DETAIL.DETAILS[*].REF-DET-STK
id(ORD-DETAIL.DETAILS):

REF-DET-STK

CUS
CUS-CODE: char (12)
CUS-DESCR: compound (80)

NAME: char (20)
ADDR: char (40)
FUNCT: char (10)
REC-DATE: char (10)

CUS-HIST: compound (1000)
PURCH[0-100]: compound (10)

REF-PURCH-STK: num (5)
TOT: num (5)

id: CUS-CODE
acc

ref: CUS-HIST.PURCH[*].REF-PURCH-STK
id(CUS-HIST.PURCH):

REF-PURCH-STK

CUSTOMER

CUS

ORDERS

ORD

STOCK

STK
Program Understanding in DBRE 189

Case study
• Meaningful name

The names of the collections are more meaningful than the corresponding entity types names, so
that the entity types name can be replaced by the collections name.

B. Abnormal structures transformation

During the data structure extraction, some compound attributes with only one component were
created (CUS-HIST and ORD-DETAIL). It is suggested to disaggregate them (Transform -
Attribute - Disaggregation) to remove unnecessary levels of decomposition.

C. Discard the physical constructs

The access keys and collections are not useful any more, and can be suppressed.

FIGURE 143. The prepared logical schema.

The result of these transformations gives the prepared logical schema, as displayed in figure 143.

9.1.3.2. Basic conceptualization

The de-optimization and untranslation processes are generally interleaved, so that it can be artificial
to try to dissociate them.

A. Complex multivalued attributes

The two complex (decomposable, multivalued, with local identifier and foreign key) attributes
DETAILS and PURCH are typical implementations of dependent entity types. This structure is used
to decrease the number of files used and the number of disk access. This is a common optimization
that can be undone by the transformation of DETAILS and PURCH into entity types (Transform -
Attribute - Entity type).

STOCK
CODE
NAME
LEVEL
id: CODE

ORDER
CODE
CUSTOMER
DETAILS[0-20]

REF-DET-STK
ORD-QTY

id: CODE
ref: CUSTOMER
ref: DETAILS[*].REF-DET-STK
id(DETAILS):

REF-DET-STK

CUSTOMER
CODE
DESCR

NAME
ADDR
FUNCT
REC-DATE

PURCH[0-100]
REF-PURCH-STK
TOT

id: CODE
ref: PURCH[*].REF-PURCH-STK
id(PURCH):

REF-PURCH-STK
190 Program Understanding in DBRE

COBOL DBRE, manual process
B. Foreign keys

Since foreign keys implement relationship types, they are transformed into relationship types
(Transform - Group - Rel-type).

FIGURE 144. The raw conceptual schema.

These transformations produce the raw conceptual schema (figure 144).

9.1.3.3. Normalization

Through the normalization, the analyst tries to give the schema such qualities as readability, conci-
sion, minimality, expressiveness, typical to good conceptual schemas.

A. Relationship entity types

The entity types PURCH and DETAILS can be perceived as playing the role of relationship types
between CUSTOMER and STOCK and between ORDER and STOCK, respectively. Those entity types
can be transformed into relationship types (Transform - Entity type - Rel-type).

B. Attribute disaggregation

The attribute DESC is composed of attributes of different domain concepts, we can decide to disag-
gregate them (Transform - Attribute - Disaggregation).

C. Name processing

Some names can be changed to be more meaningful. For example, the attribute TOT can be
changed to TOTAL; ADDR can be changed to ADDRESS; FUNCT can be changed to FUNCTION;

1-1

0-N

REF-PURCH-STK

1-1

0-N

REF-DET-STK

1-1

0-20

ORD_DET

1-1

0-100

CUS_PUR

1-10-N CUSTOMER

STOCK
CODE
NAME
LEVEL
id: CODE

PURCH
TOT
id: REF-PURCH-STK.STOCK

CUS_PUR.CUSTOMER

ORDER
CODE
id: CODE

DETAILS
ORD-QTY
id: REF-DET-STK.STOCK

ORD_DET.ORDER

CUSTOMER
CODE
DESCR

NAME
ADDR
FUNCT
REC-DATE

id: CODE
Program Understanding in DBRE 191

Case study
ORD-QTY can be changed to QUANTITY; PURCH can be changed to purchase; CUSTOMER rela-
tionship type can be changed to pass.

The attribute DETAILS is a plural and the habit is to use the singular. It is replaced by DETAIL.

An usual naming rule is to use lowercase for relationship type names, uppercase for the entity type
names and capitalized for the attribute names.

FIGURE 145. The normalized conceptual schema.

The final conceptual schema is shown in figure 145.

9.2. COBOL DBRE, (semi-)automatic process

This section shows how to recover (semi)-automatically the conceptual schema of the first case
study.

9.2.1. Data structure extraction

The DDL code analysis is the same as in the previous case study (see 9.1.2.1). The raw physical
schema is that of figure 132. The main difference is that we will increase the level of automation of
the schema refinement process.

9.2.1.1. Schema refinement

A. Finding the fine-grained structure of entity types and attributes

Finding the fine-grained structure of attributes can be partially automated.

In the previous case study (9.1.2.3) we had to select one by one the attributes to see if they are
connected, in the variable dependency graph, to a variable with a more precise decomposition. DB-
MAIN offers the possibilities to store the variable dependency graph as a text file. A Voyager2

0-100

0-N

purchase
Total

0-20

0-N

detail
Quantity

1-10-N pass

STOCK
Code
Name
Level
id: Code

ORDER
Code
id: Code

CUSTOMER
Code
Name
Address
Function
Rec-date
id: Code
192 Program Understanding in DBRE

COBOL DBRE, (semi-)automatic process
program (depend.oxo) has been written to read this file and to produce a graphical representation
of the graph.

FIGURE 146. The variable dependency graph.

Since DB-MAIN has no specific view to represent a variable dependency graph, we represent it as
an entity-relationship schema, where the variables are entity type and the relations between vari-
ables are relationship types (see annex A, section A.4.3 for a complete description of
depend.oxo). The variable dependency graph obtained is displayed as in figure 146. In this
schema, the variables that represent an attribute of the raw physical schema are in bold. The
compound variables are in grey.

The analysis of this graph shows that a candidate decomposition exists for the attributes ORD-
DETAIL, CUS-HIST and CUS-DESCR. The analyst has to find (manually) the correct decomposi-
tion for those attributes and to refine them.

B. Finding referential constraints

To find referential constraints, a program slice is computed for each write (or rewrite) instruc-
tion and it is searched for a read instruction. When a read instruction is found in a slice computed
with respect to a write, the dataflow is analyzed to know which attributes are in relation.

To automate this as much as possible, the command line version of the program slicing is used (see
section 8.3.5 and annex A section A.5.3 for a complete description of this tool). One of the possible
usage of the command line program slicing is the following:

slicing -v -s write -c read -a var -o order.dep order.cob

The options of this command can be interpreted as follow. -v computes the variable follow-up
program slicing. -s write computes the program slicing with respect to each write (or
rewrite) instruction and its record. -c read checks if there is a read (or start) instruction in
the slice. If the slice does not contains a read instruction the slice is not memorized. -a var option
is used to display (into the output file) the variables of the read and write instruction between
which there is a dataflow. -o order.dep specifies that the output must be save into the
order.dep file.

1-1

0-N

1-1

0-N

1-10-N

1-1

0-N 1-1

0-N 1-1

0-N1-1

0-N 1-1

0-N

1-1

0-N1-1

0-N

STK-CODE

REF-PURCH-STK

REF-DET-STK

PROD-CODE

ORD-DETAIL

ORD-CUSTOMER

LIST-PURCHASE

LIST-DETAIL DESCRIPTIONCUS-HIST

CUS-DESCR CUS-CODE
Program Understanding in DBRE 193

Case study
FIGURE 147. Result of the command line program slicing on order.cob

A summary of the order.dep file is given in figure 147. The first column says if only dataflow has
been used to find the relation (value = D) or if control flow has also been used (value = D+C). The
second (resp. third) column gives information about the READ (resp. (RE)WRITE) instruction. The
first sub-column is the line number of the READ (resp. (RE)WRITE) instruction. The third sub-
column is the begin and end position of the read (modified) attribute relative to the entity type of the
second column. The fourth sub-column is the name of the attribute. The last column gives the line
numbers of the instructions of the slice used to detect the relation between the two entity types.

A close look at the table shows that in the first three lines, the attribute read is always an identifier.
These three lines mean that the identifier of an entity type is read and its value influences the value
of the attribute of another entity type. This is a strong hint that a referential constraint exists. To be
sure, we need to analyze the program slice used to find those relations. The lines of the program
slice are shown in the last column. They are a sub-set of the lines used in the previous case study to
find the referential constraints (figure 138, figure 139 and figure 141).

It can be noticed that the start-stop of the (RE)WRITE of the second and third lines do not span the
entire field (ord-detail and cus-hist). This is a hint that these fields have a meaningful
decomposition. When the dataflow goes through the elements of an array (since program slicing
computes a static slice) program slicing does not know which index is used, so it maps all the
accesses to an array to its first element. For example, if we have the following variable declaration

01 my-array occurs 3.
 02 A1 pic X(3).
 02 A2 pic X(5).

and if there is the following assignation

move X to A1(I).

Then the program slicing tool assumes the following position of the variable my-array are modi-
fied:

my-array(1-3)

To know exactly which are the referential attributes, the line used to detect the dataflow has to be
analyzed. The program slice does not only use dataflow to find these referential constraints, it also
use some control flow edges in the SDG.

READ (RE)WRITE

LinesLine
Entity
type

Start-
stop Att Line

Entity
type

Start-
stop Att

D 208 CUSTOMER (1-12) cus-code 196 ORDERS (11-22) ord-customer 208,187,196

D+C 226 STOCK (1-5) stk-code 196 ORDERS (23-27) ord-detail 226,227,228,230,231,233,
245, 246,194,196

D+C 226 STOCK (1-5) stk-code 201 CUSTOMER (93-97) cus-hist 226,227,228,231,233,244,
247,252,263,264,267,268,
199, 200,201

D 208 CUSTOMER (93-97) cus-hist 201 CUSTOMER (93-97) cus-hist 208,188,263,264,266,267,
268, 199,200,201

at
af

lo
w

194 Program Understanding in DBRE

COBOL DBRE, (semi-)automatic process
FIGURE 148. The code fragment used to detect the referential constraint between ORD and
STK.

FIGURE 149. The code fragment used to detect the referential constraint between CUS and
STK.

The slice used to detect the second referential constraint (ORD STK) is displayed in figure 148.
The lines in italic are added to ease the understanding of the code fragment. The lines given by the
program slicing are only those that are on the path (in the SDG) from the read to the (re)write.
But these lines are not always enough to understand how the program works. For example, there is
a dataflow edge between line 245 and 195 that does not belong to the same paragraph. To under-
stand this dataflow, we need to know how these two paragraphs are connected. The SDG (figure
150.a) shows that three dataflow arcs and four control flow arcs are necessary to express the rela-
tion between the read instruction (line 226) and the write instruction (line 196). The path alone is
not enough to be sure that there is a referential constraint. To validate the referential constraint, we
must be sure that the value stored by the write (line 196) is the same as the value read by line 226.
To perform this, we need to add the lines 215 and 225 to find a common dataflow between the two
instructions. The common dataflow uses PROD-CODE (a working variable) that contains a valid
value of STK-CODE.

The slice used to detect the third referential constraint (CUS STK) is displayed in figure 149.
The SDG (figure 150.b) shows that three dataflow arcs and eight control flow arcs are necessary to
express the relation between the read instruction (line 226) and the rewrite instruction (line
201). To validate the referential constraint, we must be sure that the value stored by the rewrite
statement (line 201) is the same as the value read by line 226. To perform this we need to add the
lines 215 and 225 to find a common dataflow between the two instructions. The common dataflow
uses PROD-CODE (a working variable) that contains a valid value of STK-CODE.

177 NEW-ORD.
192 PERFORM READ-DETAIL
193 UNTIL END-FILE = 0

 OR IND-DET = 21.
194 MOVE LIST-DETAIL TO ORD-DETAIL.
196 WRITE ORD
213 READ-DETAIL.
215 ACCEPT PROD-CODE.
216 IF PROD-CODE = 0
220 ELSE
221 PERFORM READ-PROD-CODE.

223 READ-PROD-CODE.
226 READ STOCK INVALID KEY
225 MOVE PROD-CODE TO STK-CODE.
227 MOVE 0 TO EXIST-PROD.
228 IF EXIST-PROD = 0
230 ELSE
231 PERFORM UPDATE-ORD-DETAIL.
233 UPDATE-ORD-DETAIL.
245 MOVE PROD-CODE
246 TO REF-DET-STK(IND-DET)

177 NEW-ORD.
192 PERFORM READ-DETAIL
199 MOVE LIST-PURCHASE
200 TO CUS-HIST.
201 REWRITE CUS
213 READ-DETAIL.
215 ACCEPT PROD-CODE.
216 IF PROD-CODE = 0
220 ELSE
221 PERFORM READ-PROD-CODE.

223 READ-PROD-CODE.
225 MOVE PROD-CODE TO STK-CODE.
226 READ STOCK INVALID KEY
227 MOVE 0 TO EXIST-PROD.
228 IF EXIST-PROD = 0
231 PERFORM UPDATE-ORD-DETAIL.
233 UPDATE-ORD-DETAIL.
244 IF IND-DET = NEXT-DET
247 PERFORM UPDATE-CUS-HIST
252 UPDATE-CUS-HIST.
263 IF REF-PURCH-STK(IND)
264 = PROD-CODE
267 MOVE PROD-CODE
268 TO REF-PURCH-STK(IND)

 →

 →
Program Understanding in DBRE 195

Case study
FIGURE 150. The two SDG.

To be able to create those two referential constraints we have to, first of all, refine CUS-HIST and
ORD-DETAIL. This refinement is not defined by the program slicing, but usually some hints can be
found in the fragment proposed by the program slicing.

FIGURE 151. The code to validate the dependency between CUS-HIST and LIST-PURCHASE.

The analysis of these code fragments also allows to recover the exact cardinalities, local identifiers
and set types of the arrays.

267

263

252

247

244

233

231227

228226225

223

221

216215

213

201199192

177

245

233

231227

228226225

223

221

216215

213

196194192

177

a) The SDG of code fragment of fig-
ure 148

b) The SDG of code fragment of
figure 149

208 READ CUSTOMER INVALID KEY
188 MOVE CUS-HIST TO LIST-PURCHASE.
263 IF REF-PURCH-STK(IND)
264 = PROD-CODE
266 ELSE
267 MOVE PROD-CODE
268 TO REF-PURCH-STK(IND)
199 MOVE LIST-PURCHASE
200 TO CUS-HIST.
201 REWRITE CUS
196 Program Understanding in DBRE

COBOL DBRE, (semi-)automatic process
The last line of the table of figure 147 means that CUS-HIST is read and written. It can be noticed
that the write instruction is the same as the one used by the third line. This last line does not give
any new information except that the entity type is read, modified and REWRITE.

The referential constraints and the local identifiers of the multivalued attributes can also be vali-
dated through data analysis. In the manual case study, we have to write the COBOL program manu-
ally. In the automated version, there exists a Voyager2 program, that generates the COBOL
program. This Voyager2 program (gen_validator.oxo) generates the COBOL program with
respect to the logical schema. The program generated can be seen in annex B, section B.2.

9.2.2. Data structure conceptualization

To automate the data structure conceptualization, we can write a transformation script that automat-
ically produces a conceptual schema. The conceptual schema produced by this script is not yet the
final conceptual schema because some transformations cannot been automated, they require human
intervention. For example, human intervention is needed to rename the objects to give more mean-
ingful names and to decide to decompose an attribute because its component represents different
domain concepts (e.g., the disaggregation of DESC).

The suggested method is to rename the objects, then to use the script and finally finish manually the
normalization of the schema.

9.2.2.1. Meaningful name

The names of the collections are more meaningful than the corresponding entity types one, so the
name of the entity types are substituted by the name of their collection.

FIGURE 152. A possible script to automate the conceptualization of a COBOL logical schema.

9.2.2.2. Transformation script

To automatically transform the schema, an advanced global transformation script has been created.
An advanced global transformation script is a list of transformations to be applied on the schema of
the form <transformation>(<predicate>). Each transformation has a predicate as argument, this
predicate is used to select the objects on which the transformation must be applied. Figure 152
shows a simple script to transform a COBOL logical schema into its corresponding raw conceptual
schema:

1. EXTERN "auto_concept.oxo".remove_prefix(ATT_per_ET(2 N))

2. REMOVE(ALL_COLL())

3. REMOVE(ALL_KEY())

4. DISAGGREGATE(SUB_ATT_per_ATT(1 1))

5. DISAGGREGATE(
SUB_ATT_per_ATT(1 N) and MAX_CARD_of_ATT(1 1) and REF_per_ATT(1 N))

6. ATT_into_ET_INST(
SUB_ATT_per_ATT(1 N) and MAX_CARD_of_ATT(2 N) and REF_per_ATT(1 N))

7. REF_into_RT(ALL_REF())

8. ET_into_RT(ALL_ET())
Program Understanding in DBRE 197

Case study
1. EXTERN "auto_concept.oxo".remove_prefix(ATT_per_ET(2 N))

This is not a built-in transformation but a call to an external (Voyager2) function. The function is
the remove_prefix function of the auto_concept.oxo Voyager2 program. The predicate
used to select the object on which remove_prefix must be applied is ATT_per_ET(2 N), i.e.,
the entity types that have more than one attributes (between 2 and N). The function
remove_prefix removes the common prefix of the attributes of an entity type.

2. REMOVE(ALL_COLL())

The predicate ALL_COLL() selects all the collections of the schema and REMOVE() removes
all the selected objects, i.e., it removes all the collections of the schema.

3. REMOVE(ALL_KEY())

Removes all the access key.

4. DISAGGREGATE(SUB_ATT_per_ATT(1 1))

Disaggregates all the compound attributes that have only one component.

5. DISAGGREGATE(
SUB_ATT_per_ATT(1 N) and MAX_CARD_of_ATT(1 1) and REF_per_ATT(1 N))

Disaggregates the atomic compound attributes that have a component that is the origin of a ref-
erential constraint.

6. ATT_into_ET_INST(
SUB_ATT_per_ATT(1 N) and MAX_CARD_of_ATT(2 N) and REF_per_ATT(1 N))

Transforms into entity type (by instance representation) the compound multivalued attributes
that contain a referential constraint.

7. REF_into_RT(ALL_REF())

Transforms all the referential constraints into a relationship type.

8. ET_into_RT(ALL_ET())

Transforms all the entity types (that can be transformed) into a relationship type.

FIGURE 153. The conceptual schema obtained by the execution of the script of figure 152.

The execution of this script on the logical schema (figure 142) produces the conceptual schema
(figure 153).

0-N

0-100

HIS_PURCH
TOT

0-N

0-20

DET_DETAILS
ORD-QTY

1-1

0-N

CUSTOMER

STOCK
CODE
NAME
LEVEL
id: CODE

ORDER
CODE
id: CODE

CUSTOMER
CODE
DESCR

NAME
ADDR
FUNCT
REC-DATE

id: CODE
198 Program Understanding in DBRE

COBOL with embedded SQL
9.2.2.3. Normalization

The normalization must be done by hand to obtain the final conceptual schema.

A. Attribute disaggregation

The attribute DESC is composed of attributes of different domain concepts. We can decide to disag-
gregate them (Transform - Attribute - Disaggregation).

B. Name processing

Some names can be changed to be more meaningful. For example:

• The relationship type DET_DETAILS can be changed to detail.

• The relationship type HIST_PURCH can be changed to purchase.

• The attribute TOT can be changed to TOTAL.

• The attribute ADDR can be changed to ADDRESS.

• The attribute FUNCT can be changed to FUNCTION.

• The attribute ORD-QTY can be changed to QUANTITY.

A usual naming rule is to use lowercase for relationship type names, uppercase for the entity type
names and capitalized for the attribute names.

The final conceptual schema is shown in figure 145.

9.3. COBOL with embedded SQL

This case study will recover the complete logical schema and the conceptual schema of a SQL data-
base. This fairly old database does not contain any explicit foreign keys. They are implicitly imple-
mented in the COBOL program that accesses the data.

This example shows how to analyze a COBOL program with embedded SQL.

9.3.1. Project preparation

This project has three sources of information:

1. The SQL-DDL script that declares the database. This text declares the entity types (tables),
attributes (columns), the identifiers (primary keys) and the access keys (indexes) but no foreign
keys. The code can be found in annex B, section B.3.

2. The COBOL program, including embedded SQL statements, that add, modify and read data of
the database. The code can be found in annex B, section B.4.

3. The populated database.
Program Understanding in DBRE 199

Case study
FIGURE 154. The procedure call graph and the data usage graph.

FIGURE 155. The raw physical schema.

The procedure call graph and the data usage graph are displayed in figure 154. In this graph the
rounded rectangles represent the paragraphs (procedures) of the COBOL program, the "c" edges are
the perform statements, the rectangles represent the tables and "i", "o", "u" represent the input
(select), output (insert) and update (update or insert and select in the same paragraph) of a table by a
paragraph. The call graph (the name of the paragraph and the "c" edges) is produced by the DB-
MAIN program slicing tool. DB-MAIN does not offers a tool to retrieve the data usage graph, we
have to write some grep/awk scripts to extract the table’s name used into select, insert and update
SQL statements to create the "i", "o" and "u" edges.

i

c

cc

cccc cc

o

o

o

c c

i

c

i

c

i

i
c

i

i

c

i

i

i
c

i

c

uc

u

i

i

c

i

i

LIST-ORD

MAIN

INIT PROCESS

NEW-CUS NEW-PRODNEW-ORD LIST-CUS LIST-PROD

READ-PRODREAD-CUS

DISP-CUS-HISTORY

DISP-HISTORY

READ-CUS-CODEREAD-DETAIL

READ-PROD-CODE

UPDATE-ORD-DETAIL

UPDATE-CUS-HIST

READ-ORD

DISPLAY-DETAIL

PURCH

ORDERS

DETAIL

PRODUCT

CUSTOMER

PURCH
CUSTOMER
PRODUCT
TOT
id: CUSTOMER

PRODUCT
acc

acc: PRODUCT

PRODUCT
CODE
NAME
PRICE
id: CODE

acc
ORDERS

CODE
ORD_DATE
CUSTOMER
id: CODE

acc
acc: CUSTOMER

DETAIL
ORDERS
PRODUCT
ORD_QTY
id: ORDERS

PRODUCT
acc

acc: PRODUCT

CUSTOMER
CODE
NAME
ADDR
FUNCT[0-1]
REC_DATE
id: CODE

acc
200 Program Understanding in DBRE

COBOL with embedded SQL
9.3.2. Data structure extraction

9.3.2.1. DDL code analysis

The SQL-DDL code (annex B, section B.4) is analyzed (File - Extract - SQL) to produce the raw
physical schema (figure 155).

9.3.2.2. Schema refinement

In this example, schema refinement is limited to the recovery of the referential constraints.

FIGURE 156. The configuration of the referential constraint assistant to discover the potential
referential constraints.

Hypothesis discovery. The database was well designed and strict naming rules where used for
entity types and attributes. To find the potential referential constraints, the analyst analyzes the
physical schema with the reference constraints assistant. These referential constraints should target
an identifier and the origin attribute should has the same name as the target entity type. Both sides
should have the same length and same type. Figure 156 shows the configuration of the assistant to
perform the search. It provides the following potential referential constraints:

• ORDERS.CUSTOMER CUSTOMER.CODE

• PURCH.CUSTOMER CUSTOMER.CODE

• PURCH.PRODUCT PRODUCT.CODE

• DETAIL.ORDERS ORDERS.CODE

• DETAIL.PRODUCT PRODUCT.CODE

Hypothesis validation. To validate the proposed referential constraint, the analyst decides to
analyze the program source code and to analyze the data.

There are two different ways to implement a join. The first one is to write a select query that
contains a join. The second one is to implement a procedural join i.e., each SQL query (select,
insert or update) queries only one entity type and the link between the entity types is done by some
COBOL code.

 →

 →

 →

 →

 →
Program Understanding in DBRE 201

Case study
FIGURE 157. The two SQL joins found in the source code.

The source code contains two SQL joins (see figure 157). The analysis of these two joins increases
the confidence in the two referential constraints that have PRODUCT as target. These two queries
read and do not modify the data. To be sure that a constraint is present, each modification instruc-
tion must be analyzed to check if it is preceded by instructions that validate the constraint.

To analyze the procedural join with the program slicing technique, the program must be trans-
formed to allow the construction of the SDG that represents the behavior of the COBOL instruc-
tions with the embedded SQL, as explained in 6.5. The transformed program can be found in annex
B, section 2.5. In this program each, SQL query is commented (line prefixed by *E) and is replaced
by its equivalent pseudo-instruction.

To recover the referential constraints, a program slice must be computed for each instruction that
modifies (insert or update) the data.

FIGURE 158. Program slice with respect to line 298 and ORDERS--CUSTOMER.

There is only one query that inserts data into ORDERS (line 293). To verify that
ORDERS.CUSTOMER is the origin of a referential constraint, a program slice is computed with
respect to line 298 and ORDERS--CUSTOMER (see figure 158). This slice shows that the value of
ORDERS--CUSTOMER (the variable representing ORDERS.CUSTOMER) is a valid value of
CUSTOMER--CODE (the variable representing CUSTOMER.CODE the identifier of CUSTOMER).
Thus the referential constraint is validated.

a) PURCH - PRODUCT join. b) DETAIL - PRODUCT join.

194 EXEC SQL
195 DECLARE CUS_HIST CURSOR FOR
196 SELECT P.TOT, PR.NAME
197 FROM PURCH P, PRODUCT PR
198 WHERE P.PRODUCT = PR.CODE
199 AND P.CUSTOMER = :CUS-CODE
200 END-EXEC.

339 EXEC SQL
340 SELECT CODE

 INTO :PROD-CODE
341 FROM PRODUCT
342 END-EXEC.

357 EXEC SQL
358 SELECT ORD_QTY
359 FROM DETAIL
360 WHERE ORDER = :ORD-CODE
361 AND PRODUCT = :PROD-CODE
362 END-EXEC

283 NEW-ORD.

289 MOVE 1 TO SQLCODE.

290 PERFORM READ-CUS-CODE UNTIL SQLCODE =0.

292*E EXEC SQL

293*E INSERT INTO ORDERS VALUES(:ORD-CODE,

294*E SYSDATE(), :CUS-CODE)

295*E END-EXEC.

297 DIRECT-MAP CUS-CODE TO ORDERS--CUSTOMER.

298 INDIRECT-MAP ORDER--CODE

299 ORDERS--CUSTOMER TO SQLCODE.

312 READ-CUS-CODE.

315 ACCEPT CUS-CODE.

316*E EXEC SQL

317*E SELECT CODE

318*E INTO :CUS-CODE

319*E FROM CUSTOMER

320*E WHERE CODE = :CUS-CODE

321*E END-EXEC.

322 DIRECT-MAP CUS-CODE TO CUSTOMER--CODE.

323 INDIRECT-MAP CUSTOMER--CODE

324 TO CUSTOMER--CODE SQLCODE.

325 DIRECT-MAP CUSTOMER--CODE TO CUS-CODE.
202 Program Understanding in DBRE

COBOL with embedded SQL
FIGURE 159. Program slice with respect to line 377 and DETAIL--ORDERS.

The query that inserts data into DETAIL is at the line 371. To validate the referential constraint
(DETAILS.ORDERS, ORDERS.CODE), the program slice with respect to line 377 and DETAIL--
ORDERS (the variable representing DETAIL.ORDERS) is computed (see figure 159). This slice
shows that there is a referential constraint from DETAILS.ORDERS to ORDERS.CODE.

283 NEW-ORD.

287 ACCEPT ORD-CODE.

289 MOVE 1 TO SQLCODE.

290 PERFORM READ-CUS-CODE UNTIL SQLCODE=0.

292*E EXEC SQL

293*E INSERT INTO ORDERS VALUES(:ORD-CODE,

294*E SYSDATE(), :CUS-CODE)

295*E END-EXEC.

296 DIRECT-MAP ORD-CODE TO ORDERS--CODE.

297 DIRECT-MAP CUS-CODE TO ORDERS--CUSTOMER.

298 INDIRECT-MAP ORDERS--CODE

299 ORDERS--CUSTOMER TO SQLCODE.

300 IF(SQLCODE NOT = 0)

302 ELSE

303 MOVE 0 TO END-FILE

304 PERFORM READ-DETAIL.

312 READ-CUS-CODE.

315 ACCEPT CUS-CODE.

316*E EXEC SQL

317*E SELECT CODE

318*E INTO :CUS-CODE

319*E FROM CUSTOMER

320*E WHERE CODE = :CUS-CODE

321*E END-EXEC.

322 DIRECT-MAP CUS-CODE TO CUSTOMER--CODE.

323 INDIRECT-MAP CUSTOMER--CODE

324 TO CUSTOMER--CODE SQLCODE.

325 DIRECT-MAP CUSTOMER--CODE TO CUS-CODE.

330 READ-DETAIL.

332 ACCEPT PROD-CODE.

333 IF PROD-CODE = 0

334 MOVE 1 TO END-FILE

335 ELSE

336 PERFORM READ-PROD-CODE.

338 READ-PROD-CODE.

339*E EXEC SQL

340*E SELECT CODE INTO :PROD-CODE

341*E FROM PRODUCT

342*E WHERE CODE = :PROD-CODE

343*E END-EXEC.

344 DIRECT-MAP PROD-CODE TO PRODUCT--CODE.

345 INDIRECT-MAP PRODUCT--CODE

346 TO PRODUCT--CODE SQLCODE.

347 DIRECT-MAP PRODUCT--CODE TO PROD-CODE.

348 IF SQLCODE = 0

349 PERFORM UPDATE-ORD-DETAIL.

353 UPDATE-ORD-DETAIL.

357*E EXEC SQL

358*E SELECT ORD_QTY

359*E FROM DETAIL

360*E WHERE ORDER = :ORD-CODE

361*E AND PRODUCT = :PROD-CODE

362*E END-EXEC

363 DIRECT-MAP ORD-CODE TO DETAIL--ORDERS

364 DIRECT-MAP PROD-CODE TO DETAIL--PRODUCT

365 INDIRECT-MAP DETAIL--ORDERS

 DETAIL--PRODUCT

366 TO DETAIL--ORD-QTY SQLCODE.

367 IF SQLCODE = 0

369 ELSE

370*E EXEC SQL

371*E INSERT INTO DETAIL

372*E VALUES (:ORD-CODE, :PROD-CODE,

:DET-QTY)

373*E END-EXEC

374 DIRECT-MAP ORD-CODE TO DETAIL--ORDERS

377 INDIRECT-MAP DETAIL--ORDERS

 DETAIL--PRODUCT

378 DETAIL--ORD-QTY TO SQLCODE.
Program Understanding in DBRE 203

Case study
FIGURE 160. Program slice with respect to line 377 and DETAIL--PRODUCT.

To validate the referential constraint (DETAIL.PRODUCT PRODUCT.CODE), the program
slice is computed with respect to line 377 and DETAIL--PRODUCT (the variable representing
DETAIL.PRODUCT), as shown in figure 160. This slice shows that there is a referential constraint
from DETAIL.PRODUCT to PRODUCT.CODE.

FIGURE 161. The query that updates PURCH.

283 NEW-ORD.

287 ACCEPT ORD-CODE.

289 MOVE 1 TO SQLCODE.

290 PERFORM READ-CUS-CODE UNTIL SQLCODE =0.

292*E EXEC SQL

293*E INSERT INTO ORDERS VALUES(:ORD-CODE,

294*E SYSDATE(), :CUS-CODE)

295*E END-EXEC.

296 DIRECT-MAP ORD-CODE TO ORDERS--CODE.

297 DIRECT-MAP CUS-CODE TO ORDERS--CUSTOMER.

298 INDIRECT-MAP ORDERS--CODE

299 ORDERS--CUSTOMER TO SQLCODE.

300 IF(SQLCODE NOT = 0)

302 ELSE

303 MOVE 0 TO END-FILE

304 PERFORM READ-DETAIL .

312 READ-CUS-CODE.

315 ACCEPT CUS-CODE.

316*E EXEC SQL

317*E SELECT CODE

318*E INTO :CUS-CODE

319*E FROM CUSTOMER

320*E WHERE CODE = :CUS-CODE

321*E END-EXEC.

322 DIRECT-MAP CUS-CODE TO CUSTOMER--CODE.

323 INDIRECT-MAP CUSTOMER--CODE

324 TO CUSTOMER--CODE SQLCODE.

325 DIRECT-MAP CUSTOMER--CODE TO CUS-CODE.

330 READ-DETAIL.

332 ACCEPT PROD-CODE.

333 IF PROD-CODE = 0

334 MOVE 1 TO END-FILE

335 ELSE

336 PERFORM READ-PROD-CODE.

338 READ-PROD-CODE.

339*E EXEC SQL

340*E SELECT CODE INTO :PROD-CODE

341*E FROM PRODUCT

342*E WHERE CODE = :PROD-CODE

343*E END-EXEC.

344 DIRECT-MAP PROD-CODE TO PRODUCT--CODE.

345 INDIRECT-MAP PRODUCT--CODE

346 TO PRODUCT--CODE SQLCODE.

347 DIRECT-MAP PRODUCT--CODE TO PROD-CODE.

348 IF SQLCODE = 0

349 PERFORM UPDATE-ORD-DETAIL

353 UPDATE-ORD-DETAIL.

357*E EXEC SQL

358*E SELECT ORD_QTY

359*E FROM DETAIL

360*E WHERE ORDER = :ORD-CODE

361*E AND PRODUCT = :PROD-CODE

362*E END-EXEC

363 DIRECT-MAP ORD-CODE TO DETAIL--ORDERS

364 DIRECT-MAP PROD-CODE TO DETAIL--PRODUCT

365 INDIRECT-MAP DETAIL--ORDERS

 DETAIL--PRODUCT

366 TO DETAIL--ORD-QTY SQLCODE.

367 IF SQLCODE = 0

369 ELSE

370*E EXEC SQL

371*E INSERT INTO DETAIL

372*E VALUES(:ORD-CODE,:PROD-CODE, :DET-QTY)

373*E END-EXEC

375 DIRECT-MAP PROD-CODE TO DETAIL--PRODUCT

377 INDIRECT-MAP DETAIL--ORDERS

 DETAIL--PRODUCT

378 DETAIL--ORD-QTY TO SQLCODE.

 →

404 EXEC SQL
405 UPDATE PURCH SET
406 TOT = (:PURCH-TOT + :DET-QTY)
407 WHERE CUSTOMER = :CUS-CODE
408 AND PRODUCT = :PROD-CODE
409 END-EXEC.
204 Program Understanding in DBRE

COBOL with embedded SQL
FIGURE 162. Program slice with respect to line 401 and PURCH--CUSTOMER.

Two queries modify the values of the data of PURCH, namely the insert PURCH query at line 395
and the update query at line 405. The update query (see figure 161) only modifies the value of TOT,
on which no constraint holds. To validate the referential constraint (PURCH.CUSTOMER,
CUSTOMER.CODE), the program slice with respect to line 401 and PURCH--CUSTOMER (the vari-
able representing PURCH.CUSTOMER) is computed (figure 162). This slice shows that there is a
referential constraint from PURCH.CUSTOMER to CUSTOMER.CODE.

283 NEW-ORD.

287 ACCEPT ORD-CODE.

289 MOVE 1 TO SQLCODE.

290 PERFORM READ-CUS-CODE UNTIL SQLCODE =0.

292*E EXEC SQL

293*E INSERT INTO ORDERS VALUES(:ORD-CODE,

294*E SYSDATE(), :CUS-CODE)

295*E END-EXEC.

296 DIRECT-MAP ORD-CODE TO ORDERS--CODE.

297 DIRECT-MAP CUS-CODE TO ORDERS--CUSTOMER.

298 INDIRECT-MAP ORDERS--CODE ORDERS--

CUSTOMER

299 TO SQLCODE.

300 IF(SQLCODE NOT = 0)

302 ELSE

303 MOVE 0 TO END-FILE

304 PERFORM READ-DETAIL

312 READ-CUS-CODE.

315 ACCEPT CUS-CODE.

316*E EXEC SQL

317*E SELECT CODE

318*E INTO :CUS-CODE

319*E FROM CUSTOMER

320*E WHERE CODE = :CUS-CODE

321*E END-EXEC.

322 DIRECT-MAP CUS-CODE TO CUSTOMER--CODE.

323 INDIRECT-MAP CUSTOMER--CODE

324 TO CUSTOMER--CODE SQLCODE.

325 DIRECT-MAP CUSTOMER--CODE TO CUS-CODE.

330 READ-DETAIL.

332 ACCEPT PROD-CODE.

333 IF PROD-CODE = 0

334 MOVE 1 TO END-FILE

335 ELSE

336 PERFORM READ-PROD-CODE.

338 READ-PROD-CODE.

339*E EXEC SQL

340*E SELECT CODE INTO :PROD-CODE

341*E FROM PRODUCT

342*E WHERE CODE = :PROD-CODE

343*E END-EXEC.

344 DIRECT-MAP PROD-CODE TO PRODUCT--CODE.

345 INDIRECT-MAP PRODUCT--CODE

346 TO PRODUCT--CODE SQLCODE.

347 DIRECT-MAP PRODUCT--CODE TO PROD-CODE.

348 IF SQLCODE = 0

349 PERFORM UPDATE-ORD-DETAIL.

353 UPDATE-ORD-DETAIL.

379 PERFORM UPDATE-CUS-HIST.

381 UPDATE-CUS-HIST.

382*E EXEC SQL

383*E SELECT TOT INTO :PURCH-TOT

384*E FROM PURCH

385*E WHERE CUSTOMER = :CUS-CODE

386*E AND PRODUCT = :PROD-CODE

387*E END-EXEC.

388 DIRECT-MAP CUS-CODE TO PURCH--CUSTOMER.

389 DIRECT-MAP PROD-CODE TO PURCH--PRODUCT.

390 INDIRECT-MAP PURCH--CUSTOMER

391 PURCH--PRODUCT TO PURCH--TOT SQLCODE.

393 IF(SQLCODE = 0)

394*E EXEC SQL

395*E INSERT INTO PURCH VALUES(:CUS-CODE,

396*E :PROD-CODE, :DET-QTY)

397*E END-EXEC

398 DIRECT-MAP CUS-CODE TO PURCH--CUSTOMER

401 INDIRECT-MAP PURCH--CUSTOMER

 PURCH--PRODUCT

402 PURCH--TOT TO SQLCODE.
Program Understanding in DBRE 205

Case study
FIGURE 163. Program slice with respect to line 401 and PURCH--PRODUCT.

To validate the referential constraint (PURCH.PRODUCT, PRODUCT.CODE), the program slice
with respect to line 401 and PURCH--PRODUCT (the variable representing PURCH.PRODUCT) is
computed (figure 163). This slice shows that there is a referential constraint from PURCH.PROD-
UCT to PRODUCT.CODE.

FIGURE 164. SQL queries that validates the referential constraints.

283 NEW-ORD.

287 ACCEPT ORD-CODE.

289 MOVE 1 TO SQLCODE.

290 PERFORM READ-CUS-CODE UNTIL SQLCODE =0.

292*E EXEC SQL

293*E INSERT INTO ORDERS VALUES(:ORD-CODE,

294*E SYSDATE(), :CUS-CODE)

295*E END-EXEC.

296 DIRECT-MAP ORD-CODE TO ORDERS--CODE.

297 DIRECT-MAP CUS-CODE TO ORDERS--CUSTOMER.

298 INDIRECT-MAP ORDERS--CODE

299 ORDERS--CUSTOMER TO SQLCODE.

300 IF(SQLCODE NOT = 0)

302 ELSE

303 MOVE 0 TO END-FILE

304 PERFORM READ-DETAIL .

312 READ-CUS-CODE.

315 ACCEPT CUS-CODE.

316*E EXEC SQL

317*E SELECT CODE

318*E INTO :CUS-CODE

319*E FROM CUSTOMER

320*E WHERE CODE = :CUS-CODE

321*E END-EXEC.

322 DIRECT-MAP CUS-CODE TO CUSTOMER--CODE.

323 READ-MAP CUSTOMER--CODE

324 TO CUSTOMER--CODE SQLCODE.

325 DIRECT-MAP CUSTOMER--CODE TO CUS-CODE.

330 READ-DETAIL.

332 ACCEPT PROD-CODE.

333 IF PROD-CODE = 0

334 MOVE 1 TO END-FILE

335 ELSE

336 PERFORM READ-PROD-CODE.

338 READ-PROD-CODE.

339*E EXEC SQL

340*E SELECT CODE INTO :PROD-CODE

341*E FROM PRODUCT

342*E WHERE CODE = :PROD-CODE

343*E END-EXEC.

344 DIRECT-MAP PROD-CODE TO PRODUCT--CODE.

345 INDIRECT-MAP PRODUCT--CODE

346 TO PRODUCT--CODE SQLCODE.

347 DIRECT-MAP PRODUCT--CODE TO PROD-CODE.

348 IF SQLCODE = 0

349 PERFORM UPDATE-ORD-DETAIL.

353 UPDATE-ORD-DETAIL.

379 PERFORM UPDATE-CUS-HIST.

381 UPDATE-CUS-HIST.

382*E EXEC SQL

383*E SELECT TOT INTO :PURCH-TOT

384*E FROM PURCH

385*E WHERE CUSTOMER = :CUS-CODE

386*E AND PRODUCT = :PROD-CODE

387*E END-EXEC.

389 DIRECT-MAP PROD-CODE TO PURCH--PRODUCT.

390 INDIRECT-MAP PURCH--CUSTOMER

391 PURCH--PRODUCT TO PURCH--TOT SQLCODE.

393 IF(SQLCODE = 0)

394*E EXEC SQL

395*E INSERT INTO PURCH VALUES(

396*E :CUS-CODE, :PROD-CODE, :DET-QTY)

397*E END-EXEC

399 DIRECT-MAP PROD-CODE TO PURCH--PRODUCT

401 INDIRECT-MAP PURCH--CUSTOMER

402 PURCH--PRODUCT PURCH--TOT TO SQLCODE.

--- constraint from DETAIL to ORDERS

select count(*)

 from DETAIL, ORDERS

 where DETAIL.ORDERS = ORDERS.CODE;

--- constraint from DETAIL to PRODUCT

select count(*)

 from DETAIL, PRODUCT

 where DETAIL.PRODUCT = PRODUCT.CODE;

--- constraint from ORDERS to CUSTOMER

select count(*)

 from ORDERS, CUSTOMER

 where ORDERS.CUSTOMER = CUSTOMER.CODE;

--- constraint from PURCH to CUSTOMER

select count(*)

 from PURCH, CUSTOMER

 where PURCH.CUSTOMER = CUSTOMER.CODE;

--- constraint from PURCH to PRODUCT

select count(*)

 from PURCH, PRODUCT

 where PURCH.PRODUCT = PRODUCT.CODE;
206 Program Understanding in DBRE

COBOL with embedded SQL
Those five referential constraints can also be validated through data analysis. Such validation is
quite easy thanks to the power of SQL. For each constraints a query is written that counts the
number of the target entity type instances that violate the constraint. The queries that validate the
five referential constraints are shown in figure 164.

FIGURE 165. The complete physical schema.

Schema enhancement. Five referential constraints have been discovered and can be added to the
physical schema to obtain the complete physical schema of figure 165.

FIGURE 166. The complete logical schema.

9.3.2.3. Schema cleaning

The underlying database is a relational database, so that the access keys and the collections can be
suppressed to obtain the complete logical schema (see figure 166).

PURCH
CUSTOMER
PRODUCT
TOT
id: CUSTOMER

PRODUCT
acc

ref: CUSTOMER
ref: PRODUCT

acc

PRODUCT
CODE
NAME
PRICE
id: CODE

acc

ORDERS
CODE
ORD_DATE
CUSTOMER
id: CODE

acc
ref: CUSTOMER

acc

DETAIL
ORDERS
PRODUCT
ORD_QTY
id: ORDERS

PRODUCT
acc

ref: ORDERS
ref: PRODUCT

acc

CUSTOMER
CODE
NAME
ADDR
FUNCT[0-1]
REC_DATE
id: CODE

acc

PURCH
CUSTOMER
PRODUCT
TOT
id: CUSTOMER

PRODUCT
ref: CUSTOMER
ref: PRODUCT PRODUCT

CODE
NAME
PRICE
id: CODE

ORDERS
CODE
ORD_DATE
CUSTOMER
id: CODE
ref: CUSTOMER

DETAIL
ORDERS
PRODUCT
ORD_QTY
id: ORDERS

PRODUCT
ref: ORDERS
ref: PRODUCT

CUSTOMER
CODE
NAME
ADDR
FUNCT[0-1]
REC_DATE
id: CODE
Program Understanding in DBRE 207

Case study
FIGURE 167. The prepared schema.

FIGURE 168. The raw conceptual schema.

9.3.3. Data structure conceptualization

9.3.3.1. Preparation

This phase prepares the schema such that it only contains structures and constraints that are neces-
sary to understand the semantics of the schema.

This schema is already quite clean. Some names can be changed to provide more meaningful names
or to comply with some naming convention. ORDERS is a plural and usually entity types have
singular names. It is plural because ORDER is a SQL reserved word and the programmer decide to
use the plural instead. ORDERS is changed to ORDER. The attributes ADDR, FUNCT, REC-DATE,
TOT and ORD-QTY are abbreviations, they can be replaced with complete names (ADDRESS,
FUNCTION, RECORD-DATE, TOTAL, QUANTITY).The prepared schema is shown in figure 167.

PURCH
CUSTOMER
PRODUCT
TOTAL
id: CUSTOMER

PRODUCT
ref: CUSTOMER
ref: PRODUCT PRODUCT

CODE
NAME
PRICE
id: CODEORDER

CODE
ORD_DATE
CUSTOMER
id: CODE
ref: CUSTOMER

DETAIL
ORDERS
PRODUCT
QUANTITY
id: ORDERS

PRODUCT
ref: ORDERS
ref: PRODUCT

CUSTOMER
CODE
NAME
ADDRESS
FUNCTION[0-1]
REC_DATE
id: CODE

1-1

0-N

PRODUCT_1

1-1

0-N

PRODUCT

1-10-N ORDERS

1-1

0-N

CUSTOMER_1

1-10-N CUSTOMER

PURCH
TOTAL
id: CUSTOMER.CUSTOMER

PRODUCT.PRODUCT

PRODUCT
CODE
NAME
PRICE
id: CODE

ORDER
CODE
ORD_DATE
id: CODE

DETAIL
QUANTITY
id: ORDERS.ORDER

PRODUCT_1.PRODUCT

CUSTOMER
CODE
NAME
ADDRESS
FUNCTION[0-1]
REC_DATE
id: CODE
208 Program Understanding in DBRE

Real DBRE projects
9.3.3.2. Basic conceptualization

During this step, all the foreign keys are transformed into relationship types (Transform - Group -
rel-type) to provide the raw conceptual schema (see figure 168).

9.3.3.3. Normalization

During the normalization, the analyst gives to the schema the quality of a conceptual schema, i.e.
readability, concision, minimality, expressiveness.

FIGURE 169. The conceptual schema.

The normalization is the same as in the two previous case studies. The final conceptual schema is
shown in figure 169.

9.4. Real DBRE projects

In this section, we present real DBRE projects that we have carried out for companies. These
projects were very valuable because they allowed us to understand the needs of the companies and
the problems generated by the size of those projects. Moreover, they allowed us to validate our
methodology and tools.

9.4.1. COBOL

9.4.1.1. Problem statement

The system analyzed in this case study was written in COBOL with indexed files in the late 1970’s
to manage most of the business of a quarry company: ordering, quarry, salary, warehouse, etc. The
design of the original system was out sourced and the maintenance is supported by the only
programmer of the company. There was no written documentation and the company wondered if it
will buy a new package, maintain the existing one or develop a new system. To specify the new

0-N

0-N

purch
Total

1-1

0-N

pass

0-N

0-N
detail

Quantity

PRODUCT
Code
Name
Price
id: Code

ORDER
Code
Ord_date
id: Code

CUSTOMER
Code
Name
Address
Function[0-1]
Rec_date
id: Code
Program Understanding in DBRE 209

Case study
system, they first have to know (or to document) the functionalities of the actual system. We were
asked to help them to retrieve the logical schema of the current database.

