Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

DOCTOR OF SCIENCES

Program understanding in database reverse engineering

Henrard, Jean

Award date:
2003

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/d653e240-03e8-47b3-a11d-fec80bd08ec9

$& o,

W

% b7 39 3uvs”

+

MR

FUNDP

Institut d'Informatique
Rue Grandgagnage, 21
B-5000 Namur
Belgique

PROGRAM UNDERSTANDING IN
DATABASE REVERSE ENGINEERING

Jean HENRARD

Thesis submitted for the degree of Doctor of Science
(Computer Science Option)

Jury : Professor Jean Fichefet, Institut d’informatique, FUNDP (President)
Professor Jean-Luc Hainaut, Institut d’informatique, FUNDP (Supervisor)
Doctor Rainer Koschke, Universitat Stuttgart, Germany
Doctor Jean-Marc Petit, Université Blaise Pascal, Clermond-Ferrand, France
Professor Jean-Marie Jacquet, Institut d’informatique, FUNDP

August 2003

Acknowledgements

Even if my name is the only one to appears on the first page of this thesis, this work is ateamwork
of more than ten years.

First of al | would like to express my gratitude to my promotor, Professor Jean-L uc Hainaut, for his
endless advice about this work and for our numerous discussions about how to apply (transfer) our
scientific "theories' to real life problems. | would also like to include al my colleagues of the data-
base engineering laboratory both for the studious environment and the many asides we shared
about computers, house renovation, volleyball, children, etc. Specia thanksto Didier Roland, Jean-
Marc Hick and Vincent Englebert for the co-development of the DB-MAIN CASE tool, with the
wish that this collaboration may continue many years outside the university.

In this thesis, | have tried to apply the theoretical aspect of the methodology to real problems
encountered in companies. That part of the thesis relies on many experiments conducted on data-
base and source codes provided by severa companies. | aso want to thank these companies for
alowing me to analyze some parts of their code and for contributing, without knowing it, to this
thesis.

It would have been impossible to finish this thesis without the support of my family and friends
during all those years. Thank you for listening to me while | was trying to explain what database
reverse-engineering (archeology, recovering program’s plans, understanding how a program works,
etc.) isand for encouraging me even if they sometimes had problems figuring out what | was trying
to achieve..

Special thanks to Marie-Berthe and Odile for their encouragement and patience during all those
years. For sharing their husband and father with this endless thesis and computers.

Many thanks to all of you!

Jean

Program Understanding in DBRE i

Acknowledgements

Program Understanding in DBRE

Abdract

For many years software engineering has primarily focused on the development of new systemsand
neglected maintenance and reengineering of legacy applications. Maintenance typically represents
70% of the cost during the life cycle of asystem. In order to allow an efficient and safe maintenance
of alegacy system, we need to reverse engineer it in order to reconstruct its missing or out-of-date
documentation. In data-oriented applications the reverse engineering complexity can be broken
down by considering that the database can be reverse engineered independently of the procedural
components.

Database reverse engineering can be defined as the process of recovering the database's schema(s)
of an application from database declaration text and program source code that use the datain order
to understand their exact structure and meaning. A database reverse engineering methodology is
broken down into three processes: project preparation, data structure extraction that recovers the
database’s logical schema and data structure conceptualization that interprets the logical schemain
conceptual terms.

Data structure extraction is the most difficult process because it has to recover the database's
complete structure from database declaration text and source code. When analyzing the source
code, it quickly appears that program understanding technigues are needed. Program understanding
is that software engineering domain that intends to gain knowledge about existing programs. We
have adopted and applied some of the techniques of this domain (variable dependency graph,
system dependency graph, program slicing) in order to help analysts to recover data structures and
constraints from the source code.

In order to validate our methodology and program understanding technigques, we have developed
tools to support them. Those tools have proved absolutely necessary to perform database reverse
engineering of medium to larger applications in reasonable time and at reasonable cost. To cut
down on the cost of large projects, we have stressed the need for automation to reduce the manual
work of the analyst. Our experience with rea size projects has taught us that the management
aspects of a project are essential success factors. The management of a project comprises different
aspects such as database reverse engineering explanation, cost evaluation and database reverse
engineering result evaluation.

Program Understanding in DBRE i

Abstract

Program Understanding in DBRE

Table of Contents

Acknowledgements [
Abstract............. i, i
Tableof Contents. %
CHAPTER 1 Introduction. i 1
General introduction 1
Scope and motivation of the thesis 4
Thethesis 6