The specific problems of this project were

• The files are declared in each program.

• The same physical file (on the disk) can have different logical name (FD paragraph in the file
section).

• There were many aggregation files, i.e., files that contain statistics and aggregate values com-
puted from other files.

9.4.1.2. Steps

In this project, we have started by the extraction of the files and records declarations. The declara-
tions of each program were stored in a separate schema. The files were renamed to give them the
name of the corresponding physical schema. This was needed to avoid to have two files in two
programs that have the same name but do not correspond to the same physical file. The records
were prefixed by the name of their file. This avoids to have two records with the same name
belonging to two different files.

Next, all the schemas, one per program, were integrated in a new schema. The integration was done
with respect to the name of the objects and a report was generated. The analysis of this report shows
if two records with the same name had different structures. This step produced the integrated phys-
ical schema.

To retrieve the data dependencies, dataflow program slices were computed with respect to the
WRITE and REWRITE instructions and the programmer was asked to validate the potential data
dependencies discovered by the program slicing.

9.4.1.3. Results

The integrated physical schema was produced and the project was stopped because the programmer
had no time to validate the data dependencies discovered by the program slicing.

9.4.1.4. Size

9.4.1.5. Lessons learned

This project was the first real size project we conducted. It was very useful for us from a technical
point of view, as well as from the point of view of project management.

program database

KLOC programs files records fields

300 185 352 560 9150
210 Program Understanding in DBRE

Real DBRE projects
Program understanding techniques were proved to be useful to retrieve implicit constructs. Even if
the programmer knows the application, he is not able to remember each detail and he needs some
support. This project shows that the analyst needs to master the program understanding techniques
he uses and he must be able to interpret the results produced by the tools. Otherwise he can produce
wrong schemas by an incorrect interpretation of the results.

It also highlights the necessity of tools and more precisely automatic tools to cope with the huge
volume of the source code.

This project was also very interesting on the project management side. The training and information
of the local team is a very important point for the success of such project. We spent a lot of time to
explain (train) to the local team the expected results of program understanding and to "prove" that
these results are correct.

We notice that the management of the company and the programmers must support the DBRE
project. This project was more or less imposed by the management to the programmer and some-
times the programmer "didn’t have the time", he did not understand the purpose of the project, etc.

9.4.2. ADS - IDMS

9.4.2.1. Problem statement

This system is used by a car importator to manage cars and trucks ordering in the different
branches: list of the available vehicles models, list of the possible options for each model, expected
delivery date, etc.

The system is written in ADS (COBOL like) and uses an IDMS database (CODASYL). At the
origin there were six different applications, each application had its own database. These six appli-
cations were put together but the databases were not merged, gateways were written to propagate
the modification from one database to the other.

The customer wanted to migrate this system to a new client-server system with a relational data-
base. We were asked to retrieve the logical schema and to produce a conceptual schema (without all
the redundancies).

The difficulties of this project were:

• Adapt the program slicing tool to the ADS language.

• Detect all the redundancies and the referential constraints.

• Produce a conceptual schema without the redundancies.

9.4.2.2. Steps

The first step was to extract the IDMS DDL to produce the physical schema. This step was easy
because IDMS offers a single DDL that contains all the explicit constructs, thus we did not need the
integration step.
Program Understanding in DBRE 211

Case study
To retrieve the data dependencies (referential constraints and redundancies), it was decided to use
the dataflow program slicing with variables follow-up to produce the list of fields in relation. With
the help of an analyst of the customer the list of field couples were qualified (referential constraints
- 450, computed referential constraints - 50, redundancies - 550, business rules - 500, noise - 200).
All the referential constraints, computed referential constraints and redundancies were added to the
physical schema to produce the complete physical schema.

The physical schema was analyzed and transformed to produce a conceptual schema.

9.4.2.3. Results

We produced the logical schema and the conceptual schema. The conceptual schema was used to
develop the new application.

9.4.2.4. Size

• Number of program slices computed: 1000

• Number of dataflows found between a get and a get or a store: 5000

A program slice computed w.r.t. a get or a store contains more that one get (5 in mean!).

• Number of data dependencies (number of fields couples): 1750

• Number of data dependencies validated: 1050

i.e., the number of fields couples representing referential constraints, computed referential con-
straints, redundancies. These data dependencies have been validated by the local analysist.

• Total time : 62 days

9.4.2.5. Lessons learned

This project confirms the project management issues discovered in the previous one.

Program understanding proved to be very useful. When we presented the result, for validation, to
the local programmer, he discovered or remembered relations between the data that would have
been missed without program understanding techniques.

With this project, we proved that, by spending some time developing tools instead of doing the job
manually, we can spare time and money in comparison to doing the job manually. To discover the
data dependencies between the record types, we were obliged to modify the program slicing tool
(10 days), then it took 3 days to analyze all the sources code with the tool and 15 days to analyze the
results produced by the tool. So it took 28 days to analyze the 5000 dataflows to discover 1050 data
dependencies.

program physical schema conceptual schema

KLOC modules records sets fields entity types relationships attributes

200 170 324 380 2200 96 109 1100
212 Program Understanding in DBRE

Real DBRE projects
We estimate the time necessary to discover and analyze, manually, one dataflow between a get and
a store to 10 minutes. If we multiply this by 5000 (the number of dataflows), we obtain 120 days.
So automatic program understanding tools enabled us to save 92 days on this project.

9.4.3. Centural / SQL

9.4.3.1. Problem statement

This system is used by a municipal administration. It is composed of six independent applications,
each one used by a different service of the administration: civil status, population, taxes, etc. There
was no communication between the different applications. For example, when somebody moves, he
has to go in each service to give his new address. The municipal council has decided to set up the
concept of "unique counter" where the citizen can go to perform all the usual administrative steps.
To offer this service, the different applications must be merged.

All the applications were developed in the same language and with the same DMS: Centura, a 4GL
and a relational database. There was no documentation of the application but the programmer who
had developed the applications was still there for six months. We were asked to recover the logical
schema of each application and to determine the common parts of the different databases.

Specific problems:

• There is no foreign key declared in the database.

• We don’t have analyzers for the 4GL.

9.4.3.2. Steps

The first step was to extract the DDL of each database. This step was quite easy because the SQL
used by the DMS was standard. It produced a poor physical schema with very few identifiers
declared, some indexes, no foreign keys and most of the columns were optional. This can be
explained by the history of the applications that were migrated form an older relational DBMS.

The next step was to retrieve the referential constraints. We extracted the queries embedded in the
code, but we noticed that there were very few joins in the queries. The queries were used to guess
some of the identifiers. We decided to ask the programmer to add (manually) the referential
constraints to the physical schema.

To validate the schema, queries were automatically generated. The results of the execution of the
queries were used to correct the schema and to detect some erroneous data.

9.4.3.3. Results

The logical schema was produced as well as some assessments about the quality of the data. We
noticed that there are very few common parts in the different databases. The only common part is
the concept of "people".
Program Understanding in DBRE 213

Case study
9.4.3.4. Size

9.4.3.5. Lessons learned

For this project, we did not have program understanding tools available and we estimated that their
development was too expensive. The only program understanding technique we have tried is to
analyze the embedded SQL queries.

We were surprised to notice that there is no join implemented in the SQL queries. All the joins were
implemented procedurally and we were unable to discover them. This show that even if the DMS
offers powerful techniques, the programmer does not necessarily use them. In this case, it can be
explained by the history of the application. This application was translated from a COBOL
program.

We asked the programmer to "remember" the missing referential constraints and to note them on the
database physical schema. This schema was validated with respect to the data, but we are not sure
that the programmer did not forget some of them.

9.4.4. IDEAL - Datacom-DB

9.4.4.1. Problem statement

This system is used by a company of mail order trading to manage all its business: orders, custom-
ers, invoices, advertisement, etc. The system is written in IDEAL (COBOL like) and uses a Data-
com-DB database.

The company had maintained manually the conceptual schema of the database. But over the time,
the conceptual schema had diverged from the physical database. Some modifications have been
made on the structure of the database but were no transferred to the conceptual schema. We were
asked to detect the differences between the conceptual schema and the physical schema.

Specific problems:

• Write a Datacom-DB extractor.

• Extract the conceptual schema from another CASE tool.

• Compare the two schemas.

9.4.4.2. Steps

We wrote a Datacom-DB extractor to be able to extract the physical schema. Next, we had written
an extractor to import the conceptual schema into DB-MAIN. The conceptual schema was trans-

program physical schema

KLOC applications tables columns

450 6 200 3500
214 Program Understanding in DBRE

Real DBRE projects
formed to obtain a physical version. The conceptual schema contains, as a description, the name of
the corresponding object in the database, so we were able to rename the objects of the transformed
schema.

To find the differences between both schemas, a program was written to compare both schemas
based on the name of the objects. A report was produced with the differences between the schema
and sent to the company’s programmers. They were asked to solve the conflicts.

9.4.4.3. Results

A report with the differences between the physical schema and the conceptual schema was
produced. We asked the programmers to resolve the conflicts, but they did not have time to perform
this!

9.4.4.4. Size

9.4.4.5. Lessons learned

This project shows that even when the documentation exists, if it is maintained manually, it will be
slowly desynchronized with respect to the physical database. After some time (years) some DBRE
is necessary to resynchronize the documentation with respect to the database.

program physical schema conceptual schema

Modules records fields entity types relationships attributes

4000 850 11500 556 812 3841
Program Understanding in DBRE 215

Case study
216 Program Understanding in DBRE

CHAPTER 10 DBRE project
management issues
Real size reverse engineering projects taught us that reverse engineering large databases with
hundreds of programs can prove particularly difficult. Program understanding techniques are very
powerful techniques that can be used to retrieve the implicit constraints. But these techniques are
costly to use. The costs are of different types. They can be linked to the setup of the techniques and
to the implementation of the tools that enact these techniques. The costs are linked to the labor too
i.e. the analyst needs to master all these techniques, and therefore needs to be trained. Finally, the
analysis of the program through program understanding techniques can take a lot of time. Even if
these techniques are powerful and precise, the analyst could not guarantee the quality of the results.
There is a risk that some constraints will not be discovered (silence) and some non-existing
constraints will be stated (noise).

Those two aspects, cost and risk, of DBRE techniques, naturally lead to take into account project
planning and management.

One of the unexpected lessons, learned with real projects, is that before the DBRE project itself can
start, the DBRE team has to explain what DBRE is and to justify it. This evangelization must be
done to convince the management but also the technical team. Management must be convinced that
the organization is really going to achieve a significant benefit in reducing costs and adding value
[Sneed-1995].

An important point in the planning of a DBRE project is to evaluate the costs of the project. This
cost evaluation consists in the estimation of the tools, the skills and the time required by the project.
It is impossible to give general rules to evaluate the cost of a project because each project is differ-
ent and there are many factors (size, complexity, language, human factors, etc.) that influence these
costs. Reducing the costs of a project can be achieved by only recovering some of the constraints
and to make a lighter analysis. This incomplete analysis will produce a lower quality result (more
silence and noise). Moreover lower quality schemas can induce costs later if the result of the DBRE
is used as an input of another process. Another particularity of DBRE projects is that they are very
difficult to evaluate because they produce an abstract result (the conceptual schema of the database)
that can be used by other processes. The purpose of a DBRE project is to describe (document) an
existing system. The customer is unable to validate the proposed schema of the database because he
does not master the database, otherwise he does not need DBRE. The evaluation of a classical
forward project is quite "simple", the customer can test the application and checks if it offers the
Program Understanding in DBRE 217

DBRE project management issues
expected functionalities. There are two ways to evaluate a DBRE project. The first one is to rede-
velop a new application using the conceptual schema and to check if the new application has the
same functionalities as the legacy one. This solution is very expensive and not always applicable.
The second way is to explain to the customer the techniques that will be used and to explain the
expected results. The customer evaluates the method instead of the results.

10.1. DBRE justification

Performing DBRE just to have an up-to-date documentation of the current application is not always
(or rarely) a sufficient argument to convince a manager to give enough resources (human and
budget) to conduct the project. DBRE is an expensive and risky operation that is not a goal by itself,
but is a step in a larger process. DBRE is performed to ease or reduce the costs of maintenance, to
regain control over the legacy system, to integrate existing systems, to migrate the legacy applica-
tions to a new hardware or software platform. Reverse engineering is in competition with the rede-
velopment of the system. Before starting a reverse engineering project, the whole process of
migration or integration that includes reverse engineering, must prove to be less risky, less expen-
sive, faster than the redevelopment of a new system. Application software systems may not have a
uniform quality standard. Some programs may become obsolete before others, some may have a
higher error rate, and others may be particularly difficult to reverse engineer. Therefore, it will not
always be possible to judge on a system as a whole. It is possible to decide to reverse engineer some
part of the legacy and to redevelop the other.

The strategy of just replacing the legacy applications by a new system may bring unexpected nega-
tive effects [Klösch-1996]. A lot of business rules have been coded into the legacy code and the
knowledge of these rules can have disappeared. Nobody still knows these rules and the only place
where they are formalized is in the source code. If a new system is developed, these rules need to be
re-discovered or reinvented. People are accustomed with the functionalities of the legacy system. If
the new one is too different, training may be necessary. The development of a new system is a long
task and the result is uncertain. The new system may be out of date, more expensive than expected,
it may contain errors or be less efficient than the legacy system.

A special argument in favor of DBRE is that the data are vital to the business of the company. For
migration projects, it is easy to convince that DBRE is an obligatory step: while the application can
be written from scratch, the data need to be migrated from the old to the new system. The data are
the memory of the organization (orders, invoices, list of customers, etc.) so their structures need to
be mastered to allow a correct migration.

If the semantics of the persistent data is well known, then it will be easier to understand the applica-
tions that use these data. The data and the applications can be migrated almost independently. If the
database is well designed it is possible to keep the legacy database and to only migrate or rewrite
the programs.

Another argument is that, if an organization masters its data and is convinced of their correctness, it
may reduce its maintenance cost. If the structure of the data is well known, the maintenance team
can evaluate which part of the system is affected by a modification and does not have the "surprise"
to discover that some correct functions do not work any more after some maintenance processes.
The maintenance can also be faster, because the maintenance team does not need to try to under-
218 Program Understanding in DBRE

Information / training
stand the existing system before to start, it just have to find the relevant information in the system
documentation.

Each interlocutor is sensitive to different arguments. Development managers and users would
prefer to have applications rebuilt from scratch, corporate managers would like to purchase a
commercial package and software maintainers usually prefer to keep things as they are [Sneed-
1995].

10.2. Information / training

The maintenance and reverse engineering aspects of software engineering have been neglected by
software engineers, researchers, schools and universities so far. But many companies are faced with
a dilemma. On one hand, their systems are very valuable and simply replacing them may be too
expensive. On the other hand, they do not understand them anymore, because the people who have
developed the systems have left the company and the systems are becoming too expensive to main-
tain [Bennet-1995].

Companies are in the situation where they need reverse engineering and do reverse engineering
without knowing that they are doing it and without any methods nor tools.

To successfully perform a reverse engineering project, a company must be aware of the difficulties
and master the methods and techniques. Or at least, it must be conscious that it is not able to
successfully perform the project and ask for external help.

Reverse engineering has been neglected by the research and academic community for different
reasons. At first look, it does not seem very attractive to try to understand programs written many
year ago by other programmers eventually using some old fashioned language. Researchers prefer
to study new problems and use (or develop) new languages. It is easier to develop new programs
from scratch than to analyze or modify existing programs. When a new application is developed
from scratch, it is possible to decide which language to use, to setup rules on how to code the
constraints, to elaborate naming conventions, etc. But when a researcher decides to define a reverse
engineering methodology, he must take in account how the legacy was developed, in which
language. The legacy is as it is, even if the program was badly written, the language is awful, etc.
and he must understand it to recover the specification.

This explains why reverse engineering is not very popular. Companies do not know the term reverse
engineering but they are doing it. So before to start a reverse engineering project, or even to
convince a company it has to perform reverse engineering, we need to explain that reverse engi-
neering is a known process for which there exist methods and techniques. We must convince that
reverse engineering is not easy and it requires resource (budget), but it is possible.

The reverse engineer needs to make two categories of people aware of the very nature of reverse
engineering: the managers and the technical team. Reverse engineering projects are risky and they
do not add new functionalities to the applications. They increase the control on the applications,
reduce the maintenance cost and allow smoother evolution of the legacy application to new technol-
ogies. To succeed in reverse engineering projects, the support of the management is an absolute
necessity. To obtain this support, it must be made sensitive to the expected benefits. It needs to be
Program Understanding in DBRE 219

DBRE project management issues
aware of the risk and costs of such a project. Under this condition the management is less reluctant
to provide the necessary budget and to agree with programmers being assigned to the project.

The technical team (programmers, database administrators, etc.) will be the main contact point of
the reverse engineer and a very valuable source of information. To allow a good collaboration
between the reverse engineer and the local team, the local team must be convinced of the usefulness
of the process, it must be allotted enough time to spend on this project and understand what reverse
engineering is. The team must be made sensitive to the reverse engineering purpose and difficulties
just like the management, but it also must master the technical aspects of the reverse engineering to
use the same language and the same concepts as the reverse engineer.

Because reverse engineering is a quite new discipline, a lot of training efforts must be done before
starting a project.

10.3. Project cost evaluation

A very important question, in real projects, is to evaluate the costs of a DBRE project using a given
technique. This evaluation consists in the estimation of the time, the skills and the tools required by
the project and in the planning.

Because each project is different, it is impossible to give a general method to evaluate its cost. This
section will give a checklist of things that can influence the cost or need to be checked when evalu-
ating a project.

• Size of the legacy system

The most obvious parameter to predict the costs of a project is the size of the legacy system.
There are many ways to measure this size (metric). A first measure is the size of the legacy data-
base schema that can be evaluated in terms of number of entity types, collections, attributes per
entity type, but also the link between entity types (relationship types or referential constraints). It
is easy to understand that if a database has a lot of entity types, its reverse engineering will take
a lot of time. But if there are a lot of referential constraints, it means that they have been explic-
itly declared and do not need to be recovered. So the costs will decrease.

To recover the implicit constraints, the source code is analyzed, so some measures of the legacy
code can be useful such as number LOC, function points, etc. [Mills-1988].

• Complexity of the legacy system

The costs are directly related to the complexity of the legacy system. If a program has many
function calls, go to’s and tests, it will be more difficult to analyze than a program without go
to’s and only some test and function calls. This complexity can also be measured by some met-
rics such as the cyclomatic complexity or program knots [Mills-1988]. The complexity of a leg-
acy system can also be evaluated by the usage of the entity types by the different modules. If an
entity type is only used by one module, the program will be easier to analyze than a program in
which almost every module accesses most entity types.

• Information sources available

If there is an up-to-date documentation, it can be a good starting point and it can save a lot of
time. On the other hand, if only the source code exists, program understanding techniques have
to be used and this can take a lot of time.
220 Program Understanding in DBRE

Project cost evaluation
• Organization has its legacy system under control

The local team (the team that daily maintains the system) is very important in any DBRE
project, because it is the contact point of the DBRE team. If the local team masters its applica-
tions, it can give all the information needed (no silence) and only them (no noise), so the DBRE
team works on the right information. This can reduce the cost of the preparation process. The
local team can answer precisely all questions asked by the DBRE team. For example, if the ana-
lyst suspects a referential constraint between two attributes, he can ask the local team to validate
the hypothesis. This validation just takes a few seconds for somebody that masters the legacy
system, but it may take several minutes, if the local team is unsure, and have to check in some
documentation or in the legacy code.

• Local team involvement

It is necessary that the local team participates in the project and it has to be convinced of the use-
fulness of the project. Even if it does not know each detail of the legacy application, it has a bet-
ter knowledge of the application and of its domain than the reverse engineer does. Before
starting the project it must be known if the team agrees to collaborate with the reverse engineer
and if it has the time to do so.

• Availability of tools

In some projects, new tools must be developed. These initial costs needs to be compared with
the cost of performing the whole process by hand. For small projects it can be less expensive to
do it by hand than to develop new tools.

• Language used

Legacy system programming language and DMS used also influence the costs. For example, to
reverse engineering a SQL database, there is only one source of information to analyze to have
the complete physical schema. But if the legacy system uses COBOL files, the file declarations
of each program need to be analyzed. The expressiveness of the DDL is also important, since it
influences the explicit constraints that can be found. For example, during the analysis of a SQL
database, the analyst can expect that all the referential constraints are explicitly declared and
thus he does not have to perform complex program understanding to recover them.

• Analyst knowledge of the programming language

To understand someone else’s code, the analyst needs to have an in-depth understanding of the
programming language. This can be problematic if the application was written in some old eso-
teric language. Quite often, those legacy languages are not taught anymore. The learning effort
of the analyst needs to be evaluated.

• Explicit declaration in DMS

The explicit declarations (DMS-DDL) are the starting point of the data structure extraction. So if
a lot of the constraints have been declared in the DMS, there are fewer implicit constraints that
need to be discovered in the procedural part of the application.

• Quality of the code

To understand well structured code with well chosen variable names and procedure names is
easier (and faster) than to analyze some ugly code with a lot of go to’s and obscure names.

• Uniformity of the conventions / rules

If the same naming and coding conventions have been applied consistently during all the appli-
cation live cycle and by all the programmers, the code will be easier to understand than if differ-
ent conventions have been applied to each module or in the same module.
Program Understanding in DBRE 221

DBRE project management issues
• Analyst DBRE experience

Personnel quality is, according to Sneed [Sneed-1991], the most influential factor in driving
maintenance cost. This also applies to reverse engineering. The analyst must be familiar with the
methodology and the tools used. The comprehension of someone else’s program requires some
kind of feeling that cannot be learned in text books, but can only be acquired by experience.

• Level of detail needed

Of course, the more details are needed, the more time it will take. If only the list of the entity
types with their corresponding attributes is needed, it will only take a few hours. But to recover
all the referential constraints and data dependencies, it will take days or months.

All these parameters are difficult to evaluate a priori, just using some metrics (as LOC, number of
tables, etc.) and the list of the DMS and programming languages. A good solution is to start with a
small representative sub-project. This project needs to be representative of the whole application.
But it also needs to be small enough to be performed in a few days. To select this sub-project, the
assistance of the local team is necessary to find a coherent sub-part of the application and represen-
tative of the coding style of the whole application. This sub-project can also be useful to set up, with
the local team, some common language to communicate the questions, the answers and the results.

The main purpose of this sub-project is not to perform some DBRE, but to evaluate the feasibility
and difficulties of the project. At the end of this sub-project, missing tools are listed, methodology
to use is defined, the quality and weakness of the expected results are identified and some evalua-
tion of the total cost is given.

Even if the prototype was successfully completed, the extrapolation of the total costs is difficult.
During the project, unexpected difficulties can be discovered. To anticipate or minimize those plan-
ning and cost overtaking, it is important to plan checkpoints regularly with the local management.

Intuitively the complexity of DBRE projects is between O(V) and O(V3), where V represents some
measure of the size of the reverse engineering project. For instance, each entity type can be seman-
tically related with any of the entity types of the schema. Therefore, each couple of entity types has
to be examined to check if one or more referential constraints exist between them. So this leads to a
complexity in square of the number of entity types in the database. In addition, the source code of
the programs needs to be examined to validate those constraints. So the complexity of the DBRE
projects rises with the square of the number of entity types and linearly with the number of the
LOC. This leads to a process with complexity O(V3), where V is the size of the project, i.e. some
measurement of the number of entity types in the database and the number of LOC, the DMS used,
the complexity of the application, etc.

Fortunately, some structures require a lower complexity. For example, to refine the data structure,
only the data dependency graph (which may be linear to the program size) needs to be computed.
So the complexity is linear with respect to the number of LOC. Therefore that it can be stated that,
considered as a whole, the data reverse engineering process has a complexity O(V2).

The cost of DBRE projects is in direct relation with its complexity, so it is also a function of the
square of V. If such a cost evaluation function is applied to very big projects, they become unfeasi-
ble. This first evaluation must be revised because there is an effect of training. At the beginning of
the project the analyst takes time to understand some aspects of the application and the more the
project progresses the faster the analyst understands new details. As it will be explained in the next
222 Program Understanding in DBRE

Automation
section, for big projects, some processes can be automated to reduce the time spent by the analyst
analyzing the application.

10.4. Automation

DBRE principles and methodology presented so far are well understood and can be quite easily
applied to small and well structured systems. But when the methodology is applied to real size,
complex systems, the analyst is faced with a huge volume of complex information to be manipu-
lated and analyzed.

When analyzing a very small legacy system (e.g., 3 programs totaling 1000 LOC and 6 entity
types), the database schema can be drawn on a single sheet of paper (or a single computer screen)
and flip manually through the source code. This project can be easily completed in one or two days.
The analyst can discover and remember most of the application details without any tool support.

The analysis of a medium size legacy system (200 programs totaling 400000 LOC and 100 entity
types with an average of 60 attributes per entity type) requires a square meter sheet to draw the
schema and it is impossible to flip through all the source code (more than 6000 pages). To draw the
schema, at least, drawing tools are needed to ease the layout of the schema. To work efficiently, a
CASE tool is useful to extract the schema from the DDL and give some help to correctly display the
entity types to minimize their overlapping. To refine the physical schema through the analysis of the
code, some program understanding tools are needed to help discovering the implicit constraints.

So automation is highly desirable to perform large DBRE projects within reasonable time and cost
limits. It is usually admitted that an analyst can manipulate (manually) 50000 LOC [Tilley-1998],
but real projects can be ten to hundred times this size.

The automation of the process does not mean that the complete DBRE process will be done auto-
matically without the analyst’s intervention. Instead, in most processes, the analyst is provided with
tools that help him in his work. He has to decide which tool he wants to use at a given time and how
to interpret the results. Many of the tools are not intended to locate and find implicit constructs, but
rather contribute to the discovery of these constructs by focusing the analyst’s attention on frag-
ments of code or structural patterns or to aid the analyst to acquire a better understanding of the
application. In short, they narrow the scope of search. It is up to the analyst to decide if the
constraint that he is looking for is present or not. For example, computing a program slice provides
a small set of statements with a high density of interesting patterns according to the construct that is
searched for (typically referential constraints or attributes decomposition). This small program
segment must then be examined visually (manually) to check whether traces of the construct are
present or not.

All the steps of all the projects cannot be automated to the same degree. Different levels of automa-
tion can be enumerated: complete automation, automation with some interaction with the analyst,
report generation or restriction of the search space.

A process that is completely automated is a process for which there exists a tool that takes as input
the source code, the DDL or the incomplete database schema and enriches this schema with new
constraints. The new schema contains all the constraints that the tool searches for without any inter-
Program Understanding in DBRE 223

DBRE project management issues
vention of the user. For example, the DDL extractors automate the DDL extraction. They read the
DDL code and automatically produce the corresponding structure of the schema.

Some processes can be partially automated with some interaction with the analyst. As in the fully
automated one, the inputs are the source code, the DDL or the partial schema and the tools ask
questions to the analyst to make some choices. For example, the dataflow diagram can automati-
cally detect the actual decomposition of an attribute. The analyst is involved in conflict resolution
(e.g., when two different decomposition patterns for the same attribute, he has to decide which one
to use).

There exist tools that generate reports so that the analyst can analyze them to detect the existence of
a constraint. For example, a report can be generated that contains couples of attributes in relation. A
couple (a,b) means that there is a dataflow from attribute a to attribute b. If a dataflow exists
between two attributes, this means that there is a potential referential constraint between those
attributes, or a functional dependency or one is a function of the other or there is a business rule that
involves both of them. The analyst has to read the report to find from this list which are referential
constraints. To perform this selection, he has to use other techniques such as his knowledge of the
domain.

Search space restriction tools are used to extract a fragment from a source of information that
contains the pertinent information in which the analyst is supposed to find evidence to prove or
disprove the existence of a constraint. Program slicing is a good example of search space restric-
tion. When a slice is computed for an instruction, x, with respect to a variable, v, only the instruc-
tions that influence the value of v at x are selected. So the analyst can concentrate his effort on those
lines only.

10.4.1.Limits of automation

A first reason why full automation cannot be reached is that a DBRE process basically is a decision-
based activity. The discovery of referential constraints in a program source code is an example of
constraint elicitation that cannot be fully automated. For example, to discover a referential
constraint through program understanding techniques, data dependencies between the attributes of
two entity types are searched for. However data dependencies do not necessarily materialize a refer-
ential constraint. A functional dependency may hold between the two attributes (such as a price and
the price with VAT) or it can code some business rules (such as the order number is some function
of the customer number and the order date). So, though one can imagine a tool that finds data
dependencies between database attributes, the analyst still needs to qualify those dependencies to
mark the one that actually represents a referential constraint.

Another reason for which full automation cannot be reached is that each DBRE project is different.
The sources of information, the underlying DMS and the programming language or the coding rules
can all be different and even incompatible. Designing a unique tool that will perform the complete
DBRE for any project is unrealistic. The analyst must be provided with a set of tools in which he
can select the one he needs and these tools must be configured for the current project. For example,
referential constraints can be recovered through the analysis of the length, type and names of the
attributes, entity types of the physical schema. Programmers can use different naming conventions
to name the referential attributes. The name of the referential attribute contains (or suggests) the
name of the target attribute, the name of the target entity type, or other rules that can be imagined.
In some projects there are no rules at all and the analysis of the physical schema is useless. Each
224 Program Understanding in DBRE

Automation
project requires some specific tools to discover automatically some constraints. Another example is
the attribute declaration in SQL-DDL. As will be explained in the next section, it can be decided not
to construct such tools for economic reason and to perform the task manually.

Even for activities of the DBRE process that can be partially or completely automated, the tools
must be used with some precaution [Wilde-1990]. While tools are likely to provide better results
than unaided hand analysis, the analyst needs to understand how the tools produce the result. There
are still many cases in which tools either fail to capture some constraints (missed targets or silence)
or show constraints that do not really exist (false targets or noise). The analyst must validate the
results and it is his responsibility to accept or not the constraints proposed by the tools. Automation
can produce less precise results or incomplete results. The analyst must be aware of the potential
errors contained in the produced result.

FIGURE 170. Example of silence and noise generated by the referential constraint assistant
that could be avoided through a manual analysis.

Even if some tools can help the analyst, the tools alone do not automatically lead to increased
productivity. Training and well defined methods are needed to get a real benefit. Data structure
extraction is a difficult and complex task that requires skilled and trained analysts who know the
languages, DMS and operating system used by the legacy system and also master DBRE methodol-
ogy, techniques and tools. Figure 170.a shows such an example; the origin attribute is Customer and
the target entity type is CLIENT, the tool does not find this constraint, which can be discovered by
manual analysis (synonym). This tool can also produce noise. For example (figure 170.b), a usual
habit of COBOL programmers is to prefix all the attributes of an entity type by the name of the
entity type (to have unique names). If an attribute has the same type and same length as the identi-
fier of the entity type, it will be selected as a possible referential constraint.

10.4.2.Economic advantage of automation

As previously said, automation can influence the time spent (and cost) to complete a project. It is
interesting to evaluate the cost evolution depending on the project size and the level of automation.

Even in manual projects, a small part of the job can be done by some existing tools, such as DDL
extractors. The analyst masters these tools and did not need to customize them, so he can immedi-
ately be productive. Most of the job is done manually by analyzing the schema and the source code.
Small project can be done by only one analyst and he can memorized most of the details. When the
size of the project increase more tan one analyst are needed and they could not memorized all the
details. In addition to the reverse engineering work, some team management is needed. For very big
projects the manual approach can be inconceivable. The time needed to perform them are to long.

ORDER
Customer
ref: Customer

CLIENT
Cli_id
id: Cli_id

STK
STK-ID: num (5)
...: char (1)
STK-LEVEL: num (5)
id: STK-ID
ref: STK-LEVEL

a) Referential constraint not dis-
covered by the referential
constraint assistant.

b) Referential constraint errone-
ously discovered by the refer-
ential constraint assistant.
Program Understanding in DBRE 225

DBRE project management issues
For example, a reverse engineering project that will last more than ten years is useless, which is the
utility of such a project?

In automatic projects, where most of the work is done automatically, the initial costs can be quite
high. The specificity of the project has to be understood to select the right tools, how to use them,
how o interpret their results and to develop new ones. When the initial phase id one, the major part
of the job can be done automatically with almost no intervention of the analyst. In the automatic
approach, the manual part consists in the analysis and validation of the results produced by the
tools.

Because of the initial cost of the automatic approach, for small to medium project the manual
approach can be less expensive. But when the size of the project increases, the initial cost of the
automatic approach can be compensated by the automation of the whole process

As an example, considering a very small application (one program of 1000 LOC and 3 entity types).
An analyst can recover the complete schema of this application manually in one or two days. For a
medium size application (200 programs of 400K LOC and 100 entity types), it is very difficult to
carry out this project manually. Each program can not be analyzed independently. To analyze this
application, the analyst has to follow the inter-program calls. If he takes only one hour to discover
each referential constraint or functional dependency and there are 1000 constraints to discover, he
will take about 40 days to complete the project. To perform this project automatically, the analyst
needs 10 days to adapt program understanding tools. Such tools will analyze all the programs in
three hours and then the analyst will validate the results in 10 days.

10.5. Cost Vs. quality

Cost reduction can be achieved by automation, but also by reducing the completeness of the results,
e.g., by deciding not to search for some kind of constraints. For example exact cardinalities of
multi-valued attributes or attribute decompositions may be ignored. The completeness can also be
reduced by accepting less precise results, with more silence and more noise. For example, finding
attribute decomposition can be done by computing the dependency graph and searching this graph
for attributes that are connected (directly or indirectly) to a variable with a more precise decomposi-
tion. When a new decomposition is found, no other verification (such as code analysis) is done and
the schema is considered refined. As explained in section 6.3 such techniques can produce errone-
ous decompositions and miss other decompositions.

Noise can easily be detected and suppressed by checking through another technique (such as data
analysis or domain knowledge). Silences are more difficult to detect.

The overall quality of the DBRE is higher if the depth of analysis and checking is homogeneous
throughout the schemas. To ensure the homogeneous quality, the analyst needs to apply the selected
techniques and tools to all the sources of information. For example, lets assume he only analyzes
75% of the source code to recover the referential constraints. If the referential constraint validations
are homogeneously distributed in the source code, 25% of the referential constraints potentially
discovered by the analysis technique are missing. It is impossible to know which part of the schema
is affected by the missing constraints. Are they all in the same region of the schema or are they
randomly distributed? In some favorable situations the 25% non analyzed code does not contain
226 Program Understanding in DBRE

DBRE project evaluation
any new constraints, they have all been discovered by the analysis of the 75% of the code. This situ-
ation may arise if the analyst knows the code and decides to skip some parts of the code because
these parts do not reveal new constraints.

DBRE generally is the first step of a broader process such as re-engineering or migration. Its costs
must be evaluated on the whole process and not on each step separately. The results of the DBRE
process are the input of another process. So if these results (logical and conceptual schemas) are of
poor quality, the next process can have very high unexpected costs because its starting point is not
correct. For example, if a new function is added to an existing application using a database schema
in which some referential constraints are missing, this function can corrupt the database by adding
or modifying data that violate the referential constraint. Missing constraints leave the database
unprotected against data corruption. As a consequence, existing functions could not work anymore
because their code is relying on correct data. For example, if a function prints a report and tries to
find the target of an undetected referential constraint, a missing target can produce unexpected
results (unexpected program termination, report with random data, etc.). Noise can also produce
errors, since spurious constraints can prevent some valid data to be added.

Fixing these errors can have very high costs. Correcting the logical schema and the conceptual
schema produced by the DBRE is only a small part of the cost. These schemas have been used to
write new functions (or applications), so that all the newly developed code must be corrected to be
in accordance with the new constraints. If the errors are detected only when the new application is
used in production (with real data) the corrupted data must be also corrected. Sometimes the errors
can cause the failure of a migration project.

This shows the importance to find the right trade off between the DBRE cost and the quality of the
result.

10.6. DBRE project evaluation

The evaluation of the results produced by a DBRE project is a complex problem for the customer,
especially when the DBRE is an explicit process in a project or when it is a project by itself.

Classical software engineering projects produce concrete results that are reasonably easy to evalu-
ate, i.e., some piece of software that the user can use and test to check if it meets the initial specifi-
cations, notably through standardized testing techniques. The specificity of DBRE projects is that
the final results are abstract specifications, made up of logical and conceptual schemas. The input of
a reverse engineering project, which corresponds to the forward engineering specification, is the
application itself [Henrard et al.-2000]. The customer has no deterministic means to evaluate the
results except his domain knowledge and his (partial) knowledge of the application. This knowl-
edge is partial by nature, otherwise DBRE would have been useless and thus the customer could
have recovered the logical schema by himself [Chiang et al.-1996].

Several techniques can be proposed to help the customer in assessing the quality of the results.

1. One way to convince the customer that the DBRE is complete and correct would be to use
DBRE results to migrate the application to a new database that is derived from the conceptual
schema and to check if the new application has the same behavior as the old one. This solution
requires to migrate the entire application (and thus reverse engineer) too or to write a new appli-
Program Understanding in DBRE 227

DBRE project management issues
cation. This approach does not only test the quality of the DBRE process, but also the quality of
the new application. If the behavior of the new application is not the same as the old one, it can
be due to errors in the underling database. This a posteriori approach is only realistic when the
DBRE is a first step in a migration process and the same team carries out the whole process.

2. Another way to validate the schema a posteriori is to automatically generate a new application,
to migrate the data and to ask the users of the legacy application to test this new application.
This new application does not intend to replace the legacy application, it does not offer all its
functionality, but is simply used to validate the DBRE process. The structure of the new data-
base can be easily generated from the conceptual schema. The knowledge of the legacy database
and of the new database physical schema allows to automatically migrating the data [Henrard et
al.-2002]. The migration is a first validation of the conceptual schema. If the data are correct in
the legacy database and they could not be migrated to the new database, it means that there is an
error in the conceptual schema. From the conceptual schema it is possible to generate automati-
cally a graphical user interface (GUI) to access and to modify the data. Of course, it is about a
rudimentary version of the legacy application, but it could be enough for a user to access and
modify the data. Some users are asked to use this prototype to check if they could edit valid data
and if the application forbids to enter erroneous data.

3. A realistic approach could be to agree, at the beginning of the project, on the methodology and
the tools, i.e., on the constraints that are looked for and the techniques and tools used. It is also
important to explain to the customer the strengths and the weaknesses of the chosen approach so
that he can evaluate the quality of the expected results.

The critical process with respect to the quality of DBRE and thus the most important to evaluate, is
the data structure extraction. Indeed, the quality of the conceptual schema depends mainly on the
quality of the logical schema because it is obtained by semantic preserving transformations. The
quality of the data structure extraction depends on the analyst’s skill and tools, on the quality of the
information sources but also on the constraints the analyst is looking for and on the time spent
during the analysis.

Not surprisingly, the quality of the results is thus an economic issue.
228 Program Understanding in DBRE

CHAPTER 11 Conclusion
This thesis explores the role of program understanding techniques in database reverse engineering.
The particularity of this approach is that it combines theories from two communities, namely soft-
ware and database. Although these communities are historically distinct, but nevertheless intersect
quite often. We have combined that effort from both areas to produce a improved database reverse
engineering framework. The database community has developed well formalized models to repre-
sent data structures and to manipulate these structures. The software engineering community offers
a large choice of techniques and tools to analyze code, a process that has proved necessary to under-
stand data structures.

A generic DBRE methodology is presented as the reverse of forward engineering. This methodol-
ogy is divided into three processes. The project preparation process evaluates why and how the
project has to be carried out and which resources (human skills, time, budget, etc.) are needed. The
second process, data structure extraction, analyzes all available sources of information to recover
the complete logical schema of the data. This schema is the view the application programmers have
(or should have) of the database to correctly develop and maintain the programs that access or
modify the data. The last process, data structure conceptualization, transforms the logical schema
into the conceptual schema.

The data structure extraction process has been presented in detail and particularly its most impor-
tant, but also most difficult, sub-process, namely the schema refinement step. Schema refinement is
the step during which the implicit constraints are recovered. Its difficulty comes from the fact that a
wide variety of heterogeneous information sources (source code, data, user knowledge, etc.) have to
be analyzed to recover the implicit constraints, i.e., constraints that hold in the data structure, but
have not been declared in the DDL of the DMS. Another difficulty is that there is no standard way
to express the implicit constraints. Therefore, in order to discover a constraint, the analyst first has
to discover (e.g., to guess) how the programmers usually coded it. The importance of schema
refinement can be appreciated by considering that, in most legacy databases, the largest part of the
structures and constraints are implicit, either due to the weaknesses of the DMS, or to programming
practices resorting to so-called information hiding. Therefore, recovering database physical and
logical schemas through mere DDL code parsing generally leads to a highly incomplete result,
generally useless for any decent further use. For instance, extracting a conceptual schema, from this
logical schema, then generating a new relational database will provide the community with a partic-
ularly poor database as far as expressiveness and integrity are concerned.
Program Understanding in DBRE 229

Conclusion
We have presented most of the constraints that can be recovered during schema refinement, the
information sources that can be analyzed and the heuristics that are used to recover the constraints.
An application that updates data must check that the new data do not violate the constraints. There
are mainly two ways for an application to validate the data it stores in the database: either the DMS
carries out the validation and only accepts valid data or some code added to the application’s proce-
dural sections to validate the data before they are stored. In this second approach, unfortunately
very popular, the implicit constraints are validated by source code fragments that have to be identi-
fied, through source code analysis techniques, generally called program understanding.

The assertion that program understanding is necessary to perform DBRE may be felt in contradic-
tion with the justification of DBRE in the beginning of the thesis, where we stated that program
understanding is easier when the database’s structures and constraints have been elicited. There is
no real contradiction. When the source code is analyzed to recover data structure constraints, we do
not try to understand how the program works but we are only looking for code fragments that vali-
date data structure constraints. To recover these fragments, we use program understanding tech-
niques such as variable dependency graph, system dependency graph and program slicing. These
techniques have been specialized to DBRE and we have shown how they can be used to detect the
most popular constraints. Program understanding as a whole is a wider-scope discipline into which
we have, hopefully, modestly contributed by exploring one part of the application, namely the data-
base.

Real size reverse engineering projects have taught us that recovering the schemas of large databases
can prove particularly long and difficult, and therefore risky and expensive. In order to cope with
these difficulties, we have discussed some project management aspects. Because DBRE is expen-
sive and, as such, does not add new functionalities to the application1, it is important for such
projects to be supported by the company’s managers and not only by the technical team. In order to
catch the confidence of all stakeholders, we have first to explain what DBRE actually is and what
the expected results are. Indeed, the concept of DBRE (and reverse engineering in general) is not
correctly known, and often leads to unrealistic expectations. Many people practice DBRE in an
informal way, but they generally do not know about the existence of specific methodologies and
tools to support this process. Manual work is the rule, leading to poor, incomplete and frustrating
results.

To prove that DBRE is feasible and useful, we would need to evaluate a priori the cost of such a
project. This evaluation has to take in account many parameters, such as the size of the database
schema, the size of the programs, the complexity of the application, the programming language, the
DMS, etc. In order to reduce the costs of a DBRE project, some of the processes must be auto-
mated. Another way to reduce the costs of a project is to reduce its quality requirements. This
approach must be adopted with much caution, because the quality of the process can have an indi-
rect cost impact on the following processes that use the result of DBRE as input. In a typical migra-
tion project, any error in the conceptual schema will generally induce errors in the new database, in
the programs and in the functionalities that will be very expensive to fix.

1. Though it does add value.
230 Program Understanding in DBRE

Contributions
11.1. Contributions

In this thesis, we have proved that program understanding techniques and tools are necessary to
perform good quality DBRE for real size projects. To achieve this objectif, we have developped a
tool supported DBRE methodology.

With regard to methodology, we have particularlydeveloped the schema refinement step of the data
structure extraction process. We have proposed guidelines to carry out schema refinement as an
iterative process during which the analyst makes assumptions about a potential constraint (the
hypothesis) before validating this hypothesis. If the hypothesis is validated, the constraint is added
to the schema. This process is iterated until no new hypotheses can be formulated. We have
discussed how the analyst can decide whether the schema refinement is finished.

The starting point of the thesis is the idea that the source code is the most complete and the most up-
to-date source of information to recover implicit constraints. Indeed, they must be dealt with in the
source code because, by definition, they are ignored by the DMS. One of the exceptions are the
constraints that are verified by the environment of the application (environmental properties) and
therefore need not be verified formally. The source code is up-to-date because it is the readable
expression of the programs currently running. Other sources of information, such as the documenta-
tion or CASE tools repositories, are often out-of-date due to the lack of direct link between them
and the binary code.

This is why we have decided to investigate source code analysis to refine the database schema. The
difficulty with code analysis is that the constraint validation can be spread through the whole source
code and a given constraint is not necessarily coded in adjacent lines of code. A further difficulty
related to constraint recovery is that there is not only one manner to code a given constraint, each
programmer has his own way of coding. We have shown that, for example, there exist at least five
different ways to validate a referential constraint.

Our experience has shown that code analysis can be practiced manually for small case studies but
that medium to large projects require sophisticated tool support. In order to provide this support, we
have studied program understanding techniques and implemented them in the DB-MAIN CASE
tool. We have selected four techniques, namely pattern searching, variable dependency graph,
program slicing and system dependency graph.

The variable dependency graph is a graph in which each vertex represents a variable and (directed)
edges represent a relation between variables. The slice of a program with respect to program point p
and variable v consists of all the program statements that might affect the state of v at point p. The
system dependency graph is the internal representation of the program that is used to compute a
program slice. We have defined other ways to question this graph to obtain very precise information
about how the data are validated before being stored into the database. We have explained how
these program understanding techniques can be used to recover the most popular implicit
constraints. A major part of our work was to develop a tool box that supports the complete DBRE
process. After describing the characteristics of an ideal CARE tool, we have presented our tools
implemented in DB-MAIN.

In order to validate our methodology and the tools developed, we have used them to reverse engi-
neer real databases in several companies. During those projects, we had to face problems that have
nothing to do with methodology but rather with project management. For instance, client personnel
Program Understanding in DBRE 231

Conclusion
training has proved a major, though inexpensive, success factor. In this way, gaining the confidence,
and therefore the collaboration of the persons who hold critical information is much easier.

The cost evaluation of such a project is crucial. We have sketched what the factors are that can
influence the costs, among them the level of the process automation.

11.2. Comparison with related work

11.2.1.Methodology

We can identify three major periods in DBRE research, according to the information sources taken
into account and to the initial assumptions on the quality of the object database.

11.2.1.1.Structural analysis

The first DBRE methodologies that appeared in the literature intended the production of a concep-
tual schema of an existing database by analyzing the database itself only. The main information
source was the DDL code of the physical schema and in some contribution the database contents.
For additional refinement, they relied on the analyst’s domain knowledge. The quality of the final
conceptual schema depended on the quality of the physical schema, that had to meet strong, and
therefore unrealistic, requirements.

For example, the schema had to be in 3NF ([Navathe et al.-1987], [Davis et al.-1987], [Johannes-
son-1994], etc.). The identifier had to be declared ([Dumpala et al.- 1983], [Casanova et al.-1983])
or the dependencies between the records had to be known ([Dumpala et al.- 1983], [Casanova et al.-
1983]). The database could not be optimized ([Ramanathan et al.-1996]). In some proposals,
implicit foreign keys could be detected through the name of their components ([Navathe et al.-
1987], [Premerlani et al.-1993], [Chiang-1995]).

Most of these methodologies were dedicated to a specific DMS, except MeRCI ([Comyn et al.-
1996]). They only cover a part of the DBRE process.

11.2.1.2.Targeted code analysis

Two contributions only include program source code analysis to get information about the database
structures and constraints.

[Petit-1996] analyzes the (embedded) SQL queries and views to recover the foreign keys and the
functional dependencies. It is assumed that the programmer needs to use joins in the queries to navi-
gate among the data. The joins are used to refine the logical schema that will be translated into a
conceptual schema.

[Anderson-1996] analyzes COBOL source code to recover the precise structure of records (struc-
ture resolution) and uses some kind of dataflow analysis (the definition-use orders) to recover the
dependencies between the records.
232 Program Understanding in DBRE

Future work
11.2.1.3.General code analysis

The two previous works concentrate on some aspects of the source code. In this thesis, we have
increased the role of source code to make it a major information source, by integrating program
understanding techniques in DBRE and more specifically program slicing and its underlying SDG.
The SDG construction is difficult and expensive but produces precise results with little silence and
noise. It produces better results than the definition-use order graph because SDG also represents
control flow that was not taken into account.

11.2.2.Tools

Many methodologies are not tool-supported. Some of them suggest such tools ([Dumpala et al.-
1983], [Signore et al.-1994], [Ramanathan et al.-1996]). Others are accompanied by some kind of
proof-of-concept prototypes that support a part to the methodology ([Premerlani et al.-1993],
[Chiang-1995], [Jahnke-1999]). These prototypes are most often intended to validate the methodol-
ogy on case studies, few of them have been used to in a significant number of real size projects.

The main advantage of the tools we have developed is that they are integrated in the DB-MAIN
CASE tool. DB-MAIN is a general database engineering CASE tool that supports not only the
whole DBRE process, but also the main database engineering processes. For instance, an analyst
can perform a database reengineeing project in a single environment.

DB-MAIN is a stable CASE tool that is being maintained by the Database Engineering Laboratory
for more than 10 years and has several thousands of users. Those of its components that are dedi-
cated to DBRE will survive this thesis and will be maintained and extended in the future.

11.2.3.Validation

Thanks to the robustness and completeness of the methodology and its CASE tool, it was possible
to use them to validate the methodology on real projects in companies. It is important to note that
the latter did not intend to merely collaborate with a research laboratory, but actually were our
client. Therefore, the results were tested in real commercial conditions.

11.3. Future work

We have already got some experience in applying our methodology and tools to small to medium
projects but we still have to validate them on larger projects (several million lines of code). In order
to do so the level of automation of our tools must be increased and their results must be more
precise to reduce the amount of work the analyst has to provide.

Some of our tools are specific to a given language such as program slicing or DDL extractors.
Others are more generic such as the variable dependency graph that is parametrized by the patterns
that define the nodes and edges of the graph in source programs. As expected, a tool that is dedi-
cated to a language will grasp more semantics of the programs and provide more precise informa-
tion. More research is needed to explore the way specialized tools can be developed more easily and
Program Understanding in DBRE 233

Conclusion
integrated into the DB-MAIN CASE tool. For example, automatically producing a program slicer
by providing the language’s grammar and some hints about the semantics of the main statements
and data types should be possible.

Other PU techniques need to be analyzed and adapted to the need of DBRE to enrich the set of tools
available. These techniques can improve existing techniques to produce more precise results, with
less noise and less silence, such as dynamic program slicing. It will be, also, interesting to analyze
the usage of techniques that give other information about the programs. Type inferencing is one of
them. This technique groups the variables of a program according their values sharing / semantics.

Though it is one of the most challenging problems in reverse engineering, result validation was only
sketched in this thesis. More investigation is needed to offer the analyst criteria to assess the extent
to which the implicit structures and constraints have been recovered. This means in particular defin-
ing the ending criteria of the schema refinement process. Another aim of validation techniques is to
convince the customer that the results of the DBRE process is of good quality and that they can be
used in a subsequent project such as data migration, reengineering or maintenance. We have
discussed three solutions: to carry out the complete migration, to develop a prototype to be tested
by the user or to explain the methodology used and to convince the customer that it will produce (or
has produced) a good result. Other solutions have still to be investigated.

The thesis tackles only DBRE, but as mentioned earlier it is only a step in a larger process such as
data migration or reengineering. It could be interesting to study how our methodology can be
coupled with those other processes to provide a complete solution for customers. In particular, the
efforts made to understand the data structure aspects of the programs should be reused to under-
stand the programs themselves. In addition, we wrote that database reverse engineering should be a
good starting point to understand the whole application, but this assertion certainly deserves being
further developed to provide better program understanding techniques. This thesis has shown that
the database community can profit from the software engineering realm. The converse must obvi-
ously be true, but has still to be explored: how can database structure understanding contribute to a
better understanding of data-centered application programs? Tool integration is also a major issue.
Since no single tool can cope with all the aspects of system understanding and reverse engineering,
different independent tools must have to cooperate. This leads to the problem of building adequate
ontologies and exchange formats for this engineering domain.
234 Program Understanding in DBRE

Acronyms
ACFG Augmented Control Flow Graph

AST Abstract syntax Tree

B2B Business to Business

CARE Computed Aided Reverse Engineering

CASE Computed Aided Software Engineering

CFG Control Flow Graph

CORBA Common Object Request Broker Architecture

DBD IMS data description

DBMS DataBase Management System

DBRE DataBase Reverse Engineering

DDL see DMS-DDL

DML see DMS-DML

DMS Data Management System

DMS-DDL Data Management System - Data Description Language

DMS-DML Data Management System - Data Manipulation Language

ECR Entity-Category-Relationship

EER Extended Entity-Relationship

ERP Enterprise Resource Planning

FMS File Management System

ODMG Object Data Management Group

OMT Object Modeling Technique

OO Object Oriented

ORDBMS Object Relational DataBase Management System

PDG Procedure Dependency graph
Program Understanding in DBRE 235

Acronyms
PDL Pattern Definition Language (DB-MAIN)

PS Program Slicing

PSB IMS program specification block

PU Program Understanding

RDBMS Relational DataBase Management System

SDG System Dependency Graph

UML Unified Modeling Language

VDG Variable Dependency graph (DB-MAIN)

XML Extensible Markup Language
236 Program Understanding in DBRE

References
Agrawal et al.-1991 Agrawal H., DeMillo R.A.: Dynamic slicing in the presence of unconstrained
pointers. In Proc. of the ACM symposium on Testing and Verification, 1991.

Aho et al.-1989 Aho A., Sethi R., Ullman J.: Compilateur : Principes, Techniques et Outils.
Intereditions, 1989.

Akoka et al.-1998 Akoka J., Comyn-Wattiau, I.: MeRCI: An Expert System for Software Reverse
Engineering. In Proc. of the 4th World Congress on Expert System, Mexico,
1998.

Akoka et al.-1999 Akoka J., Comyn-Wattiau I.: Rétro-conception des Datawarehouses et des
Systèmes Multidimensionnels. In Proc. of the INFORSID’99, pages 227-255,
France, 1999. INFORSID.

Alhaij et al.-2001 Alhajj R., Polat F.: Reengineering Relational Databases to Object-Oriented:
Constructing the Class Hierarchy and Migrating the Data. In Proc. of the 8th
Working Conference on Reverse Engineering (WCRE’2001), pages 335-344,
Germany. 2001, IEEE Computer Society.

Anderson-1996 Anderson M.: Reverse Engineering of Legacy Systems: From Value-Based to
Object-Based Models. PhD thesis, EPFL, Switzerland, 1996.

Ball et al.-1992 Ball T. and Horwitz S.: Slicing Programs with Arbitrary Control Flow. Techni-
cal report tr1128, University of Wisconsin, 1992.
 ftp://ftp.cs.wisc.edu/tech-reports/reports/92/tr1128.ps.Z.

Batini et al.-1992 Batini C., Ceri S., Navathe S.: Conceptual Database Design: An Entity-Rela-
tionship Approach. Benjamin/Cummings, 1992.

Batini et al.-1993 Batini C., Di Battista G., Santucci G.: Structuring Primitives for a Dictionary of
Entity Relationship Data Schemas. IEEE TSE, 19(4), 1993.

Baxter-1997 Baxter I., Mehlich M.: Reverse Engineering is Reverse Forward Engineering. In
Proc. of 4th Working Conference on Reverse Engineering (WCRE’97), The
Netherlands, 1997. IEEE computer Society Press.

Bennet-1995 Bennett K.: Legacy Systems: Coping with Success. IEEE Software, 12(1):19-
23, 1995.
Program Understanding in DBRE 237

References
Binkley et al.-1996 Binkley D., Gallagher K.B.: Program slicing, Technical report Loyola College
in Maryland, 1996.
http://www.cs.loyola.edu/~kbg/survey.ps.gz.

Blaha et al.-1995 Blaha M.R., Premerlani W.J.: Observed Idiosyncracies of Relational Database
Designs. In Proc. of the 2nd Working Conf. on Reverse Engineering
(WCRE’95), Toronto, July 1995. IEEE Computer Socity Press.

Blaha-1996 Blaha M.: A Catalog of Object Model Transformations, in Proc. of the 3rd
Working Conf. on Reverse Engineering (WCRE’96), Monterey, 1996. IEEE
computer Society Press.

Bolois et al.-1994 Bolois G., Robillard P.: Transformations in Reengineering Techniques. In Proc.
of the 4th Reengineering Forum "Reengineering in Practice", Victoria, Canada,
1994.

Brodie et al.-1995 Brodie M.L., Stonebraker, M.: Migrating legacy systems. Gateways, Interfaces
and the incremental approach. Morgan, 1995.

Casanova et al.-1983 Casanova M.A., Amaral de Sa J.E.: Designing Entity-Relationship Schemes
for Conventional Information Systems. In P.P. Chen, editor, Proc. of the Interna-
tial Conference on Entity-Relationship Approach (ER'83), pages 265-277, 1983.

Casanova et al.-1984 Casanova M.A., Amaral De Sa.: Mapping uninterpreted Schemes into Entity-
Relationship diagrams: two applications to conceptual schema design. IBM J.
Res. & Develop., 28(1), 1984.

Chiang-1995 Chiang R.H.L: A Knowledge-Based System for Performing Reverse engineer-
ing of Relational Databases. Decision Support Systems, 13:295-312, 1995.

Chiang et al.-1996 Chiang R.H.L., Barron T., Storey, V.: A framework for the design and evalua-
tion of database reverse engineering methods. Data & Knowledge Engineering,
21(1) 57-77, 1996.

Chikofsky-1990 Chikofsky E.J., Cross II J.H.: Reverse engineering and design recovery: A tax-
onomy. IEEE Software, 13, 1990.

Choi et al.-1993 Choi J.-D., Burke M., Carini P.: Efficient flow-sensitive interprocedural Com-
putation of Pointer-Induced Aliases and Side Effects. In Proc. of Conference
Record of the Twentieth ACM Symposium on Principles of Programming Lan-
guages, pages 223-245, 1993.

Choi et al.-1994 Choi J.-D., Ferrante, J.: Static slicing in the presence of goto statements. ACM
Transaction of Programming Languages and Systems, 16(4), 1994.

Comyn et al.-1996 Comyn-Wattiau I., Akoka J.: Reverse Engineering of Relational Database
Physical Schema. In Proc. of the International Entity-Relationship Conference
(ER’96), pages 372-391, Germany, 1996.

Corbi-1989 Corbi T.A.: Program Understanding: Challenge for the 1990s. IBM System Jour-
nal, 28(2), 1989.

D’Atri et al.-1984 D’Atri A., Sacca D.: Equivalence and Mapping of Database Schemes. In Proc.
of the 10th VLDB Conf., Singapore, 1984.

Davis et al. - 1985 Davis K., Arora A.K.: A Methodology for Translating a Conventional File Sys-
tem into an Entity-Relationship Model. In Proc. of the 4th International Confer-
ence on Entity-Relationship Approach (ER’85), pages 148-159. IEEE Computer
238 Program Understanding in DBRE

Society and North-Holland, 1985.

Davis et al.-1987 Davis K., Arora A.: Converting a Relational Database Model into an Entity-
Relationship Model. In Salvatore T. March, editor, Proc. of the 6th Internatial
Conference on Entity-Relationship Approach (ER’87), pages 271-285, 1987.

De Troyer-1993 De Troyer O.: On data schema transformation. PhD Thesis, University of Til-
burg, Tilburg, The Netherlands, 1993.

Delcroix et al.-2001 Delcroix C., Thiran Ph., Hainaut J.-L.: Approche Transformationnelle de la
Réingénierie des Données. Ingénierie des Systèmes d'Information (Réingénierie
des données et des documents sur le web), 6(1), 2001.

Delvaux-1996 Delvaux P.: Volume: Estimation des Volumes. Technical report, computer sci-
ence department, University of Namur, Belgium, 1996.

Detienne et al.-2001 Detienne V., Hainaut, J.-L.: CASE Tool Support for Temporal Database
Design. In Proc of ER’2001, Yokohama, Japan, 2001. Springer-Verlag.

Dumpala et al.- 1983 Dumpala S.R. Arora S.K.: Schema Translation using the Entity-Relationship
Approach. In Proc. of the Internatial Conference on Entity-Relationship
Approach (ER'83), pages 337-356, 1983.

Englebert-2000 Englebert V.: Voyager 2 (version 6.0) - Reference Manual. Technical report,
Computer Science Departement, University of Namur, Belgium, 2000.

Fahrner et al.-1995 Fahrner C., Vossen G.: A survey of database design transformations based on
the Entity-Relationship model. Data Knowledge Engineering, 15(3), 1995.

Ferrante et al.-1987 Ferrante J., Ottenstein K., Warren J.: The Program Dependence Graph and its
Use in Optimization. ACM Transactions on Programming Languages and Sys-
tems, 9(3):319--349, July, 1987.

Fong et al. - 1993 Fong J., Ho M.: Knowledge-Based Approach for Abstracting Hierarchical and
Network Schema Semantics. In Proc. on the 12th International Conference on
the Entity-Relationship Approach (ER'93), USA, 1993

Garcia et al.-1995 Garcia-Solaco M., Saltor F., Castellanos M.A: Structure Based Schema Integra-
tion Methodology. In Proceedings of the 11th International Conference of
Interoperable Database Systems, IEEE CS Press, pp. 505-512, 1995

Hainaut-1981 Hainaut J.-L.: Theoretical and Practical Tools for Data Base Design. In Proc. of
the Very Large Data Bases, 7th International Conference, pages 216-224,
France, 1981. IEEE Computer Society.

Hainaut-1989 Hainaut J.-L.: A Generic Entity-Relationship Model. In Proc. of the IFIP WG
8.1 Conf. on Information System Concepts: an In-depth Analysis, 1989. North-
Holland.

Hainaut-1991 Hainaut J.-L.: Database Reverse Engineering, Models, Techniques and Strate-
gies. In Proc of the 10th Conf. on Entity-Relationship Approach (ER’91), USA,
1991.

Hainaut et al.-1993a Hainaut J.-L., Chandelon M., Tonneau C. and Joris M.: Contribution to a The-
ory of Database Reverse Engineering. In Proc. of the Working Conference on
Reverse Engineering (WCRE’93), Baltimore, 1993. IEEE Computer Society
Press.
Program Understanding in DBRE 239

References
Hainaut et al.-1993b Hainuat J.-L., Chandelon M., Tonneau C., Joris M.: Transformational Tech-
niques for Database Reverse Engineering. In Proc. of the 12th International
Conf. on ER Approach, Arlington-Dallas, LNCS. E/R instuture and Springer-
Verlag, 1993.

Hainaut et al.-1994 Hainaut J.-L., Englebert V., Henrard J., HickJ.-M., Roland D.: Evolution of
Database Applications: The DB-MAIN Approach. In Proc. of the 13th Int.
Conf. on ER Approach (ER’94), Manchester, 1994. Springer-Verlag.

Hainaut et al.-1995 Hainaut J.-L., Englebert V., Henrard J., Hick J.-M., Roland D.: Requirements
for Information System Reverse Engineering Support. In Proc. of the 2nd IEEE
Working Conf. on Reverse Engineering (WCRE’95), Toronto, July, 1995. IEEE
Computer Society Press.

Hainaut et al.-1996a Hainaut J.-L.: Specification Preservation in Schema Transformations: Appli-
cation to Semantics and Statistics. Data & Knowledge Engineering, Elsevier
Science, 19:99-134, 1996.

Hainaut et al.-1996b Hainaut J.-L., Roland D., Hick J-M., Henrard J. and Englebert V.: Database
Reverse Engineering: from Requirements to CARE Tools. Journal of Auto-
mated Software Engineering, 3(1), 1996.

Hainaut et al.-1996c Hainaut J.-L., Hick J.-M., Englebert V., Henrard J., Roland D.: Understanding
Implementation of IS-A Relations. In Proc. of the 15th Conf. on ER Approach
(ER’96), Cottbus, 1996. Springer-Verlag.

Hainaut-1997a Hainaut J.-L., Hick J.-M., Henrard J., Englebert V., Roland D.: The Concept of
Foreign key in Reverse Engineering: A Pragmatic Interpretative Taxonomy.
Technical report, Computer Science Departement, University of Namur, Bel-
gium, 1997.

Hainaut et al.-1997b Hainaut J.-L., Englebert V., Hick J.-M., Henrard J., Roland D.: Knowledge
Transfer in Database Reverse Engineering - A Supporting Case Study. In Proc.
of the 4th IEEE Working Conference on Reverse Engineering (WCRE’97),
Amsterdam, The Netherlands, 1997. IEEE Computer Society Press.

Hainaut et al.-1997c Hainaut J.-L., Henrard J., Hick J.-M., Roland D., Englebert V.: Contribution
to the Reverse Engineering of OO Applications - Methodology and Case Study.
In Proc. of the IFIP 2.6 WC on Database Semantics (DS-7), Leysin, Switzer-
land, 1997. Chapman-Hall.

Halpin-1995 Halpin T.A., Proper H.A: Database Schema Transformation and Optimization.
In Proc. of the 14th Int. Conf. on ER/OO Modelling (ER’95), 1995.

Henrard et al.-1998a Henrard J., Englebert V., Hick J.-M., Roland D. , Hainaut, J.-L.: Program
understanding in databases reverse engineering. In Proc. of DEXA’98, Vienna,
1998.

Henrard et al.-1998b Henrard J., Roland D., Englebert V., Hick J.-M., Hainaut J.-L.: Outils d’anal-
yse de programmes pour la rétro-conception de bases de données. In Actes du
Xème Congrès INFORSID, Montpellier, 1998.

Henrard et al.-1999 Henrard J., Hainaut J.-L., Hick J.-M., Roland D., Englebert V.: Data structure
extraction in database reverse engineering. In Proc. REIS'99 Workshop (ER'99),
Springer Verlag, LNCS 1727, 1999.

Henrard et al.-2000 Henrard J., Hainaut J.-L., Hick J.-M., Roland D., Englebert, V.: From Micro-
240 Program Understanding in DBRE

Analytical Method to Mass Processing - The Economic Challenge. In Proc. of
the Workshop on Data Reverse Engineering (DRE’2000), Zurich, Switzerland,
2000.

Henrard et al.-2001 Henrard J., Hainaut J.-L.: Data dependency elicitation in database reverse
engineering. In Proc. of the 5th European Conference on Software Maintenance
and Reengineering (CSMR 2001), Portugal, 2001. IEEE Computer Society
Press.

Henrard et al.-2002 Henrard J., Hick, J.-M., Thiran, Ph., Hainaut, J.-L.: Strategies for Data Reengi-
neering. In Proc. of the 9th Working Conference on Reverse Engineering
(WCRE'02), Richmond, 2002. IEEE Computer Society Press.

Hick-2000 Hick J.-M.: DB-MAIN Project: Transformations. Technical report, Computer
Science Departement, University of Namur, Belgium, 2000.

Hick-2001 Hick J.-M.: Evolution d'Applications de Bases de Données Relationnelles:
Méthodes et Outils. PhD thesis, Computer Science Departement, University of
Namur, Belgium, 2001.

Horwitz et al.-1990 Horwitz S., Reps T., and Binkley D.: Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26-
-60, January, 1990.

IBM-1998 IBM: The Year 2000 and 2-Digit Dates: A Guide for Planning and Implementa-
tion. Technical report GC28-1251-08, 1998.

Jahnke et al.-1999 Jahnke J.-H., Wadsack J.P.: Varlet: Human-Centered Tool Support for Database
Reengineering. In Ebert J., Kulllbach B., Lehner, F., editor, Proc. of Workshop
on Software-Reengineering, Germany, 1999.

Jahnke-1999 Jahnke J.-H.: Managing Uncertainty and Inconsistency in Database Reengi-
neering Processes. PhD Thesis, University of Paderborn, Germany, 1999.

Jajodia et al.-1983 Jajodia S., Ng P., Springsteel F.: The problem of Equivalence for Entity-Relatin-
ship Diagrams. IEEE Transaction on Software Engineering, 9(5), 1983.

Johannesson-1994 Johannesson P.: A Method for Transforming Relational Schemas into Concep-
tual Schemas, in Proc. of the 10th Int. Conf. on Data Engineering, USA, pages
190-201. IEEE Computer Society, 1994.

Joris et al.-1992 Joris M., Van Hoe R., Hainaut J.-L., Chandelon M., Tonneau C., Bodart F. et al.:
PHENIX: Methods and Tools for Database Reverse Engineering. In Proc 5th
International Conf. on Software Engineering and Applications, Toulouse, 1992.
EC2 Publish.

Klösch-1996 Klösch R.: Reverse Engineering: Why and How to Reverse Engineer Software.
In Proc. of the California Software Symposium (CSS’96), 1996.

Kobayashi-1986 Kobayashi I.: Losslessness and Semantic Correctness of Database Schema
Transformation: Another Look of Schema Equivalence. Information Systems,
11(1):41-59, 1986.

Korel et al.-1988 Korel B., Laski J.: Dynamic Program Slicing. Information Processing Letters,
29(3): 155-163, 1988.

Landi et al.-1992 Landi W., Ryder B.: A Safe Approximate Algorithm for Interprocedural Pointer
Aliasing. In Proc. of the 1992 ACM Conference on Programming Language
Program Understanding in DBRE 241

References
Design and Implementation, pages 235-248, SIGPLAN Notices 27(7), 1992.

Lee et al.-2000 Lee H., Yoo C.: A Form Driven Object-Oriented Reverse Engineering Method-
ology. Information Systems, 25(3):235-259, 2000.

Leintz et al.-1980 Leintz B.P., Swanson E.F.: Software maintenance Management. Addison-Wes-
ley, 1980.

Lien-1982 Lien Y.E.: On the Equivalence of Database Models. Journal of the ACM, 29(2),
1982.

Lopes et al.-2002 Lopes S., Petit J.-M., Toumani F.: Discovering interesting inclusion dependen-
cies: application to logical database tuning. Information Systems, 27:1-19, 2002.

Markowitz et al.-1990 Markowitz V.M., Makowsky J.A.: Identifying Extended Entity-Relation-
ship Object Structure in Relational Schemas. IEEE transaction on software
engineering, 16(8):777-790, 1990.

Mills-1988 Mills, E.: Software Metrics. Technical report, SEI Curriculum Module SEI-CM-
12-1.1, 1988.

Moonen - 2002 Moonen, L.: Exploring Software Systems.. PhD thesis, University of Amster-
dam, The Netherlands. 2002.

Müller-1996 Müller H.: Understanding Software Systems Using Reverse Engineering Tech-
nologies Research and Practice. In Proc. of 18th International Conference on
Software Engineering, Berlin, Germany, 1996.

Navathe-1980 Navathe S.B.: Schema Analysis for Database Restructuring. ACM TODS, 5(2),
1980.

Navathe et al.-1987 Navathe S.B., Awong A.M.: Abstracting Relational and Hierarchical Data
with a Semantic Data Mode. In Proc. of the 6th Internatial Conference on
Entity-Relationship Approach (ER’87), pages 305-333, 1987.

Ottenstein et al.-1994 Ottenstein K.J., Ottenstein L.M.: The program dependence graph in a soft-
ware development environment. In Proc. of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development
Environments, 1994.

Petit et al.-1994 Petit J.-M., Kouloumdjian J., Bouliaut J.-F., Toumani F.: Using Queries to
Improve Database Reverse Engineering. In Proc. of the 13th int. Conf. on ER
Approach (ER’94), Manchester, 1994. Springer-Verlag.

Petit-1996 Petit J-M. Fondements pour un Processus Réaliste de Rétro-Conception de
Bases de Données Relationnelles. PhD thesis, University Lyon I, France, 1996.

Premerlani et al.-1993 Premerlani W.J., Blaha M.R.: An approach for Reverse Engineering of
Relational Databases. In Proc. of the Working Conf. on Reverse Engineering
(WCRE’93). IEEE Computer society Press, 1993.

Puerta et al.-2002 Puerta A., Eisenstein J.: XIML: A Common Representation for Interaction Data.
In Proc. of the IUI’02, San Francisco, USA, 2002.

Quilici et al.-1997 Quilici A., Woods S., Zhang Y.: New Experiments With A Constraint-Based
Approach To Program Plan Matching. In Proc. of the ourth IEEE Working Con-
ference on Reverse Engineering (WCRE’97), The Netherlands, 1997.

Ramanathan et al.-1996 Ramanathan S., Hodges J.: Reverse Engineering Relational Schemas to
242 Program Understanding in DBRE

Object-Oriented Schemas, techreport 960701, Department of Computer Sci-
ence, Mississippi State University, 1996.

Rauh et al.-1995 Rauh O., Stickel E.: Standard Transformations for the Normalization of ER
Schemata. In Proc. of the CAiSE’95 conf., LNCS, Jyvaskyla, Finland, 1995.
Springer-Verlag.

Robbins-2002 Robbins A.: sed & awk Pocket Reference. O’Reilly, 2002.

Roland et al.-2000 Roland D., Hainaut J.-L., Hick J.-M., Henrard J., Englebert V.: Database Engi-
neering Processes with DB-MAIN. In Proc. of the 8th European Conf. on Infor-
mation Systems (ECIS2000), Vienna, Austria, 2000.

Rosenthal et al.-1988 Rosenthal A., Reiner D.: Theoretically Sound Transformation for Practical
Database Design. In March, editor, Proc. of the 6th International Conf. on
Entity-relationship Approach (ER’98), 1988. North-Holland.

Rosenthal et al.-1994 Rosenthal A., Reiner D.: Tools and Transformations: Rigorous and Other-
wise - for Practical Database Design. ACM TODS, 19(2), 1994.

Rugaber-1995 Rugaber S.: Program Comprehension. Technical report, Georgia Institute of
Technology, 1995.
ftp://ftp.cc.gatech.edu/pub/groups/reverse/repository/encyc.ps.

Sellink et al.-2000 Sellink A., Verhoef C.: Scaffolding for Software Renovation. In Proc. of the
Conference on Software Maintenance and Reengineering (CSMR’2000), pages
161-172, Switzerland, 2000.

Signore et al.-1994 Signore O., Loffredo M., Gregori M., Cima M.: Using Procedural Patterns in
Abstracting Relational Schemata. In Proc. 3rd Workshop on Program Compre-
hension, 1994.

Sneed-1991 Sneed H.: Economics of Software Re-engineering. Software Maintenance and
Practice, 3:163-182, 1991.

Sneed-1995 Sneed H.: Planning the Reengineering of Legacy Systems. IEEE Software,
12(1):24-34, 1995.

Tan et al.-1997 Tan Hee., Ling T.: A method for the recovery of inclusion dependencies from
data-intensive buisness programs. Information and Software Technology, 39:27-
34, 1997.

Tangorra et al.-1995 Tangorra F., Chiarolla D.: A methodology for reverse engineering hierarchical
databases. Information and Software Technology, 37(4):225-231, 1995.

Thiran et al.-2000 Thiran Ph., Chougrani A., Hainaut J.-L., Hick J.-M.: CASE Support for the
Development of Federated Information Systems. In Proc. of the 3rd Interna-
tional Workshop on Engineering Federated Information Systems (EFIS 2000),
Dublin, 2000.

Tilley-1996 Tilley S.: Perspectives on Legacy System Reengineering. Technical report, Car-
negie Mellon University, 1996.
http://www.sei.cmu.edu/reengineering/pubs/lsysree/lsysree.html.

Tilley-1998 Tilley S.: A reverse-engineering environment frameword. Technical report
CMU/SEI-98-TR-005, Carnegie Mellon University, 1998.
http://www.sei.cmu.edu/publications/documents/98.reports/98tr005/
98tr005abstract.html.
Program Understanding in DBRE 243

References
Tilley-1998b Tilley S.: Coming attractions in program understanding II: Highlights of 1997
and opportunities in 1998. Technical Report CMU/SEI-98-TR-001, Carnegie
Mellon University, 1998.

Tip-1994 Tip F.: A survey of program slicing techniques. Technical report CS-R9438,
CWI, 1994.
ftp://ftp.cwi.nl/pub/CWIreports/AP/CS-R9438.ps.

van Deursen et al.-1998 van Deursen A., Kuipers T.: Rapid System Understanding: Two COBOL
Case Studies. Technical Report SEN-R9805, CWI, The Netherlands, 1998.

Vermeer et al.-1995 Vermeer M, Apers P.: Reverse Engineering of Relational Database Applica-
tions. In Proc. of the Object-Oriented and Entity-Relationship Modelling
(OOER’95), 1995.

von Mayrhauser et al.-1993 von Mayrhauser A., Vans M.: From Program Comprehension to Tool
Requirements for an Industrial Environment. In Proc. of Second Workshop on
Program Comprehension, 1993.

von Mayrhauser et al.-1994 von Mayrhauser A., Vans A. M.: Program Understanding -- A Survey.
Technical Report CS-94-120, Colorado State University, Computer Science
Department, 1994.
http://www.cs.colostate.edu/~ftppub/TechReports/1994/tr-120.pdf.

Weiser-1984 Weiser M.: Program Slicing. IEEE TSE, 10(4):352-357, 1984.

Wilde-1990 Wilde N.: Understanding program dependencies. Technical report CM-26, 1990
 http://www.sei.cmu.edu/publications/documents/cms/cm.026.html.

Winans et al. - 1990 Winans J., Davis K.: Software Reverse Engineering from a Currently Existing
IMS Database to an Entity-Relationship Model, In Proceedings of the 9th Inter-
national Conference on Entity-Relationship Approach (ER’90), pages 345-360,
Switzerland, 1990.

Winter - 2002 Winter A.: GXL - Overview and Current Status. In Proc of the Int. Workshop on
Graph-Based Tools (GraBaTs), Barcelona, Spain, 2002.

XMI - 2002 OMG XML Metadata Interchange (XMI) Specification, 2002.

Young-1996 Young P.: Program Comprehension. Technical report, Center for Software
Maintenance, 1996.
http://www.dur.ac.uk/~dcs3py/pages/work/Documents/
244 Program Understanding in DBRE

�����
���	
	�	�
��������	
���
��������
�����������
������������
�� �
���

���������	
���
�	
�	���	
�
�
���������������	��	����	�

�		��

Jean HENRARD

Thesis submitted for the degree of Doctor of Science
(Computer Science Option)

Jury :Professor Jean Fichefet, Institut d’informatique, FUNDP (President)
Professor Jean-Luc Hainaut, Institut d’informatique, FUNDP (Supervisor)
Doctor Rainer Koschke, Universität Stuttgart, Germany
Doctor Jean-Marc Petit, Université Blaise Pascal, Clermond-Ferrand, France
Professor Jean-Marie Jacquet, Institut d’informatique, FUNDP

August 2003

ii Program Comprehension in DBRE 17/9/2003

ANNEX A DBRE tools user
manual
This annex presents the user manual of the DB-MAIN specific DBRE tools

A.1. Pattern definition language

The pattern definition language (PDL) is used to define the patterns to be used in the search tool
(Assist - Text analysis - Search) (A.2) by a procedure triggered by a pattern (Assist - Text analysis
- Execute) (A.3) and by the variable dependency graph (Assist - Text analysis - Dependency)
(A.4). This section describes the PDL syntax and how to load a PDL file into DB-MAIN.

A.1.1. The syntax

The PDL syntax is given as a BNF grammar. The non terminal element are noted by <...> and the
reserved symbols of the language are in bold.

<pattern>:
<pattern_name>::= <segment>*;

<segment>:
<terminal_seg>

| <pattern_name>
| <variable>
| <range>
| <optional_seg>
| <repeat_seg>
| <group_seg>
| <choice_seg>
| <regular_expr>

<variable>:
@<pattern_name>
Program Understanding in DBRE 1

The ’@’ symbol indicates that the segment is a variable. If a variable appears two times in a
segment, then both occurrences have the same value. When a pattern is found, the value of

the variables can be known. A variable can not appear in a repetitive structure.
<range>:

range(c1-c2)
Is any character between c1 and c2. c1 and c2 are two characters.

<optional_seg>:
[<segment>]

Optional segment

<repeat_seg>:
 <segment>*

Repetitive segment

<group_seg>:
(<segment>*)

<choice_seg>:
{<segment> | ... | <segment>}

Any of the segment.

<regular_exp>:
/g"<a regular expression>"

<terminal_seg>:
"a string"

/t = tabulation; /r/n = new line

<pattern_name>:
[A-Za-z0-9][A-Za-z0-9]0-29

The characters that form regular expressions (<a regular expression>) are:

• . Matches any single character.

• * Matches 0 or more copies of the preceding expression.

• + Matches 1 or more copies of the preceding expression.

• [...] Matches any character within the brackets, e.g. [0,1,2] means 0 or 1 or 2.

• [x-y] Is a notation for a character range, e.g., [0-4] means [0,1,2,3,4].

• ? Matches 0 or 1 occurrence of the previous expression.

• "..." Matches exactly the content enclosed between quotes.

• /t Denotes the tabular.

• /r/n Denotes the newline characters.

A forward reference is not allowed in a pattern definition. That means that if a pattern is used in the
definition of another pattern, that pattern must be defined before.
2 Program Understanding in DBRE

A.1.2. Examples
- ::= /g"[/r/n/t]+";

The name of the pattern is -, its definition is /g"[/r/n/t]+". This pattern is a regular expression
(/g"..."). The regular expression [...] matches any characters within the brackets and the +
matches one or more occurrences of the preceding expression. This pattern matches at least one
"space" (space, new line or tab).

~ ::= /g"[/r/n/t]*";

Almost the same as the previous one, except * matches zero or more occurrences of the preceding
expression.

var ::= /g"[a-zA-Z][-a-zA-Z0-9]*";

A COBOL variable.

var_1 ::= var;
var_2 ::= var;

Those two patterns are just two different names to the pattern var.

move ::= "MOVE" - @var_1 - "TO" - @var_2 ;

This pattern matches the COBOL move instruction. It matches the characters "MOVE", followed by
the pattern - (a mandatory space), followed by the pattern var_1 that is assigned to a variable
named var_1 (because of the @), followed by the pattern -, followed by the characters "TO",
followed by the pattern -, followed by the pattern var_2 that is assigned to the variable var_2.

A.1.3. In DB-MAIN

FIGURE 171. The load/edit pattern dialog box.

The patterns are stored into two text files, main and secondary. The secondary patterns file contains
the definitions of patterns that are the basic patterns used by other patterns. The secondary patterns
file contains for example the definition of the spaces (mandatory or not), of the variables in the
target language. On the other side, the main patterns file contains, for example, the definition of the
assignment, of the comparison.

1. The secondary pattern file.

2. Edit the secondary pattern file.

3. Changes the name of the secondary pattern
file.

4. The main pattern file.

5. Edits the main pattern file.

6. Changes the name of the main pattern file.

7. Compiles the pattern files.

1
2

3

4
6

5

7

Program Understanding in DBRE 3

To specify the patterns files to load, use the Assist - Text analysis - Load pattern command. The
Load / Edit Pattern dialog appears (figure 171). The top part of the window contains the name of
the secondary file. The button Edit (2) is used to edit the secondary file and the Browse (3) button
is used to browse the disks to find the secondary patterns file. The middle part of the window
contains the name of the main patterns file. The button Edit (5) is used to edit the main file and the
Browse (6) button is used to browse the disks to find the main patterns file.

When the Ok button is clicked, the patterns are compiled and become the patterns used by different
text analysis tools as search and variable dependency graph. If an error occurs during the compila-
tion, an error message is displayed and there is no pattern available in the text analysis tools.

A.2. Search for text pattern

The command Assist - Text analysis - Search is used to search for a pattern in a text file or in the
descriptions or the names of the objects of a schema. The variables of the pattern can be instantiated
before the search. When a pattern matches a string, it is possible to see the value assigned to the
variables.

A.2.1. Search for a pattern

FIGURE 172. The Search dialog box.

Assist/Text analysis/Search (<ctrl-F>) is used to search for a pattern in the Search dialog box
(figure 172). The combo box Pattern (1) contains the list of all the defined patterns. The definition
of the selected pattern appears in the text below (2) and its variables appear in the bottom list box
(4), with their values if they are instantiated. The first pattern of the list (user def) is a special one
that has no definition, and it is up to the user to write it in the text below, the usual PDL syntax must

1

2

3

4

6

5

7

8

910

1. The list of the patterns.

2. The definition of the selected pattern.

3. Text edit used to change the value of a
variable.

4. The list of the variables.

5. In a schema, search in the semantic
and/or technical descriptions and/or
the object’s name.

6. Start the search.

7. Change the value of the current vari-
able to the value displayed in (3).

8. Clear the current variable.

9. Clear all the variables.

10. If checked, the search is case sensitive.

11. If checked, all the lines or the objects
that contain the pattern are selected.
4 Program Understanding in DBRE

be used. This pattern is used to look for a "one shot" pattern, that is not saved into the pattern files.
If case sensitive is checked (10), then the search is case sensitive.

If a variable is instantiated before the search, the variable is replaced by its value. Otherwise the
variable is replaced by its definition. To instantiate a variable, selected it into the list of variables,
type its value into the Value text box (3) and then click on the Change button (7). Its new value
appears into the list of variables. To clear the value of the selected variable (to uninstantiate it),
click on the Clear button (8). To clear the value of all the variables (to uninstanciate all to them),
click on the Clear all button (9).

If the search take place into a schema, three check boxes appear in the bottom of the window.
Check one or all of them to specify if the search must take place into the semantic or/and technical
descriptions or/and in the name of the objects.

If the Select all button is checked, all the lines (if the search take place into a text) or all the objects
(if the search take place into a schema) that contains the pattern are selected. Otherwise only the
next line or the next object that matches the pattern is selected.

Click on the OK button to start the search.

If the search take place into a text file, it starts at the line that follows the current line, if there is no
current line, it starts at the first one. And it goes from one line to the next until the pattern match.

If it take place into a textual view of a schema, its start at the object that follow the current one.

If it take place into a graphical view of a schema, the order of the search is unpredictable. If no
object is selected, the search take place in all the schema.

A.2.2. Search next

To search for the next occurrence of the pattern use the command Assist - Text analysis - Search
next or the <F3 > key.

A.3. Procedure triggered by a pattern

It is possible to search for a pattern into a text or into the description of a schema and each time the
pattern matches a procedure is executed. The variables of the pattern are the parameters of the
procedure. The pattern is search until the end of the text or of the schema.

To execute a procedure when a pattern is found can be useful to automate tasks. For example, if the
views into a SQL-DDL represent subtype of table, it is possible to search for the entity types that
represent views into the schema (their definition are in the technical description of the entity types)
and for each of them create the is-a relation to connect them to their super-type (the table).
Program Understanding in DBRE 5

A.3.1. Usage

FIGURE 173. The procedure triggered by a pattern dialog box.

The command Assist/Text analysis/Execute allows executing a Voyager2 procedure each time a
pattern is found.

The left side of the Procedure linked to Pattern dialog (figure 173) is the same as the Search dialog
box. Except that, if it is call from a text file there are three pseudo-variables (file name, line
num, pattern) and if it is call from a schema there is a pseudo-variable (pattern). File name is
instantiated with the name of the file in which the search takes place, line num is the number of
the line in which start the pattern (the pattern may be on several lines) and pattern is the instanti-
ation of the pattern.

The right side of the dialog box contains the procedure to be executed each time the pattern on the
left side is found. The Program V2 text box (9) contains the name of the program (oxo file), the
Browse button (10) can be used to find the program. When a program is selected, the Procedure
V2 combo box (11) contains the list of procedures exported by the program. Select the procedure to
be executed.

The list box below the name of the procedure (16) must be filled by the variables of the pattern that
are used as parameter of the procedure. To fill this list, select a variable in the list of the pattern’s

1

2

3

4

65 7

8

9 10

11

10

15

13

12

16

14

17
1. The list of the patterns.

2. The definition of the selected pattern.

3. The value of the current variable, used to
edit its value.

4. The list of the variables.

5. Changes the value of the current variable
(4).

6. Clears the current variable (4).

7. Clears all the variables.

8. In a schema, search in the semantic and/or
technical descriptions.

9. The program.

10. Changes the program.

11. The procedure to be executed.

12. The description of the procedure.

13. Adds the current variable (4) as the first
parameter of the procedure (16).

14. Adds the current variable (4) as the next
parameter of the procedure (16).

15. Removes the current parameter (16).

16. List of the parameters of the procedure.

17. If checked, the search is case sensitive.
6 Program Understanding in DBRE

variables (4) and the click on the First (13) or Next (14) buttons. To remove a variable from the list
(16), select it and click on the Remove button (15).

Click on the OK button, then the search start at the selected line (if the search take place into a text
file) or at the current object, until the end. Each time the pattern match, the procedure is executed.

A.3.2. Example (1)

This example shows how to generate a report of all the assignment instructions found into a
COBOL program. For each move instruction, the line number of the instruction and the two vari-
ables (the origin and the target of the assignment) are printed.

The patterns used to search into the source text are the following:

The move procedure is called to display the report, the procedure is declared export, because it
must be call from outside the voyager program.

A.3.3. Example (2)

In this example, SQL views represent sub-types of a table. The views are defined as follow

The SQL extractor extracts views as entity types and puts the declaration of the views into the tech-
nical description of the entity type. The tables are extracted as entity types.

The purpose of the example is to create is-a relations between the super types (the tables) and their
sub-type (the views). To know to which table a view must be connected, the declaration of the view
(stored into the technical description) is search for the follow code fragment:

from <table> where <column> = <string>

create view (.....)
as select (.......)
from <table>
where <column> = <string>;

- ::= /g"[/n/t/r]+";
~ ::= /g"[/n/t/r]*";
var ::= /g"[a-zA-Z][-a-zA-Z0-9]*";
var_1 ::= var;
var_2 ::= var;
move ::= "MOVE" - @var_1 - "TO" - @var_2 ;

export procedure move(string: var_1,
string : var_2,
 string : file_name, string : line)
{

SetPrintList("","","");
print ([file_name, ",", line, " : ",

var_2, "-->", var_1, "\n"]);
}

Program Understanding in DBRE 7

When such a fragment is found, an is-a relation can be created between the view (the entity type
that contains the code fragment in its technical description) and the table (the entity type of name
<name>)..

The patterns of figure 174 are used to search into the technical description are the following.

FIGURE 174. Declaration of the pattern from.

The Voyager2 function, create_is_a, is called to create the is-a relation. It has one argument, the
name of the super-type (the table). It creates the is-a between the super-type and the current entity
type (the view).

export procedure create_is-a(string: table)
/* creates a is-a relation between the entity type of name

’table’ and the current entity type*/
 data_object : d_obj;
 schema : sch;
 entity_type : sub_ent;
 entity_type : super_ent;
{
 SetPrintList("","","");

 sch := GetCurrentSchema();
/* get the current schema*/
 if IsVoid(sch) then {
/* if there no current schema return an error */
 print("No Schema !\n");
 return;
 }

 go :=GetCurrentObject();
/* get the current object */
 if IsVoid(go)
 then {
/* if there is no current object, return an error */
 print("No current object !\n");
 return;
 }
 if (GetType(go) <> ENTITY_TYPE)
 then {
/* if the current object is not an entity type, return an

error */
 print("The current object is not a entity type !\n");
 return;
 }
 sub_ent := go;

/* ’sup_ent’ is the entity type of name ’table’ */
 sup_ent := GetFirst(DATA_OBJECT[d_obj]{@SCH_DATA:[sch]
 with ((GetType(d_obj) = ENTITY_TYPE)
 and (d_obj.name = table))});

/* ’l_clu’ is the list of cluster connected to the super
type*/

 l_clu := CLUSTER[clu]{@ENTITY_CLU:[sup_ent]};

 if(Length(l_clu) = 1) then
 {

- ::= /g"[/n/t/r]+";
string ::= /g"’.*’";
name ::= /g"[a-zA-ZO-9_]+";
table ::= name;
column ::= name;
from ::= "from" - @table - "where" - column - "=" - string;
8 Program Understanding in DBRE

The usage of this pattern and of the create_is_a procedure will be illustrate on an example. The
procedure triggered a pattern tool is used on the raw physical schema of figure 175. To ease the
understanding of the schema the view declaration code have been represented as textual annotation.

FIGURE 175. The raw physical schema.

To create the is-a relation, nothing is selected into the schema and the command Assist - Text anal-
ysis - Execute is executed. from is selected as the pattern, create_is_a.oxo as the program,
create_is_a as the procedure and the procedure has only one parameter (table).

When the Ok button is clicked, the is-a relation is created to produce the refine schema of figure
176

FIGURE 176. The Schema with the is-a relation created.

 /* if the super type has a cluster, use it */
 clu := GetFirst(l_clu);
 }
 else
 {
/* if the super type has no cluster, create it */
 clu := create(CLUSTER, name : sup_ent.name, total : 0,
 disjoint : 0, @ENTITY_CLU : sup_ent);
 }

/* connect the sub-type to the cluster */
 sub_t := create(SUB_TYPE, @CLU_SUB : clu,
 @ENTITY_SUB : sub_ent);
}

PERSON
NAME
ADDR
YEAR[0-1]
SALARY[0-1]
TYPE

PROFESSOR
NAME[0-1]
ADDR[0-1]
SALARY[0-1]

STUDENT
NAME[0-1]
ADDR[0-1]
YEAR[0-1]

create view PROFESSOR (NAME, ADDR, SALARY) as
 select NAME, ADDR, SALARY from PERSON
 where TYPE = ’P’;
create view STUDENT (NAME, ADDR, YEAR) as
 select NAME, ADDR, YEAR from PERSON
 where TYPE = ’S’;

PERSON
NAME
ADDR
YEAR[0-1]
SALARY[0-1]
TYPE

PROFESSOR
NAME[0-1]
ADDR[0-1]
SALARY[0-1]

STUDENT
NAME[0-1]
ADDR[0-1]
YEAR[0-1]
Program Understanding in DBRE 9

A.4. Dependency graph

The are three steps to use the dependency graph in DB-MAIN:

• Computes the dependency graph itself.

• Changes the settings of the graph visualization.

• Visualizes the graph.

A.4.1. Computes the dependency graph

FIGURE 177. The variable dependency graph dialog box.

The dependency graph can be computed by the command Assist - Text analysis - Dependency
(figure 177). The relation between two variables is given by a pattern, which contains two PDL
variables (var_1 and var_2). The list box (1) contains the list of patterns used to compute the
dependency graph. To add a pattern to this list, select it into the combo box (2), check the check-
box oriented (5) the pattern must be oriented and then click on the Add button (3). To remove a
pattern from the list, select it and click on the Delete button (4).

All the patterns of the list box must have two variables named var_1 and var_2. The lists of vari-
ables contained into var_1 and var_2 are computed using the pattern "separator" (see below) to
separate the variables. If the arcs are oriented, they go from all the variables of var_1 to all the
variables of var_2.

The separator (10) is a pattern that marks the beginning and the end of a variable name (the sepa-
rator). This pattern can match only one character string.

If Save dependency graph (8) is checked, the dependency graph is saved into the given file (6).
The file contains two version of the dependency graph: one that contains only the relation found

1. List of patterns used to compute the
dependency graph.

2. List of available patterns.

3. Adds the current pattern (2) to the
list of patterns used to compute the
dependency graph (1).

4. Remove the selected pattern from
the list.

5. If checked, the next pattern to be
added is oriented (from var_1 to
var_2).

6. Name of the file in which the
dependency graph will be saved.

7. Opens the standard file dialog box to change the name of the file.

8. If checked, saves the dependency graph into a file.

9. If checked, the pattern is case sensitive.

10. The pattern use to find the beginning and the end of the variables.
10 Program Understanding in DBRE

using the patterns and the one that is the transitive closure of the first one. The graphs are stored in
a textual format

<variable> : <list of the variables directly reachable from the
variable>

The two graphs are separated by a line "****".

Click on OK to compute the dependency graph. It can take some time, depending on the size of the
text and of the number of patterns in the list.

A.4.2. Change the settings

FIGURE 178. The text analysis setting dialog box.

The text analysis setting dialogue can be reach by the command Assist - Text analysis - Setting
(figure 178). Only the top part of the dialog is related to the dependency graph configuration.

The Color (1) button is used to change the color in which the dependency graph will be colored
(see later). The color used is displayed into the square on the left.

A.4.3. Visualization of the dependency graph

When the dependency graph is computed. Click with the mouse’s right button on a variable into the
text file and if this variable belong to the dependency graph then all the variables backward or
forward reachable (directly or indirectly) to this variable are colored, everywhere in the text file.

1

1. Change the color in which the vari-
ables bellowing to the dependency
graph are colored.
Program Understanding in DBRE 11

Select a line with the left button of the mouse and then press the <Tab> key. The next line that
contains a colored variable will be displayed in the middle of the screen.

The pattern select into the The separator combo box is use at this level to find the beginning and
the end of the variable on which you click.

A.4.4. Configuration

FIGURE 179. Configure the dependency graph visualization.

The normal behavior of the dependency graph, is that only the variables belonging to the depen-
dency graph are colored. It can be useful to color all the occurrences of a variable even if it does not
appear in the dependency graph.

To change the behavior of the dependency graph tool, select the command File - Configuration.
The configuration dialogue appears. Select the Text analysis item into the left list box. Then the
"Only the variables of the dependency graph can be colored" is displayed, selected it. If you want
the tool colors only the variable belong to the dependency graph, unchecked the check box and
click on the Change button. If you want that the tool colored the variables even if they do not
appear in the dependency graph check the check box and click on the Change button.

When variables that are not in the dependency graph are colored, the tool can be used to color word
that are not variable. For example, if you click on the name of a procedure, each call to the proce-
dure and its declaration are colored.

A.4.5. Tips
1. If the combo box containing the available patterns is empty, it means that there is no pattern

loaded or there is a syntax error in one of the pattern. See Assist - Text analysis - Load pattern.

2. To add a new pattern or to modify an existing one, use the Assist - text analysis - Load pattern.

3. To check if the patterns used to compute the dependency graph are correct, use the command
Assist - Text analysis - Search to check that they are correct and that they match with the
expected instructions.
12 Program Understanding in DBRE

A.4.6. Remarks

The computation of the variable dependency graph is a syntactical process (it only uses the
patterns). The usage of the patterns to construct the dependency graph make the tool very flexible
and easily customizable to almost any language.

But the drawback is that the dependency graph is not award of the variables structure or of the
program’s control flow. This can lead to an incomplete graph as in the following example:

The dependency graph is the following:

and the relation between A and C is not present, because the graph is not awarded that B1 and B2 are
the two component of B.

A.4.7. Dependency graph visualization

A.4.7.1. Graph drawing

The depend.oxo program can be used to visualize the dependency graph. It displays it as an
entity/relationship schema, where the entity types represent variables and the relationship types
represent the arcs.

To use it, create an empty schema (as the current window) and execute depend.oxo. Give as
parameter the file generated by the computation of the dependency graph.

01 A pic x(10).
01 B.
 02 B1 pic x(5).
 02 B2 pic x(5).
01 C.
 02 C1 pic x(5).
 02 C2 pic x(5).

move A to B.
...
move B1 to C1.
...
move B2 to C2.

A B B1 C1 B2 C2

IND-DET : IND NEXT-DET
NEXT-DET :
SIGNALETIQUE : CLI-SIGNAL
CLI-SIGNAL : SIGNALETIQUE
CLI-CODE : COM-CLIENT
COM-CLIENT :
CLI-HISTORIQUE : LIST-ACHAT
LIST-ACHAT : CLI-HISTORIQUE
LIST-DETAIL : COM-DETAIL
COM-DETAIL : LIST-DETAIL
CODE-PROD : REF-STOCK-AC

REF-STOCK-DE STK-CODE
STK-CODE :
REF-STOCK-DE :
REF-STOCK-AC :
IND :

1-1
0-N

1-1 0-N

1-10-N

1-1 0-N

1-10-N

1-10-N

1-10-N

1-1 0-N

1-1
0-N

1-1 0-N

1-1 0-N1-10-N

STK-CODE

SIGNALETIQUE

REF-STOCK-DE

REF-STOCK-AC

NEXT-DET

LIST-DETAIL

LIST-ACHAT

IND-DETIND

COM-DETAIL

COM-CLIENT

CODE-PROD

CLI-SIGNAL

CLI-HISTORIQUE

CLI-CODE
Program Understanding in DBRE 13

A.4.7.2. Mark graph

The mark_dp.oxo program is used to mark the entity types in the dependency graph that represent
entity types or attributes of the data schema. Before executing mark_dp.oxo, make sure that de
dependency graph is in the current window. The program asks you the schema that contains the data
schema.

A.5. Program slicing

A.5.1. Use of program slicing

FIGURE 180. Dialog box to select the variables with respect to the program slice must be
calculated.

Select the line with respect to which you want to compute the program slice, then use the command
Assist - Text analysis - Program slicing. Then a dialog containing the variables referenced into the
selected instruction is displayed. Select the variable(s) for which the slice must be calculated. The
slice is colored, if an instruction is on several lines, only the first one is colored.

The first time you use the program slicing tool on a COBOL source code it can take some time
(several minutes for big programs) because it must parse the program and create the system depen-
dency graph. The next time a program slice is computed for this source code it goes faster, because
the computation of the program slice consists only into the traversing of the system dependency
graph.

During the parsing of the program, syntax error (syntax that are not understood) are displayed, but
the parsing continue. The sentence (until the next ".") where the syntax error occurs is not repre-
sented into the system dependency graph, so is ignored during the computation of a slice. So the
slice can be incomplete because of the "syntax error".

A.5.2. Call graph

One of the side effect of the program slicing tool is that it creates a processing schema that represent
the program call graph, named file_name/prg. Each procedure is represented by a processing
unit named as the procedure (section or paragraph) and the perform instruction by a call relation.
14 Program Understanding in DBRE

The command Assist / Text analysis / Goto can also be used to go from the call graph to the text
and from the text (section or paragraph) to the call graph.

A.5.3. The command line program slicing

A.5.3.1. Description

We have derived from the DB-MAIN program slicing tool a command line program slicing tool.
This tool can be very useful to compute slices for very big programs (it can run on a Unix worksta-
tion) or to compute slice of many different programs (batch processing). It computes slices of the
<cobol_file> COBOL program, if no <cobol_file> is given, then it asks for one.

A.5.3.2. Synopsis

slicing [-d] [-f] [-s start -c condition [-e node_type] [-v]]
[-a action] [-g sdg_file] [-p parse_file] -F <command_file>
[-o output] [-i] [-P <beg> <end>] [-b <db_structure>]
[cobol_file]

A.5.3.3. Option

-d Computes the slice using only data dependence arcs. By default, it uses also the
control dependence graph.

-i Doesn’t include the "invalid key" branch into the SDG.
-f Computes the forward slice, the default value is to compute the backward slice.
-g <sdg_file> Saves the SDG corresponding to the COBOL program into <sdg_file>.
-p <parse_file> Saves the parsing tree corresponding to the COBOL program into <parse_file>.
-o <output> Displays all the messages into the file <output>, by default they are displayed to

the standard output.
-v Computes which part of the variables defined in the condition node influence

which part of the variable referenced in the start node. Need the options -s, -c
-s <start> <start> is the type of nodes with respect which the program slice will be com-

puted. The possible values of <start> are read, write, proc, normal, test,
loop, goto, perform or line:<l_1>...<l_n> with l_i an integer (line
number). If no <start> is given, the user is asked for a line number.

-c <condition> If this option is used, only the lines of the slice that are of the given type will be
displayed. By default, all the lines are displayed. The valid value of <condi-
tion> are read, write, proc, normal, test, loop, goto, perform.

-a <display> Defines how the result will be displayed. The valid <display> are num (only the
number of the lines will be displayed), line (the complete lines will be dis-
played), num_line (as num and line) and var (only the variables referenced at
the instruction will be displayed).

-e <node_type> Stops the SDG traversing when a node of type <node_type> is reach. The valid
value of <node_type> are read, write, proc, normal, test, loop, goto,
perform.
Program Understanding in DBRE 15

-P <begin> <end>Marks only the lines of the slices that are in the path between <begin> and
<end>.

-b <db_structure> A file describing the declaration of the database used in the "SCHEMA SEC-
TION".

-F <command_file>Each line of the file <command_file> describe a slice (or a SDG traversal) to
compute. Each line contains some valid options, with the same syntax as the
option of slicing. The valid options are: [-f] [-s start -c condition
[-e node_type] [-v]]
[-a action] [-P <beg> <end>]. For example, if <command_file> con-
tains two lines, it is equivalent to two executions of slicing with the options
of each lines. Except that if we use <commande_file>, the SDG is only com-
puted one and if we use two slicing command the SDG is computed twice.
For big programs the computation of the SDG can take several hours on a pow-
erful workstation.

A.6. Creating schema

Many DBRE projects require to extract information from source code, text and represent them as a
schema into DB-MAIN. DB-MAIN offers some built-in extractors (SQL, COBOL, etc.) and some
specific extractors (XML/DTD, RPG, etc.) have been developed in Voyager2. Those extractors are
not sufficient to solve all the specific needs of all the projects. On the other hand, it can be to expen-
sive to write, in Voyager2, a specific extractor for a given project. To solve this problem there exist
two generic schema extractors. These extractors do not take as input a source code, but an interme-
diate text file that describe the schema. This intermediate text file can be easily generate from the
source code by some scripting language such as grep, awk, perl, etc.

The two programs can be used to create a processing schema for the first and a data schema for the
second.

A.6.1. Processing schema

The graph_tr.oxo program creates a processing schema from an input file. This program can
create processing units, data objects, call relations, decomposition relations and in-out relations.

A.6.1.1. The input file

To create a graph the graph_tr.oxo program needs a file that contains lines with the following
format:

<line_type>;<param_1>;...;<param_n>

where <line_type> = "PROC", "VAR", "CALL", "IN", "OUT", "I-O" or "DECOMP"

If <line_type> == "PROC" ou "VAR"

<param_1> = <node_type>
<param_2> = <node_name>
16 Program Understanding in DBRE

<param_3> = <second_node_name>
<param_4> = <node_type>
<param_5> = <description>

Creates a processing unit (<line_type> = "PROC") or a data object (<line_type> = "VAR") of
name <node_name> and the dynamic property S_name and Type take respectively the value of
<second_node_name> and <node_type>. The node name and its dynamic property S_name are
both identifiers. Description is added to the technical description of the processing unit or of the
data object. If a node with the same name or the same dynamic property S_name exists, the new
node is not created.

If <line_type> == "CALL", "DECOMP", "IN", "OUT" or "I-O"

<param_1> = <type>
<param_2> = S or P
<param_3> = <name_1>
<param_4> = S ou P
<param_5> = <name_2>

If <line_type> is "CALL" or "DECOMP", creates a relation call or decomposition. The relation
connect the processing unit <name_1> to the processing unit <name_2>. <name_1> (<name_2>)
represents the name of a processing unit, if <param_3> (<param_5>) equal P and it represents the
S_name, if <param_3> (<param_5>) equal S. <type> is store in the dynamic property Type. If
the processing unit <name_1> or <name_2> does not exist the relation is not created.

If <line_type> is "IN" or "OUT" or "I-0", creates a relation in-out. The relation connects the
processing unit <name_1> to the variable <name_2>. <name_1> (<name_2>) represents the name
of a processing unit (or data object), if <param_3> (<param_5>) equal P and it represents the
S_name, if <param_3> (<param_5>) equal S. If the processing unit <name_1> or the variable
<name_2> does not exist the relation is not created. If there is no relation between <name_1> and
<name_2>, it is created of type in input (<line_type> = "IN"), output (<line_type> = "OUT")
or update (<line_type> = "I-O"). Else the relation is updated to add the new type. I.e. if it was of
type input and the <line_type> is "OUT" or "I-O", then the type of the relation is change to
update; if it was of type output and the <line_type> is "IN" or "I-O", then the type of the relation
is change to update; otherwise the type of the relation is not modified.

A.6.1.2. The creation of the graph

The graph_tr.oxo program adds the processing units, variables and relations described in a file
to the current processing schema.

To create a new graph:

• Open (or create) a processing schema.

• Execute the graph_tr.oxo program (File - Execute voyager) and give it a file of the format
described in the previous section. The file can not contain forward references.

The graph is created, but the processing units and variables are not correctly positioned. For big
schema, it can be very painful to position each object, on the other hand the DB-MAIN build-in
tools (auto draw) are not very useful because they are for ordinary processing schema and our graph
Program Understanding in DBRE 17

has other graphical properties such as it is not any graph but it can be a tree,... This is why we have
written a series of small voyager2 programs that help the analyst to manipulate the graph.

A.6.1.3. Data schema coloring

The color_tr.oxo program colors processing units depending of their dynamic property ’Type’:
asks the user the value of the dynamic property Type and its associates color (to be chosen into a
list).

A.6.1.4. Sort graph by level

The sort_n_tr.oxo program sorts by level the current schema according to the call relation.

A.6.1.5. Center entity types

The g_center_tr.oxo program centers (horizontally) the marked (in Mark1 mark plan) process-
ing units with respect to the processing units that can be reach through call relation (depending of
the chosen option).

A.6.1.6. Mark objects with the schema analysis

It is possible to mark or select objects using the schema analysis assistant (Assist/Text analysis).
For example, we can select all the processing units that are not connected to other ones, etc.

A.6.1.7. Mark processing units reachable following call relations

The g_slice_tr.oxo program travels through the schema from the selected processing units
following the call relations (the direction depends of the chosen option) and marks all the process-
ing units crossed. It is useful to extract a branch of a call graph.

A.6.2. Data schema

The graph.oxo program creates a data schema from an input file. This program can create entity
types, relationship types (with roles), attributes.

A.6.2.1. The input file

To create a graph the graph.oxo program needs a file that contains lines with the following
format:

<line_type>;<param_1>;...;<param_n>

where <line_type> = "ET", "RT"

If <line_type> == "ET"
18 Program Understanding in DBRE

<param_1> = <node_type>
<param_2> = <node_name>
<param_3> = <second_node_name>

Creates an entity type of name <node_name> and the dynamic property S_name takes the value of
<second_node_name>. The node name and its dynamic property S_name are both identifiers. If a
node with the same name or the same dynamic property S_name exists, the new node is not created.

If <line_type> == "RT"

<param_1> = <node_name>
<param_2> = S or P
<param_3> = <name_1>
<param_4> = S or P
<param_5> = <name_2>

Creates the relationship-type of name <node_name> (add a suffix to have a unique name).
Connects the relationship-type to the entity type <name_1> with a 1-1 role and to the entity type
<name_2> with a 0-N role. <name_1> and <name_2> are the name of the entity type if they are
preceded by P and the value of the dynamic property <S_name> if they are preceded by S.

A.6.2.2. The creation of the graph

The graph.oxo program adds the processing units, variables and relations described in a file to the
current processing schema.

To create a new graph:

• Open (or create) a data schema.

• Execute the graph.oxo program (File - Execute voyager) and give it a file of the format
described in the previous section. The file can not contain forward references.

A.7. Search a schema for referential constraints

A.7.1. About referential constraints assistant

The referential constraints assistant proposes some popular heuristics to find and to create referen-
tial constraints.

The different heuristics are composed of two kinds of rules. The first one are the rules to find the
target and origin candidate of the referential constraints. For example, the target of the referential
constraints must be a primary identifier and the origin an access key. The second one are the criteria
to find the matching origin and target. For example, the target and the origin of the referential
constraint must have the same type and the same length.

When all those rules are defined, the referential constraints assistant propose a list of possible
foreign key (list of couples) and the analyst can chose those he wants to create.
Program Understanding in DBRE 19

This assistant is divided into two dialog boxes. In the first one the user can define rules to find target
and origin and matching couples are displayed. This dialog box is also used to create the referential
constraints and to open the second dialog box in which the matching rules are defined.
20 Program Understanding in DBRE

A.7.2. Choosing a strategy

FIGURE 181. Referential constraint ends selection rules.

1. The entity type parent of the current target group.

2. The attribute of the target entity type.

3. The target groups (prefixed by their entity type).

4. If checked, the attributes are displayed.

5. The entity type parent of the current origin group.

6. The attribute of the origin entity type.

7. The list of the matching groups (prefixed by their entity type).

8. The arrow that represents the foreign key.

9. Opens the dialog box to chose the matching rules.

10. Remove the selected foreign key from the list of the possible foreign keys.

11. Creates the selected foreign key.

12. Resets the matching rules to their default rules.

13. Show all the group couples that match the matching rules.

14. Creates all the proposed foreign keys.

15. Execute a Voyager2 procedure to create the proposed foreign keys.

16. If checked, marks the origin of the created referential constraint.

17. The type of foreign key to be created.

18. Shows the target entity type into the schema.

19. Shows the origin entity type into the schema.

20. The type of the candidate target groups.

21. The type of the candidate origin groups.

1

2
11

4

5

7

6

8

10

9

3

20

21

12

15

14

16

13

17

18

19
Program Understanding in DBRE 21

To use the reference constraint assistant, use the command Assist/Referential key.

The radio buttons, on the left, are used to define the target and the origin of the referential
constraint. The different possibilities for the target are:

• Prim. id The target group must be a primary identifiers of the schema.

• Any id The target group must be an identifiers of the schema.

• Any group The target group can be any group of the schema.

• Selected The target group is a selected groups of the schema.

• Marker The target group is a marked groups of the schema.

And for the origin:

• Att or group The origin of the referential constraint can be any attribute (or set of attributes) or
any group.

• Any group The origin group can be any group of the schema.

• Selected The origin group is a selected groups of the schema.

• Marker The origin group is a marked groups of the schema.

If the target is Selected or Marked, then the origin could not be Selected or Marked. If the origin
is Selected or Marked, then the origin could be Selected or Marked.

The button Matching is used to set the group matching rules. The Reset comeback to the default
matching rules (each component of the group must have the same type and the same length, does
not accept attribute, does not accept multivalued reference key, no name matching rules).

The middle parts displays the proposed referential constraints. The top part contains the target and
the bottom the origin of the referential constraint.
22 Program Understanding in DBRE

A.7.3. The matching rules

FIGURE 182. Matching rules dialog box.

The search criteria dialog box is obtained by pressing the Matching button in the referential
constraint assistant dialog box.

1. If checked, the existing referential constraint are not displayed, otherwise they are dis-
played followed by a "*".

2. If checked, accepts groups that contain a multivalued attribute.

3. Both group must have the same total length (the sum of the length of each components).

4. Groups can contains role. The length of the role is equal to the length of identifier of the
entity type connected to the role. This constraint is always associate with the constraint
Same total length.

5. The components of both groups must have the same length. If the groups have more than
one component, they are compared in the order, i.e. the first one with the first one, the sec-
ond one with the second, and so on.

6. The component of both groups must have the same type. If the groups have more than one
component, they are compared in order

7. The name of the reference key must contains the keyword.

8. The name of the reference key must contains (some or all) the characters of the target entity
type name.

9. The name of the reference key must contains (some or all) the characters of the target iden-
tifier name.

10. The constraints on the name of the attribute of the groups (the group have only one
attribute).

11. If checked, the name matching rules are case sensitive.

12. To get some help.

13. To define a Voyager matching rule.
Program Understanding in DBRE 23

The different criteria are:

• Skip existing reference key: the group is not selected if the origin group is already the origin of a
reference constraint.

• Structure matching rules: the two groups must have the same length (same total length is
checked) or each of the groups components must have the same length (same length is checked)
and/or the same type (Same type is checked) or no constraint on the structure (nothing
checked). If hierarchical is checked (Same total length is also checked) and if a group contains
a role then the length of the group is the length of the attributes of the group plus the length of
the primary identifier of the entity type connected by the role (if the role is multi-domains then it
is the maximum of the length of the primary identifier of the entity types connected by the role).

• Accept multivalued reference key (only if we are looking for the origin group): accept groups
that contain a multivalued attribute.

• Name matching rules: this rule contains three criteria on the name of the attributes. If this rules
is used the origin group must contains only one attribute.

•Key word: the origin attribute must contains a key word. If this rule is used, the two other
name matching rules are applied on the attribute name without the key word.

•Some or all characters of the origin attribute must be included in the target entity type name.

•Some or all characters of the origin attribute must be included in the target attribute name.

•For the two last rules we can choose that all the characters must be included and they must
be contiguous. If we choose some (a number, i) then the first i characters of the target
entity type or attribute name must be included in the origin attribute, but not necessary in
a continuous manner. For example: the three first characters of ABCD are included into
FABCDE and in AFBCE but not in CBADE.

•case sensitive: if checked, the name matching rules are case sensitive.

• More: the user can gives two Voyager 2 functions, one that checks if two groups are matching
and the other that checks if an attribute matches with the target group (see "voyager matching
group procedures).

Click on Ok to accept the matching rules and to comeback the previous dialog box.

A.7.4. Create the referential constraints

Select the type of the constraint to be created (figure 181) (17). In this version, only ref (referential
constraint) and ref equ (equality constraint) are possible. If Mark ref is checked the origin group of
the referential constraint will be marked.

Click on the Create button to create the current referential constraint. To create all the proposed
referential constraint, click on the Create all button.

The Advanced button can be used to give a Voyager2 procedure that is called for each proposed
referential constraint. This procedure can be used to create the referential constraint into the
schema, to print some report or any other function.
24 Program Understanding in DBRE

A.7.5. Go to the schema

There is a Goto button at the right of the target and origin entity type. If you click on one of them,
then the corresponding entity type is displayed in the middle of the schema windows.

A.7.6. Changing the selected group

If one of the Selected radio buttons is checked, the list of group can be change by selecting other
groups in to the schema window without closing the reference constraint assistant. Just select the
groups in the schema. Then re-activate the reference constraint assistant and the list of selected
groups is updated and the matching group are also displayed, using the criteria as set before

A.7.7. Removing a group/attribute from the list of matching groups

If the matching rules found a (or more) matching group that you do not want to be in the list of
matching groups, you can remove it. To remove it, select it and click on the Remove button. It
disappear and if you click on the Create all or Advanced button, this referential constraint will not
be created.

To redisplay all the groups that have been removed from the matching groups, click on the Clear
button.

A.7.8. Voyager matching group functions

The user can write its own matching function to check if the two ends of a referential constraint
match. The function receives two input parameters, the two ends of the referential constraint. The
first one, the target of the referential constraint, is always a group, while the second, the origin, can
be a group or an attribute. the user has to write two matching functions. The first one checks if two
groups match. The second one checks if the origin attribute match with the target group. The signa-
ture of the two functions are the following:

export function integer <match_group>(group: <origin_gr>,
group: <target_gr>)

where

• <origin_gr> is the origin group of the referential constraint

• <target_gr> is the target group of the referential constraint

and

export function integer <match_att_gr>(attribute: <orig_att>,
group: <target_gr>)

where

• <orig_att> is the origin attribute of the referential constraint

• <target_gr> is the target group of the referential constraint
Program Understanding in DBRE 25

A.7.9. Example of voyager matching functions

In the name matching rules, there is two rules that check if all or some of the characters of the origin
attribute are included into the target attribute or entity type name. This example shows the voyager
functions that check if all or some of the characters of the origin attribute are included into the name
Two functions FK_name_in_coll and FK_name_in_coll_att are called through the more
button of the "matching rules" dialog

export function integer FK_name_in_coll(group : org_gr,
 group : targ_gr)
/* Checks that the name of the origin group’s (org_gr) attribute

contains the name of one of the target group’s (targ_gr)
collection*/

 list : l_comp;
 real_component : rc;
 component : co;
 attribute : org_att;
{
// The list of org_gr component
 l_comp := REAL_COMPONENT[rc]
 {REAL_COMP:COMPONENT[co]{@GR_COMP:[org_gr]}};

 if(Length(l_comp) <> 1) then
 {
// If org_gr contains more than one component
 return(0);
 }

 if((GetType(GetFirst(l_comp)) <> SI_ATTRIBUTE)
 and ((GetType(GetFirst(l_comp)) <> CO_ATTRIBUTE))) then
 {
// If the component of ’org_gr’ is not an attribute
 return(0);
 }

 org_att := GetFirst(l_comp);
 return(FK_name_in_coll_att(org_att, targ_gr));
}

export function integer FK_name_in_coll_att(attribute : org_att,
group : targ_gr)

/* Checks that the name of the origin attribute (org_att) contains
the name of one of the target collections (targ_gr)*/

 list : l_comp;
 real_component : rc;
 component : co;
 attribute : targ_att, att;
 owner_of_att : targ_owner;
 entity_type : targ_et;
 collection : targ_coll;
 coll_et : col_et;
{
// The list of ’targ_gr’ component
 l_comp :=

REAL_COMPONENT[rc]{REAL_COMP:COMPONENT[co]{@GR_COMP:[targ_g
r]}};

 if(Length(l_comp) <> 1) then
 {
// If ’targ_gr’ contains more than one component
 return(0);
 }
 if((GetType(GetFirst(l_comp)) <> SI_ATTRIBUTE)
 and ((GetType(GetFirst(l_comp)) <> CO_ATTRIBUTE))) then
 {
// If the component of ’targ_gr’ is not an attribute
 return(0);
26 Program Understanding in DBRE

A.7.10.Voyager "Advanced" procedures

The user can write its own advanced procedure to create the referential constraint or print some
report. This procedure receives three input parameters, both ends of the referential constraint and
the type of the referential constraint. The first one, the origin of the referential constraint, can be a
group or an attribute. The second, the target, is always a group. The user has to write two proce-
dures. The voyager procedures must have the following signature.

where

• <origin_gr> is the origin group of the referential constraint

• <target_gr> is the target group of the referential constraint

• <t> is the type of the referential constraint

and

where

• <origin_att> is the origin attribute of the referential constraint

• <target_gr> is the target group of the referential constraint

• <t> is the type of the referential constraint

This procedure is executed for each matching referential constraint. To select the procedure, use the
Browse button to select the oxo file and then select the procedures name in the combo box.

 }

 targ_att := GetFirst(l_comp);

// Search the entity type containing the attribute
 targ_owner :=
 GetFirst(OWNER_OF_ATT[targ_owner]{OWNER_ATT:[targ_att]});
 while(GetType(targ_owner) <> ENTITY_TYPE) do
 {
 att := targ_owner;
 targ_owner :=
 GetFirst(OWNER_OF_ATT[targ_owner]{OWNER_ATT:[att]});
 }
 targ_et := targ_owner;

 for targ_coll in
COLLECTION[targ_coll]{COLL_COLET:COLL_ET[col_et]{@ENTITY_CO
LET:[targ_et]}} do

 {
 if(StrFindSubStr(org_att.name, 0, targ_coll.name) >= 0) then
 {
 return(1);
 }
 }
 return(0);
}

export procedure <proc_name>(group: <origin_gr>,
group: <target_gr>, integer: <t>)

export procedure <proc_name>(attribute: <origin_att>,
group: <target_gr>, integer: <t>)
Program Understanding in DBRE 27

A.7.11.Example of voyager referential keys creation procedures

In fact, the "Advance procedures" rarely create the referential constraints, this is done by the built-
in function create all. Usually these procedures are used to generate reports or some validation
scripts.

In this example, SQL queries are generated to verify that the data verify the proposed referential
constraints, i.e. count the number of values of the reference attribute that are not present into the list
of the value of the target identifier. For example, if there is a proposed foreign key from A.A1 to
B.B2, it generates the following query:

When this query is executed, if the result is equal to 0 then the referential constraint is validated
otherwise it is not a referential constraint.

Two validation procedures are needed, validate_sql and validate_sql_att, that are
called through the Advance button.

select count(*)
from B
where B2 not in (select A1
 from A1);

export procedure validate_sql(group : gr_org, group :
gr_targ,

 integer : t)
attribute : att_org, att_targ;
entity_type : ent_org, ent_targ;
data_object : d_o;
real_component : rc;
component : co;
{
 ent_org := GetFirst(DATA_OBJECT[d_o]{DATA_GR : [gr_org]});
 ent_targ := GetFirst(DATA_OBJECT[d_o]{DATA_GR :

[gr_targ]});
 att_org := GetFirst(REAL_COMPONENT[rc]{REAL_COMP:
 COMPONENT[co]{@GR_COMP : [gr_org]}});
 att_targ := GetFirst(REAL_COMPONENT[rc]{REAL_COMP:
 COMPONENT[co]{@GR_COMP : [gr_targ]}});

 SetPrintList("","","");

 print(["select count(*)\n from ",
 ent_org.name, "\nwhere ", att_org.name,
 " not in \n (select ", att_targ.name, "\nfrom ",
 ent_targ.name, ");\n"]);
}

export procedure validate_sql_att(attribute : att_org,
 group : gr_targ, integer : t)
attribute : att_targ, att;
data_object : ent_org, ent_targ;
data_object : d_o;
real_component : rc;
component : co;
owner_of_att : owner;
{
 ent_targ := GetFirst(DATA_OBJECT[d_o]{DATA_GR :

[gr_targ]});

 owner := GetFirst(OWNER_OF_ATT[owner]{OWNER_ATT :
[att_org]});

 while((GetType(owner)<> ENTITY_TYPE)
 and (GetType(owner) <> REL_TYPE))
 do {
28 Program Understanding in DBRE

A.8. Miscellaneous Voyager2 programs

This section describes various Voyager2 program that can be used during various DBRE projects.
Their source code and the oxo files (executable through the DB-MAIN File/Execute Voyager
command) can be found at http://www.info.fundp.ac.be/cgi-bin-dbm/library.

A.8.1. Foreign key analysis

program: eval_fk.oxo

This program displays all the referential constraint of the current schema and says if the origin and
the target have the same length.

A.8.2. lexical

program: lexical.oxo

A.8.2.1. Principle

A lexicon is a consistent set of names, each one being assigned to one object of the schema.

The objects affected by this program are: the schema, the entity types, the relationship types, the
attributes, the roles and the collections.

A.8.2.2. Usage

The program offers two choice: copy the name of the objects of the current schema into the lexicon
or to use the names stored into the lexicon to rename the objects of the current schema.

 att := owner;
 owner :=GetFirst(OWNER_OF_ATT[owner]{OWNER_ATT :

[att]});
 }
 ent_org := owner;

 att_targ := GetFirst(REAL_COMPONENT[rc]{REAL_COMP:
 COMPONENT[co]{@GR_COMP : [gr_targ]}});

 SetPrintList("","","");

 print(["select \"constraint from ", ent_org.name, ".",
 att_org.name, " to ", ent_targ.name, ".",
 att_targ.name, " : \", count(*)\n from ",
 ent_org.name, "\nwhere ", att_org.name,
 " not in \n (select ", att_targ.name, "\nfrom ",
 ent_targ.name, ");\n"]);
}

Program Understanding in DBRE 29

The first choice displays the existing lexicons and asks if we want to change an existing lexicon or
to create a new one. If a new one is created, its name is asked.

The second option displays the existing lexicons. Chose one of them to use it to rename the objects
of the schema.

A.8.2.3. Implementation

The schema has a dynamic property "list_lex" (string and multivalued) that contains the list of
the name of the existing lexicons in this schema. The objects (schema, entity types, relationship
types, attributes, roles and collections) have a dynamic property "lexicon" (string and multival-
ued) that contains the object’s name for the different lexicons. The ith element of the dynamic prop-
erty "lexicon" of an object is the name according to the lexicon that has the ith element of
"list_lex" as name.

A.8.3. Compute the physical length

Program: log_phys.oxo

This program compute the physical length (in byte) of each simple attribute, the physical length is
stored into the dynamic property ’phys_len’.

The physical length of an attribute may differ from one DBMS to the other. To allow the use of this
tool for an DBMS, some parametrization of the translation rule from the logical length into the
physical one are needed [Delvaux-1996]. This transformation is expressed through a formula that
associate to each type of data a function that specify how to compute the corresponding physical
length.

This function can be express as "for data type X, there is a set of couple composed of a range and a
linear function to use if the logical length of the attribute is inside this range".

Figure 183 show an example of such translation rules.

FIGURE 183. An transformation rules example.

Figure 184 table gives the physical length value computed with those formulas.

boolean : if l in [0..N] then l bits
date : if l in [0..N] then 12 bits
char : if l in [0..N] then 8 bits + l * 8 bits
integer : if l in [0..2] then 8 bits

if l in [3..4] then 16 bits
if l in [5..9] then 32 bits
if l in [10..N] then l * 4 bits

float : if l in [0..N] then 4 bytes
varchar : if l in [0..64] then 1 byte + l * 1 bytes
30 Program Understanding in DBRE

FIGURE 184. Translation example from logical to physical length.

The syntax of the translation rules are the following:

<valid text> ::= "begin physinfo" <type_for>* "end physinfo"
<type_for> ::= "type" <att_type> "{" <rule>* "}" ";"
<att_type> ::= "numeric" | "char" | "boolean" | "date" | "varchar" |
"float"
<rule> ::= <un_rule> | <co_rule> | <lin_rule>
<un_rule> ::= "unit :" <unit> ";"
<si_rule> ::= <lin_rule> | <cst_rule>
<cst_rule> ::= "constant :" <integer> ";"
<lin_rule> ::= "linear :" <integer> ";"
<co_rule> ::= <cst_rule> "level :" "[" <integer> .. <integer> "]"
 "{" <si_rule>* "}" ";"
<unit> ::= "bit" | "byte" | "word"
<integer> ::= <digit>*
<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

A byte contains 8 bits and the word contains 32 bits. The value "n" represent the infinity and the
following restrictions apply:

It could not have any overlay in the range of a given type.
There is only one unity per type.

Figure 185 gives the formula for the previous example.

Type Logical size Physical size

boolean 7 7 bits

date n. a. 12 bits

char 25 208 bits

integer 6 32 bits

integer 9 32 bits

integer 25 100 bits

varchar 64 65 bytes

varchar 65 67 bytes
Program Understanding in DBRE 31

FIGURE 185. The formula for the figure 183 example.

A.8.4. Objects position

Program: pos.oxo

This program has two options :

1. It copies the graphical positions of entity type, relationship type, role, processing unit, collection
into the meta-properties ’pos_x’, ’pos_y’.

2. It copies the meta-properties ’pos_x’ and ’pos_y’ as the graphical positions of entity type, rela-
tionship type, role, processing unit, collection.

This program can be useful to store the graphical position if the object to allow the analyst to came
back to previous positions. Or it can be used to change the position in the meta-properties (manually
or through a program) and then apply those position modification.

A.8.5. Report generation

A.8.5.1. RTF

Program: rtf.oxo

This program generates a report in RTF describing the current schema. This report use style sheet,
so the user can easily customize the report’s presentation by modifying the style sheet.

begin physinfo

type boolean {
 unit : bit;
 linear : 1;
};

type float {
 constant : 4;
};

type date {
 unit : bit;
 constant : 12;
};

type char {
 constant : 1;
 linear : 1;
};

type varchar {
 constant : 1;
 level : [0..64] {
 linear : 1;
 };
 level : [65..n] {
 constant : 1;
 linear : 1;
 };
};

type numeric {
 unit : bit;
 level : [0..2] {
 constant : 8;
 };
 level : [3..4] {
 constant : 16;
 };
 level : [5..9] {
 constant : 32;
 };
 level : [10..n] {
 linear : 4;
 };
};
end physinfo
32 Program Understanding in DBRE

A.8.6. SQL Validation queries generation

Program: validate_sql.oxo

This program generates SQL queries to validate the current schema (verifies if the constraints are
not violated by the data). It validates the foreign keys, the identifier, the ’not null’ and computed
foreign keys (the ’where’ clause must be in the technical description of the origin group).

A.8.7. COBOL validation programs generation

Program: val_fk_cobol.oxo

This program generates a COBOL program the validate each foreign key of the current schema: for
each foreign key it count the number of data that violated it and the number of origin records.

A.8.8. Referential key assistant complements

The referential key assistant offers two possibilities to extend it through Voyager2 procedures and
functions. The first one is the one associated with the More button of the search dialog box. This
allows the user to add its own functions to check if two groups (or a group and an attribute match.
The other one allows to declare creation (or generation) procedure through the Advanced button.
Those procedures receive the origin (group or attribute) and the target (group) of a potential foreign
key, so they can create them or generate some reports.

A.8.8.1. Matching functions

A. Foreign key contains the name of the target collection

Program: fk_coll.oxo

Those functions (FK_name_in_coll and FK_name_in_coll_att) verify that the name of the
origin attribute (the origin group is composed of only one attribute) contains the name of the collec-
tion that contains the target entity type.

A.8.8.2. Generation procedures

A. Generate the validation SQL queries

Program: fk_sql.oxo

Those procedures generate for each proposed foreign key a query that count the number of row of
the origin table that violate the foreign key.
Program Understanding in DBRE 33

FIGURE 186. A foreign key and the validation query.

For example, if the proposed foreign key is the one display in figure 186.a then the procedure will
generate the figure 186.b query. If the result of the execution of the query is 0, then all the rows of B
respect the foreign key.

B. Generate a report of all the proposed foreign keys

Program: fk_report.oxo

Those procedures generate for each proposed foreign key a report giving the foreign key and the
length and type of each of its components.

For example, if the proposed foreign key is the one displayed in figure 186.a, then the procedures
will generate the following report

C. Creation of the accepted foreign keys

Program: create_fk.oxo

The purpose of the previous report is to allow the analyst to analyze it to validate the proposed
foreign keys. When he has validate the foreign keys, the create_fk.oxo program can be used to read
the report and to create the valid foreign keys.

In the previous report, each foreign key description is prefixed by the characters "#FK#". If the
analyst does not want to create a foreign key, he change the prefix and create_fk.oxo will only
create the foreign keys with the original prefix.

#FK#:E2.(E2.B2)-->E1.(E1.A1)
 E2.B2 char(5)
 E1.A1 char(5)

E2
B1: num (5)
B2: char (5)
id: B1
ref: B2

E1
A1: char (5)
A2: char (20)
id: A1

select count(*)
from E2

 where B2 not in
(select A1 from E1);
34 Program Understanding in DBRE

ANNEX B Source code
B.1. Order.cob

1

2

I
D
E
N
T
I
F
I
C
A
T
I
O
N

D
I
V
I
S
I
O
N
.

3

P
R
O
G
R
A
M
-
I
D
.

C
-
O
R
D
.

4

E
N
V
I
R
O
N
M
E
N
T

D
I
V
I
S
I
O
N
.

5

I
N
P
U
T
-
O
U
T
P
U
T

S
E
C
T
I
O
N
.

6

F
I
L
E
-
C
O
N
T
R
O
L
.

7

S
E
L
E
C
T

C
U
S
T
O
M
E
R

A
S
S
I
G
N

T
O

"
C
U
S
T
O
M
E
R
.
D
A
T
"

8

O
R
G
A
N
I
Z
A
T
I
O
N

I
S

I
N
D
E
X
E
D

9

A
C
C
E
S
S

M
O
D
E

I
S

D
Y
N
A
M
I
C

1
0

R
E
C
O
R
D

K
E
Y

I
S

C
U
S
-
C
O
D
E
.

1
1

S
E
L
E
C
T

O
R
D
E
R
S

A
S
S
I
G
N

T
O

"
O
R
D
E
R
.
D
A
T
"

1
2

O
R
G
A
N
I
Z
A
T
I
O
N

I
S

I
N
D
E
X
E
D

1
3

A
C
C
E
S
S

M
O
D
E

I
S

D
Y
N
A
M
I
C

1
4

R
E
C
O
R
D

K
E
Y

I
S

O
R
D
-
C
O
D
E

1
5

A
L
T
E
R
N
A
T
E

R
E
C
O
R
D

K
E
Y

I
S

1
6

O
R
D
-
C
U
S
T
O
M
E
R

W
I
T
H

D
U
P
L
I
C
A
T
E
S
.

1
7

S
E
L
E
C
T

S
T
O
C
K

A
S
S
I
G
N

T
O

"
S
T
O
C
K
.
D
A
T
"

1
8

O
R
G
A
N
I
Z
A
T
I
O
N

I
S

I
N
D
E
X
E
D

1
9

A
C
C
E
S
S

M
O
D
E

I
S

D
Y
N
A
M
I
C

2
0

R
E
C
O
R
D

K
E
Y

I
S

S
T
K
-
C
O
D
E
.

2
1

2
2

D
A
T
A

D
I
V
I
S
I
O
N
.

2
3

F
I
L
E

S
E
C
T
I
O
N
.

2
4

F
D

C
U
S
T
O
M
E
R
.

2
5

0
1

C
U
S
.

2
6

0
2

C
U
S
-
C
O
D
E

P
I
C

X
(
1
2
)
.

2
7

0
2

C
U
S
-
D
E
S
C
R

P
I
C

X
(
8
0
)
.

2
8

0
2

C
U
S
-
H
I
S
T

P
I
C

X
(
1
0
0
0
)
.

2
9

3
0

F
D

O
R
D
E
R
S
.

3
1

0
1

O
R
D
.

3
2

0
2

O
R
D
-
C
O
D
E

P
I
C

9
(
1
0
)
.

3
3

0
2

O
R
D
-
C
U
S
T
O
M
E
R

P
I
C

X
(
1
2
)
.

3
4

0
2

O
R
D
-
D
E
T
A
I
L

P
I
C

X
(
2
0
0
)
.

3
5

3
6

F
D

S
T
O
C
K
.

3
7

0
1

S
T
K
.

3
8

0
2

S
T
K
-
C
O
D
E

P
I
C

9
(
5
)
.

3
9

0
2

S
T
K
-
N
A
M
E

P
I
C

X
(
1
0
0
)
.

4
0

0
2

S
T
K
-
L
E
V
E
L

P
I
C

9
(
5
)
.

4
1

4
2

W
O
R
K
I
N
G
-
S
T
O
R
A
G
E

S
E
C
T
I
O
N
.

4
3

0
1

D
E
S
C
R
I
P
T
I
O
N
.

4
4

0
2

N
A
M
E

P
I
C

X
(
2
0
)
.

4
5

0
2

A
D
D
R

P
I
C

X
(
4
0
)
.

4
6

0
2

F
U
N
C
T

P
I
C

X
(
1
0
)
.

4
7

0
2

R
E
C
-
D
A
T
E

P
I
C

X
(
1
0
)
.

4
8

4
9

0
1

L
I
S
T
-
P
U
R
C
H
A
S
E
.

5
0

0
2

P
U
R
C
H

O
C
C
U
R
S

1
0
0

T
I
M
E
S

I
N
D
E
X
E
D

B
Y

I
N
D
.

5
1

0
3

R
E
F
-
P
U
R
C
H
-
S
T
K

P
I
C

9
(
5
)
.

5
2

0
3

T
O
T

P
I
C

9
(
5
)
.

5
3

5
4

0
1

L
I
S
T
-
D
E
T
A
I
L
.

5
5

0
2

D
E
T
A
I
L
S

O
C
C
U
R
S

2
0

T
I
M
E
S

I
N
D
E
X
E
D

B
Y

I
N
D
-
D
E
T
.

5
6

0
3

R
E
F
-
D
E
T
-
S
T
K

P
I
C

9
(
5
)
.

5
7

0
3

O
R
D
-
Q
T
Y

P
I
C

9
(
5
)
.

5
8

5
9

0
1

C
H
O
I
C
E

P
I
C

X
.

6
0

0
1

E
N
D
-
F
I
L
E

P
I
C

9
.

6
1

0
1

E
N
D
-
D
E
T
A
I
L

P
I
C

9
.

6
2

0
1

E
X
I
S
T
-
P
R
O
D

P
I
C

9
.

6
3

0
1

P
R
O
D
-
C
O
D
E

P
I
C

9
(
5
)
.

6
4

6
5

0
1

T
O
T
-
C
O
M
P

P
I
C

9
(
5
)

C
O
M
P
.

1

2

I
D
E
N
T
I
F
I
C
A
T
I
O
N

D
I
V
I
S
I
O
N
.

3

P
R
O
G
R
A
M
-
I
D
.

C
-
O
R
D
.

4

E
N
V
I
R
O
N
M
E
N
T

D
I
V
I
S
I
O
N
.

5

I
N
P
U
T
-
O
U
T
P
U
T

S
E
C
T
I
O
N
.

6

F
I
L
E
-
C
O
N
T
R
O
L
.

7

S
E
L
E
C
T

C
U
S
T
O
M
E
R

A
S
S
I
G
N

T
O

"
C
U
S
T
O
M
E
R
.
D
A
T
"

8

O
R
G
A
N
I
Z
A
T
I
O
N

I
S

I
N
D
E
X
E
D

9

A
C
C
E
S
S

M
O
D
E

I
S

D
Y
N
A
M
I
C

1
0

R
E
C
O
R
D

K
E
Y

I
S

C
U
S
-
C
O
D
E
.

1
1

S
E
L
E
C
T

O
R
D
E
R
S

A
S
S
I
G
N

T
O

"
O
R
D
E
R
.
D
A
T
"

1
2

O
R
G
A
N
I
Z
A
T
I
O
N

I
S

I
N
D
E
X
E
D

1
3

A
C
C
E
S
S

M
O
D
E

I
S

D
Y
N
A
M
I
C

1
4

R
E
C
O
R
D

K
E
Y

I
S

O
R
D
-
C
O
D
E

1
5

A
L
T
E
R
N
A
T
E

R
E
C
O
R
D

K
E
Y

I
S

1
6

O
R
D
-
C
U
S
T
O
M
E
R

W
I
T
H

D
U
P
L
I
C
A
T
E
S
.

1
7

S
E
L
E
C
T

S
T
O
C
K

A
S
S
I
G
N

T
O

"
S
T
O
C
K
.
D
A
T
"

1
8

O
R
G
A
N
I
Z
A
T
I
O
N

I
S

I
N
D
E
X
E
D

1
9

A
C
C
E
S
S

M
O
D
E

I
S

D
Y
N
A
M
I
C

2
0

R
E
C
O
R
D

K
E
Y

I
S

S
T
K
-
C
O
D
E
.

2
1

2
2

D
A
T
A

D
I
V
I
S
I
O
N
.

2
3

F
I
L
E

S
E
C
T
I
O
N
.

2
4

F
D

C
U
S
T
O
M
E
R
.

2
5

0
1

C
U
S
.

2
6

0
2

C
U
S
-
C
O
D
E

P
I
C

X
(
1
2
)
.

2
7

0
2

C
U
S
-
D
E
S
C
R

P
I
C

X
(
8
0
)
.

2
8

0
2

C
U
S
-
H
I
S
T

P
I
C

X
(
1
0
0
0
)
.

2
9

3
0

F
D

O
R
D
E
R
S
.

3
1

0
1

O
R
D
.

3
2

0
2

O
R
D
-
C
O
D
E

P
I
C

9
(
1
0
)
.

3
3

0
2

O
R
D
-
C
U
S
T
O
M
E
R

P
I
C

X
(
1
2
)
.

3
4

0
2

O
R
D
-
D
E
T
A
I
L

P
I
C

X
(
2
0
0
)
.

3
5

3
6

F
D

S
T
O
C
K
.

3
7

0
1

S
T
K
.

3
8

0
2

S
T
K
-
C
O
D
E

P
I
C

9
(
5
)
.

3
9

0
2

S
T
K
-
N
A
M
E

P
I
C

X
(
1
0
0
)
.

4
0

0
2

S
T
K
-
L
E
V
E
L

P
I
C

9
(
5
)
.

4
1

4
2

W
O
R
K
I
N
G
-
S
T
O
R
A
G
E

S
E
C
T
I
O
N
.

4
3

0
1

D
E
S
C
R
I
P
T
I
O
N
.

4
4

0
2

N
A
M
E

P
I
C

X
(
2
0
)
.

4
5

0
2

A
D
D
R

P
I
C

X
(
4
0
)
.

4
6

0
2

F
U
N
C
T

P
I
C

X
(
1
0
)
.

4
7

0
2

R
E
C
-
D
A
T
E

P
I
C

X
(
1
0
)
.

4
8

4
9

0
1

L
I
S
T
-
P
U
R
C
H
A
S
E
.

5
0

0
2

P
U
R
C
H

O
C
C
U
R
S

1
0
0

T
I
M
E
S

I
N
D
E
X
E
D

B
Y

I
N
D
.

5
1

0
3

R
E
F
-
P
U
R
C
H
-
S
T
K

P
I
C

9
(
5
)
.

5
2

0
3

T
O
T

P
I
C

9
(
5
)
.

5
3

5
4

0
1

L
I
S
T
-
D
E
T
A
I
L
.

5
5

0
2

D
E
T
A
I
L
S

O
C
C
U
R
S

2
0

T
I
M
E
S

I
N
D
E
X
E
D

B
Y

I
N
D
-
D
E
T
.

5
6

0
3

R
E
F
-
D
E
T
-
S
T
K

P
I
C

9
(
5
)
.

5
7

0
3

O
R
D
-
Q
T
Y

P
I
C

9
(
5
)
.

5
8

5
9

0
1

C
H
O
I
C
E

P
I
C

X
.

6
0

0
1

E
N
D
-
F
I
L
E

P
I
C

9
.

6
1

0
1

E
N
D
-
D
E
T
A
I
L

P
I
C

9
.

6
2

0
1

E
X
I
S
T
-
P
R
O
D

P
I
C

9
.

6
3

0
1

P
R
O
D
-
C
O
D
E

P
I
C

9
(
5
)
.

6
4

6
5

0
1

T
O
T
-
C
O
M
P

P
I
C

9
(
5
)

C
O
M
P
.

Program Understanding in DBRE 35

6
6

0
1

Q
T
Y

P
I
C

9
(
5
)

C
O
M
P
.

6
7

0
1

N
E
X
T
-
D
E
T

P
I
C

9
9
.

6
8

6
9

P
R
O
C
E
D
U
R
E

D
I
V
I
S
I
O
N
.

7
0

M
A
I
N
.

7
1

P
E
R
F
O
R
M

I
N
I
T
.

7
2

P
E
R
F
O
R
M

P
R
O
C
E
S
S

U
N
T
I
L

C
H
O
I
C
E

=

0
.

7
3

P
E
R
F
O
R
M

C
L
O
S
I
N
G
.

7
4

S
T
O
P

R
U
N
.

7
5

7
6

I
N
I
T
.

7
7

O
P
E
N

I
-
O

C
U
S
T
O
M
E
R
.

7
8

O
P
E
N

I
-
O

O
R
D
E
R
S
.

7
9

O
P
E
N

I
-
O

S
T
O
C
K
.

8
0

8
1

P
R
O
C
E
S
S
.

8
2

D
I
S
P
L
A
Y

"
1

N
E
W

C
U
S
T
O
M
E
R
"
.

8
3

D
I
S
P
L
A
Y

"
2

N
E
W

S
T
O
C
K
"
.

8
4

D
I
S
P
L
A
Y

"
3

N
E
W

O
R
D
E
R
"
.

8
5

D
I
S
P
L
A
Y

"
4

L
I
S
T

O
F

C
U
S
T
O
M
E
R
S
"
.

8
6

D
I
S
P
L
A
Y

"
5

L
I
S
T

O
F

S
T
O
C
K
S
"
.

8
7

D
I
S
P
L
A
Y

"
6

L
I
S
T

O
F

O
R
D
E
R
S
"
.

8
8

D
I
S
P
L
A
Y

"
0

E
N
D
"
.

8
9

A
C
C
E
P
T

C
H
O
I
C
E
.

9
0

I
F

C
H
O
I
C
E

=

1

9
1

P
E
R
F
O
R
M

N
E
W
-
C
U
S
.

9
2

I
F

C
H
O
I
C
E

=

2

9
3

P
E
R
F
O
R
M

N
E
W
-
S
T
K
.

9
4

I
F

C
H
O
I
C
E

=

3

9
5

P
E
R
F
O
R
M

N
E
W
-
O
R
D
.

9
6

I
F

C
H
O
I
C
E

=

4

9
7

P
E
R
F
O
R
M

L
I
S
T
-
C
U
S
.

9
8

I
F

C
H
O
I
C
E

=

5

9
9

P
E
R
F
O
R
M

L
I
S
T
-
S
T
K
.

1
0
0

I
F

C
H
O
I
C
E

=

6

1
0
1

P
E
R
F
O
R
M

L
I
S
T
-
O
R
D
.

1
0
2

1
0
3

C
L
O
S
I
N
G
.

1
0
4

C
L
O
S
E

C
U
S
T
O
M
E
R
.

1
0
5

C
L
O
S
E

O
R
D
E
R
S
.

1
0
6

C
L
O
S
E

S
T
O
C
K
.

1
0
7

1
0
8

N
E
W
-
C
U
S
.

1
0
9

D
I
S
P
L
A
Y

"
N
E
W

C
U
S
T
O
M
E
R

:
"
.

1
1
0

D
I
S
P
L
A
Y

"
C
U
S
T
O
M
E
R

C
O
D
E

?
"

1
1
1

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
1
2

A
C
C
E
P
T

C
U
S
-
C
O
D
E
.

1
1
3

1
1
4

D
I
S
P
L
A
Y

"
N
A
M
E

D
U

C
U
S
T
O
M
E
R

:

"

1
1
5

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
1
6

A
C
C
E
P
T

N
A
M
E
.

1
1
7

D
I
S
P
L
A
Y

"
A
D
D
R

O
F

C
U
S
T
O
M
E
R
:
"

1
1
8

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
1
9

A
C
C
E
P
T

A
D
D
R
.

1
2
0

D
I
S
P
L
A
Y

"
F
U
N
C
T
.

O
F

C
U
S
T
O
M
E
R
:
"

1
2
1

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
2
2

A
C
C
E
P
T

F
U
N
C
T
.

1
2
3

D
I
S
P
L
A
Y

"
D
A
T
E

:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
2
4

A
C
C
E
P
T

R
E
C
-
D
A
T
E
.

1
2
5

M
O
V
E

D
E
S
C
R
I
P
T
I
O
N

T
O

C
U
S
-

D
E
S
C
R
.

1
2
6

P
E
R
F
O
R
M

I
N
I
T
-
H
I
S
T
.

1
2
7

W
R
I
T
E

C
U
S

1
2
8

I
N
V
A
L
I
D

K
E
Y

D
I
S
P
L
A
Y

"
E
R
R
O
R
"
.

1
2
9

1
3
0

L
I
S
T
-
C
U
S
.

1
3
1

D
I
S
P
L
A
Y

"
L
I
S
T
E

D
E
S

C
U
S
T
O
M
E
R
S
"
.

1
3
2

C
L
O
S
E

C
U
S
T
O
M
E
R
.

1
3
3

O
P
E
N

I
-
O

C
U
S
T
O
M
E
R
.

1
3
4

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E
.

1
3
5

P
E
R
F
O
R
M

R
E
A
D
-
C
U
S

U
N
T
I
L

(
E
N
D
-
F
I
L
E

=

0
)
.

1
3
6

1
3
7

R
E
A
D
-
C
U
S
.

1
3
8

R
E
A
D

C
U
S
T
O
M
E
R

N
E
X
T

1
3
9

A
T

E
N
D

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

1
4
0

N
O
T

A
T

E
N
D

1
4
1

D
I
S
P
L
A
Y

C
U
S
-
C
O
D
E

1
4
2

D
I
S
P
L
A
Y

C
U
S
-
D
E
S
C
R

1
4
3

D
I
S
P
L
A
Y

C
U
S
-
H
I
S
T
.

1
4
4

1
4
5

N
E
W
-
S
T
K
.

1
4
6

D
I
S
P
L
A
Y

"
N
E
W

S
T
O
C
K
"
.

1
4
7

D
I
S
P
L
A
Y

"
P
R
O
D
U
C
T

N
U
M
B
E
R

:

"

1
4
8

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
4
9

A
C
C
E
P
T

S
T
K
-
C
O
D
E
.

1
5
0

1
5
1

D
I
S
P
L
A
Y

"
N
A
M
E

:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
5
2

A
C
C
E
P
T

S
T
K
-
N
A
M
E
.

1
5
3

1
5
4

D
I
S
P
L
A
Y

"
L
E
V
E
L

:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
5
5

A
C
C
E
P
T

S
T
K
-
L
E
V
E
L
.

1
5
6

1
5
7

W
R
I
T
E

S
T
K

1
5
8

I
N
V
A
L
I
D

K
E
Y

D
I
S
P
L
A
Y
"
E
R
R
O
R
"
.

1
5
9

1
6
0

L
I
S
T
-
S
T
K
.

1
6
1

D
I
S
P
L
A
Y

"
L
I
S
T

O
F

S
T
O
C
K
S

"
.

1
6
2

1
6
3

C
L
O
S
E

S
T
O
C
K
.

1
6
4

O
P
E
N

I
-
O

S
T
O
C
K
.

36 Program Understanding in DBRE

1
6
5

1
6
6

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E
.

1
6
7

P
E
R
F
O
R
M

R
E
A
D
-
S
T
K

U
N
T
I
L

E
N
D
-
F
I
L
E

=

0
.

1
6
8

1
6
9

R
E
A
D
-
S
T
K
.

1
7
0

R
E
A
D

S
T
O
C
K

N
E
X
T

1
7
1

A
T

E
N
D

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

1
7
2

N
O
T

A
T

E
N
D

1
7
3

D
I
S
P
L
A
Y

S
T
K
-
C
O
D
E

1
7
4

D
I
S
P
L
A
Y

S
T
K
-
N
A
M
E

1
7
5

D
I
S
P
L
A
Y

S
T
K
-
L
E
V
E
L
.

1
7
6

1
7
7

N
E
W
-
O
R
D
.

1
7
8

D
I
S
P
L
A
Y

"
N
E
W

O
R
D
E
R
"
.

1
7
9

D
I
S
P
L
A
Y

"
O
R
D
E
R

N
U
M
B
E
R

:

"

1
8
0

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
8
1

A
C
C
E
P
T

O
R
D
-
C
O
D
E
.

1
8
2

1
8
3

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E
.

1
8
4

P
E
R
F
O
R
M

R
E
A
D
-
C
U
S
-
C
O
D
E

U
N
T
I
L

E
N
D
-
F
I
L
E

=

0
.

1
8
5

M
O
V
E

C
U
S
-
D
E
S
C
R

T
O

D
E
S
C
R
I
P
T
I
O
N
.

1
8
6

D
I
S
P
L
A
Y

N
A
M
E
.

1
8
7

M
O
V
E

C
U
S
-
C
O
D
E

T
O

O
R
D
-
C
U
S
T
O
M
E
R
.

1
8
8

M
O
V
E

C
U
S
-
H
I
S
T

T
O

L
I
S
T
-
P
U
R
C
H
A
S
E
.

1
8
9

1
9
0

S
E
T

I
N
D
-
D
E
T

T
O

1
.

1
9
1

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E
.

1
9
2

P
E
R
F
O
R
M

R
E
A
D
-
D
E
T
A
I
L

1
9
3

U
N
T
I
L

E
N
D
-
F
I
L
E

=

0

O
R

I
N
D
-
D
E
T

=

2
1
.

1
9
4

M
O
V
E

L
I
S
T
-
D
E
T
A
I
L

T
O

O
R
D
-
D
E
T
A
I
L
.

1
9
5

1
9
6

W
R
I
T
E

O
R
D

1
9
7

I
N
V
A
L
I
D

K
E
Y

D
I
S
P
L
A
Y

"
E
R
R
O
R
"
.

1
9
8

1
9
9

M
O
V
E

L
I
S
T
-
P
U
R
C
H
A
S
E

2
0
0

T
O

C
U
S
-
H
I
S
T
.

2
0
1

R
E
W
R
I
T
E

C
U
S

2
0
2

I
N
V
A
L
I
D

K
E
Y

D
I
S
P
L
A
Y

"
E
R
R
O
R

C
U
S
"
.

2
0
3

R
E
A
D
-
C
U
S
-
C
O
D
E
.

2
0
4

D
I
S
P
L
A
Y

"
C
U
S
T
O
M
E
R

N
U
M
B
E
R

:

"

2
0
5

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

2
0
6

A
C
C
E
P
T

C
U
S
-
C
O
D
E
.

2
0
7

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E
.

2
0
8

R
E
A
D

C
U
S
T
O
M
E
R

I
N
V
A
L
I
D

K
E
Y

2
0
9

D
I
S
P
L
A
Y

"
N
O

S
U
C
H

C
U
S
T
O
M
E
R
"

2
1
0

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E

2
1
1

E
N
D
-
R
E
A
D
.

2
1
2

2
1
3

R
E
A
D
-
D
E
T
A
I
L
.

2
1
4

D
I
S
P
L
A
Y

"
P
R
O
D
U
C
T

C
O
D
E

(
0
=
E
N
D
)
"
.

2
1
5

A
C
C
E
P
T

P
R
O
D
-
C
O
D
E
.

2
1
6

I
F

P
R
O
D
-
C
O
D
E

=

0

2
1
7

M
O
V
E

0

2
1
8

T
O

R
E
F
-
D
E
T
-
S
T
K
(
I
N
D
-
D
E
T
)

2
1
9

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

2
2
0

E
L
S
E

2
2
1

P
E
R
F
O
R
M

R
E
A
D
-
P
R
O
D
-
C
O
D
E
.

2
2
2

2
2
3

R
E
A
D
-
P
R
O
D
-
C
O
D
E
.

2
2
4

M
O
V
E

1

T
O

E
X
I
S
T
-
P
R
O
D
.

2
2
5

M
O
V
E

P
R
O
D
-
C
O
D
E

T
O

S
T
K
-
C
O
D
E
.

2
2
6

R
E
A
D

S
T
O
C
K

I
N
V
A
L
I
D

K
E
Y

2
2
7

M
O
V
E

0

T
O

E
X
I
S
T
-
P
R
O
D
.

2
2
8

I
F

E
X
I
S
T
-
P
R
O
D

=

0

2
2
9

D
I
S
P
L
A
Y

"
N
O

S
U
C
H

P
R
O
D
U
C
T
"

2
3
0

E
L
S
E

2
3
1

P
E
R
F
O
R
M

U
P
D
A
T
E
-
O
R
D
-
D
E
T
A
I
L
.

2
3
2

2
3
3

U
P
D
A
T
E
-
O
R
D
-
D
E
T
A
I
L
.

2
3
4

M
O
V
E

1

T
O

N
E
X
T
-
D
E
T
.

2
3
5

D
I
S
P
L
A
Y

"
Q
U
A
N
T
I
T
Y

O
R
D
E
R
E
D

:

"

2
3
6

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G

2
3
7

A
C
C
E
P
T

O
R
D
-
Q
T
Y
(
I
N
D
-
D
E
T
)
.

2
3
8

P
E
R
F
O
R
M

U
N
T
I
L

2
3
9

(
N
E
X
T
-
D
E
T

<

I
N
D
-
D
E
T

2
4
0

A
N
D

R
E
F
-
D
E
T
-
S
T
K
(
N
E
X
T
-
D
E
T
)

=

P
R
O
D
-
C
O
D
E
)

2
4
1

O
R

I
N
D
-
D
E
T

=

N
E
X
T
-
D
E
T

2
4
2

A
D
D

1

T
O

N
E
X
T
-
D
E
T

2
4
3

E
N
D
-
P
E
R
F
O
R
M
.

2
4
4

I
F

I
N
D
-
D
E
T

=

N
E
X
T
-
D
E
T

2
4
5

M
O
V
E

P
R
O
D
-
C
O
D
E

2
4
6

T
O

R
E
F
-
D
E
T
-
S
T
K
(
I
N
D
-
D
E
T
)

2
4
7

P
E
R
F
O
R
M

U
P
D
A
T
E
-
C
U
S
-
H
I
S
T

2
4
8

S
E
T

I
N
D
-
D
E
T

U
P

B
Y

1

2
4
9

E
L
S
E

2
5
0

D
I
S
P
L
A
Y

"
E
R
R
O
R
:

A
L
R
E
A
D
Y

O
R
D
E
R
E
D
"
.

2
5
1

2
5
2

U
P
D
A
T
E
-
C
U
S
-
H
I
S
T
.

2
5
3

S
E
T

I
N
D

T
O

1
.

2
5
4

P
E
R
F
O
R
M

U
N
T
I
L

2
5
5

R
E
F
-
P
U
R
C
H
-
S
T
K
(
I
N
D
)

=

P
R
O
D
-

C
O
D
E

2
5
6

O
R

R
E
F
-
P
U
R
C
H
-
S
T
K
(
I
N
D
)

=

0

2
5
7

O
R

I
N
D

=

1
0
1

2
5
8

S
E
T

I
N
D

U
P

B
Y

1

Program Understanding in DBRE 37

2
5
9

E
N
D
-
P
E
R
F
O
R
M
.

2
6
0

I
F

I
N
D

=

1
0
1

2
6
1

D
I
S
P
L
A
Y

"
E
R
R

:

H
I
S
T
O
R
Y

O
V
E
R
F
L
O
W
"

2
6
2

E
X
I
T
.

2
6
3

I
F

R
E
F
-
P
U
R
C
H
-
S
T
K
(
I
N
D
)

2
6
4

=

P
R
O
D
-
C
O
D
E

2
6
5

A
D
D

O
R
D
-
Q
T
Y
(
I
N
D
-
D
E
T
)

T
O

T
O
T
(
I
N
D
)

2
6
6

E
L
S
E

2
6
7

M
O
V
E

P
R
O
D
-
C
O
D
E

2
6
8

T
O

R
E
F
-
P
U
R
C
H
-
S
T
K
(
I
N
D
)

2
6
9

M
O
V
E

O
R
D
-
Q
T
Y
(
I
N
D
-
D
E
T
)

T
O

T
O
T
(
I
N
D
)
.

2
7
0

2
7
1

L
I
S
T
-
O
R
D
.

2
7
2

D
I
S
P
L
A
Y

"
L
I
S
T

O
F

O
R
D
E
R
S

"
.

2
7
3

C
L
O
S
E

O
R
D
E
R
S
.

2
7
4

O
P
E
N

I
-
O

O
R
D
E
R
S
.

2
7
5

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E
.

2
7
6

P
E
R
F
O
R
M

R
E
A
D
-
O
R
D

U
N
T
I
L

E
N
D
-
F
I
L
E

=

0
.

2
7
7

2
7
8

R
E
A
D
-
O
R
D
.

2
7
9

R
E
A
D

O
R
D
E
R
S

N
E
X
T

2
8
0

A
T

E
N
D

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

2
8
1

N
O
T

A
T

E
N
D

2
8
2

D
I
S
P
L
A
Y

"
O
R
D
-
C
O
D
E

"

2
8
3

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G

2
8
4

D
I
S
P
L
A
Y

O
R
D
-
C
O
D
E

2
8
5

D
I
S
P
L
A
Y

"
O
R
D
-
C
U
S
T
O
M
E
R

"

2
8
6

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G

2
8
7

D
I
S
P
L
A
Y

O
R
D
-
C
U
S
T
O
M
E
R

2
8
8

D
I
S
P
L
A
Y

"
O
R
D
-
D
E
T
A
I
L

"

2
8
9

M
O
V
E

O
R
D
-
D
E
T
A
I
L

T
O

L
I
S
T
-
D
E
T
A
I
L

2
9
0

S
E
T

I
N
D
-
D
E
T

T
O

1

2
9
1

M
O
V
E

1

T
O

E
N
D
-
D
E
T
A
I
L

2
9
2

P
E
R
F
O
R
M

D
I
S
P
L
A
Y
-
D
E
T
A
I
L
.

2
9
3

2
9
4

I
N
I
T
-
H
I
S
T
.

2
9
5

S
E
T

I
N
D

T
O

1
.

2
9
6

P
E
R
F
O
R
M

U
N
T
I
L

I
N
D

=

1
0
0

2
9
7

M
O
V
E

0

T
O

R
E
F
-
P
U
R
C
H
-
S
T
K
(
I
N
D
)

2
9
8

M
O
V
E

0

T
O

T
O
T
(
I
N
D
)

2
9
9

S
E
T

I
N
D

U
P

B
Y

1

3
0
0

E
N
D
-
P
E
R
F
O
R
M
.

3
0
1

M
O
V
E

L
I
S
T
-
P
U
R
C
H
A
S
E

T
O

C
U
S
-
H
I
S
T
.

3
0
2

3
0
3

D
I
S
P
L
A
Y
-
D
E
T
A
I
L
.

3
0
4

I
F

I
N
D
-
D
E
T

=

2
1

3
0
5

M
O
V
E

0

T
O

E
N
D
-
D
E
T
A
I
L

3
0
6

E
X
I
T
.

3
0
7

I
F

R
E
F
-
D
E
T
-
S
T
K
(
I
N
D
-
D
E
T
)

=

0

3
0
8

M
O
V
E

0

T
O

E
N
D
-
D
E
T
A
I
L

3
0
9

E
L
S
E

3
1
0

D
I
S
P
L
A
Y

R
E
F
-
D
E
T
-
S
T
K
(
I
N
D
-
D
E
T
)

3
1
1

D
I
S
P
L
A
Y

O
R
D
-
Q
T
Y
(
I
N
D
-
D
E
T
)

3
1
2

S
E
T

I
N
D
-
D
E
T

U
P

B
Y

1
.

38 Program Understanding in DBRE

B.2. Validation program (automatically generated)

1

*

2

*

D
a
t
e

:

9
-
1
-
2
0
0
3
,

1
7

:

1
8

:

4
5

3

*

A
u
t
h
o
r

:

J
e
a
n

H
e
n
r
a
r
d

4

*

P
r
o
g
r
a
m

g
e
n
e
r
a
t
e
d

b
y

v
a
l
_
f
k
_
c
o
b
o
l
.
o
x
o

5

I
D
E
N
T
I
F
I
C
A
T
I
O
N

D
I
V
I
S
I
O
N
.

6

P
R
O
G
R
A
M
-
I
D
.

p
h
y
s
i
c
a
l
.

7 8

E
N
V
I
R
O
N
M
E
N
T

D
I
V
I
S
I
O
N
.

9

I
N
P
U
T
-
O
U
T
P
U
T

S
E
C
T
I
O
N
.

1
0

F
I
L
E
-
C
O
N
T
R
O
L
.

1
1

S
E
L
E
C
T

S
T
O
C
K

A
S
S
I
G
N

T
O

"
S
T
O
C
K
"

1
2

O
R
G
A
N
I
Z
A
T
I
O
N

I
S

I
N
D
E
X
E
D

1
3

A
C
C
E
S
S

M
O
D
E

I
S

D
Y
N
A
M
I
C

1
4

R
E
C
O
R
D

K
E
Y

I
S

S
T
K
-
C
O
D
E
.

1
5

1
6

S
E
L
E
C
T

O
R
D
E
R
S

A
S
S
I
G
N

T
O

"
O
R
D
E
R
S
"

1
7

O
R
G
A
N
I
Z
A
T
I
O
N

I
S

I
N
D
E
X
E
D

1
8

A
C
C
E
S
S

M
O
D
E

I
S

D
Y
N
A
M
I
C

1
9

R
E
C
O
R
D

K
E
Y

I
S

O
R
D
-
C
O
D
E

2
0

A
L
T
E
R
N
A
T
E

R
E
C
O
R
D

K
E
Y

I
S

O
R
D
-
C
U
S
T
O
M
E
R

2
1

W
I
T
H

D
U
P
L
I
C
A
T
E
S
.

2
2

2
3

S
E
L
E
C
T

C
U
S
T
O
M
E
R

A
S
S
I
G
N

T
O

"
C
U
S
T
O
M
E
R
"

2
4

O
R
G
A
N
I
Z
A
T
I
O
N

I
S

I
N
D
E
X
E
D

2
5

A
C
C
E
S
S

M
O
D
E

I
S

D
Y
N
A
M
I
C

2
6

R
E
C
O
R
D

K
E
Y

I
S

C
U
S
-
C
O
D
E
.

2
7

2
8

2
9

D
A
T
A

D
I
V
I
S
I
O
N
.

3
0

F
I
L
E

S
E
C
T
I
O
N
.

3
1

F
D

S
T
O
C
K
.

3
2

0
1

S
T
K
.

3
3

0
2

S
T
K
-
C
O
D
E

P
I
C

9
(
5
)
.

3
4

0
2

S
T
K
-
N
A
M
E

P
I
C

X
(
1
0
0
)
.

3
5

0
2

S
T
K
-
L
E
V
E
L

P
I
C

9
(
5
)
.

3
6

F
D

O
R
D
E
R
S
.

3
7

0
1

O
R
D
.

3
8

0
2

O
R
D
-
C
O
D
E

P
I
C

9
(
1
0
)
.

3
9

0
2

O
R
D
-
C
U
S
T
O
M
E
R

P
I
C

X
(
1
2
)
.

4
0

0
2

O
R
D
-
D
E
T
A
I
L
.

4
1

0
3

D
E
T
A
I
L
S

O
C
C
U
R
S

2
0

T
I
M
E
S

4
2

I
N
D
E
X
E
D

B
Y

I
N
D
-
D
E
T
A
I
L
S
.

4
3

0
4

R
E
F
-
D
E
T
-
S
T
K

P
I
C

9
(
5
)
.

4
4

0
4

O
R
D
-
Q
T
Y

P
I
C

9
(
5
)
.

4
5

F
D

C
U
S
T
O
M
E
R
.

4
6

0
1

C
U
S
.

4
7

0
2

C
U
S
-
C
O
D
E

P
I
C

X
(
1
2
)
.

4
8

0
2

C
U
S
-
D
E
S
C
R
.

4
9

0
3

N
A
M
E

P
I
C

X
(
2
0
)
.

5
0

0
3

A
D
D
R

P
I
C

X
(
4
0
)
.

5
1

0
3

F
U
N
C
T

P
I
C

X
(
1
0
)
.

5
2

0
3

R
E
C
-
D
A
T
E

P
I
C

X
(
1
0
)
.

5
3

0
2

C
U
S
-
H
I
S
T
.

5
4

0
3

P
U
R
C
H

O
C
C
U
R
S

1
0
0

T
I
M
E
S

5
5

I
N
D
E
X
E
D

B
Y

I
N
D
-
P
U
R
C
H
.

5
6

0
4

R
E
F
-
P
U
R
C
H
-
S
T
K

P
I
C

9
(
5
)
.

5
7

0
4

T
O
T

P
I
C

9
(
5
)
.

5
8

5
9

W
O
R
K
I
N
G
-
S
T
O
R
A
G
E

S
E
C
T
I
O
N
.

6
0

0
1

E
N
D
-
F
I
L
E

P
I
C

9
.

6
1

0
1

C
O
U
N
T
-
E
R
R
O
R

P
I
C

9
(
5
)
.

6
2

0
1

C
O
U
N
T
-
T
O
T
A
L

P
I
C

9
(
5
)
.

6
3

0
1

F
K
-
D
E
S
C

P
I
C

X
(
1
0
0
)
.

6
4

6
5

P
R
O
C
E
D
U
R
E

D
I
V
I
S
I
O
N
.

6
6

M
A
I
N
.

6
7

P
E
R
F
O
R
M

C
H
E
C
K
-
C
U
S
-
r
e
f
.

6
8

M
O
V
E

"
C
U
S
:
{
R
E
F
-
P
U
R
C
H
-
S
T
K
}
-
-
>
S
T
K
:
{
S
T
K
-

C
O
D
E
}
"

6
9

T
O

F
K
-
D
E
S
C
.

7
0

M
O
V
E

0

T
O

C
O
U
N
T
-
T
O
T
A
L
.

7
1

M
O
V
E

0

T
O

C
O
U
N
T
-
E
R
R
O
R
.

Program Understanding in DBRE 39

7
2

P
E
R
F
O
R
M

D
I
S
P
L
A
Y
-
R
E
P
O
R
T
.

7
3

7
4

P
E
R
F
O
R
M

C
H
E
C
K
-
O
R
D
-
O
R
D
-
C
U
S
T
O
M
E
R
.

7
5

M
O
V
E

"
O
R
D
:
{
O
R
D
-
C
U
S
T
O
M
E
R
}
-
-
>
C
U
S
:
{
C
U
S
-
C
O
D
E
}
"

7
6

T
O

F
K
-
D
E
S
C
.

7
7

M
O
V
E

0

T
O

C
O
U
N
T
-
T
O
T
A
L
.

7
8

M
O
V
E

0

T
O

C
O
U
N
T
-
E
R
R
O
R
.

7
9

P
E
R
F
O
R
M

D
I
S
P
L
A
Y
-
R
E
P
O
R
T
.

8
0

8
1

P
E
R
F
O
R
M

C
H
E
C
K
-
O
R
D
-
r
e
f
.

8
2

M
O
V
E

"
O
R
D
:
{
R
E
F
-
D
E
T
-
S
T
K
}
-
-
>
S
T
K
:
{
S
T
K
-
C
O
D
E
}
"

8
3

T
O

F
K
-
D
E
S
C
.

8
4

M
O
V
E

0

T
O

C
O
U
N
T
-
T
O
T
A
L
.

8
5

M
O
V
E

0

T
O

C
O
U
N
T
-
E
R
R
O
R
.

8
6

P
E
R
F
O
R
M

D
I
S
P
L
A
Y
-
R
E
P
O
R
T
.

8
7

8
8

S
T
O
P

R
U
N
.

8
9

9
0

D
I
S
P
L
A
Y
-
R
E
P
O
R
T
.

9
1

D
I
S
P
L
A
Y

F
K
-
D
E
S
C
.

9
2

D
I
S
P
L
A
Y

"
T
O
T
A
L

N
U
M
B
E
R

O
F

R
E
C
O
R
D
S
:

"

C
O
U
N
T
-

T
O
T
A
L
.

9
3

D
I
S
P
L
A
Y

"
N
U
M
B
E
R

O
F

E
R
R
O
R
S
:

"

C
O
U
N
T
-
E
R
R
O
R
.

9
4

9
5

C
H
E
C
K
-
C
U
S
-
r
e
f
.

9
6

O
P
E
N

I
N
P
U
T

C
U
S
T
O
M
E
R
.

9
7

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E
.

9
8

P
E
R
F
O
R
M

R
E
A
D
-
C
U
S
-
r
e
f

U
N
T
I
L

E
N
D
-
F
I
L
E

=

0
.

9
9

1
0
0

R
E
A
D
-
C
U
S
-
r
e
f
.

1
0
1

R
E
A
D

C
U
S
T
O
M
E
R

N
E
X
T

1
0
2

A
T

E
N
D

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

1
0
3

N
O
T

A
T

E
N
D

1
0
4

P
E
R
F
O
R
M

R
E
A
D
-
T
A
R
G
-
C
U
S
-
r
e
f
.

1
0
5

1
0
6

R
E
A
D
-
T
A
R
G
-
C
U
S
-
r
e
f
.

1
0
7

S
E
T

I
N
D
-
P
U
R
C
H

T
O

1
.

1
0
8

P
E
R
F
O
R
M

R
E
A
D
-
T
A
R
G
-
C
U
S
-
R
E
F
-
A
R
R
A
Y

U
N
T
I
L

I
N
D
-

P
U
R
C
H

=

1
0
1
.

1
0
9

1
1
0

R
E
A
D
-
T
A
R
G
-
C
U
S
-
R
E
F
-
A
R
R
A
Y
.

1
1
1

A
D
D

1

T
O

C
O
U
N
T
-
T
O
T
A
L
.

1
1
2

M
O
V
E

R
E
F
-
P
U
R
C
H
-
S
T
K
(
I
N
D
-
P
U
R
C
H
)

T
O

S
T
K
-
C
O
D
E
.

1
1
3

R
E
A
D

S
T
O
C
K

1
1
4

I
N
V
A
L
I
D

K
E
Y

M
O
V
E

1

T
O

C
O
U
N
T
-
E
R
R
O
R
.

1
1
5

S
E
T

I
N
D
-
P
U
R
C
H

U
P

B
Y

1
.

1
1
6

1
1
7

C
H
E
C
K
-
O
R
D
-
O
R
D
-
C
U
S
T
O
M
E
R
.

1
1
8

O
P
E
N

I
N
P
U
T

O
R
D
E
R
S
.

1
1
9

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E
.

1
2
0

P
E
R
F
O
R
M

R
E
A
D
-
O
R
D
-
O
R
D
-
C
U
S
T
O
M
E
R

U
N
T
I
L

E
N
D
-
F
I
L
E

=

0
.

1
2
1

1
2
2

R
E
A
D
-
O
R
D
-
O
R
D
-
C
U
S
T
O
M
E
R
.

1
2
3

R
E
A
D

O
R
D
E
R
S

N
E
X
T

1
2
4

A
T

E
N
D

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

1
2
5

N
O
T

A
T

E
N
D

1
2
6

P
E
R
F
O
R
M

R
E
A
D
-
T
A
R
G
-
O
R
D
-
O
R
D
-
C
U
S
T
O
M
E
R
.

1
2
7

1
2
8

R
E
A
D
-
T
A
R
G
-
O
R
D
-
O
R
D
-
C
U
S
T
O
M
E
R
.

1
2
9

A
D
D

1

T
O

C
O
U
N
T
-
T
O
T
A
L
.

1
3
0

M
O
V
E

O
R
D
-
C
U
S
T
O
M
E
R

T
O

C
U
S
-
C
O
D
E
.

1
3
1

R
E
A
D

C
U
S
T
O
M
E
R

1
3
2

I
N
V
A
L
I
D

K
E
Y

M
O
V
E

1

T
O

C
O
U
N
T
-
E
R
R
O
R
.

1
3
3

1
3
4

C
H
E
C
K
-
O
R
D
-
r
e
f
.

1
3
5

O
P
E
N

I
N
P
U
T

O
R
D
E
R
S
.

1
3
6

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E
.

1
3
7

P
E
R
F
O
R
M

R
E
A
D
-
O
R
D
-
r
e
f

U
N
T
I
L

E
N
D
-
F
I
L
E

=

0
.

1
3
8

1
3
9

R
E
A
D
-
O
R
D
-
r
e
f
.

1
4
0

R
E
A
D

O
R
D
E
R
S

N
E
X
T

40 Program Understanding in DBRE

1
4
1

A
T

E
N
D

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

1
4
2

N
O
T

A
T

E
N
D

1
4
3

P
E
R
F
O
R
M

R
E
A
D
-
T
A
R
G
-
O
R
D
-
r
e
f
.

1
4
4

1
4
5

R
E
A
D
-
T
A
R
G
-
O
R
D
-
r
e
f
.

1
4
6

S
E
T

I
N
D
-
D
E
T
A
I
L
S

T
O

1
.

1
4
7

P
E
R
F
O
R
M

R
E
A
D
-
T
A
R
G
-
O
R
D
-
R
E
F
-
A
R
R
A
Y

U
N
T
I
L

I
N
D
-

D
E
T
A
I
L
S

=

1
0
1
.

1
4
8

1
4
9

R
E
A
D
-
T
A
R
G
-
O
R
D
-
R
E
F
-
A
R
R
A
Y
.

1
5
0

A
D
D

1

T
O

C
O
U
N
T
-
T
O
T
A
L
.

1
5
1

M
O
V
E

R
E
F
-
D
E
T
-
S
T
K
(
I
N
D
-
D
E
T
A
I
L
S
)

T
O

S
T
K
-
C
O
D
E
.

1
5
2

R
E
A
D

S
T
O
C
K

1
5
3

I
N
V
A
L
I
D

K
E
Y

M
O
V
E

1

T
O

C
O
U
N
T
-
E
R
R
O
R
.

1
5
4

S
E
T

I
N
D
-
D
E
T
A
I
L
S

U
P

B
Y

1
.

1
5
5

1
5
6

Program Understanding in DBRE 41

B.3. SQL-DDL code
42 Program Understanding in DBRE

c
r
e
a
t
e

t
a
b
l
e

C
U
S
T
O
M
E
R

(

C
O
D
E

c
h
a
r
(
1
2
)

n
o
t

n
u
l
l
,

N
A
M
E

c
h
a
r
(
2
0
)

n
o
t

n
u
l
l
,

A
D
D
R

c
h
a
r
(
4
0
)

n
o
t

n
u
l
l
,

F
U
N
C
T

c
h
a
r
(
1
0
)
,

R
E
C
_
D
A
T
E

c
h
a
r
(
1
0
)

n
o
t

n
u
l
l
,

p
r
i
m
a
r
y

k
e
y

(
C
O
D
E
)
)
;

c
r
e
a
t
e

t
a
b
l
e

D
E
T
A
I
L

(

O
R
D
E
R
S

n
u
m
e
r
i
c
(
1
0
)

n
o
t

n
u
l
l
,

P
R
O
D
U
C
T

n
u
m
e
r
i
c
(
5
)

n
o
t

n
u
l
l
,

O
R
D
_
Q
T
Y

n
u
m
e
r
i
c
(
5
)

n
o
t

n
u
l
l
,

p
r
i
m
a
r
y

k
e
y

(
P
R
O
D
,

O
R
D
E
R
S
)
)
;

c
r
e
a
t
e

t
a
b
l
e

O
R
D
E
R
S

(

C
O
D
E

n
u
m
e
r
i
c
(
1
0
)

n
o
t

n
u
l
l
,

O
R
D
_
D
A
T
E

c
h
a
r
(
8
)

n
o
t

n
u
l
l
,

C
U
S
T
O
M
E
R

c
h
a
r
(
1
2
)

n
o
t

n
u
l
l
,

p
r
i
m
a
r
y

k
e
y

(
C
O
D
E
)
)
;

c
r
e
a
t
e

t
a
b
l
e

P
U
R
C
H

(

C
U
S
T
O
M
E
R

c
h
a
r
(
1
2
)

n
o
t

n
u
l
l
,

P
R
O
D
U
C
T

n
u
m
e
r
i
c
(
5
)

n
o
t

n
u
l
l
,

T
O
T

n
u
m
e
r
i
c
(
5
)

n
o
t

n
u
l
l
,

p
r
i
m
a
r
y

k
e
y

(
P
R
O
D
,

C
U
S
T
O
M
E
R
)
)
;

c
r
e
a
t
e

t
a
b
l
e

P
R
O
D
U
C
T

(

C
O
D
E

n
u
m
e
r
i
c
(
5
)

n
o
t

n
u
l
l
,

N
A
M
E

c
h
a
r
(
1
0
0
)

n
o
t

n
u
l
l
,

P
R
I
C
E

n
u
m
e
r
i
c
(
5
)

n
o
t

n
u
l
l
,

p
r
i
m
a
r
y

k
e
y

(
C
O
D
E
)
)
;

c
r
e
a
t
e

i
n
d
e
x

G
R
D
E
T
A
I
L

o
n

D
E
T
A
I
L

(
P
R
O
D
U
C
T
)
;

c
r
e
a
t
e

i
n
d
e
x

G
R
O
R
D
E
R
S

o
n

O
R
D
E
R
S

(
C
U
S
T
O
M
E
R
)
;

c
r
e
a
t
e

i
n
d
e
x

G
R
P
U
R
C
H

o
n

P
U
R
C
H

(
P
R
O
D
U
C
T
)
;

B.4. Embedded code

1

I
D
E
N
T
I
F
I
C
A
T
I
O
N

D
I
V
I
S
I
O
N
.

2

P
R
O
G
R
A
M
-
I
D
.

C
-
O
R
D
.

3

D
A
T
A

D
I
V
I
S
I
O
N
.

4

5

W
O
R
K
I
N
G
-
S
T
O
R
A
G
E

S
E
C
T
I
O
N
.

6
*

C
o
p
y

i
n

t
h
e

S
Q
L

C
o
m
m
.

A
r
e
a

(
S
Q
L
C
A
)

7

E
X
E
C

S
Q
L

I
N
C
L
U
D
E

S
Q
L
C
A

E
N
D
-
E
X
E
C
.

8
*

C
o
p
y

i
n

t
h
e

O
r
a
c
l
e

C
o
m
m
.

A
r
e
a

(
O
R
A
C
A
)

9

E
X
E
C

S
Q
L

I
N
C
L
U
D
E

O
R
A
C
A

E
N
D
-
E
X
E
C
.

1
0

1
1

E
X
E
C

S
Q
L

B
E
G
I
N

D
E
C
L
A
R
E

S
E
C
T
I
O
N

E
N
D
-
E
X
E
C
.

1
2

0
1

C
U
S
.

1
3

0
2

C
U
S
-
C
O
D
E

P
I
C

X
(
1
2
)
.

1
4

0
2

C
U
S
-
N
A
M
E

P
I
C

X
(
2
0
)
.

1
5

0
2

C
U
S
-
A
D
D
R

P
I
C

X
(
4
0
)
.

1
6

0
2

C
U
S
-
F
U
N
C
T

P
I
C

X
(
1
0
)
.

1
7

0
2

C
U
S
-
R
E
C
-
D
A
T
E

P
I
C

X
(
1
0
)
.

1
8

1
9

0
1

O
R
D
.

2
0

0
2

O
R
D
-
C
O
D
E

P
I
C

9
(
1
0
)
.

2
1

0
2

O
R
D
-
C
U
S
T
O
M
E
R

P
I
C

X
(
1
2
)
.

2
2

2
3

0
1

P
R
O
D
.

2
4

0
2

P
R
O
D
-
C
O
D
E

P
I
C

9
(
5
)
.

2
5

0
2

P
R
O
D
-
N
A
M
E

P
I
C

X
(
1
0
0
)
.

2
6

0
2

P
R
I
C
E

P
I
C

9
(
5
)
.

2
7

2
8

0
1

P
U
R
C
H
.

2
9

0
2

P
U
R
C
H
-
C
U
S
T

P
I
C

X
(
1
2
)
.

3
0

0
2

P
U
R
C
H
-
P
R
O
D

P
I
C

9
(
5
)
.

3
1

0
2

P
U
R
C
H
-
T
O
T

P
I
C

9
(
5
)
.

3
2

3
3

0
1

D
E
T
A
I
L
.

3
4

0
2

D
E
T
-
C
U
S
T

P
I
C

X
(
1
2
)
.

3
5

0
2

D
E
T
-
P
R
O
D

P
I
C

9
(
5
)
.

3
6

0
2

D
E
T
-
Q
T
Y

P
I
C

9
(
5
)
.

3
7

3
8

0
1

U
S
E
R
N
A
M
E

P
I
C

X
(
2
0
)
.

3
9

0
1

P
A
S
S
W
D

P
I
C

X
(
2
0
)
.

4
0

E
X
E
C

S
Q
L

E
N
D

D
E
C
L
A
R
E

S
E
C
T
I
O
N

E
N
D
-
E
X
E
C
.

4
1

4
2

0
1

C
H
O
I
C
E

P
I
C

X
.

4
3

0
1

E
N
D
-
F
I
L
E

P
I
C

9
.

4
4

0
1

P
R
O
D
-
C
O
D
E

P
I
C

9
(
5
)
.

4
5

4
6

P
R
O
C
E
D
U
R
E

D
I
V
I
S
I
O
N
.

4
7

M
A
I
N
.

4
8

P
E
R
F
O
R
M

I
N
I
T
.

4
9

P
E
R
F
O
R
M

P
R
O
C
E
S
S

U
N
T
I
L

C
H
O
I
C
E

=

0
.

5
0

S
T
O
P

R
U
N
.

5
1

5
2

I
N
I
T
.

5
3

D
I
S
P
L
A
Y

"
U
S
E
R
N
A
M
E
:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

5
4

A
C
C
E
P
T

U
S
E
R
N
A
M
E
.

5
5

D
I
S
P
L
A
Y

"
P
A
S
S
W
O
R
D
:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

5
6

A
C
C
E
P
T

P
A
S
S
W
D
.

5
7

E
X
E
C

S
Q
L

5
8

C
O
N
N
E
C
T

:
U
S
E
R
N
A
M
E

I
D
E
N
T
I
F
I
E
D

B
Y

:
P
A
S
S
W
D

5
9

E
N
D
-
E
X
E
C
.

6
0

6
1

P
R
O
C
E
S
S
.

6
2

D
I
S
P
L
A
Y

"
1

N
E
W

C
U
S
T
O
M
E
R
"
.

6
3

D
I
S
P
L
A
Y

"
2

N
E
W

P
R
O
D
U
C
T
"
.

6
4

D
I
S
P
L
A
Y

"
3

N
E
W

O
R
D
E
R
"
.

6
5

D
I
S
P
L
A
Y

"
4

L
I
S
T

O
F

C
U
S
T
O
M
E
R
S
"
.

6
6

D
I
S
P
L
A
Y

"
5

L
I
S
T

O
F

P
R
O
D
U
C
T
S
"
.

6
7

D
I
S
P
L
A
Y

"
6

L
I
S
T

O
F

O
R
D
E
R
S
"
.

6
8

D
I
S
P
L
A
Y

"
0

E
N
D
"
.

6
9

A
C
C
E
P
T

C
H
O
I
C
E
.

7
0

I
F

C
H
O
I
C
E

=

1

7
1

P
E
R
F
O
R
M

N
E
W
-
C
U
S
.

7
2

I
F

C
H
O
I
C
E

=

2

Program Understanding in DBRE 43

7
3

P
E
R
F
O
R
M

N
E
W
-
P
R
O
D
.

7
4

I
F

C
H
O
I
C
E

=

3

7
5

P
E
R
F
O
R
M

N
E
W
-
O
R
D
.

7
6

I
F

C
H
O
I
C
E

=

4

7
7

P
E
R
F
O
R
M

L
I
S
T
-
C
U
S
.

7
8

I
F

C
H
O
I
C
E

=

5

7
9

P
E
R
F
O
R
M

L
I
S
T
-
P
R
O
D
.

8
0

I
F

C
H
O
I
C
E

=

6

8
1

P
E
R
F
O
R
M

L
I
S
T
-
O
R
D
.

8
2

8
3

N
E
W
-
C
U
S
.

8
4

D
I
S
P
L
A
Y

"
N
E
W

C
U
S
T
O
M
E
R

:
"
.

8
5

D
I
S
P
L
A
Y

"
C
U
S
T
O
M
E
R

C
O
D
E

?
"

8
6

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

8
7

A
C
C
E
P
T

C
U
S
-
C
O
D
E
.

8
8

8
9

D
I
S
P
L
A
Y

"
N
A
M
E

D
U

C
U
S
T
O
M
E
R

:

"

9
0

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

9
1

A
C
C
E
P
T

C
U
S
-
N
A
M
E
.

9
2

D
I
S
P
L
A
Y

"
A
D
D
R
E
S
S

O
F

C
U
S
T
O
M
E
R

:

"

9
3

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

9
4

A
C
C
E
P
T

C
U
S
-
A
D
D
R
.

9
5

D
I
S
P
L
A
Y

"
F
U
N
C
T
I
O
N

O
F

C
U
S
T
O
M
E
R

:

"

9
6

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

9
7

A
C
C
E
P
T

C
U
S
-
F
U
N
C
T
.

9
8

D
I
S
P
L
A
Y

"
D
A
T
E

:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

9
9

A
C
C
E
P
T

C
U
S
-
R
E
C
-
D
A
T
E
.

1
0
0

1
0
1

E
X
E
C

S
Q
L

1
0
2

I
N
S
E
R
T

I
N
T
O

C
U
S
T
O
M
E
R

1
0
3

V
A
L
U
E
S

(
:
C
U
S
-
C
O
D
E
,

:
C
U
S
-
N
A
M
E
,

:
C
U
S
-
A
D
D
R
,

1
0
4

:
C
U
S
-
F
U
N
C
T
,

:
C
U
S
-
R
E
C
-
D
A
T
E
)

1
0
5

E
N
D
-
E
X
E
C
.

1
0
6

1
0
7

I
F
(
S
Q
L
C
O
D
E

=

0
)

1
0
8

E
X
E
C

S
Q
L

1
0
9

C
O
M
M
I
T

1
1
0

E
N
D
-
E
X
E
C

1
1
1

E
L
S
E

1
1
2

D
I
S
P
L
A
Y

"
E
R
R
O
R
"
.

1
1
3

1
1
4

L
I
S
T
-
C
U
S
.

1
1
5

D
I
S
P
L
A
Y

"
L
I
S
T
S

O
F

T
H
E

C
U
S
T
O
M
E
R
S
"
.

1
1
6

E
X
E
C

S
Q
L

1
1
7

D
E
C
L
A
R
E

A
L
L
_
C
U
S
T

C
U
R
S
O
R

F
O
R

1
1
8

S
E
L
E
C
T

C
O
D
E
,

N
A
M
E
,

A
D
D
R
,

F
U
N
C
T
,

R
E
C
_
D
A
T
E

1
1
9

F
R
O
M

C
U
S
T
O
M
E
R

1
2
0

O
R
D
E
R

B
Y

C
O
D
E

1
2
1

E
N
D
-
E
X
E
C
.

1
2
2

E
X
E
C

S
Q
L

1
2
3

O
P
E
N

A
L
L
_
C
U
S
T

1
2
4

E
N
D
-
E
X
E
C
.

1
2
5

I
F
(
S
Q
L
C
O
D
E

=

0
)

1
2
6

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E
.

1
2
7

P
E
R
F
O
R
M

R
E
A
D
-
C
U
S

U
N
T
I
L

(
E
N
D
-
F
I
L
E

=

1
)
.

1
2
8

1
2
9

R
E
A
D
-
C
U
S
.

1
3
0

E
X
E
C

S
Q
L

1
3
1

F
E
T
C
H

A
L
L
_
C
U
S
T

1
3
2

I
N
T
O

:
C
U
S
-
C
O
D
E
,

:
C
U
S
-
N
A
M
E
,

:
C
U
S
-
A
D
D
R
,

1
3
3

:
C
U
S
-
F
U
N
C
T
,

:
C
U
S
-
R
E
C
-
D
A
T
E

1
3
4

E
N
D
-
E
X
E
C
.

1
3
5

I
F
(
S
Q
L
C
O
D
E

=

0
)

1
3
6

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E

1
3
7

D
I
S
P
L
A
Y

C
U
S
-
C
O
D
E

C
U
S
-
N
A
M
E

1
3
8

D
I
S
P
L
A
Y

C
U
S
-
A
D
D
R

1
3
9

D
I
S
P
L
A
Y

C
U
S
-
F
U
N
C
T

C
U
S
-
R
E
C
-
D
A
T
E

1
4
0

P
E
R
F
O
R
M

D
I
S
P
-
C
U
S
-
H
I
S
T
O
R
Y
.

1
4
1

1
4
2

D
I
S
P
-
C
U
S
-
H
I
S
T
O
R
Y
.

1
4
3

E
X
E
C

S
Q
L

1
4
4

D
E
C
L
A
R
E

C
U
S
_
H
I
S
T

C
U
R
S
O
R

F
O
R

1
4
5

S
E
L
E
C
T

P
.
T
O
T
,

P
R
.
N
A
M
E

1
4
6

F
R
O
M

P
U
R
C
H

P
,

P
R
O
D
U
C
T

P
R

44 Program Understanding in DBRE

1
4
7

W
H
E
R
E

P
.
P
R
O
D
U
C
T

=

P
R
.
C
O
D
E

1
4
8

A
N
D

P
.
C
U
S
T
O
M
E
R

=

:
C
U
S
-
C
O
D
E

1
4
9

E
N
D
-
E
X
E
C
.

1
5
0

E
X
E
C

S
Q
L

1
5
1

O
P
E
N

C
U
S
_
H
I
S
T

1
5
2

E
N
D
-
E
X
E
C
.

1
5
3

D
I
S
P
L
A
Y

"
P
R
O
D
U
C
T

T
O
T
A
L
"
.

1
5
4

1
5
5

P
E
R
F
O
R
M

D
I
S
P
-
H
I
S
T
O
R
Y

U
N
T
I
L

(
S
Q
L
C
O
D
E

N
O
T

=

0
)
.

1
5
6

1
5
7

D
I
S
P
-
H
I
S
T
O
R
Y
.

1
5
8

E
X
E
C

S
Q
L

1
5
9

F
E
T
C
H

C
U
S
_
H
I
S
T

1
6
0

I
N
T
O

:
P
U
R
C
H
-
T
O
T
,

:
P
R
O
D
-
N
A
M
E

1
6
1

E
N
D
-
E
X
E
C
.

1
6
2

I
F
(
S
Q
L
C
O
D
E

=

0
)

1
6
3

D
I
S
P
L
A
Y

P
R
O
D
-
N
A
M
E

P
U
R
C
H
-
T
O
T
.

1
6
4

1
6
5

N
E
W
-
P
R
O
D
.

1
6
6

D
I
S
P
L
A
Y

"
N
E
W

P
R
O
D
U
C
T
"
.

1
6
7

D
I
S
P
L
A
Y

"
P
R
O
D
U
C
T

N
U
M
B
E
R

:

"

1
6
8

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
6
9

A
C
C
E
P
T

P
R
O
D
-
C
O
D
E
.

1
7
0

1
7
1

D
I
S
P
L
A
Y

"
N
A
M
E

:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
7
2

A
C
C
E
P
T

P
R
O
D
-
N
A
M
E
.

1
7
3

1
7
4

D
I
S
P
L
A
Y

"
L
E
V
E
L

:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
7
5

A
C
C
E
P
T

P
R
I
C
E
.

1
7
6

1
7
7

E
X
E
C

S
Q
L

1
7
8

I
N
S
E
R
T

I
N
T
O

P
R
O
D
U
C
T

1
7
9

V
A
L
U
E
S

(
:
P
R
O
D
-
C
O
D
E
,

:
P
R
O
D
-
N
A
M
E
,

1
8
0

:
P
R
O
D
-
P
R
I
C
E
)

1
8
1

E
N
D
-
E
X
E
C
.

1
8
2

1
8
3

I
F
(
S
Q
L
C
O
D
E

=

0
)

1
8
4

E
X
E
C

S
Q
L

1
8
5

C
O
M
M
I
T

1
8
6

E
N
D
-
E
X
E
C

1
8
7

E
L
S
E

1
8
8

D
I
S
P
L
A
Y

"
E
R
R
O
R
"
.

1
8
9

1
9
0

L
I
S
T
-
P
R
O
D
.

1
9
1

D
I
S
P
L
A
Y

"
L
I
S
T

O
F

P
R
O
D
U
C
T
S

"
.

1
9
2

E
X
E
C

S
Q
L

1
9
3

D
E
C
L
A
R
E

A
L
L
_
P
R
O
D

C
U
R
S
O
R

F
O
R

1
9
4

S
E
L
E
C
T

C
O
D
E
,

N
A
M
E
,

P
R
I
C
E

1
9
5

F
R
O
M

P
R
O
D
U
C
T

1
9
6

O
R
D
E
R

B
Y

C
O
D
E

1
9
7

E
N
D
-
E
X
E
C
.

1
9
8

E
X
E
C

S
Q
L

1
9
9

O
P
E
N

A
L
L
_
P
R
O
D

2
0
0

E
N
D
-
E
X
E
C
.

2
0
1

2
0
2

P
E
R
F
O
R
M

R
E
A
D
-
P
R
O
D

U
N
T
I
L

S
Q
L
C
O
D
E

N
O
T

=

0
.

2
0
3

2
0
4

R
E
A
D
-
P
R
O
D
.

2
0
5

E
X
E
C

S
Q
L

2
0
6

F
E
T
C
H

A
L
L
_
P
R
O
D

2
0
7

I
N
T
O

:
P
R
O
D
-
C
O
D
E
,

:
P
R
O
D
-
N
A
M
E
,

:
P
R
O
D
-
P
R
I
C
E

2
0
8

E
N
D
-
E
X
E
C
.

2
0
9

I
F
(
S
Q
L
C
O
D
E

=

0
)

2
1
0

D
I
S
P
L
A
Y

P
R
O
D
-
C
O
D
E

2
1
1

D
I
S
P
L
A
Y

P
R
O
D
-
N
A
M
E

2
1
2

D
I
S
P
L
A
Y

P
R
O
D
-
P
R
I
C
E
.

2
1
3

2
1
4

N
E
W
-
O
R
D
.

2
1
5

D
I
S
P
L
A
Y

"
N
E
W

O
R
D
E
R
"
.

2
1
6

D
I
S
P
L
A
Y

"
O
R
D
E
R

N
U
M
B
E
R

:

"

2
1
7

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

2
1
8

A
C
C
E
P
T

O
R
D
-
C
O
D
E
.

Program Understanding in DBRE 45

2
1
9

2
2
0

M
O
V
E

1

T
O

S
Q
L
C
O
D
E
.

2
2
1

P
E
R
F
O
R
M

R
E
A
D
-
C
U
S
-
C
O
D
E

U
N
T
I
L

S
Q
L
C
O
D
E

=

0
.

2
2
2

D
I
S
P
L
A
Y

C
U
S
-
N
A
M
E
.

2
2
3

E
X
E
C

S
Q
L

2
2
4

I
N
S
E
R
T

I
N
T
O

O
R
D
E
R
S

V
A
L
U
E
S

(
:
O
R
D
-
C
O
D
E
,

2
2
5

S
Y
S
D
A
T
E
,

:
C
U
S
-
C
O
D
E
)

2
2
6

E
N
D
-
E
X
E
C
.

2
2
7

I
F
(
S
Q
L
C
O
D
E

N
O
T

=

0
)

2
2
8

D
I
S
P
L
A
Y

"
E
R
R
O
R
"

2
2
9

E
L
S
E

2
3
0

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

2
3
1

P
E
R
F
O
R
M

R
E
A
D
-
D
E
T
A
I
L

2
3
2

U
N
T
I
L

E
N
D
-
F
I
L
E

=

1

2
3
3

2
3
4

E
X
E
C

S
Q
L

2
3
5

C
O
M
M
I
T

2
3
6

E
N
D
-
E
X
E
C
.

2
3
7

2
3
8

R
E
A
D
-
C
U
S
-
C
O
D
E
.

2
3
9

D
I
S
P
L
A
Y

"
C
U
S
T
O
M
E
R

N
U
M
B
E
R

:

"

2
4
0

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

2
4
1

A
C
C
E
P
T

C
U
S
-
C
O
D
E
.

2
4
2

E
X
E
C

S
Q
L

2
4
3

S
E
L
E
C
T

C
O
D
E

2
4
4

I
N
T
O

:
C
U
S
-
C
O
D
E

2
4
5

F
R
O
M

C
U
S
T
O
M
E
R

2
4
6

W
H
E
R
E

C
O
D
E

=

:
C
U
S
-
C
O
D
E

2
4
7

E
N
D
-
E
X
E
C
.

2
4
8

I
F
(
S
Q
L
C
O
D
E

N
O
T

=

0
)

2
4
9

D
I
S
P
L
A
Y

"
N
O

S
U
C
H

C
U
S
T
O
M
E
R
"
.

2
5
0

2
5
1

R
E
A
D
-
D
E
T
A
I
L
.

2
5
2

D
I
S
P
L
A
Y

"
P
R
O
D
U
C
T

C
O
D
E

(
0

=

E
N
D
)

:

"
.

2
5
3

A
C
C
E
P
T

P
R
O
D
-
C
O
D
E
.

2
5
4

I
F

P
R
O
D
-
C
O
D
E

=

0

2
5
5

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E

2
5
6

E
L
S
E

2
5
7

P
E
R
F
O
R
M

R
E
A
D
-
P
R
O
D
-
C
O
D
E
.

2
5
8

2
5
9

R
E
A
D
-
P
R
O
D
-
C
O
D
E
.

2
6
0

E
X
E
C

S
Q
L

2
6
1

S
E
L
E
C
T

C
O
D
E

I
N
T
O

:
P
R
O
D
-
C
O
D
E

2
6
2

F
R
O
M

P
R
O
D
U
C
T

2
6
3

W
H
E
R
E

C
O
D
E

=

:
P
R
O
D
-
C
O
D
E

2
6
4

E
N
D
-
E
X
E
C
.

2
6
5

I
F

S
Q
L
C
O
D
E

=

0

2
6
6

P
E
R
F
O
R
M

U
P
D
A
T
E
-
O
R
D
-
D
E
T
A
I
L

2
6
7

E
L
S
E

2
6
8

D
I
S
P
L
A
Y

"
N
O

S
U
C
H

P
R
O
D
U
C
T
"
.

2
6
9

2
7
0

U
P
D
A
T
E
-
O
R
D
-
D
E
T
A
I
L
.

2
7
1

D
I
S
P
L
A
Y

"
Q
U
A
N
T
I
T
Y

O
R
D
E
R
E
D

:

"

2
7
2

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G

2
7
3

A
C
C
E
P
T

D
E
T
-
Q
T
Y
.

2
7
4

E
X
E
C

S
Q
L

2
7
5

S
E
L
E
C
T

O
R
D
-
Q
T
Y

2
7
6

F
R
O
M

D
E
T
A
I
L

2
7
7

W
H
E
R
E

O
R
D
E
R

=

:
O
R
D
-
C
O
D
E

2
7
8

A
N
D

P
R
O
D
U
C
T

=

:
P
R
O
D
-
C
O
D
E

2
7
9

E
N
D
-
E
X
E
C

2
8
0

2
8
1

I
F

S
Q
L
C
O
D
E

=

0

2
8
2

D
I
S
P
L
A
Y

"
E
R
R
O
R

:

A
L
R
E
A
D
Y

O
R
D
E
R
E
D
"

2
8
3

E
L
S
E

2
8
4

E
X
E
C

S
Q
L

2
8
5

I
N
S
E
R
T

I
N
T
O

D
E
T
A
I
L

2
8
6

V
A
L
U
E
S

(
:
O
R
D
-
C
O
D
E
,

:
P
R
O
D
-
C
O
D
E
,

:
D
E
T
-
Q
T
Y
)

2
8
7

E
N
D
-
E
X
E
C

2
8
8

P
E
R
F
O
R
M

U
P
D
A
T
E
-
C
U
S
-
H
I
S
T
.

2
8
9

2
9
0

U
P
D
A
T
E
-
C
U
S
-
H
I
S
T
.

46 Program Understanding in DBRE

2
9
1

E
X
E
C

S
Q
L

2
9
2

S
E
L
E
C
T

T
O
T

I
N
T
O

:
P
U
R
C
H
-
T
O
T

2
9
3

F
R
O
M

P
U
R
C
H

2
9
4

W
H
E
R
E

C
U
S
T
O
M
E
R

=

:
C
U
S
-
C
O
D
E

2
9
5

A
N
D

P
R
O
D
U
C
T

=

:
P
R
O
D
-
C
O
D
E

2
9
6

E
N
D
-
E
X
E
C
.

2
9
7

I
F
(
S
Q
L
C
O
D
E

=

0
)

2
9
8

E
X
E
C

S
Q
L

2
9
9

I
N
S
E
R
T

I
N
T
O

P
U
R
C
H

V
A
L
U
E
S
(
:
C
U
S
-
C
O
D
E
,

3
0
0

:
P
R
O
D
-
C
O
D
E
,

:
D
E
T
-
Q
T
Y
)

3
0
1

E
N
D
-
E
X
E
C

3
0
2

E
L
S
E

3
0
3

E
X
E
C

S
Q
L

3
0
4

U
P
D
A
T
E

P
R
U
C
H

S
E
T

3
0
5

T
O
T

=

(
:
P
U
R
C
H
-
T
O
T

+

:
D
E
T
-
Q
T
Y
)

3
0
6

W
H
E
R
E

C
U
S
T
O
M
E
R

=

:
C
U
S
-
C
O
D
E

3
0
7

A
N
D

P
R
O
D
U
C
T

=

:
P
R
O
D
-
C
O
D
E

3
0
8

E
N
D
-
E
X
E
C
.

3
0
9

3
1
0

L
I
S
T
-
O
R
D
.

3
1
1

D
I
S
P
L
A
Y

"
L
I
S
T

O
F

O
R
D
E
R
S

"
.

3
1
2

E
X
E
C

S
Q
L

3
1
3

D
E
C
L
A
R
E

A
L
L
_
O
R
D

C
U
R
S
O
R

F
O
R

3
1
4

S
E
L
E
C
T

C
O
D
E
,

C
U
S
T
O
M
E
R

3
1
5

F
R
O
M

O
R
D
E
R
S

3
1
6

O
R
D
E
R

B
Y

C
O
D
E

3
1
7

E
N
D
-
E
X
E
C
.

3
1
8

E
X
E
C

S
Q
L

3
1
9

O
P
E
N

A
L
L
_
O
R
D

3
2
0

E
N
D
-
E
X
E
C
.

3
2
1

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

3
2
2

P
E
R
F
O
R
M

R
E
A
D
-
O
R
D

U
N
T
I
L

E
N
D
-
F
I
L
E

=

1
.

3
2
3

3
2
4

R
E
A
D
-
O
R
D
.

3
2
5

E
X
E
C

S
Q
L

3
2
6

F
E
T
C
H

A
L
L
_
O
R
D

3
2
7

I
N
T
O

:
O
R
D
-
C
O
D
E
,

:
O
R
D
-
C
U
S
T
O
M
E
R

3
2
8

E
N
D
-
E
X
E
C
.

3
2
9

I
F
(
S
Q
L
C
O
D
E

=

0
)

3
3
0

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E

3
3
1

D
I
S
P
L
A
Y

"
O
R
D
-
C
O
D
E

"

3
3
2

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G

3
3
3

D
I
S
P
L
A
Y

O
R
D
-
C
O
D
E

3
3
4

D
I
S
P
L
A
Y

"
O
R
D
-
C
U
S
T
O
M
E
R

"

3
3
5

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G

3
3
6

D
I
S
P
L
A
Y

O
R
D
-
C
U
S
T
O
M
E
R

3
3
7

D
I
S
P
L
A
Y

"
O
R
D
-
D
E
T
A
I
L

"

3
3
8

E
X
E
C

S
Q
L

3
3
9

D
E
C
L
A
R
E

O
R
D
_
D
E
F

C
U
R
S
O
R

F
O
R

3
4
0

S
E
L
E
C
T

D
.
O
R
D
-
Q
T
Y
,

P
.
N
A
M
E

3
4
1

F
R
O
M

D
E
T
A
I
L

D
,

P
R
O
D
U
C
T

P

3
4
2

W
H
E
R
E

D
.
O
R
D
E
R

=

:
O
R
D
-
C
O
D
E

3
4
3

A
N
D

D
.
P
R
O
D
U
C
T

=

P
.
C
O
D
E

3
4
4

E
N
D
-
E
X
E
C

3
4
5

E
X
E
C

S
Q
L

3
4
6

O
P
E
N

A
L
L
_
O
R
D

3
4
7

E
N
D
-
E
X
E
C

3
4
8

D
I
S
P
L
A
Y

"
P
R
O
D

N
A
M
E

Q
U
A
N
T
I
T
Y
"

3
4
9

P
E
R
F
O
R
M

D
I
S
P
L
A
Y
-
D
E
T
A
I
L

3
5
0

U
N
T
I
L

S
Q
L
C
O
D
E

N
O
T

=

0
.

3
5
1

3
5
2

D
I
S
P
L
A
Y
-
D
E
T
A
I
L
.

3
5
3

E
X
E
C

S
Q
L

3
5
4

F
E
T
C
H

O
R
D
_
D
E
F

3
5
5

I
N
T
O

:
D
E
T
-
Q
T
Y
,

:
P
R
O
D
-
N
A
M
E

3
5
6

E
N
D
-
E
X
E
C
.

3
5
7

D
I
S
P
L
A
Y

P
R
O
D
-
N
A
M
E

D
E
T
-
Q
T
Y
.

3
5
8

3
5
9

Program Understanding in DBRE 47

2.5. Modified embedded code
1

I
D
E
N
T
I
F
I
C
A
T
I
O
N

D
I
V
I
S
I
O
N
.

2

P
R
O
G
R
A
M
-
I
D
.

C
-
O
R
D
.

3

D
A
T
A

D
I
V
I
S
I
O
N
.

4

5

W
O
R
K
I
N
G
-
S
T
O
R
A
G
E

S
E
C
T
I
O
N
.

6
*

C
o
p
y

i
n

t
h
e

S
Q
L

C
o
m
m
.

A
r
e
a

(
S
Q
L
C
A
)

7
*
E

E
X
E
C

S
Q
L

I
N
C
L
U
D
E

S
Q
L
C
A

E
N
D
-
E
X
E
C
.

8
*

C
o
p
y

i
n

t
h
e

O
r
a
c
l
e

C
o
m
m
.

A
r
e
a

(
O
R
A
C
A
)

9
*
E

E
X
E
C

S
Q
L

I
N
C
L
U
D
E

O
R
A
C
A

E
N
D
-
E
X
E
C
.

1
0

0
1

S
Q
L
C
O
D
E

P
I
C

9
(
9
)
.

1
1

1
2

*
E

E
X
E
C

S
Q
L

B
E
G
I
N

D
E
C
L
A
R
E

S
E
C
T
I
O
N

E
N
D
-
E
X
E
C
.

1
3

0
1

T
A
B
-
C
U
S
T
O
M
E
R
.

1
4

C
U
S
T
O
M
E
R
-
-
C
O
D
E

P
I
C

X
(
1
2
)
.

1
5

C
U
S
T
O
M
E
R
-
-
N
A
M
E

P
I
C

X
(
2
0
)
.

1
6

C
U
S
T
O
M
E
R
-
-
A
D
D
R

P
I
C

X
(
4
0
)
.

1
7

C
U
S
T
O
M
E
R
-
-
F
U
N
C
T

P
I
C

X
(
1
0
)
.

1
8

C
U
S
T
O
M
E
R
-
-
R
E
C
-
D
A
T
E

P
I
C

X
(
1
0
)
.

1
9

2
0

0
1

T
A
B
-
D
E
T
A
I
L
.

2
1

D
E
T
A
I
L
-
-
O
R
D
E
R
S

P
I
C

9
(
1
0
)
.

2
2

D
E
T
A
I
L
-
-
P
R
O
D
U
C
T

P
I
C

9
(
5
)
.

2
3

D
E
T
A
I
L
-
-
O
R
D
-
Q
T
Y

P
I
C

9
(
5
)
.

2
4

2
5

0
1

T
A
B
-
O
R
D
E
R
S
.

2
6

O
R
D
E
R
S
-
-
C
O
D
E

P
I
C

9
(
1
0
)
.

2
7

O
R
D
E
R
S
-
-
O
R
D
-
D
A
T
E

P
I
C

X
(
8
)
.

2
8

O
R
D
E
R
S
-
-
C
U
S
T
O
M
E
R

P
I
C

X
(
1
2
)
.

2
9

3
0

0
1

T
A
B
-
P
U
R
C
H
.

3
1

P
U
R
C
H
-
-
C
U
S
T
O
M
E
R

P
I
C

X
(
1
2
)
.

3
2

P
U
R
C
H
-
-
P
R
O
D
U
C
T

P
I
C

9
(
5
)
.

3
3

P
U
R
C
H
-
-
T
O
T

P
I
C

9
(
5
)
.

3
4

3
5

0
1

T
A
B
-
P
R
O
D
U
C
T
.

3
6

P
R
O
D
U
C
T
-
-
C
O
D
E

P
I
C

9
(
5
)
.

3
7

P
R
O
D
U
C
T
-
-
N
A
M
E

P
I
C

X
(
1
0
0
)
.

3
8

P
R
O
D
U
C
T
-
-
P
R
I
C
E

P
I
C

9
(
5
)
.

3
9

4
0

0
1

W
-
T
M
P

P
I
C

9
(
5
)
.

4
1

4
2

0
1

C
U
S
.

4
3

0
2

C
U
S
-
C
O
D
E

P
I
C

X
(
1
2
)
.

4
4

0
2

C
U
S
-
N
A
M
E

P
I
C

X
(
2
0
)
.

4
5

0
2

C
U
S
-
A
D
D
R

P
I
C

X
(
4
0
)
.

4
6

0
2

C
U
S
-
F
U
N
C
T

P
I
C

X
(
1
0
)
.

4
7

0
2

C
U
S
-
R
E
C
-
D
A
T
E

P
I
C

X
(
1
0
)
.

4
8

4
9

0
1

O
R
D
.

5
0

0
2

O
R
D
-
C
O
D
E

P
I
C

9
(
1
0
)
.

5
1

0
2

O
R
D
-
C
U
S
T
O
M
E
R

P
I
C

X
(
1
2
)
.

5
2

5
3

0
1

P
R
O
D
.

5
4

0
2

P
R
O
D
-
C
O
D
E

P
I
C

9
(
5
)
.

5
5

0
2

P
R
O
D
-
N
A
M
E

P
I
C

X
(
1
0
0
)
.

5
6

0
2

P
R
O
D
-
P
R
I
C
E

P
I
C

9
(
5
)
.

5
7

5
8

0
1

P
U
R
C
H
.

5
9

0
2

P
U
R
C
H
-
C
U
S
T

P
I
C

X
(
1
2
)
.

6
0

0
2

P
U
R
C
H
-
P
R
O
D

P
I
C

9
(
5
)
.

6
1

0
2

P
U
R
C
H
-
T
O
T

P
I
C

9
(
5
)
.

6
2

6
3

0
1

D
E
T
A
I
L
.

6
4

0
2

D
E
T
-
C
U
S
T

P
I
C

X
(
1
2
)
.

6
5

0
2

D
E
T
-
P
R
O
D

P
I
C

9
(
5
)
.

6
6

0
2

D
E
T
-
Q
T
Y

P
I
C

9
(
5
)
.

6
7

6
8

0
1

U
S
E
R
N
A
M
E

P
I
C

X
(
2
0
)
.

6
9

0
1

P
A
S
S
W
D

P
I
C

X
(
2
0
)
.

7
0

*
E

E
X
E
C

S
Q
L

E
N
D

D
E
C
L
A
R
E

S
E
C
T
I
O
N

E
N
D
-
E
X
E
C
.

7
1

7
2

0
1

C
H
O
I
C
E

P
I
C

X
.

48 Program Understanding in DBRE

Modified embedded code
7
3

0
1

E
N
D
-
F
I
L
E

P
I
C

9
.

7
4

0
1

P
R
O
D
-
C
O
D
E

P
I
C

9
(
5
)
.

7
5

7
6

P
R
O
C
E
D
U
R
E

D
I
V
I
S
I
O
N
.

7
7

M
A
I
N
.

7
8

P
E
R
F
O
R
M

I
N
I
T
.

7
9

P
E
R
F
O
R
M

P
R
O
C
E
S
S

U
N
T
I
L

C
H
O
I
C
E

=

0
.

8
0

S
T
O
P

R
U
N
.

8
1

8
2

I
N
I
T
.

8
3

D
I
S
P
L
A
Y

"
U
S
E
R
N
A
M
E
:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

8
4

A
C
C
E
P
T

U
S
E
R
N
A
M
E
.

8
5

D
I
S
P
L
A
Y

"
P
A
S
S
W
O
R
D
:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

8
6

A
C
C
E
P
T

P
A
S
S
W
D
.

8
7

*
E

E
X
E
C

S
Q
L

8
8

*
E

C
O
N
N
E
C
T

:
U
S
E
R
N
A
M
E

I
D
E
N
T
I
F
I
E
D

B
Y

:
P
A
S
S
W
D

8
9

*
E

E
N
D
-
E
X
E
C
.

9
0

9
1

P
R
O
C
E
S
S
.

9
2

D
I
S
P
L
A
Y

"
1

N
E
W

C
U
S
T
O
M
E
R
"
.

9
3

D
I
S
P
L
A
Y

"
2

N
E
W

P
R
O
D
U
C
T
"
.

9
4

D
I
S
P
L
A
Y

"
3

N
E
W

O
R
D
E
R
"
.

9
5

D
I
S
P
L
A
Y

"
4

L
I
S
T

O
F

C
U
S
T
O
M
E
R
S
"
.

9
6

D
I
S
P
L
A
Y

"
5

L
I
S
T

O
F

P
R
O
D
U
C
T
S
"
.

9
7

D
I
S
P
L
A
Y

"
6

L
I
S
T

O
F

O
R
D
E
R
S
"
.

9
8

D
I
S
P
L
A
Y

"
0

E
N
D
"
.

9
9

A
C
C
E
P
T

C
H
O
I
C
E
.

1
0
0

I
F

C
H
O
I
C
E

=

1

1
0
1

P
E
R
F
O
R
M

N
E
W
-
C
U
S
.

1
0
2

I
F

C
H
O
I
C
E

=

2

1
0
3

P
E
R
F
O
R
M

N
E
W
-
P
R
O
D
.

1
0
4

I
F

C
H
O
I
C
E

=

3

1
0
5

P
E
R
F
O
R
M

N
E
W
-
O
R
D
.

1
0
6

I
F

C
H
O
I
C
E

=

4

1
0
7

P
E
R
F
O
R
M

L
I
S
T
-
C
U
S
.

1
0
8

I
F

C
H
O
I
C
E

=

5

1
0
9

P
E
R
F
O
R
M

L
I
S
T
-
P
R
O
D
.

1
1
0

I
F

C
H
O
I
C
E

=

6

1
1
1

P
E
R
F
O
R
M

L
I
S
T
-
O
R
D
.

1
1
2

1
1
3

N
E
W
-
C
U
S
.

1
1
4

D
I
S
P
L
A
Y

"
N
E
W

C
U
S
T
O
M
E
R

:
"
.

1
1
5

D
I
S
P
L
A
Y

"
C
U
S
T
O
M
E
R

C
O
D
E

?
"

1
1
6

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
1
7

A
C
C
E
P
T

C
U
S
-
C
O
D
E
.

1
1
8

1
1
9

D
I
S
P
L
A
Y

"
N
A
M
E

D
U

C
U
S
T
O
M
E
R

:

"

1
2
0

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
2
1

A
C
C
E
P
T

C
U
S
-
N
A
M
E
.

1
2
2

D
I
S
P
L
A
Y

"
A
D
D
R
E
S
S

O
F

C
U
S
T
O
M
E
R

:

"

1
2
3

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
2
4

A
C
C
E
P
T

C
U
S
-
A
D
D
R
.

1
2
5

D
I
S
P
L
A
Y

"
F
U
N
C
T
I
O
N

O
F

C
U
S
T
O
M
E
R

:

"

1
2
6

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
2
7

A
C
C
E
P
T

C
U
S
-
F
U
N
C
T
.

1
2
8

D
I
S
P
L
A
Y

"
D
A
T
E

:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

1
2
9

A
C
C
E
P
T

C
U
S
-
R
E
C
-
D
A
T
E
.

1
3
0

1
3
1
*
E

E
X
E
C

S
Q
L

1
3
2
*
E

I
N
S
E
R
T

I
N
T
O

C
U
S
T
O
M
E
R

1
3
3
*
E

V
A
L
U
E
S

(
:
C
U
S
-
C
O
D
E
,

:
C
U
S
-
N
A
M
E
,

:
C
U
S
-
A
D
D
R
,

1
3
4
*
E

:
C
U
S
-
F
U
N
C
T
,

:
C
U
S
-
R
E
C
-
D
A
T
E
)

1
3
5
*
E

E
N
D
-
E
X
E
C
.

1
3
6

D
I
R
E
C
T
-
M
A
P

C
U
S
-
C
O
D
E

T
O

C
U
S
T
O
M
E
R
-
-
C
O
D
E
.

1
3
7

D
I
R
E
C
T
-
M
A
P

C
U
S
-
N
A
M
E

T
O

C
U
S
T
O
M
E
R
-
-
N
A
M
E
.

1
3
8

D
I
R
E
C
T
-
M
A
P

C
U
S
-
A
D
D
R

T
O

C
U
S
T
O
M
E
R
-
-
A
D
D
R
.

1
3
9

D
I
R
E
C
T
-
M
A
P

C
U
S
-
F
U
N
C
T

T
O

C
U
S
T
O
M
E
R
-
-
F
U
N
C
T
.

1
4
0

D
I
R
E
C
T
-
M
A
P

C
U
S
-
R
E
C
-
D
A
T
E

T
O

C
U
S
T
O
M
E
R
-
-
R
E
C
-
D
A
T
E
.

1
4
1

I
N
D
I
R
E
C
T
-
M
A
P

C
U
S
T
O
M
E
R
-
-
C
O
D
E

C
U
S
T
O
M
E
R
-
-
N
A
M
E

1
4
2

C
U
S
T
O
M
E
R
-
-
A
D
D
R

C
U
S
T
O
M
E
R
-
-
F
U
N
C
T

1
4
3

C
U
S
T
O
M
E
R
-
-
R
E
C
-
D
A
T
E

T
O

S
L
Q
C
O
D
E
.

1
4
4

Program Understanding in DBRE 49

1
4
5

I
F
(
S
Q
L
C
O
D
E

=

0
)

1
4
6
*
E

E
X
E
C

S
Q
L

1
4
7
*
E

C
O
M
M
I
T

1
4
8
*
E

E
N
D
-
E
X
E
C

1
4
9

E
L
S
E

1
5
0

D
I
S
P
L
A
Y

"
E
R
R
O
R
"
.

1
5
1

1
5
2

L
I
S
T
-
C
U
S
.

1
5
3

D
I
S
P
L
A
Y

"
L
I
S
T
S

O
F

T
H
E

C
U
S
T
O
M
E
R
S
"
.

1
5
4
*
E

E
X
E
C

S
Q
L

1
5
5
*
E

D
E
C
L
A
R
E

A
L
L
_
C
U
S
T

C
U
R
S
O
R

F
O
R

1
5
6
*
E

S
E
L
E
C
T

C
O
D
E
,

N
A
M
E
,

A
D
D
R
,

1
5
7

F
U
N
C
T
,

R
E
C
_
D
A
T
E

1
5
8
*
E

F
R
O
M

C
U
S
T
O
M
E
R

1
5
9
*
E

O
R
D
E
R

B
Y

C
O
D
E

1
6
0
*
E

E
N
D
-
E
X
E
C
.

1
6
1
*
E

E
X
E
C

S
Q
L

1
6
2
*
E

O
P
E
N

A
L
L
_
C
U
S
T

1
6
3
*
E

E
N
D
-
E
X
E
C
.

1
6
4

I
N
D
I
R
E
C
T
-
M
A
P

"
"

T
O

S
Q
L
C
O
D
E
.

1
6
5

I
F
(
S
Q
L
C
O
D
E

=

0
)

1
6
6

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E
.

1
6
7

P
E
R
F
O
R
M

R
E
A
D
-
C
U
S

U
N
T
I
L

(
E
N
D
-
F
I
L
E

=

1
)
.

1
6
8

1
6
9

R
E
A
D
-
C
U
S
.

1
7
0
*
E

E
X
E
C

S
Q
L

1
7
1
*
E

F
E
T
C
H

A
L
L
_
C
U
S
T

1
7
2
*
E

I
N
T
O

:
C
U
S
-
C
O
D
E
,

:
C
U
S
-
N
A
M
E
,

:
C
U
S
-
A
D
D
R
,

1
7
3
*
E

:
C
U
S
-
F
U
N
C
T
,

:
C
U
S
-
R
E
C
-
D
A
T
E

1
7
4
*
E

E
N
D
-
E
X
E
C
.

1
7
5

I
N
D
I
R
E
C
T
-
M
A
P

"
"

T
O

C
U
S
T
O
M
E
R
-
-
C
O
D
E

1
7
6

C
U
S
T
O
M
E
R
-
-
N
A
M
E

C
U
S
T
O
M
E
R
-
-
A
D
D
R

1
7
7

C
U
S
T
O
M
E
R
-
-
F
U
N
C
T

C
U
S
T
O
M
E
R
-
-
R
E
C
-
D
A
T
E

1
7
8

S
Q
L
C
O
D
E
.

1
7
9

D
I
R
E
C
T
-
M
A
P

C
U
S
T
O
M
E
R
-
-
C
O
D
E

T
O

C
U
S
-
C
O
D
E
.

1
8
0

D
I
R
E
C
T
-
M
A
P

C
U
S
T
O
M
E
R
-
-
N
A
M
E

T
O

C
U
S
-
N
A
M
E
.

1
8
1

D
I
R
E
C
T
-
M
A
P

C
U
S
T
O
M
E
R
-
-
A
D
D
R

T
O

C
U
S
-
A
D
D
R
.

1
8
2

D
I
R
E
C
T
-
M
A
P

C
U
S
T
O
M
E
R
-
-
F
U
N
C
T

T
O

C
U
S
-
F
U
N
C
T
.

1
8
3

D
I
R
E
C
T
-
M
A
P

C
U
S
T
O
M
E
R
-
-
R
E
C
-
D
A
T
E

T
O

C
U
S
-
R
E
C
-
D
A
T
E
.

1
8
4

1
8
5

I
F
(
S
Q
L
C
O
D
E

=

0
)

1
8
6

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E

1
8
7

D
I
S
P
L
A
Y

C
U
S
-
C
O
D
E

C
U
S
-
N
A
M
E

1
8
8

D
I
S
P
L
A
Y

C
U
S
-
A
D
D
R

1
8
9

D
I
S
P
L
A
Y

C
U
S
-
F
U
N
C
T

C
U
S
-
R
E
C
-
D
A
T
E

1
9
0

P
E
R
F
O
R
M

D
I
S
P
-
C
U
S
-
H
I
S
T
O
R
Y
.

1
9
1

1
9
2

D
I
S
P
-
C
U
S
-
H
I
S
T
O
R
Y
.

1
9
3
*
E

E
X
E
C

S
Q
L

1
9
4
*
E

D
E
C
L
A
R
E

C
U
S
_
H
I
S
T

C
U
R
S
O
R

F
O
R

1
9
5
*
E

S
E
L
E
C
T

P
.
T
O
T
,

P
R
.
N
A
M
E

1
9
6
*
E

F
R
O
M

P
U
R
C
H

P
,

P
R
O
D
U
C
T

P
R

1
9
7
*
E

W
H
E
R
E

P
.
P
R
O
D
U
C
T

=

P
R
.
C
O
D
E

1
9
8
E

A
N
D

P
.
C
U
S
T
O
M
E
R

=

:
C
U
S
-
C
O
D
E

1
9
9
*
E

E
N
D
-
E
X
E
C
.

2
0
0

2
0
1
*
E

E
X
E
C

S
Q
L

2
0
2
*
E

O
P
E
N

C
U
S
_
H
I
S
T

2
0
3
*
E

E
N
D
-
E
X
E
C
.

2
0
4

D
I
R
E
C
T
-
M
A
P

C
U
S
-
C
O
D
E

T
O

P
U
R
C
H
-
-
C
U
S
T
O
M
E
R
.

2
0
5

I
N
D
I
R
E
C
T
-
M
A
P

P
U
R
C
H
-
-
C
U
S
T
O
M
E
R

T
O

S
Q
L
C
O
D
E
.

2
0
6

2
0
7

D
I
S
P
L
A
Y

"
P
R
O
D
U
C
T

T
O
T
A
L
"
.

2
0
8

2
0
9

P
E
R
F
O
R
M

D
I
S
P
-
H
I
S
T
O
R
Y

U
N
T
I
L

(
S
Q
L
C
O
D
E

N
O
T

=

0
)
.

2
1
0

2
1
1

D
I
S
P
-
H
I
S
T
O
R
Y
.

2
1
2
*
E

E
X
E
C

S
Q
L

2
1
3
*
E

F
E
T
C
H

C
U
S
_
H
I
S
T

2
1
4
*
E

I
N
T
O

:
P
U
R
C
H
-
T
O
T
,

:
P
R
O
D
-
N
A
M
E

2
1
5
*
E

E
N
D
-
E
X
E
C
.

2
1
6

I
N
D
I
R
E
C
T
-
M
A
P

P
U
R
C
H
-
-
C
U
S
T
O
M
E
R

50 Program Understanding in DBRE

Modified embedded code
2
1
7

T
O

P
U
R
C
H
-
-
T
O
T

P
R
O
D
U
C
T
-
-
N
A
M
E

S
Q
L
C
O
D
E
.

2
1
8

D
I
R
E
C
T
-
M
A
P

P
U
R
C
H
-
-
T
O
T

T
O

P
U
R
C
H
-
T
O
T
.

2
1
9

D
I
R
E
C
T
-
M
A
P

P
R
O
D
U
C
T
-
-
N
A
M
E

T
O

P
R
O
D
-
N
A
M
E
.

2
2
0

I
F
(
S
Q
L
C
O
D
E

=

0
)

2
2
1

D
I
S
P
L
A
Y

P
R
O
D
-
N
A
M
E

P
U
R
C
H
-
T
O
T
.

2
2
2

2
2
3

N
E
W
-
P
R
O
D
.

2
2
4

D
I
S
P
L
A
Y

"
N
E
W

P
R
O
D
U
C
T
"
.

2
2
5

D
I
S
P
L
A
Y

"
P
R
O
D
U
C
T

N
U
M
B
E
R

:

"

2
2
6

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

2
2
7

A
C
C
E
P
T

P
R
O
D
-
C
O
D
E
.

2
2
8

2
2
9

D
I
S
P
L
A
Y

"
N
A
M
E

:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

2
3
0

A
C
C
E
P
T

P
R
O
D
-
N
A
M
E
.

2
3
1

2
3
2

D
I
S
P
L
A
Y

"
L
E
V
E
L

:

"

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

2
3
3

A
C
C
E
P
T

P
R
O
D
-
P
R
I
C
E
.

2
3
4

2
3
5
*
E

E
X
E
C

S
Q
L

2
3
6
*
E

I
N
S
E
R
T

I
N
T
O

P
R
O
D
U
C
T

2
3
7
*
E

V
A
L
U
E
S

(
:
P
R
O
D
-
C
O
D
E
,

:
P
R
O
D
-
N
A
M
E
,

2
3
8
*
E

:
P
R
O
D
-
P
R
I
C
E
)

2
3
9
*
E

E
N
D
-
E
X
E
C
.

2
4
0

D
I
R
E
C
T
-
M
A
P

P
R
O
D
-
C
O
D
E

T
O

P
R
O
D
U
C
T
-
-
C
O
D
E
.

2
4
1

D
I
R
E
C
T
-
M
A
P

P
R
O
D
-
N
A
M
E

T
O

P
R
O
D
U
C
T
-
-
N
A
M
E
.

2
4
2

D
I
R
E
C
T
-
M
A
P

P
R
O
D
-
P
R
I
C
E

T
O

P
R
O
D
U
C
T
-
-
P
R
O
D
-
P
R
I
C
E
.

2
4
3

I
N
D
I
R
E
C
T
-
M
A
P

P
R
O
D
U
C
T
-
-
C
O
D
E

P
R
O
D
U
C
T
-
-
N
A
M
E

2
4
4

P
R
O
D
U
C
T
-
-
P
R
O
D
-
P
R
I
C
E

T
O

S
Q
L
C
O
D
E
.

2
4
5

I
F
(
S
Q
L
C
O
D
E

=

0
)

2
4
6
*
E

E
X
E
C

S
Q
L

2
4
7
*
E

C
O
M
M
I
T

2
4
8
*
E

E
N
D
-
E
X
E
C

2
4
9

E
L
S
E

2
5
0

D
I
S
P
L
A
Y

"
E
R
R
O
R
"
.

2
5
1

2
5
2

L
I
S
T
-
P
R
O
D
.

2
5
3

D
I
S
P
L
A
Y

"
L
I
S
T

O
F

P
R
O
D
U
C
T
S

"
.

2
5
4
*
E

E
X
E
C

S
Q
L

2
5
5
*
E

D
E
C
L
A
R
E

A
L
L
_
P
R
O
D

C
U
R
S
O
R

F
O
R

2
5
6
*
E

S
E
L
E
C
T

C
O
D
E
,

N
A
M
E
,

P
R
I
C
E

2
5
7
*
E

F
R
O
M

P
R
O
D
U
C
T

2
5
8
*
E

O
R
D
E
R

B
Y

C
O
D
E

2
5
9
*
E

E
N
D
-
E
X
E
C
.

2
6
0
*
E

E
X
E
C

S
Q
L

2
6
1
*
E

O
P
E
N

A
L
L
_
P
R
O
D

2
6
2
*
E

E
N
D
-
E
X
E
C
.

2
6
3

I
N
D
I
R
E
C
T
-
M
A
P

"
"

T
O

S
Q
L
C
O
D
E
.

2
6
4

P
E
R
F
O
R
M

R
E
A
D
-
P
R
O
D

U
N
T
I
L

S
Q
L
C
O
D
E

N
O
T

=

0
.

2
6
5

2
6
6

R
E
A
D
-
P
R
O
D
.

2
6
7
*
E

E
X
E
C

S
Q
L

2
6
8
*
E

F
E
T
C
H

A
L
L
_
P
R
O
D

2
6
9
*
E

I
N
T
O

:
P
R
O
D
-
C
O
D
E
,

:
P
R
O
D
-
N
A
M
E
,

:
P
R
O
D
-
P
R
I
C
E

2
7
0
*
E

E
N
D
-
E
X
E
C
.

2
7
1

I
N
D
I
R
E
C
T
-
M
A
P

"
"

T
O

P
R
O
D
U
C
T
-
-
C
O
D
E

P
R
O
D
U
C
T
-
-
N
A
M
E

2
7
2

P
R
O
D
U
C
T
-
-
P
R
O
D
-
P
R
I
C
E

S
Q
L
C
O
D
E
.

2
7
3

D
I
R
E
C
T
-
M
A
P

P
R
O
D
U
C
T
-
-
C
O
D
E

T
O

P
R
O
D
-
C
O
D
E
.

2
7
4

D
I
R
E
C
T
-
M
A
P

P
R
O
D
U
C
T
-
-
N
A
M
E

T
O

P
R
O
D
-
N
A
M
E
.

2
7
5

D
I
R
E
C
T
-
M
A
P

P
R
O
D
U
C
T
-
-
P
R
O
D
-
P
R
I
C
E

T
O

P
R
O
D
-
P
R
I
C
E
.

2
7
6

I
F
(
S
Q
L
C
O
D
E

=

0
)

2
7
7

D
I
S
P
L
A
Y

P
R
O
D
-
C
O
D
E

2
7
8

D
I
S
P
L
A
Y

P
R
O
D
-
N
A
M
E

2
7
9

D
I
S
P
L
A
Y

P
R
O
D
-
P
R
I
C
E
.

2
8
0

2
8
1

N
E
W
-
O
R
D
.

2
8
2

D
I
S
P
L
A
Y

"
N
E
W

O
R
D
E
R
"
.

2
8
3

D
I
S
P
L
A
Y

"
O
R
D
E
R

N
U
M
B
E
R

:

"

2
8
4

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

2
8
5

A
C
C
E
P
T

O
R
D
-
C
O
D
E
.

2
8
6

2
8
7

M
O
V
E

1

T
O

S
Q
L
C
O
D
E
.

2
8
8

P
E
R
F
O
R
M

R
E
A
D
-
C
U
S
-
C
O
D
E

U
N
T
I
L

S
Q
L
C
O
D
E

=

0
.

Program Understanding in DBRE 51

2
8
9

D
I
S
P
L
A
Y

C
U
S
-
N
A
M
E
.

2
9
0
*
E

E
X
E
C

S
Q
L

2
9
1
*
E

I
N
S
E
R
T

I
N
T
O

O
R
D
E
R
S

V
A
L
U
E
S

(
:
O
R
D
-
C
O
D
E
,

2
9
2
*
E

S
Y
S
D
A
T
E
(
)
,

:
C
U
S
-
C
O
D
E
)

2
9
3
*
E

E
N
D
-
E
X
E
C
.

2
9
4

D
I
R
E
C
T
-
M
A
P

O
R
D
-
C
O
D
E

T
O

O
R
D
E
R
-
-
C
O
D
E
.

2
9
5

D
I
R
E
C
T
-
M
A
P

C
U
S
-
C
O
D
E

T
O

O
R
D
E
R
-
-
C
U
S
T
O
M
E
R
.

2
9
6

I
N
D
I
R
E
C
T
-
M
A
P

O
R
D
E
R
-
-
C
O
D
E

O
R
D
E
R
-
-
C
U
S
T
O
M
E
R

2
9
7

T
O

S
Q
L
C
O
D
E
.

2
9
8

I
F
(
S
Q
L
C
O
D
E

N
O
T

=

0
)

2
9
9

D
I
S
P
L
A
Y

"
E
R
R
O
R
"

3
0
0

E
L
S
E

3
0
1

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

3
0
2

P
E
R
F
O
R
M

R
E
A
D
-
D
E
T
A
I
L

3
0
3

U
N
T
I
L

E
N
D
-
F
I
L
E

=

1

3
0
4

3
0
5
*
E

E
X
E
C

S
Q
L

3
0
6
*
E

C
O
M
M
I
T

3
0
7
*
E

E
N
D
-
E
X
E
C
.

3
0
8

3
0
9

R
E
A
D
-
C
U
S
-
C
O
D
E
.

3
1
0

D
I
S
P
L
A
Y

"
C
U
S
T
O
M
E
R

N
U
M
B
E
R

:

"

3
1
1

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G
.

3
1
2

A
C
C
E
P
T

C
U
S
-
C
O
D
E
.

3
1
3
*
E

E
X
E
C

S
Q
L

3
1
4
*
E

S
E
L
E
C
T

C
O
D
E

3
1
5
*
E

I
N
T
O

:
C
U
S
-
C
O
D
E

3
1
6
*
E

F
R
O
M

C
U
S
T
O
M
E
R

3
1
7
*
E

W
H
E
R
E

C
O
D
E

=

:
C
U
S
-
C
O
D
E

3
1
8
*
E

E
N
D
-
E
X
E
C
.

3
1
9

D
I
R
E
C
T
-
M
A
P

C
U
S
-
C
O
D
E

T
O

C
U
S
T
O
M
E
R
-
-
C
O
D
E
.

3
2
0

I
N
D
I
R
E
C
T
-
M
A
P

C
U
S
T
O
M
E
R
-
-
C
O
D
E

3
2
1

T
O

C
U
S
T
O
M
E
R
-
-
C
O
D
E

S
Q
L
C
O
D
E
.

3
2
2

D
I
R
E
C
T
-
M
A
P

C
U
S
T
O
M
E
R
-
-
C
O
D
E

T
O

C
U
S
-
C
O
D
E
.

3
2
3

3
2
4

I
F
(
S
Q
L
C
O
D
E

N
O
T

=

0
)

3
2
5

D
I
S
P
L
A
Y

"
N
O

S
U
C
H

C
U
S
T
O
M
E
R
"
.

3
2
6

3
2
7

R
E
A
D
-
D
E
T
A
I
L
.

3
2
8

D
I
S
P
L
A
Y

"
P
R
O
D
U
C
T

C
O
D
E

(
0

=

E
N
D
)

:

"
.

3
2
9

A
C
C
E
P
T

P
R
O
D
-
C
O
D
E
.

3
3
0

I
F

P
R
O
D
-
C
O
D
E

=

0

3
3
1

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E

3
3
2

E
L
S
E

3
3
3

P
E
R
F
O
R
M

R
E
A
D
-
P
R
O
D
-
C
O
D
E
.

3
3
4

3
3
5

R
E
A
D
-
P
R
O
D
-
C
O
D
E
.

3
3
6
*
E

E
X
E
C

S
Q
L

3
3
7
*
E

S
E
L
E
C
T

C
O
D
E

I
N
T
O

:
P
R
O
D
-
C
O
D
E

3
3
8
*
E

F
R
O
M

P
R
O
D
U
C
T

3
3
9
*
E

W
H
E
R
E

C
O
D
E

=

:
P
R
O
D
-
C
O
D
E

3
4
0
*
E

E
N
D
-
E
X
E
C
.

3
4
1

D
I
R
E
C
T
-
M
A
P

P
R
O
D
-
C
O
D
E

T
O

P
R
O
D
U
C
T
-
-
C
O
D
E
.

3
4
2

I
N
D
I
R
E
C
T
-
M
A
P

P
R
O
D
U
C
T
-
-
C
O
D
E

3
4
3

T
O

P
R
O
D
U
C
T
-
-
C
O
D
E

S
Q
L
C
O
D
E
.

3
4
4

D
I
R
E
C
T
-
M
A
P

P
R
O
D
U
C
T
-
-
C
O
D
E

T
O

P
R
O
D
-
C
O
D
E
.

3
4
5

I
F

S
Q
L
C
O
D
E

=

0

3
4
6

P
E
R
F
O
R
M

U
P
D
A
T
E
-
O
R
D
-
D
E
T
A
I
L

3
4
7

E
L
S
E

3
4
8

D
I
S
P
L
A
Y

"
N
O

S
U
C
H

P
R
O
D
U
C
T
"
.

3
4
9

3
5
0

U
P
D
A
T
E
-
O
R
D
-
D
E
T
A
I
L
.

3
5
1

D
I
S
P
L
A
Y

"
Q
U
A
N
T
I
T
Y

O
R
D
E
R
E
D

:

"

3
5
2

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G

3
5
3

A
C
C
E
P
T

D
E
T
-
Q
T
Y
.

3
5
4
*
E

E
X
E
C

S
Q
L

3
5
5
*
E

S
E
L
E
C
T

O
R
D
_
Q
T
Y

3
5
6
*
E

F
R
O
M

D
E
T
A
I
L

3
5
7
*
E

W
H
E
R
E

O
R
D
E
R

=

:
O
R
D
-
C
O
D
E

3
5
8
*
E

A
N
D

P
R
O
D
U
C
T

=

:
P
R
O
D
-
C
O
D
E

3
5
9
*
E

E
N
D
-
E
X
E
C

3
6
0

D
I
R
E
C
T
-
M
A
P

O
R
D
-
C
O
D
E

T
O

D
E
T
A
I
L
-
-
O
R
D
E
R
S

52 Program Understanding in DBRE

Modified embedded code
3
6
1

D
I
R
E
C
T
-
M
A
P

P
R
O
D
-
C
O
D
E

T
O

D
E
T
A
I
L
-
-
P
R
O
D
U
C
T

3
6
2

I
N
D
I
R
E
C
T
-
M
A
P

D
E
T
A
I
L
-
-
O
R
D
E
R
S

D
E
T
A
I
L
-
-
P
R
O
D
U
C
T

3
6
3

T
O

D
E
T
A
I
L
-
-
O
R
D
-
Q
T
Y

S
Q
L
C
O
D
E
.

3
6
4

I
F

S
Q
L
C
O
D
E

=

0

3
6
5

D
I
S
P
L
A
Y

"
E
R
R
O
R

:

A
L
R
E
A
D
Y

O
R
D
E
R
E
D
"

3
6
6

E
L
S
E

3
6
7
*
E

E
X
E
C

S
Q
L

3
6
8
*
E

I
N
S
E
R
T

I
N
T
O

D
E
T
A
I
L

3
6
9
*
E

V
A
L
U
E
S

(
:
O
R
D
-
C
O
D
E
,

:
P
R
O
D
-
C
O
D
E
,
:
D
E
T
-
Q
T
Y
)

3
7
0
*
E

E
N
D
-
E
X
E
C

3
7
1

D
I
R
E
C
T
-
M
A
P

O
R
D
-
C
O
D
E

T
O

D
E
T
A
I
L
-
-
O
R
D
E
R
S
.

3
7
2

D
I
R
E
C
T
-
M
A
P

P
R
O
D
-
C
O
D
E

T
O

D
E
T
A
I
L
-
-
P
R
O
D
.

3
7
3

D
I
R
E
C
T
-
M
A
P

D
E
T
-
Q
T
Y

T
O

D
E
T
A
I
L
-
-
O
R
D
-
Q
T
Y
.

3
7
4

I
N
D
I
R
E
C
T
-
M
A
P

D
E
T
A
I
L
-
-
O
R
D
E
R
S

D
E
T
A
I
L
-
-
P
R
O
D

3
7
5

D
E
T
A
I
L
-
-
O
R
D
-
Q
T
Y

T
O

S
Q
L
C
O
D
E
.

3
7
6

P
E
R
F
O
R
M

U
P
D
A
T
E
-
C
U
S
-
H
I
S
T
.

3
7
7

3
7
8

U
P
D
A
T
E
-
C
U
S
-
H
I
S
T
.

3
7
9
*
E

E
X
E
C

S
Q
L

3
8
0
*
E

S
E
L
E
C
T

T
O
T

I
N
T
O

:
P
U
R
C
H
-
T
O
T

3
8
1
*
E

F
R
O
M

P
U
R
C
H

3
8
2
*
E

W
H
E
R
E

C
U
S
T
O
M
E
R

=

:
C
U
S
-
C
O
D
E

3
8
3
*
E

A
N
D

P
R
O
D
U
C
T

=

:
P
R
O
D
-
C
O
D
E

3
8
4
*
E

E
N
D
-
E
X
E
C
.

3
8
5

D
I
R
E
C
T
-
M
A
P

C
U
S
-
C
O
D
E

T
O

P
U
R
C
H
-
-
C
U
S
T
O
M
E
R
.

3
8
6

D
I
R
E
C
T
-
M
A
P

P
R
O
D
-
C
O
D
E

T
O

P
U
R
C
H
-
-
P
R
O
D
.

3
8
7

I
N
D
I
R
E
C
T
-
M
A
P

P
U
R
C
H
-
-
C
U
S
T
O
M
E
R

P
U
R
C
H
-
-
P
R
O
D

3
8
8

T
O

P
U
R
C
H
-
-
T
O
T

S
Q
L
C
O
D
E
.

3
8
9

D
I
R
E
C
T
-
M
A
P

P
U
R
C
H
-
-
T
O
T

T
O

P
U
R
C
H
-
T
O
T
.

3
9
0

I
F
(
S
Q
L
C
O
D
E

=

0
)

3
9
1
*
E

E
X
E
C

S
Q
L

3
9
2
*
E

I
N
S
E
R
T

I
N
T
O

P
U
R
C
H

V
A
L
U
E
S
(
:
C
U
S
-
C
O
D
E
,

3
9
3
*
E

:
P
R
O
D
-
C
O
D
E
,

:
D
E
T
-
Q
T
Y
)

3
9
4
*
E

E
N
D
-
E
X
E
C

3
9
5

D
I
R
E
C
T
-
M
A
P

C
U
S
-
C
O
D
E

T
O

P
U
R
C
H
-
-
C
U
S
T
O
M
E
R

3
9
6

D
I
R
E
C
T
-
M
A
P

P
R
O
D
-
C
O
D
E

T
O

P
U
R
C
H
-
-
P
R
O
D

3
9
7

D
I
R
E
C
T
-
M
A
P

D
E
T
-
Q
T
Y

T
O

P
U
R
C
H
-
-
T
O
T

3
9
8

I
N
D
I
R
E
C
T
-
M
A
P

P
U
R
C
H
-
-
C
U
S
T
O
M
E
R

P
U
R
C
H
-
-
P
R
O
D

3
9
9

P
U
R
C
H
-
-
T
O
T

T
O

S
Q
L
C
O
D
E

4
0
0

E
L
S
E

4
0
1
*
E

E
X
E
C

S
Q
L

4
0
2
*
E

U
P
D
A
T
E

P
U
R
C
H

S
E
T

4
0
3
*
E

T
O
T

=

(
:
P
U
R
C
H
-
T
O
T

+

:
D
E
T
-
Q
T
Y
)

4
0
4
*
E

W
H
E
R
E

C
U
S
T
O
M
E
R

=

:
C
U
S
-
C
O
D
E

4
0
5
*
E

A
N
D

P
R
O
D
U
C
T

=

:
P
R
O
D
-
C
O
D
E

4
0
6
*
E

E
N
D
-
E
X
E
C
.

4
0
7

C
O
M
P
U
T
E

W
-
T
M
P

=

P
U
R
C
H
-
T
O
T

+

D
E
T
-
Q
T
Y

4
0
8

D
I
R
E
C
T
-
M
A
P

W
-
T
M
P

T
O

P
U
R
C
H
-
-
T
O
T

4
0
9

D
I
R
E
C
T
-
M
A
P

C
U
S
-
C
O
D
E

T
O

P
U
R
C
H
-
-
C
U
S
T
O
M
E
R

4
1
0

D
I
R
E
C
T
-
M
A
P

P
R
O
D
-
C
O
D
E

T
O

P
U
R
C
H
-
-
P
R
O
D

4
1
1

I
N
D
I
R
E
C
T
-
M
A
P

P
U
R
C
H
-
-
T
O
T

P
U
R
C
H
-
-
C
U
S
T
O
M
E
R

4
1
2

P
U
R
C
H
-
-
P
R
O
D
U
C
T

T
O

S
Q
L
C
O
D
E
.

4
1
3

4
1
4

L
I
S
T
-
O
R
D
.

4
1
5

D
I
S
P
L
A
Y

"
L
I
S
T

O
F

O
R
D
E
R
S

"
.

4
1
6
*
E

E
X
E
C

S
Q
L

4
1
7
*
E

D
E
C
L
A
R
E

A
L
L
_
O
R
D

C
U
R
S
O
R

F
O
R

4
1
8
*
E

S
E
L
E
C
T

C
O
D
E
,

C
U
S
T
O
M
E
R

4
1
9
*
E

F
R
O
M

O
R
D
E
R
S

4
2
0
*
E

O
R
D
E
R

B
Y

C
O
D
E

4
2
1
*
E

E
N
D
-
E
X
E
C
.

4
2
2
*
E

E
X
E
C

S
Q
L

4
2
3
*
E

O
P
E
N

A
L
L
_
O
R
D

4
2
4
*
E

E
N
D
-
E
X
E
C
.

4
2
5

I
N
D
I
R
E
C
T
-
M
A
P

"
"

T
O

S
Q
L
C
O
D
E

4
2
6

M
O
V
E

0

T
O

E
N
D
-
F
I
L
E

4
2
7

P
E
R
F
O
R
M

R
E
A
D
-
O
R
D

U
N
T
I
L

E
N
D
-
F
I
L
E

=

1
.

4
2
8

4
2
9

R
E
A
D
-
O
R
D
.

4
3
0
*
E

E
X
E
C

S
Q
L

4
3
1
*
E

F
E
T
C
H

A
L
L
_
O
R
D

4
3
2
*
E

I
N
T
O

:
O
R
D
-
C
O
D
E
,

:
O
R
D
-
C
U
S
T
O
M
E
R

Program Understanding in DBRE 53

4
3
3
*
E

E
N
D
-
E
X
E
C
.

4
3
4

I
N
D
I
R
E
C
T
-
M
A
P

"
"

T
O

O
R
D
E
R
-
-
C
O
D
E

4
3
5

O
R
D
E
R
-
-
C
U
S
T
O
M
E
R

S
Q
L
C
O
D
E
.

4
3
6

D
I
R
E
C
T
-
M
A
P

O
R
D
E
R
-
-
C
O
D
E

T
O

O
R
D
-
C
O
D
E
.

4
3
7

D
I
R
E
C
T
-
M
A
P

O
R
D
E
R
-
-
C
U
S
T
O
M
E
R

T
O

O
R
D
-
C
U
S
T
O
M
E
R
.

4
3
8

I
F
(
S
Q
L
C
O
D
E

=

0
)

4
3
9

M
O
V
E

1

T
O

E
N
D
-
F
I
L
E

4
4
0

D
I
S
P
L
A
Y

"
O
R
D
-
C
O
D
E

"

4
4
1

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G

4
4
2

D
I
S
P
L
A
Y

O
R
D
-
C
O
D
E

4
4
3

D
I
S
P
L
A
Y

"
O
R
D
-
C
U
S
T
O
M
E
R

"

4
4
4

W
I
T
H

N
O

A
D
V
A
N
C
I
N
G

4
4
5

D
I
S
P
L
A
Y

O
R
D
-
C
U
S
T
O
M
E
R

4
4
6

D
I
S
P
L
A
Y

"
O
R
D
-
D
E
T
A
I
L

"

4
4
7
*
E

E
X
E
C

S
Q
L

4
4
8
*
E

D
E
C
L
A
R
E

O
R
D
_
D
E
F

C
U
R
S
O
R

F
O
R

4
4
9
*
E

S
E
L
E
C
T

D
.
O
R
D
_
Q
T
Y
,

P
.
N
A
M
E

4
5
0
*
E

F
R
O
M

D
E
T
A
I
L

D
,

P
R
O
D
U
C
T

P

4
5
1
*
E

W
H
E
R
E

D
.
O
R
D
E
R

=

:
O
R
D
-
C
O
D
E

4
5
2
*
E

A
N
D

D
.
P
R
O
D
U
C
T

=

P
.
C
O
D
E

4
5
3
*
E

E
N
D
-
E
X
E
C

4
5
4
*
E

E
X
E
C

S
Q
L

4
5
5
*
E

O
P
E
N

A
L
L
_
O
R
D

4
5
6
*
E

E
N
D
-
E
X
E
C

4
5
7

D
I
R
E
C
T
-
M
A
P

O
R
D
-
C
O
D
E

T
O

D
E
T
A
I
L
-
-
O
R
D
E
R
S

4
5
8

I
N
D
I
R
E
C
T
-
M
A
P

D
E
T
A
I
L
-
-
O
R
D
E
R
S

T
O

S
Q
L
C
O
D
E

4
5
9

D
I
S
P
L
A
Y

"
P
R
O
D

N
A
M
E

Q
U
A
N
T
I
T
Y
"

4
6
0

P
E
R
F
O
R
M

D
I
S
P
L
A
Y
-
D
E
T
A
I
L

4
6
1

U
N
T
I
L

S
Q
L
C
O
D
E

N
O
T

=

0
.

4
6
2

4
6
3

D
I
S
P
L
A
Y
-
D
E
T
A
I
L
.

4
6
4
*
E

E
X
E
C

S
Q
L

4
6
5
*
E

F
E
T
C
H

O
R
D
_
D
E
F

4
6
6
*
E

I
N
T
O

:
D
E
T
-
Q
T
Y
,

:
P
R
O
D
-
N
A
M
E

4
6
7
*
E

E
N
D
-
E
X
E
C
.

4
6
8

I
N
D
I
R
E
C
T
-
M
A
P

D
E
T
A
I
L
-
-
O
R
D
E
R
S

T
O

D
E
T
A
I
L
-
-
O
R
D
-
Q
T
Y

4
6
9

P
R
O
D
U
C
T
-
-
N
A
M
E

S
Q
L
C
O
D
E

4
7
0

D
I
R
E
C
T
-
M
A
P

D
E
T
A
I
L
-
-
O
R
D
-
Q
T
Y

T
O

D
E
T
-
Q
T
Y

4
7
1

D
I
R
E
C
T
-
M
A
P

P
R
O
D
U
C
T
-
-
N
A
M
E

T
O

P
R
O
D
-
N
A
M
E

4
7
2

D
I
S
P
L
A
Y

P
R
O
D
-
N
A
M
E

D
E
T
-
Q
T
Y
.

54 Program Understanding in DBRE

ANNEX C Strange Data
Structures / real case
studies
This annex describes physicals data structures found in real programs (case studies). One of the
big question about these physical structures is how to represent them in the DB-MAIN CASE tool
and how to transform them into conceptual structures. Many of these data structures do not match to
classical (academic) data structures.

For each example, the source code is given with its corresponding physical schema and the physical
schema is transformed to obtain a more conceptual schema.

C.1. Chained lists

Files: imppc.cob, accpc.cob, leccle.cob, lecper.cob

This example shows the implementation of a double chained list using a relative COBOL file.

C.1.1. COBOL

The declaration of the three COBOL files are given in figure 187. Only the declaration of the files is
given and not the complete source code (more than 1400 LOC), some fragments of the code are
presented to explain constraints discovery.
Program Understanding in DBRE 55

FIGURE 187. The data structure declaration.

FIGURE 188. The raw physical schema.

SELECT PERCLE ASSIGN TO "PERCLE.RAN"
ORGANIZATION IS RELATIVE
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS RELKEY-PERCLE
FILE STATUS IS FSTATCU1.

SELECT CLES ASSIGN TO "CLES.RMS"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS NUMCLE-CLE
ALTERNATE RECORD KEY IS EMPLAC-CLE
ALTERNATE RECORD KEY IS SUITE-CLE

WITH DUPLICATES
FILE STATUS IS FSTATCU1.

SELECT PERSO ASSIGN TO "PERSO.RMS"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS MATR-PER
ALTERNATE RECORD KEY IS ALTKEY1-PER
FILE STATUS IS FSTATCU1.

FD PERCLE LABEL RECORD STANDARD.
01 ART-PERCLE
 02 MATR-PERCLE PIC X(4).
 02 NUMCLE-PERCLE PIC X(10).
 02 NOMBRE-PERCLE PIC 9(4).
 02 POINT-SUIVANT-PER-PERCLEPIC 9(7).
 02 POINT-PRECEDENT-PER-PERCLE
 PIC 9(7).
 02 POINT-SUIVANT-CLE-PERCLEPIC 9(7).
 02 POINT-PRECEDENT-CLE-PERCLE
 PIC 9(7).
01 ART-1-PERCLE.
 02 FILLER PIC X(32).
 02 1ER-LIBRE-LOGIQUE-PERCLEPIC 9(7).
 02 1ER-LIBRE-PHYSIQUE-PERCLE
 PIC 9(7).
FD CLES LABEL RECORD STANDARD.
01 ART-CLES.
 02 NUMCLE-CLE PIC X(10).
 02 EMPLAC-CLE PIC X(9).
 02 POINT-ANCIEN-PERCLE-CLE PIC 9(7).
 02 POINT-RECENT-PERCLE-CLE PIC 9(7).

FD PERSO LABEL RECORD STANDARD.
01 ART-PERSO.
 02 MATR-PER PIC X(4).
 02 NOM-PER PIC X(30).
 02 ALTKEY1-FICHIER PIC X(10).
 02 POINT-ANCIEN-PERCLE-PER PIC 9(7).
 02 POINT-RECENT-PERCLE-PER PIC 9(7).

ART-PERSO
MATR-PER
NOM-PER
ALTKEY1-PER
POINT-ANCIEN-PERCLE-PER[0-1]
POINT-RECENT-PERCLE-PER[0-1]
id: MATR-PER

acc
id’: ALTKEY1-PER

acc

ART-PERCLE
RELKEY-PERCLE
MATR-PERCLE
NUMCLE-PERCLE
POINT-SUIVANT-PER-PERCLE[0-1]
POINT-PRECEDENT-PER-PERCLE[0-1]
POINT-SUIVANT-CLE-PERCLE[0-1]
POINT-PRECEDENT-CLE-PERCLE[0-1]
id: RELKEY-PERCLE

ART-CLES
NUMCLE-CLE
EMPLAC-CLE
POINT-ANCIEN-PERCLE-CLE[0-1]
POINT-RECENT-PERCLE-CLE[0-1]
id: NUMCLE-CLE

acc
id’: EMPLAC-CLE

acc

ART-1-PERCLE
RELKEY-PERCLE
FILLER
1ER-LIBRE-LOGIQUE-PERCLE
1ER-LIBRE-PHYSIQUE-PERCLE
id: RELKEY-PERCLE

PERCLE

ART-PERCLE
ART-1-PERCLE

PERSO

ART-PERSO

CLES

ART-CLES
56 Program Understanding in DBRE

C.1.2. The complete physical schema

PERCLE is a ’relative’ file, so during the DDL code analysis, a technical attribute (RELKEY-
PERCLE) is added to the entity types of PERCLE (ART-1-PERCLE and ART-PERCLE) to materialize
the relative key. Each record can be access directly, giving the record number. RELKEY-PERCLE is
the identifier of the entity type.

This example shows the implementation of two double chained lists between ART-CLES and ART-
PERSO. These chained list are implemented by the two entity types of the collection PERCLE. A
double chained list is a list that can be go through forward and backward. For example, the double
chained list that has ART-CLES as origin is a list that from an occurrence of ART-CLES to all the
occurrences of ART-PERSO that are connected can be reach sequentially from the first one of the list
or starting from the last one.

The analysis of ART-1-PERCLE usage shows that the only occurrence of this entity types is the first
record of PERCLE and all the other are to type ART-PERCLE. The attribute 1ER-LIBRE-LOGIQUE-
PERCLE is the record number of the first unused (free) record of PERCLE, all the unused records are
chained (using POINT-SUIVANT-PER-PERCLE). A referential constraint is created form 1ER-
LIBRE-LOGIQUE-PERCLE to ART-PERCLE.RELKEY-PERCLE. 1ER-LIBRE-PHYSIQUE-PERCLE
is the number of the record that follow the last record of the file. If there is no free record into the
file then 1ER-LIBRE-LOGIQUE-WO and 1ER-LIBRE-PHYSIQUE-WO have the same value.
Program Understanding in DBRE 57

FIGURE 189. Fragment of code that add a new record in PERCLE.

The code of figure 189 shows the fragment of code that is used to add a new element into the lists
that connect ART-CLES with ART-PERSO. ART-CLES and ART-PERSO contain valid value for
which all constraints validations have been done. These records will be stored after the double
chained lists have been created.

The first part of the code (A) connects ART-PERSO to the list. IF POINT-RECENT-PERCLE-PER
= 0, ART-PERSO is not yet connected to a list, it is the first time ART-PER is connected to ART-
CLES (0 represent the null value). Otherwise, the last element of the list is read and the pointer to
the next element of the list (the one that will be added) is updated. The second part of the code (B)
updates the connection to ART-CLES.

The (C) code fragment update the pointer to the last element of the list (the one that will be added).

CREATION-LIEN.

Creates the double chained lists between
ART-PERSO and ART-CLES (A)

 IF POINT-RECENT-PERCLE-PER = 0
 MOVE 0 TO POINT-PRECEDENT-PER-PERCLE OF

ART-PERCLE-WO
 MOVE 1ER-LIBRE-LOGIQUE-WO TO POINT-

ANCIEN-PERCLE-PER
 ELSE
 MOVE POINT-RECENT-PERCLE-PER TO
 POINT-PRECEDENT-PER-PERCLE
 OF ART-PERCLE-WO
 RELKEY-PERCLE
 READ PERCLE
 MOVE 1ER-LIBRE-LOGIQUE-WO TO
 POINT-SUIVANT-PER-PERCLE
 OF ART-PERCLE
 REWRITE ART-PERCLE.

Update ART-CLE (B)
 IF POINT-RECENT-PERCLE-CLE = 0
 MOVE 0 TO POINT-PRECEDENT-CLE-PERCLE
 OF ART-PERCLE-WO
 MOVE 1ER-LIBRE-LOGIQUE-WO TO
 POINT-ANCIEN-PERCLE-CLE
 ELSE
 MOVE POINT-RECENT-PERCLE-CLE TO
 POINT-PRECEDENT-CLE-PERCLE
 OF ART-PERCLE-WO
 RELKEY-PERCLE
 READ PERCLE
 MOVE 1ER-LIBRE-LOGIQUE-WO TO
 POINT-SUIVANT-CLE-PERCLE
 OF ART-PERCLE
 REWRITE ART-PERCLE.

Update the pointers to the last record into
ART-PERSO and ART-CLE (C)

 MOVE 1ER-LIBRE-LOGIQUE-WO TO
 POINT-RECENT-PERCLE-PER
 POINT-RECENT-PERCLE-CLE.

Fill ART-PERCLE-WO (D)
 MOVE MATR-PER TO MATR-PERCLE
 OF ART-PERCLE-WO.
 MOVE NUMCLE-CLE TO NUMCLE-PERCLE
 OF ART-PERCLE-WO.
 MOVE 1 TO
 NOMBRE-PERCLE OF ART-PERCLE-WO.
 MOVE 0 TO POINT-SUIVANT-PER-PERCLE
 OF ART-PERCLE-WO.
 MOVE 0 TO POINT-SUIVANT-CLE-PERCLE
 OF ART-PERCLE-WO.

Storage of ART-PERCLE-WO (E)
 MOVE 1ER-LIBRE-LOGIQUE-WO TO
 RELKEY-PERCLE.
 MOVE CORRESPONDING ART-PERCLE-WO TO
 ART-PERCLE-LI.
 IF 1ER-LIBRE-LOGIQUE-WO
 = 1ER-LIBRE-PHYSIQUE-WO
 MOVE CORRESPONDING ART-PERCLE-WO TO
 ART-PERCLE
 WRITE ART-PERCLE
 ADD 1 TO 1ER-LIBRE-LOGIQUE-WO
 1ER-LIBRE-PHYSIQUE-WO
 ELSE
 READ PERCLE
 MOVE POINT-SUIVANT-PER-PERCLE
 OF ART-PERCLE TO
 1ER-LIBRE-LOGIQUE-WO
 MOVE CORRESPONDING ART-PERCLE-WO TO
 ART-PERCLE
 REWRITE ART-PERCLE.

Update of ART-PERCLE-1 (F)
 MOVE SPACES TO ART-PERCLE.
 MOVE 1ER-LIBRE-LOGIQUE-WO TO
 1ER-LIBRE-LOGIQUE-PERCLE.
 MOVE 1ER-LIBRE-PHYSIQUE-WO TO
 1ER-LIBRE-PHYSIQUE-PERCLE.
 MOVE 1 TO RELKEY-PERCLE.
 REWRITE ART-PERCLE-1.
58 Program Understanding in DBRE

The (D) code fragment fills the new ART-PERCLE-WO record. MATR-PERCLE and NUMCLE-
PERCLE contains reference to ART-PERSO and ART-CLES respectively. POINT-SUIVANT-PER-
PERCLE and POINT-SUIVANT-CLE-PERCLE have the default value 0 that represent a null value.

In (E) fragment ART-PERCLE is stored. If no free record are available (1ER-LIBRE-LOGIQUE-
PERCLE = 1ER-LIBRE-PHYSIQUE-PERCLE) the record is wrote at the end of the file, otherwise
the first free record is rewrote.

The last fragment (F) updates the ART-PERCLE-1 record that contains the number of the first free
record.

This code analysis can be summarized as follow.

Each element of ART-CLES is connected to a (optional) double chained list of elements of ART-
PERCLE:

• POINT-ANCIEN-PERCLE-CLE references the first element of the optional list (this is why its
cardinality is set to [0-1]).

• POINT-RECENT-PERCLE-CLE references the last element of the optional list (this is why its
cardinality is set to [0-1]).

• POINT-SUIVANT-CLE-PERCLE points to the next element in the list, except for the last element
of the list where it is equal to 0 (this is why its cardinality is set to [0-1]).

• POINT-PRECEDENT-CLE-PERCLE points to the previous element in the list, except for the first
element of the list where it is equal to 0 (this is why its cardinality is set to [0-1]).

FIGURE 190. Example of the double chained list referenced by ART-CLES.

Figure 190 represents an example of such double chained list. Each record of ART-CLES is option-
ally connected to the first and last element of the list. Each record of ART-PERCLE has a pointer to
the previous element of the list (except the first one), a pointer to the next element of the list (except
the last one) and a pointer to the ART-CLES record.

ART-CLES ART-PERCLE

0

00

00

0

NUMCLE-PERCLE

POINT-SUIVANT-CLE-PERCLE

POINT-PRECEDENT-CLE-PERCLE

POINT-RECENT-PERCLE-CLE

POINT-ANCIEN-PERCLE-CLE
Program Understanding in DBRE 59

There exist additional constraints about this chained list, to express some notations need to be
defined:

and

The additional constraints are:

and

For the second list, each element of ART-PERSO can be connected to a double chained list of
element of ART-PERCLE:

• POINT-ANCIEN-PERCLE-PER references the first element of the optional list (this is why its
cardinality is set to [0-1]).

• POINT-RECENT-PERCLE-PER references the last element of the optional list (this is why its
cardinality is set to [0-1]).

• POINT-SUIVANT-PER-PERCLE points to the next element in the list, except for the last element
of the list where it is equal to 0 (this is why its cardinality is set to [0-1]).

• POINT-PRECEDENT-PER-PERCLE points to the previous element in the list, except for the first
element of the list where it is equal to 0 (this is why its cardinality is set to [0-1]).

With the additional constraints:

and

x∀ ART-CLES,∈ point-ancien-percle-cle x()

y ART-PERCLE∈ x.POINT-ANCIEN-PERCLE-CLE.POINT-SUIVANT-CLE-PERCLE..... y

 between 0 and n time POINT-SUIVANT-CLE-PERCLE foreign key()

→{

}

=

x∀ ART-CLES,∈ point-recent-percle-cle x()

y ART-PERCLE∈ x.POINT-RECENT-PERCLE-CLE.POINT-PRECEDENT-CLE-PERCLE..... y

 between 0 and n time POINT-PRECEDENT-CLE-PERCLE foreign key()

→{

}

=

x ART-CLES∈∀()point-ancien-percle-cle x() point-recent-percle-cle x()=

y ART-PERCLE∈∀ !x ART-CLES∈∃(,) y point-ancien-percle-cle x()∈

x ART-PERSO∈∀()point-ancien-percle-per x() point-recent-percle-per x()=

y ART-PERCLE∈∀ !x ART-PERSO∈∃(,) y point-ancien-percle-per x()∈
60 Program Understanding in DBRE

FIGURE 191. The complete logical schema.

C.1.3. Data structure conceptualization

C.1.3.1. Schema preparation

During the schema preparation, all the physical constructs can be removed and objects renamed:

• ART-1-PERCLE is an entity type that is only used to store some technical information, position
of the first free record and the number of the last record of the file, thus it can be removed with-
out any lost of semantic.

• The two double chained lists are only used to access the data and are redundant with the referen-
tial constraints that go from ART-PERCLE from ART-PERCLE to ART-CLES and to ART-PERSO.
So the attributes used to represent those lists can be removed.

• RELKEY-PERCLE is a technical attribute that was added during the data structure extraction to
materialize the record number and it has no semantic. It can be removed.

• The entity types can be renamed as the collections that have more meaningful names.

• The suffix of the attribute names can be removed, it is an usual COBOL program trick to prefix
(in English) or to suffix (in French) attribute names to have unique name.

• The access keys and the collections can be removed.

The schema of figure 192 is the prepared schema.

ART-PERSO
MATR-PER
NOM-PER
ALTKEY1-PER
POINT-ANCIEN-PERCLE-PER[0-1]
POINT-RECENT-PERCLE-PER[0-1]
id: MATR-PER

acc
id’: ALTKEY1-PER

acc
ref: POINT-ANCIEN-PERCLE-PER
ref: POINT-RECENT-PERCLE-PER
coex: POINT-ANCIEN-PERCLE-PER

POINT-RECENT-PERCLE-PER

ART-PERCLE
RELKEY-PERCLE
MATR-PERCLE
NUMCLE-PERCLE
POINT-SUIVANT-PER-PERCLE[0-1]
POINT-PRECEDENT-PER-PERCLE[0-1]
POINT-SUIVANT-CLE-PERCLE[0-1]
POINT-PRECEDENT-CLE-PERCLE[0-1]
id: RELKEY-PERCLE
id’: MATR-PERCLE

NUMCLE-PERCLE
ref: POINT-PRECEDENT-CLE-PERCLE
ref: POINT-PRECEDENT-PER-PERCLE
ref: POINT-SUIVANT-CLE-PERCLE
ref: POINT-SUIVANT-PER-PERCLE
ref: NUMCLE-PERCLE
ref: MATR-PERCLE

ART-CLES
NUMCLE-CLE
EMPLAC-CLE
POINT-ANCIEN-PERCLE-CLE[0-1]
POINT-RECENT-PERCLE-CLE[0-1]
id: NUMCLE-CLE

acc
id’: EMPLAC-CLE

acc
ref: POINT-ANCIEN-PERCLE-CLE
ref: POINT-RECENT-PERCLE-CLE
coex: POINT-ANCIEN-PERCLE-CLE

POINT-RECENT-PERCLE-CLE

ART-1-PERCLE
RELKEY-PERCLE
FILLER
1ER-LIBRE-LOGIQUE-PERCLE
1ER-LIBRE-PHYSIQUE-PERCLE
id: RELKEY-PERCLE
ref: 1ER-LIBRE-LOGIQUE-PERCLE

PERCLE

ART-1-PERCLE
ART-PERCLE

PERSO

ART-PERSO

CLES

ART-CLES
Program Understanding in DBRE 61

FIGURE 192. The prepared schema.

C.1.3.2. Untranslation and de-optimization

Obviously the two referential constraints can be transformed into relationship types.

C.1.3.3. Conceptualization

FIGURE 193. The conceptual schema.

The conceptualization of this small schema is simple, the only thing to do, is to transform the entity
type PERCLE into a relationship type.

The final conceptual schema is displayed in figure 193.

C.2. Hierarchical foreign key

File: xclpc4.txt (carloc)

This example shows the usage of a hierarchical referential constraint in a COBOL/IDMS applica-
tion. The IDMS database declaration and its corresponding physical schema are given in figure 194.

PERSO
MATR
NOM
ALTKEY1
id: MATR
id’: ALTKEY1

PERCLE
MATR
NUMCLE
id: MATR

NUMCLE
ref: NUMCLE
ref: MATR

CLES
NUMCLE
EMPLAC
id: NUMCLE
id’: EMPLAC

0-N0-N PERCLE

PERSO
MATR
NOM
ALTKEY1
id: MATR
id’: ALTKEY1

CLES
NUMCLE
EMPLAC
id: NUMCLE
id’: EMPLAC
62 Program Understanding in DBRE

FIGURE 194. The database declaration and its raw physical schema.

C.2.1. Source code

FIGURE 195. The procedural fragment.

Figure 195 is a procedural fragment that implement the hierarchical referential constraint usage in
COBOL/IDMS.

C.2.2. The complete logical schema

The analysis of the first three lines of the fragment show a trivial referential constraint between
C002-TYPE and XCLRC004.

RECORD NAME IS XCLRC002
 LOCATION MODE IS VIA XCLSC001-C002 SET.
 02 C002-KEY3.
 03 C002-TYPE PIC X(6).
 03 C002-KEY1 PIC X(10).
 02 C002-GARNITURE PIC X(4).
RECORD NAME IS XCLRC004
 LOCATION MODE IS CALC USING (C004-KEY)
 DUPLICATES ARE NOT ALLOWED.
 02 C004-KEY PIC X(6).
RECORD NAME IS XCLRC007
 LOCATION MODE IS VIA XCLSC004-C007 SET.
 02 C007-KEY PIC X(5).
 02 C007-DESCR PIC X(80).
 02 C007-ACTIF PIC X.
SET NAME IS XCLSC004-C007
 OWNER IS XCLRC004
 MEMBER IS XCLRC007 LINKED TO OWNER
 MANDATORY AUTOMATIC
 KEY IS (C007-KEY ASCENDING)
 DUPLICATES ARE NOT ALLOWED.

1-1

0-N

XCLSC004-C007

XCLRC002
C002-KEY
C002-TYPE
C002-GARNITURE
id: C002-KEY

XCLRC004
C004-KEY
id: C004-KEY

XCLRC007
C007-KEY
C007-DESCR
C007-ACTIF
id: XCLSC004-C007.XCLRC004

C007-KEY

OBTAIN CURRENT XCLRC002.

Reads the current XCLRC002 record.
MOVE C002-TYPE TO C004-KEY.
OBTAIN CALC XCLRC004.

Reads the XCLRC004 record.
IF DB-REC-NOT-FOUND
 ...
ELSE
 MOVE C002-GARNITURE TO C007-CAPITONNAGE
 OBTAIN XCLRC007 WITHIN XCLSC004-C007 USING C007-CAPITONNAGE

Reads the XCLRC007 record that is connected to the current
XCLRC004 through the XCLSC004-C007 set.

 IF DB-REC-NOT-FOUND
 ...
 ELSE
 MOVE C007-DESCR TO MRC4-AUSST-DESCR
 END-IF.
END-IF.
Program Understanding in DBRE 63

The analysis of the reminder of the code shows that another attribute of XCLRC002 (C002-GARNI-
TURE) is used to fill the record key of XCLRC007 (C007-KEY), in fact this is not really the identi-
fier, which is the role through XCLRC004 and C007-KEY. But we have already find a referential
constraint from C002-TYPE to XCLRC004, so we discovered a second referential constraint from
(C002-TYPE, C002-GARNITURE) to the identifier of XCLRC007. This is a hierarchical referential
constraint because the target of the referential constraint contains a role.

The logical schema is displayed in figure 196.

FIGURE 196. The complete logical schema.

C.2.3. Conceptualization

To conceptualize this schema, we have to transform the referential constraints. First of all we can
notice that the first referential constraint (C002-TYPE, C004-KEY) is redundant with the second
one, so it can be suppressed.

The second one can be transformed into a relationship type (not accepted by DB-MAIN!).

The conceptual schema is shown in figure 197.

FIGURE 197. The conceptual schema.

1-1

0-N

XCLSC004-C007

XCLRC002
C002-KEY
C002-TYPE
C002-GARNITURE
id: C002-KEY
ref: C002-TYPE
ref: C002-TYPE

C002-GARNITURE

XCLRC004
C004-KEY
id: C004-KEY

XCLRC007
C007-KEY
C007-DESCR
C007-ACTIF
id: XCLSC004-C007.XCLRC004

C007-KEY

1-1

0-N

XCLSC004-C007

1-1

0-N
Garniture

XCLRC002
C002-KEY
C002-TYPE
C002-GARNITURE
id: C002-KEY

XCLRC004
C004-KEY
id: C004-KEY

XCLRC007
C007-KEY
C007-DESCR
C007-ACTIF
id: XCLSC004-C007.XCLRC004

C007-KEY
64 Program Understanding in DBRE

C.3. Computed referential constraint (1)

File: XSNPS12.TXT

This example presents the implementation of a computed referential constraint. To find the refer-
enced record, the value to the reference attribute is used as the input parameters of a function. In
this example, the function is a translation table.

C.3.1. The DDL analysis

FIGURE 198. DDL declaration and the corresponding raw physical schema.

This example uses an IDMS database. The DDL and its corresponding raw physical schema are
given in figure 198. IDMS databases are hierarchical database, i.e. the programmer can declare set,
some kind of relationship type. In an IDMS database there exists a special entity type, named
SYSTEM, to which correspond exactly one record. Its main usage is to be the owner of some sets to
support sort or access keys. This trick is necessary because the only manner to declare sorted access
key in IDMS is to declare them into a set. So if a record is the member of no sets and the program-
mer wants to declare an access key, he has to create a set that have this entity type as a member and
SYSTEM as the owner and then to declare the access key on the set.

RECORD NAME IS XDDRD002
 LOCATION MODE IS VIA XDDSIX01-D002 SET.
02 D002-NR PIC X(6).
02 D002-USINE PIC X(15).
02 D002-DEALER PIC X(04).
...
RECORD NAME IS XSNRS007
 LOCATION MODE IS VIA XSNSIX08-S007 SET.
02 S007-KEY.
 03 S007-P-L PIC X.
 03 S007-DEALER PIC X(04).
02 S007-DENOM PIC X(15).
02 S007-TEL PIC X(15).
...
SET NAME IS XDDSIX01-D002
 OWNER IS SYSTEM
 MEMBER IS XDDRD002 ...KEY IS (D002-NR).
SET NAME IS XSNSIX08-S007
 OWNER IS SYSTEM
 MEMBER IS XSNRS007 MANDATORY AUTOMATIC
 KEY IS (S007-KEY ASCENDING)
 DUPLICATES ARE NOT ALLOWED.

1-1

0-N

XSNSIX08-S007

1-1

0-N

XDDSIX01-D002

XSNRS007
S007-KEY

S007-P-L
S007-DEALER

S007-DENOM
S007-TEL
id: XSNSIX08-S007.SYSTEM

S007-KEY
acc

XDDRD002
D002-NR
D002-USINE
D002-DEALER
id: D002-NR

acc

SYSTEM
Program Understanding in DBRE 65

C.3.2. The schema refinement

FIGURE 199. Procedural fragment.

The analysis of the procedural fragment (figure 199) shows that D002-DEALER is copied into
S007-DEALER (part to the identifier) and that there exist a function (translation table) between
D002-USINE and S007-P-L (the second part of the identifier). S007-P-L contains the value P or
L depending of the value of D002-USINE. So this is a function that is used to compute the values of
the identifier of XSNRS007 according to the value of two attributes of XDDRD002. This is called a
computed referential constraint.

Figure 200 represents the complete logical schema with the computed foreign key.

FIGURE 200. The complete logical schema.

C.3.3. The conceptualization

The first step of the conceptualization (preparation) is to remove the physical constructs. In this
example, the entity type SYSTEM and its relationship types can be removed because they are only
used to implement IDMS access key. The access keys can also be removed.

The computed referential constraint can be transformed into a relationship type, but D002-USINE
could not be suppressed and a constraint has to be added to express the relation between D002-
USINE and S007-P-L (see [Hainaut-1997a]).

The conceptual schema is shown in figure 201.

...
OBTAIN XDDRD002 WITHIN XDDSIX06-D002 USING D002-NR.
IF DB-REC-NOT-FOUND THEN
 MOVE ’NOTFOUND’ TO WR03-CURRENT
 GO TO END-PAR.
IF D002-USINE = ’TRUCK’ THEN
 MOVE ’P’ TO S007-P-L

ELSE
 MOVE ’L’ TO S007-P-L.

MOVE D002-DEALER TO S007-DEALER.
OBTAIN XSNRS007 WITHIN XSNSIX08-S007 USING S007-KEY.

1-1

0-N

XSNSIX08-S007

1-1

0-N

XDDSIX01-D002

XSNRS007
S007-KEY

S007-P-L
S007-DEALER

S007-DENOM
S007-TEL
id: XSNSIX08-S007.SYSTEM

S007-KEY
acc

XDDRD002
DD002-NR
D002-USINE
D002-DEALER
id: DD002-NR

acc
cfk: D002-USINE

D002-DEALER

SYSTEM
66 Program Understanding in DBRE

FIGURE 201. The conceptual schema.

C.4. Computed referential constraint (2) - Y2K

File: XDDPD8D.TXT

This is a typical year 2000 example, where a windowing solution has been implemented. This
example use COBOL/IDMS.

C.4.1. The DDL analysis

FIGURE 202. DDL declaration and its corresponding raw physical schema.

The DDL code and its corresponding raw physical schema are displayed in figure 202. It can be
noticed in the physical schema that in XDDRD022 the date contains only a year (D022-DELIVERY-
AA) coded in two characters and the date in XDDRD010 has a century attribute (D010-CE) of two
characters and a year attribute (D010-AA) of two characters.

1-1 0-NR

XSNRS007
S007-P-L
S007-DEALER
S007-DENOM
S007-TEL
id: S007-P-L

S007-DEALER

XDDRD002
D002-NR
D002-USINE
id: D002-NR

d XDDRD002∈∀
d.R.S007-P-L P if d.D002-USINE ’TRUCK’= =

L otherwise

RECORD NAME IS XDDRD022
 LOCATION MODE IS VIA XDDSD002-D022 SET.
...
02 D022-DELIVERY-DT.
 03 D022-DELIVERY-AA PIC XX.
 03 D022-DELIVERY-MM PIC XX.
 03 D022-DELIVERY-JJ PIC XX.
RECORD NAME IS XDDRD010
 LOCATION MODE IS CALC USING (D010-KEY1)
 DUPLICATES ARE NOT ALLOWED.
02 D010-KEY1.
 03 D010-CE PIC XX.
 03 D010-AAMMJJ.
 05 D010-AA PIC XX.
 05 D010-MM PIC XX.
 05 D010-JJ PIC XX.
02 D010-TYPE PIC X.

XDDRD022
...
D022-DELIVERY-DT

D022-DELIVERY-AA
D022-DELIVERY-MM
D022-DELIVERY-JJ

XDDRD010
D010-KEY1

D010-CE
D010-AAMMJJ

D010-AA
D010-MM
D010-JJ

D010-TYPE
id: D010-KEY1

acc
Program Understanding in DBRE 67

C.4.2. The schema refinement

FIGURE 203. Procedural Fragment.

The analysis of the procedural code fragment (figure 203) shows that D022-DELIVERY-AA (-MM,
-JJ) is copied into D010-AA (-MM, -JJ) and D010-CE is set to 19 or 20 according to the value of
D010-AA (the implementation of the windowing algorithm with a cutoff year set to 1990 [IBM-
1998]).

This can be represented into the logical schema (figure 204) by a computed referential constraint.

FIGURE 204. The complete logical schema.

C.4.2.1. The conceptualization

After the suppression of the access key (preparation), the computed referential constraint is trans-
formed into a relationship type. A constraints is added to express that XDDRD022 is connected to
XDDRD010 with a date comprise between 1st January 1991 and 31th December 2090.

The conceptual schema is shown in figure 205.

...
OBTAIN FIRST XDDRD022

WITHIN XDDSD002-D022.
MOVE D022-DELIVERY-AA TO D010-AA.
MOVE D022-DELIVERY-MM TO D010-MM.
MOVE D022-DELIVERY-JJ TO D010-JJ.
IF D010-AA > ’90’ THEN
 MOVE 19 TO D010-CE
ELSE
 MOVE 20 TO D010-CE.
OBTAIN XDDRD010 WITHIN XDDSIX13-D010

USING D010-KEY1.

XDDRD022
...
D022-DELIVERY-DT

D022-DELIVERY-AA
D022-DELIVERY-MM
D022-DELIVERY-JJ

cfk: D022-DELIVERY-DT

XDDRD010
D010-TYPE
D010-KEY1

D010-CE
D010-AAMMJJ

D010-AA
D010-MM
D010-JJ

id: D010-KEY1
acc
68 Program Understanding in DBRE

FIGURE 205. The conceptual schema.

C.5. Computed referential constraint (3)

File: XDDPD8D.TXT

This is an example of one of the simplest computed referential constraint, where the function
concatenate a constant to the referential attribute.

C.5.1. The DDL analysis

FIGURE 206. DDL declaration and its corresponding raw physical schema.

The DDL code and its corresponding raw physical schema are shown in figure 206.

C.5.2. The schema refinement

FIGURE 207. Procedural Fragment.

1-1 0-NDelivery
XDDRD022
...

XDDRD010
D010-KEY1

D010-TYPE
D010-CE
D010-AAMMJJ

D010-AA
D010-MM
D010-JJ

id: D010-KEY1
d XDDRD022∈∀

d.Delivery.D010-CE 19 if D010-AA 90>=
20 otherwise

RECORD NAME IS XDCRDC01
 LOCATION MODE IS VIA XDCSDC00-DC1A SET.
02 ...
02 DC01-USINE.
 03 DC01-USINE1 PIC X.
 03 DC01-USINE2-6 PIC X(06).
RECORD NAME IS XTLRT000
 lOCATION MODE IS CALC USING (T000-KEY)
 DUPLICATES ARE NOT ALLOWED;
02 T000-KEY.
 03 T000-TRUCK PIC X(15).
 03 T000-USINE PIC X(08).
02 T000-TXT PIC X(80).

XTLRT000
T000-KEY

T000-TRUCK
T000-USINE

T000-TXT
id: T000-KEY

acc

XDCRDC01
...
DC01-USINE

DC01-USINE1
DC01-USINE2-6

OBTAIN CURRENT XDCRDC01.
MOVE ’VEH-NEUFS’ TO T000-TRUCK.
MOVE DC01-USINE2-6 TO T000-USINE.
OBTAIN CALC XTLRT000.
Program Understanding in DBRE 69

Through the analysis of the procedural fragment (figure 207), it can be noticed that DC01-USINE2-
6 is copied into T000-USINE and T000-TRUCK is set to a constant (’VEH-NEUFS’). T000-TRUCK
and T000-USINE are the identifier, so this is a computed referential constraint.

The complete logical schema is shown in figure 208.

FIGURE 208. The complete logical schema.

C.5.3. The conceptualization

After the suppression of the access keys (preparation), the computed referential constraint is trans-
formed into a relationship type. A constraint is added to express that all the XTLRT00 connected to
XDCRDC01 through R must have T000-TRUCK = ’VEH-NEUFS’.

Figure 209 displays the conceptual schema.

FIGURE 209. The conceptual schema.

C.6. Create a temporary file

File: budget04.cbl, line 841

In this example, a temporary file is created to sort a file, the record key of the temporary file is the
sort criteria.

C.6.1. COBOL

Figure 210 shows the declaration of the files.

Figure 211 shows the fragment of the procedural code that copies the original file into the tempo-
rary one and use it to print a sorted report.

XTLRT000
T000-KEY

T000-TRUCK
T000-USINE

T000-TXT
id: T000-KEY

acc

XDCRDC01
...
DC01-USINE

DC01-USINE1
DC01-USINE2-6

cfk: DC01-USINE.DC01-USINE2-6

1-1 0-NR

XDCRDC01
...
DC01-USINE

DC01-USINE1

XTLRT000
T000-KEY

T000-TRUCK
T000-USINE

T000-TXT
id: T000-KEY

d XDCRDC01∈∀
d.R.T000-TRUCK ’VEH-NEUFS’=
70 Program Understanding in DBRE

FIGURE 210. The files and records declaration.

FIGURE 211. Procedural fragment.

SELECT BUDTSEC ASSIGN TO DISK, BUDTSECXX
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 FILE STATUS IS FILSTAT
 RECORD KEY IS BUDTSKEY.
SELECT BUDTREP ASSIGN TO DISK, BUDTREPXX
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 FILE STATUS IS FILSTAT
 RECORD KEY IS ANTRKEY.
SELECT BUDRPA ASSIGN TO DISK, BUDRPAXX
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 FILE STATUS IS FILSTAT
 RECORD KEY IS ORDRPAKEY.

FD BUDTSEC LABEL RECORD OMITTED.
* BUDTSEC TABLE DES SECTIONS EXISTANTES
01 BUDTSECREC.
 03 BUDTSKEY.
 05 BUDTSNR PIC X(05).
 03 BUDTSLIB PIC X(30).
FD BUDTREP LABEL RECORD OMITTED.
* TABLE DE REPARTITION DES SECTIONS
01 ANTREPREC.
 03 ANTRKEY.
 05 ANTRNR PIC X(05).
 03 R-ANTRREST.
 05 ATRIND PIC X(04).
 05 ATRORD PIC 9(03).
FD BUDRPA LABEL RECORD OMITTED.
* ORDRE DE REPARTITION ANALYTIQUE
01 ORDRPAREC.
 03 ORDRPAKEY PIC X(03).
 03 ORDRPANUM PIC X(05).

MJBUDRPA SECTION.
MJ-01.
 OPEN INPUT BUDRPA.
 IF FILSTAT = "94"
 CLOSE BUDRPA
 ELSE

If the file BUDRPA exist, delete it.
 CLOSE BUDRPA
 DELETE FILE BUDRPA.
MJ-02.
 OPEN I-O BUDRPA.
 MOVE SPACES TO ANTRNR.
 START BUDTREP KEY > ANTRKEY

Positions on the first record.
 INVALID KEY GO TO MJ-EX.
MJ-03.
 READ BUDTREP NEXT AT END
 CLOSE BUDRPA GO TO MJ-05.

Reads the next record.
 MOVE ATRORD TO ORDRPAKEY.
 MOVE ANTRNR TO ORDRPANUM.

Fills ORDRPAREC.
 WRITE ORDRPAREC INVALID KEY
 GO TO MJ-04.
 GO TO MJ-03.
MJ-04.
 CLOSE BUDRPA.

 GO TO MJ-EX.
MJ-05.

DUDRPA contains the fields ATRORD,
ANTRNR sorted by ARTRORD while

BUDTREP was ordered on ANTRNR.
 OPEN INPUT BUDRPA.
 DISPLAY "ORDRE DE REPARTITION ".
 DISPLAY "==================== ".
 MOVE SPACES TO ORDRPAKEY.
 START BUDRPA KEY > ORDRPAKEY

Select the first record.
 INVALID KEY GO TO MJ-EX.
MJ-06.
 READ BUDRPA NEXT AT END

Reads the next record.
 CLOSE BUDRPA GO TO MJ-EX.
 MOVE ORDRPANUM TO BUDTSNR.

Fills the record key.
 READ BUDTSEC INVALID KEY

Reads the target record.
 MOVE SPACES TO BUDTSLIB.
 DISPLAY ORDRPAKEY, " ", ORDRPANUM,
 " ", BUDTSLIB.

Prints an ordered report.
 GO TO MJ-06.
MJ-EX.
 EXIT.
Program Understanding in DBRE 71

C.6.2. The complete logical schema

FIGURE 212. The complete logical schema.

The file BUDRPA is a temporary file, because at the beginning of the fragment it is deleted if it exists
(figure 211, paragraph MJ-01).

Paragraph MJ-02 set the current record of BUDTREP to the first one. MJ-03 copies for each record
of BUDTREP the value of ATRORD into ORDRPAKEY (the identifier) and ANTRNR into ORDRPANUM.
ORDRPAREC is a copy of ANTREPREC, two rd constraints are added. ANTRKEY is an identifier, so its
copy (ORDRPANUM) is also an (secondary) identifier. ORDRPAKEY is an identifier and a copy of
ATRORD, so ATRORD is also an (secondary) identifier;

Through the analysis of paragraph MJ-06, it can be discovered that there is a referential constraint
from ORDRPANUM to BUDTSKEY (BUDTSNR).

The complete logical schema is displayed in figure 212.

C.6.3. The conceptualization

FIGURE 213. The prepared logical schema.

FIGURE 214. The conceptual schema.

ORDRPAREC
ORDRPAKEY
ORDRPANUM
id: ORDRPAKEY

rd acc
id’: ORDRPANUM

rd
ref: ORDRPANUM

BUDTSECREC
BUDTSKEY

BUDTSNR
BUDTSLIB
...
id: BUDTSKEY

acc

ANTREPREC
ANTRKEY

ANTRNR
R-ANTRREST

ATRIND
ATRORD

...
id: ANTRKEY

acc
id’: R-ANTRREST.ATRORD
 : ANTRKEY.ANTRNR

BUDTSEC

BUDTSECREC

BUDTREP

ANTREPREC

BUDRPA

ORDRPAREC

BUDTSECREC
BUDTSNR
BUDTSLIB
...
id: BUDTSNR

ANTREPREC
ANTRNR
R-ANTRREST

ATRIND
ATRORD

...
id: ANTRNR

ref
id’: R-ANTRREST.ATRORD

1-10-1 ANTRKEY

BUDTSECREC
BUDTSNR
BUDTSLIB
...
id: BUDTSNR

ANTREPREC
R-ANTRREST

ATRIND
ATRORD

...
id: R-ANTRREST.ATRORD
72 Program Understanding in DBRE

The first step is to prepare the schema, i.e. remove all the unnecessary physical constructs. In this
schema, all the access keys and the collections are removed. Some compound attributes
(BUDTSKEY, ANTRKEY) have only one component, so they can be disaggregated.

ORDRPAREC is a copy of ANTREPREC, so it can be integrated into ANTREPREC. The result of this
first step is shown in figure 213.

Now referential constraint is transformed into a relationship type. The referential constraint is
between two identifiers, so the relationship type is a one-to-one relationship type. The conceptual
schema is displayed in figure 214.

C.7. COBOL

FIGURE 215. The files declaration.

SELECT SCTRAV ASSIGN TO DISK, BEST5
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 FILE STATUS IS FILSTAT
 ALTERNATE RECORD KEY IS
 SCT-BLO WITH DUPLICATES
 RECORD KEY IS SCTKEYN.
SELECT SCMLAM ASSIGN TO DISK, BEST7
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 FILE STATUS IS FILSTAT
 RECORD KEY IS SCMKEYN.

FD SCTRAV LABEL RECORD OMITTED.
01 SCTRAVREC.
 03 SCTKEYN.
 05 SCTARM PIC 9(02).
 05 SCTCHA PIC 9(04).
 05 SCTBLO PIC 9(04).
 05 SCTCLE REDEFINES SCTBLO PIC X(04).

 03 SCT-REST.
 05 SCTTAB.
 07 SCTLAM OCCURS 102 TIMES

PIC X(08).
 05 SCTETA PIC X(01).
 05 SCTLON PIC 9(03).
 05 SCTLAR PIC 9(03).
 05 SCTHAU PIC 9(03).
 05 SCTTAG PIC 9(02).
 05 SCTTSC PIC 9(02).
 05 SCTMAJ PIC 9(01).

FD SCMLAM LABEL RECORD OMITTED.
01 SCMLAMREC.
 03 SCMKEYN.
 05 SCMARM PIC 9(02).
 05 SCMPOS PIC 9(03).
 05 SCMSCI PIC X(08).
 03 SCM-REST.
 05 SCMM2 PIC S9(9)V99 COMP.
 05 SCMHAU PIC S9(9)V99 COMP.
Program Understanding in DBRE 73

FIGURE 216. The procedural part.

Figure 215 shows the declarations of the two files. SCTRAV is the daily production and SCMLAM is
the monthly production statistics.

Figure 216 shows the procedural fragment used to compute the monthly statistics from the daily
production data.

SC10-02.

Read the next record
 READ SCTRAV NEXT AT END
 STOP RUN.
 IF SCTMAJ = 1

If the record has already been integrated
into the statistics, skip it

 GO TO SC10-02.

Compute some intermediate values
 COMPUTE B = SCTTAG + 1.
 COMPUTE LH = SCTLON * SCTHAU.
 COMPUTE M2LAM ROUNDED = LH / 10000.

Fill the record key
 MOVE SCTARM TO SCMARM.
 MOVE SCTLAM(B) TO SCMSCI.
 MOVE B TO SCMPOS.

Access to the monthly record
 READ SCMLAM INVALID KEY

If the record does not exist fill it with
default value

 MOVE LOW-VALUES TO SCM-REST.

Compute the aggregate
 ADD M2LAM TO SCMM2.
 COMPUTE SCMHAU = SCMHAU+(SCTHAU / 100).
 REWRITE SCMLAMREC INVALID KEY

If the record does not exist
 GO TO LAME-11.
 GO TO LAME-02.
LAME-11.
 WRITE SCMLAMREC INVALID KEY
 MOVE "INVALID WRITE SCUPAB" TO FOUT1
 MOVE SCUKEY TO FOUT2
 DISPLAY SCRFOUT
 STOP RUN.
LAME-02.

Marks the daily record as integrated into
the monthly statistics

 MOVE 1 TO SCTMAJ.
 REWRITE SCTRAVREC INVALID KEY
 STOP RUN.
 GO TO SC10-02.
74 Program Understanding in DBRE

C.7.1. The complete logical schema

FIGURE 217. The complete logical schema.

The DDL code analysis is trivial, it produces two collections, two entity types with attributes, iden-
tifiers and access keys.

The procedural fragment is more difficult to interpret in spite of simplicity of the algorithm. The
general algorithm is a big loop that reads each record of SCTRAVREC and performs the following
actions:

• The value of the primary key of SCMLAMREC is computed.

• The corresponding record of SCMLAMREC is read or set to default value if it does not exist.

• The aggregate attributes of SCMLAMREC are updated.

• SCMLAMREC is written back to the file;

• The record SCTRAVREC is marked as read.

The tricky part of the fragment is that the record key of SCMLAMREC is not filled with the value of
some attributes of SCTRAVREC, but a function of those attributes. SCTTAG is used as an index to
access an element of SCTLAM. This is represented by a computed referential constraint that is only
true if SCTMAJ = 1. The computed referential constraint can be expressed as follow:

• SCMARM = SCTARM

• SCMPOS = SCTTAG + 1

• SCMSCI = SCTLAM(SCTTAG + 1)

The values of SCMM2 and SCMHAU are an aggregation of the values of the attribute of SCTRAVREC.
These aggregations can be seen as business rules. These rules are stored in the description of the
groups and can be expressed as follow:

• SCMM2 = sum(SCTLON * SCTHAU / 10000)

SCTRAVREC
SCTKEYN

SCTARM
SCTCHA
SCTBLO

SCT-REST
SCTTAB

SCTLAM[102-102] array
SCTETA
SCTLON
SCTLAR
SCTHAU
SCTTAG
SCTTSC
SCTMAJ

id: SCTKEYN
cfk: SCT-REST.SCTTAB.SCTLAM[*]

SCT-REST.SCTTAG
SCTKEYN.SCTARM
SCT-REST.SCTMAJ

 : SCT-REST.SCTLON
SCT-REST.SCTHAU
SCT-REST.SCTMAJ

 : SCT-REST.SCTHAU
SCT-REST.SCTMAJ

acc: SCTKEYN.SCTBLO

SCMLAMREC
SCMKEYN

SCMARM
SCMPOS
SCMSCI

SCM-REST
SCMM2
SCMHAU

id: SCMKEYN
acc

Agg: SCM-REST.SCMM2
Agg: SCM-REST.SCMHAU

SCTRAV

SCTRAVREC

SCMLAM

SCMLAMREC
Program Understanding in DBRE 75

• SCMHAU = sum(SCTHAU / 100)

The complete logical schema is displayed in figure 217.

C.7.2. Conceptualization

The conceptualization of the schema is very easy, because SCMLAMREC is only the aggregation of
the value of SCTRAVRE. So in the conceptual schema, SCMLAMREC can be removed. SCTMAJ can
also be removed because it is only used to mark the records that have already been aggregate to
SCMLAMREC.

C.8. History

File: b15.cob, line 2673, c10.cob

In this example, the file CREREK contains for each invoice the different payments. This file is
updated with the records of a file (HULP) that contains the different financial operations.
76 Program Understanding in DBRE

C.8.1. COBOL

FIGURE 218. Files and records declaration.

FIGURE 219. Procedural code (creation of the customer in credit).

SELECT HULP ASSIGN TO DISK, BEST8
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 FILE STATUS IS FILSTAT
 RECORD KEY IS HULPKEY.
SELECT CREREK ASSIGN TO DISK, BEST1
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS CREREKKEY.

FD HULP LABEL RECORD OMITTED.
01 HULPREC.
 03 HULPKEY.
 05 HULPORG PIC 9(4).
 05 HULPDAT.
 07 HULPDAA PIC 99.
 07 HULPDMM PIC 99.
 07 HULPDJJ PIC 99.
 05 HULPIEC PIC 9(5).
 03 HULPSCHERM.
 05 HULPDC PIC X.
 05 HULPREKALG.
 07 HGEN6OU7 PIC 999.
 07 HGENRES PIC X(06).
 05 HULPREKAN.
 07 HANALCF PIC X(05).
 07 HANALRES PIC X(04).
 05 HULPDOK PIC 9(5).
 05 HULPOMS PIC X(25).
 03 HULPRDAT.
 05 HULPRDAA PIC 99.
 05 HULPRDMM PIC 99.
 05 HULPRDJJ PIC 99.
 03 HULPBF PIC S9(11) COMP.
 03 HULPSYMB PIC X.

FD CREREK
 LABEL RECORD OMITTED.
01 CREREC.
 03 CREREKKEY.
 05 CRKLANT PIC X(5).
 05 CRDOKNR PIC X(5).
 05 CRVOLG PIC 99.
 03 CRPER.
 05 CRJAAR PIC 99.
 05 CRMAAND PIC 99.
 03 CRDATDOK.
 05 CRDATJAAR PIC 99.
 05 CRDATMAAND PIC 99.
 05 CRDATDAG PIC 99.
 03 CROMSDOK PIC X(25).
 03 CRVERVD.
 05 CRVERVJAAR PIC 99.
 05 CRVERVMAAND PIC 99.
 05 CRVERVDAG PIC 99.
 03 CRDEBCRE PIC X.
 03 CRBEDR PIC S9(9)V99.
 03 CRAANZ PIC X.
 03 CRDATBET.
 05 CRDATBETJAAR PIC 99.
 05 CRDATBETMAAND PIC 99.
 05 CRDATBETDAG PIC 99.
 03 CRSYMBP PIC X.
 03 CRBETAALD PIC S9(9)V99 value

0.
 03 CESCOMPTE PIC S9(9)V99 value

0.
 03 CFC PIC X.
 03 CRPIECP PIC 9(5).

ACCEPT CRDATDAG.
ACCEPT CRDATMAAND.
ACCEPT CRDATJAAR.
ACCEPT CRKLANT.
ACCEPT CRBEDR.
MOVE NRNU TO CRDOKNR.
...
MOVE 0 TO CRVOLG.
MOVE 0 TO CRBETAALD CRBETAALD-EUR.
WRITE CREREC INVALID KEY

 MOVE "INVALID WRITE CREREK" TO FT1
 MOVE CREREKKEY TO FT2
 GO TO STOPS.
IF CESCOMPTE NOT = 0
 MOVE CESCOMPTE TO CRBETAALD
 MOVE CRDATDOK TO CRDATBET
 MOVE "G" TO CRSYMBP
 MOVE CRDOKNR TO CRPIECP
 REWRITE CREREC INVALID KEY
 GO TO STOPS.
Program Understanding in DBRE 77

FIGURE 220. The procedural code.

For this example, in addition the usual files and records declaration (figure 218), there is two proce-
dural fragments. The first one (figure 219) is the creation of an entry for an invoice (new invoice),
all the data are given interactively by the user. The second fragment (figure 220) reads, from a file,
the different payment carried out and adds the corresponding records to the file.

 MOVE BHULPIEC TO HULPIEC.
 MOVE BHULPORG TO HULPORG.
 MOVE BHULPDAT TO HULPDAT.
 START HULP KEY >= HULPKEY INVALID KEY
 GO TO I13.
I11.
 READ HULP NEXT AT END
 GO TO I13.
 IF HGEN6OU7 = 440
 PERFORM UPIMPFRS THRU FINIMPFRS.
 GO TO I11
UPIMPFRS.
*UPD FICHIER CREREK:IMPAYES CREDITEURS.
 MOVE HANALCF TO CRKLANT.
 MOVE HULPDOK TO CRDOKNR.
 MOVE 0 TO CRVOLG.
 IF HULPDOK = 0
 GO TO CREINC.
 START CREREK KEY=CREREKKEY INVALID KEY
 DISPLAY "INVALID START CREREK"
 STOP RUN.
READCREREK.
 READ CREREK NEXT AT END
 GOTO UPCREREK.
 MOVE CRVOLG TO BCRVOLG.
 IF CRBETAALD > 0
 GO TO DEJAPAI.
 MOVE HULPBF TO CRBETAALD.
 MOVE HULPSYMB TO CRSYMBP.
 MOVE HULPDAT TO CRDATBET.
 MOVE HULPIEC TO CRPIECP.
 IF HULPDC = "C" AND CFC = "0"
 MULTIPLY -1 BY CRBETAALD.
 IF HULPDC = "D" AND CFC = "1"
 MULTIPLY -1 BY CRBETAALD.
 COMPUTE SOLDE = CRBEDR - CRBETAALD.
 IF SOLDE = 0
 MOVE "A" TO CRAANZ.
 REWRITE CREREC INVALID KEY
 DISPLAY "INVALID REWRITE CREREK"
 GO TO STOPS.
 GO TO FINIMPFRS.
ECRICREREC.
 IF HULPDC = "D"
 MOVE HULPDAT TO CRDATBET
 MOVE HULPBF TO CRBETAALD
 MOVE HULPSYMB TO CRSYMBP
 MOVE HULPIEC TO CRPIECP
 MOVE 0 TO CRBEDR

 ELSE
 MOVE HULPBF TO CRBEDR
 MOVE 0 TO CRBETAALD
 MOVE SPACES TO CRSYMBP
 MOVE 0 TO CRPIECP.
 MOVE HULPDAA TO CRJAAR.
 MOVE PP TO CRMAAND.
 MOVE HULPDAT TO CRDATDOK CRVERVD.
 MOVE HULPOMS TO CROMSDOK.
 MOVE HULPDC TO CRDEBCRE.
 MOVE 0 TO CESCOMPTE.
 IF CRDOKNR=ZEROE
 MOVE SPACE TO CFC.
 WRITE CREREC INVALID KEY
 DISPLAY "INVALID WRITE CREREK!"
 STOP RUN.
 IF CRAANZ = "A"
 PERFORM SOLDEFR THRU FINSOLDEFRS.
 GO TO FINIMPFRS.
DEJAPAI.
 MOVE CRBEDR TO TDOC
 SUBTRACT CRBETAALD FROM TDOC.
 IF HULPBF = TDOC
 ADD 1 TO CRVOLG
 MOVE "A" TO CRAANZ
 GO TO ECRICREREC.
LECIMPC.
 READ CREREK NEXT AT END
 GOTO UPCREREK.
 IF CRKLANT NOT= HANALCF
 GOTO UPCREREK.
 IF CRDOKNR NOT= HULPDOK
 GOTO UPCREREK.
 MOVE CRVOLG TO BCRVOLG.
 SUBTRACT CRBETAALD FROM TDOC.
 IF TDOC = HULPBF
 ADD 1 TO CRVOLG
 MOVE "A" TO CRAANZ
 GO TO ECRICREREC.
 GO TO LECIMPC.
UPCREREK.
 MOVE HANALCF TO CRKLANT.
 MOVE HULPDOK TO CRDOKNR.
 COMPUTE CRVOLG = BCRVOLG + 1.
 IF HULPBF = TDOC
 MOVE "A" TO CRAANZ.
 GO TO ECRICREREC.
FINIMPFRS.
 EXIT.
78 Program Understanding in DBRE

This is also an example of a multi language development, some comments are in French (IMPAYES
CREDITEURS = customer in credit unpaid), the variable names are mostly in Dutch (CRKLANT =
CrCustomer or CRDOKNR = CrDokumentNumber = CrDocumentNumber) and some error messages
are in English (INVALID START CREREK). This is a typical example of the Belgian way of doing,
so the analyst needs to have at least some notion of the three languages and during the conceptual-
ization all the names need to be translate in the same language.

C.8.2. The complete logical schema

The first fragment (figure 219) does not tell us any information about potential constraints, except
that it tests the value of CESCOMPTE and if its value is different than 0, it is copied into CRBETAALD.

The second one (figure 220) is a complex fragment to analyze. In paragraph I11, this fragment only
uses the record for which HGEN6OU7 = 440. The record key is constructed from two attributes of
HULPREC (HANALCF and HULPDOK) and a constant (0).

In paragraph READCREREK, the record with the computed record key is read, if it does not exist (AT
END) then a new record is added (paragraph UPCREREK). If the record exists and nothing has yet
been paid (CRBETAALD = 0) the record is updated according to the value of HULPREC. If everything
is paid (CRBEDR - CRBETAALD = 0) then CRAANZ is set to ’A’.

If something has already been paid (CRBETAALD > 0) then DEJAPAI is executed. In paragraph
DEJAPAI, TDOC receives the value of CREBEDR (the amount of the invoice) and CRBETAALDT
(amount already paid) is subtracted. So TDOC contains the reminder of the invoice to be paid. If
TDOC = HULPBF (the amount paid) then one is added to CRVOLG, CRAANZ is set to ’A’ and the para-
graph ECRICREREC is executed (a record is written into the file). Otherwise, the next record is read
(LECIMPC) until the end of the file is reached, or the next record does not belong to the same
customer (CRKLANT) or does not belong to the same document (CRDOKNR), then UPCREREK is
executed. For each new record, CRBETAALD is subtracted from TDOC, but CRBEDR is not used any
more. So we can state that CRBEDR is optional and is only used for the first record of a couple
CRKLANT, CRDOKNR.

Paragraph UPCREREK fills CRKLANT and CRDOKNR with the current customer number and document
number and CRVOLD with the previous valued (BCRVOLG) plus one and then it executes
ECRICREREC.

In paragraph ECRICREREC, the new record is filled with the value of HULPREC and the default
values and it is written into the file. This can suggest that some attributes are optional (CRBEDR,
CRBETAALD, CRSYMBP, CRPIECP, CESCOMPTE). If we look closer, we can notice that CRBETALD,
CRSYMBP and CRPIECP all have a value or none of them have a value, so we add a coexistence
constraints between them.
Program Understanding in DBRE 79

FIGURE 221. Example of the value of CREREK.

Figure 221 shows an example of the value of CREREK. We can express the relation between
CRBEDR, CRBETAALD and CRAANZ for the records with the same CRKLNAT, CRDOKNR as follow:

if (bedr - (bet_0 + ... + bet_n)) = 0 then aanz_n = “A” and aanz_i = “ “ .
otherwise aanz_i = “ “ .

It is very difficult (or impossible) to formalize this in the logical schema, we have discovered a
business rule that express how CREREK is constructed and constraints about the structures of the
data.

We define as follow1:

, and

The complete logical schema is the one displayed in figure 222 with the following constraints:

if then and

otherwise

 and

if then

For all record of HULPREC with HGEN6OU7 = 440 then it exists v such that
 and and

...

CRKLANT CRDOKNR CRVOLD CRDEBCRE CRBEDR CRBETAALD CRAANZ

K_1 D_1 0 C bedr (not 0) bet_0 aanz_0

K_1 D_1 1 D 0 bet_1 aanz_1

...

K_1 D_1 n D 0 bet_n aanz_n

K_2 D_2

1. =the value of the attribute ATT of entity type CREREK is identified by CRKLANT=k,

CRDOKNR=d and CRVOLD=v.

0 i n<≤()∀
0 i n≤ ≤()∀

BALANCE
k d,

ATT
k d v, ,

k CRKLANT∈∀ d CRDOKNR∈∀ n max v a record identified by k d v, ,()∃()=

BALANCE
k d, CRDEBCRE

k d 0, , CRBETAALD
k d v, ,

0 i n≤ ≤
∑–=

BALANCE
k d, 0= CRAANZ

kdn
″A″= CRAANZ

kdi
″ ″= 0 i n<≤∀

CRAANZ
kdi

″ ″= 0 i n≤ ≤∀

CRDEBCRE
k d 0, , 0≠ CRDEBCRE

k d v, , 0= v 0<∀

CESCOMPTE
k d v, , 0= 0 v>∀

CESCOMPTE
k d 0, , 0≠ CRBETAALD

k d 0, , CESCOMPTE
k d 0, ,=

CREBETTALD
HANALCF,HULPDOK, v

HULPBF= CRDATBET
HANALCF,HULPDOK, v

HULPDAT=
80 Program Understanding in DBRE

FIGURE 222. The complete logical schema.

C.8.3. Conceptualization

The conceptualization of this schema is not trivial because all the constraints are not expressed in
the logical schema and some of those constraints are business rules. So the conceptualization is
more an interpretation of the constraints than their transformation.

Our proposed solution is to divided the CREREC record into two entity types, one to represent the
initial invoice, CREREC; and the otherone the different payments, VOLG (see figure 223). The
attribute CRAANZ can be suppressed because it can be derived, it is used to mark when the entire
invoice has been paid. If CESCOMPTE is different from 0, we did not copy it into CRBETAALD.

We can create a sub-type of HULPREC to materialize the entity type that have HGEN6OU7 equal to
440 (see figure 223). We can create a referential constraint from (HANALCF, HULPDOK) to
(CRKLANT, CRDOKNR).

The entity type VOLG is redundant with the entity type HGEN6OU7=440, so we can suppress it.

HULPREC
HULPKEY

HULPORG
HULPDAT

HULPDAA
HULPDMM
HULPDJJ

HULPIEC
HULPSCHERM

HULPDC
HULPREKALG

HGEN6OU7
HGENRES

HULPREKAN
HANALCF
HANALRES

HULPDOK
HULPOMS

HULPBF
HULPSYMB
id: HULPKEY

acc

CREREC
CREREKKEY

CRKLANT
CRDOKNR
CRVOLG

CRPER
CRJAAR
CRMAAND

CRDATDOK
CRDATJAAR
CRDATMAAND
CRDATDAG

CROMSDOK
CRVERVD

CRVERVJAAR
CRVERVMAAND
CRVERVDAG

CRDEBCRE
CRBEDR[0-1]
CRAANZ
CRDATBET[0-1]

CRDATBETJAAR
CRDATBETMAAND
CRDATBETDAG

CRSYMBP[0-1]
CRBETAALD[0-1]
CESCOMPTE[0-1]
CFC
CRPIECP[0-1]
id: CREREKKEY

acc
coex: CRDATBET

CRSYMBP
CRBETAALD
CRPIECP

CREREK

CREREC

HULP

HULPREC
Program Understanding in DBRE 81

The referential constraint can be transformed into a relationship type. The final conceptual schema
is shown in figure 224.

FIGURE 223. The raw conceptual schema.

FIGURE 224. The conceptual schema.

0-N

1-1

CRE_CRE

HULPREC
HULPKEY

HULPORG
HULPDAT

HULPDAA
HULPDMM
HULPDJJ

HULPIEC
HULPSCHERM

HULPDC
HULPREKALG

HGEN6OU7
HGENRES

HULPREKAN
HANALCF
HANALRES

HULPDOK
HULPOMS

HULPBF
HULPSYMB
id: HULPKEY

HGEN6OU7=440

ref: HULPREC.HULPSCHERM.HULPREKAN.HANALCF
HULPREC.HULPSCHERM.HULPDOK

HGEN6OU7 <> 440

VOLG
CRVOLG
CRAANZ
CRPIECP
CRDATBET

CRDATBETJAAR
CRDATBETMAAND
CRDATBETDAG

CRSYMBP
CRBETAALD

CREREC
CRKLANT
CRDOKNR
CRPER

CRJAAR
CRMAAND

CRDATDOK
CRDATJAAR
CRDATMAAND
CRDATDAG

CROMSDOK
CRVERVD

CRVERVJAAR
CRVERVMAAND
CRVERVDAG

CRDEBCRE
CRBEDR
CESCOMPTE[0-1]
CFC
id: CRKLANT

CRDOKNR

0-N

1-1

payment

HULPREC
HULPKEY

HULPORG
HULPDAT

HULPDAA
HULPDMM
HULPDJJ

HULPIEC
HULPSCHERM

HULPDC
HULPREKALG

HGEN6OU7
HGENRES

HULPREKAN
HANALCF
HANALRES

HULPDOK
HULPOMS

HULPBF
HULPSYMB
id: HULPKEY

HGEN6OU7=440 HGEN6OU7 <> 440

CREREC
CRKLANT
CRDOKNR
CRPER

CRJAAR
CRMAAND

CRDATDOK
CRDATJAAR
CRDATMAAND
CRDATDAG

CROMSDOK
CRVERVD

CRVERVJAAR
CRVERVMAAND
CRVERVDAG

CRDEBCRE
CRBEDR
CESCOMPTE[0-1]
CFC
id: CRKLANT

CRDOKNR
82 Program Understanding in DBRE

C.9. Technical file

File: c10.cob

In this example, one of the files contains technical information. Data that are not part of the domain
of the application. In this example, the technical file contains the last number assigned to an identi-
fier.

C.9.1. COBOL

FIGURE 225. The collections and entity types declarations.

FIGURE 226. The procedural fragment.

The code fragment of figure 225 represents the declaration of the two collections and entity types
and the code fragment of figure 226 the procedural code fragment. The analysis of the collections
and entity types declarations produces the raw physical schema.

SELECT TABF ASSIGN TO DISK, BEST6
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 FILE STATUS IS FILSTAT
 RECORD KEY IS TABFKEY.
SELECT CREREK ASSIGN TO DISK, BEST1
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS CREREKKEY.

FD TABF.
01 TABFREC.
 03 TABFKEY.
 05 TABFNR PIC XXX.

 05 TABFCLE PIC X(7).
 03 NO1X PIC 9(5).
 03 NO2X PIC 9(5).
 03 NO3X PIC 9(5).
 ...
FD CREREK.
01 CREREC.
 03 CREREKKEY.
 05 CRKLANT PIC X(5).
 05 CRDOKNR PIC X(5).
 05 CRVOLG PIC 99.
 03 CRPER.
 ...

 MOVE "06 C101" TO TABFKEY.
 READ TABF LOCK INVALID KEY
 STOP RUN.
 IF FILSTAT NOT = "00"
 STOP RUN.
 MOVE NO3X TO NRNU.
 ADD 1 TO NRNU ON SIZE
 ERROR MOVE 0 TO NRNU.
 IF NRNU > NO2X OR NRNU < NO1X
 MOVE NO1X TO NRNU.
 MOVE NRNU TO NO3X.
 REWRITE TABFREC INVALID KEY
 STOP RUN.

 IF FILSTAT NOT = "00"
 STOP RUN.
 UNLOCK TABF RECORDS.

 * ECRITURE DANS LE FICHIER CREREK--

 ACCEPT CRKLANT.
 MOVE NRNU TO CRDOKNR.
 MOVE 0 TO CRVOLG.
...
 WRITE CREREC INVALID KEY
 MOVE "INVALID WRITE CREREK" TO FT1
 GO TO STOPS.
Program Understanding in DBRE 83

FIGURE 227. The complete physical schema.

3.9.2. Complete physical schema

The analysis of the procedural code (figure 226) shows that the identifier of TABFREC is a constant
and the value of NO1X, NO2X and NO3X are used to compute the new value of CRDOKNR (a part of
the identifier of CREREC). The value used for CRDOKNR replace the value of NO3X in TABFREC.

This analysis can be interpreted as TABFREC is a technical entity type that does not contains appli-
cation domain data. This entity type noted as technical through the stereotype <<tech>>. Figure 227
is the complete physical schema.

3.9.3. Conceptual schema

The conceptualization of this schema consist in removing the physical construct (collections and
access keys) and in removing the technical entity type (TABFREC).

The final conceptual schema is presented in figure 228.

FIGURE 228. The conceptual schema.

C.10. Is-a in SQL

In this example, we have SQL views that represent sub-type of a table. The views are define as
follow

create view (.....)
as select (.......)

TABFREC
TABFKEY

TABFNR
TABFCLE

NO1X
NO2X
NO3X
...
id: TABFKEY

acc

CREREC
CREREKKEY

CRKLANT
CRDOKNR
CRVOLG

CRPER
...

id: CREREKKEY
acc

TABF

TABFREC

CREREK

CREREC

CREREC
CREREKKEY

CRKLANT
CRDOKNR
CRVOLG

CRPER
...

id: CREREKKEY
84 Program Understanding in DBRE

During the conceptualization, we would like to create an is-a relation between the table and all its
views.

C.10.1.The complete logical schema

Create a new project and extract (File/Extract SQL) the file is-a.sql. The result of the extrac-
tion is the figure 229. It contains three entity types (Person, Professor, Students).

FIGURE 229. The raw physical schema.

The SQL extractor extracts views as entity types and puts the definition of the views into the techni-
cal description of the entity type. The tables are extracted as entity types.

So all we have to do is to find the entity types that have a technical description that contains

from <table> where <column> = <string>

and to create an is-a relation between this entity type and the entity type of name <table>.

The patterns used to search into the technical description are the following.

The V2 function called to create the is-a relation is the following. The procedure is declared export,
because it must be call from outside the voyager program.

from <table>
where <column> = <string>;

- ::= /g"[/n/t/r]+";
string ::= /g"’.*’";
name ::= /g"[a-zA-ZO-9_]+";
table ::= name;
column ::= name;
from ::= "from" - @table - "where" - column - "=" - string;

export procedure create_is-a(string: table)
/* creates a is-a relation between the entity type of name
’table’ and the current entity type*/

data_object : d_obj;
schema : sch;
entity_type : sub_ent;
entity_type : super_ent;

{
SetPrintList("","","");

sch := GetCurrentSchema();
/* get the current schema*/

if IsVoid(sch) then {
/* if there no current schema return an error */

print("No Schema !\n");
return;

}

PERSON
NAME
ADDR
YEAR[0-1]
SALARY[0-1]
TYPE

PROFESSOR
NAME[0-1]
ADDR[0-1]
SALARY[0-1]

STUDENT
NAME[0-1]
ADDR[0-1]
YEAR[0-1]
Program Understanding in DBRE 85

Now to create the is-a relation select the compact view (to reduce the space research), select the
schema and execute the command Assist - Text analysis - Execute.

Click on the OK button. The is-a relations are created (figure 230).

FIGURE 230. The complete logical schema.

go :=GetCurrentObject();
/* get the current object */

if IsVoid(go)
then {

/* if there is no current object, return an error */
print("No current object !\n");
return;

}
if (GetType(go) <> ENTITY_TYPE)
then {

/* if the current object is not an entity type, return an error
*/

print("The current object is not a entity type !\n");
return;

}
sub_ent := go;

/* ’sup_ent’ is the entity type of name ’table’ */
sup_ent := GetFirst(DATA_OBJECT[d_obj]{@SCH_DATA:[sch]

with ((GetType(d_obj) = ENTITY_TYPE)
and (d_obj.name = table))});

/* ’l_clu’ is the list of cluster connected to the super type*/
l_clu := CLUSTER[clu]{@ENTITY_CLU:[sup_ent]};

if(Length(l_clu) = 1) then
{

/* if the super type has a cluster, use it */
clu := GetFirst(l_clu);

}
else
{

/* if the super type has no cluster, create it */
clu := create(CLUSTER, name : sup_ent.name, total : 0,

disjoint : 0, @ENTITY_CLU : sup_ent);
}

/* connect the sub-type to the cluster */
sub_t := create(SUB_TYPE, @CLU_SUB : clu,

@ENTITY_SUB : sub_ent);
}

PERSON
NAME
ADDR
YEAR[0-1]
SALARY[0-1]
TYPE

PROFESSOR
NAME[0-1]
ADDR[0-1]
SALARY[0-1]

STUDENT
NAME[0-1]
ADDR[0-1]
YEAR[0-1]
86 Program Understanding in DBRE

C.10.2.Conceptualization

To conceptualize this schema, we have to remove attributes from the super type or the sub-type,
according to they are common to both sub-type or not. The result of this conceptualization is the
schema of figure 231.

FIGURE 231. The conceptual schema.

PERSON
NAME
ADDR
TYPE

PROFESSOR
SALARY

STUDENT
YEAR
Program Understanding in DBRE 87

88 Program Understanding in DBRE

	Acknowledgements
	Abstract
	Table of Contents
	CHAPTER 1 Introduction
	1.1. General introduction
	1.2. Scope and motivation of the thesis
	1.3. The thesis
	1.4. State of the art
	1.4.1. Relational DMS
	1.4.2. Hierarchical/network DMS
	1.4.3. Standard files DMS
	1.4.4. Generic methods
	1.4.5. Others
	1.4.6. Summary

	1.5. Outline of the thesis

	CHAPTER 2 Data schema specification
	2.1. Introduction
	2.2. A wide-spectrum specification model
	2.2.1. Conceptual specifications
	2.2.2. Logical specifications
	2.2.3. Physical specifications
	2.2.4. Different levels of abstraction and different paradigms

	2.3. DMS-specific data structure specification
	2.3.1. The relational model
	2.3.2. The network model
	2.3.3. The standard file model
	2.3.4. Other constructs

	2.4. Schema transformation

	CHAPTER 3 A generic methodology for database reverse engineering
	3.1. Database reverse engineering is the reverse of forward engineering
	3.2. The DBRE methodology
	3.3. Data structure extraction
	3.3.1. DDL code analysis
	3.3.2. Physical integration
	3.3.3. Schema refinement
	3.3.4. Schema cleaning

	3.4. Data structure conceptualization
	3.4.1. Preparation
	3.4.2. Basic conceptualization
	3.4.3. Conceptual normalization
	3.4.4. The data structure conceptualization transformations

	3.5. Example

	CHAPTER 4 Data structure extraction
	4.1. Introduction
	4.2. The methodology
	4.2.1. DDL code analysis
	4.2.2. Physical schema integration
	4.2.3. Schema refinement
	4.2.4. Schema cleaning

	4.3. Explicit/implicit constructs
	4.4. Implicit structures and constraints
	4.5. The information sources
	4.6. Elicitation techniques
	4.7. The conflicts
	4.8. Refinement methodology
	4.8.1. The refinement methodology
	4.8.2. Hypothesis validation
	4.8.3. How to decide that refinement is completed
	4.8.4. Refinement strategy
	4.8.5. Heuristics usage
	4.8.6. Application to foreign key elicitation

	CHAPTER 5 Program understanding in database reverse engineering
	5.1. Program understanding
	5.2. Program understanding in database reverse engineering
	5.3. Program understanding difficulties
	5.4. Program understanding techniques in DBRE

	CHAPTER 6 Program understanding techniques
	6.1. Introduction
	6.2. Pattern matching
	6.3. Variable dependency graph
	6.4. Program slicing
	6.4.1. Program slicing state of the art
	6.4.2. Program dependency graph
	6.4.3. The system dependency graph
	6.4.4. Interprocedural slicing
	6.4.5. Arbitrary control flow
	6.4.6. SDG construction

	6.5. The program slicing for embedded code
	6.5.1. Select
	6.5.2. Insert
	6.5.3. Delete
	6.5.4. Update
	6.5.5. Cursor

	6.6. Other SDG analysis / usage
	6.7. Type inference
	6.8. Graphical visualization of the program

	CHAPTER 7 Using program understanding in DBRE
	7.1. Fine-grained structure, attributes aggregation, anonymous attributes
	7.1.1. Variable dependency graph
	7.1.2. System dependency graph

	7.2. Meaningful names
	7.2.1. Variable dependency graph
	7.2.2. System dependency graph

	7.3. Referential constraints and data dependencies
	7.3.1. Variable dependency graph
	7.3.2. System dependency graph

	7.4. Array set type, exact cardinality and attribute identifier
	7.5. Identifier
	7.6. Restricted domain
	7.7. Embedded SQL
	7.8. Graphical visualization

	CHAPTER 8 CASE support
	8.1. The limits of current CARE tools
	8.2. Requirements
	8.3. The DB-MAIN CASE environment
	8.3.1. User interface
	8.3.2. DDL extractors
	8.3.3. Pattern matching
	8.3.4. Variable dependency graph
	8.3.5. Program slicing
	8.3.6. Referential key assistant
	8.3.7. Schema and object integration
	8.3.8. Schema analysis
	8.3.9. Transformation toolkit
	8.3.10. Graph visualization

	CHAPTER 9 Case study
	9.1. COBOL DBRE, manual process
	9.1.1. Project preparation
	9.1.2. Data structure extraction
	9.1.3. Data structure conceptualization

	9.2. COBOL DBRE, (semi-)automatic process
	9.2.1. Data structure extraction
	9.2.2. Data structure conceptualization

	9.3. COBOL with embedded SQL
	9.3.1. Project preparation
	9.3.2. Data structure extraction
	9.3.3. Data structure conceptualization

	9.4. Real DBRE projects
	9.4.1. COBOL
	9.4.2. ADS - IDMS
	9.4.3. Centural / SQL
	9.4.4. IDEAL - Datacom-DB

	CHAPTER 10 DBRE project management issues
	10.1. DBRE justification
	10.2. Information / training
	10.3. Project cost evaluation
	10.4. Automation
	10.4.1. Limits of automation
	10.4.2. Economic advantage of automation

	10.5. Cost Vs. quality
	10.6. DBRE project evaluation

	CHAPTER 11 Conclusion
	11.1. Contributions
	11.2. Comparison with related work
	11.2.1. Methodology
	11.2.2. Tools
	11.2.3. Validation

	11.3. Future work

	Acronyms
	References
	ANNEX A DBRE tools user manual
	A.1. Pattern definition language
	A.1.1. The syntax
	A.1.2. Examples
	A.1.3. In DB-MAIN

	A.2. Search for text pattern
	A.2.1. Search for a pattern
	A.2.2. Search next

	A.3. Procedure triggered by a pattern
	A.3.1. Usage
	A.3.2. Example (1)
	A.3.3. Example (2)

	A.4. Dependency graph
	A.4.1. Computes the dependency graph
	A.4.2. Change the settings
	A.4.3. Visualization of the dependency graph
	A.4.4. Configuration
	A.4.5. Tips
	A.4.6. Remarks
	A.4.7. Dependency graph visualization

	A.5. Program slicing
	A.5.1. Use of program slicing
	A.5.2. Call graph
	A.5.3. The command line program slicing

	A.6. Creating schema
	A.6.1. Processing schema
	A.6.2. Data schema

	A.7. Search a schema for referential constraints
	A.7.1. About referential constraints assistant
	A.7.2. Choosing a strategy
	A.7.3. The matching rules
	A.7.4. Create the referential constraints
	A.7.5. Go to the schema
	A.7.6. Changing the selected group
	A.7.7. Removing a group/attribute from the list of matching groups
	A.7.8. Voyager matching group functions
	A.7.9. Example of voyager matching functions
	A.7.10. Voyager "Advanced" procedures
	A.7.11. Example of voyager referential keys creation procedures

	A.8. Miscellaneous Voyager2 programs
	A.8.1. Foreign key analysis
	A.8.2. lexical
	A.8.3. Compute the physical length
	A.8.4. Objects position
	A.8.5. Report generation
	A.8.6. SQL Validation queries generation
	A.8.7. COBOL validation programs generation
	A.8.8. Referential key assistant complements

	ANNEX B Source code
	B.1. Order.cob
	B.2. Validation program (automatically generated)
	B.3. SQL-DDL code
	B.4. Embedded code
	2.5. Modified embedded code

	ANNEX C Strange Data Structures / real case studies
	C.1. Chained lists
	C.1.1. COBOL
	C.1.2. The complete physical schema
	C.1.3. Data structure conceptualization

	C.2. Hierarchical foreign key
	C.2.1. Source code
	C.2.2. The complete logical schema
	C.2.3. Conceptualization

	C.3. Computed referential constraint (1)
	C.3.1. The DDL analysis
	C.3.2. The schema refinement
	C.3.3. The conceptualization

	C.4. Computed referential constraint (2) - Y2K
	C.4.1. The DDL analysis
	C.4.2. The schema refinement

	C.5. Computed referential constraint (3)
	C.5.1. The DDL analysis
	C.5.2. The schema refinement
	C.5.3. The conceptualization

	C.6. Create a temporary file
	C.6.1. COBOL
	C.6.2. The complete logical schema
	C.6.3. The conceptualization

	C.7. COBOL
	C.7.1. The complete logical schema
	C.7.2. Conceptualization

	C.8. History
	C.8.1. COBOL
	C.8.2. The complete logical schema
	C.8.3. Conceptualization

	C.9. Technical file
	C.9.1. COBOL
	3.9.2. Complete physical schema
	3.9.3. Conceptual schema

	C.10. Is-a in SQL
	C.10.1. The complete logical schema
	C.10.2. Conceptualization

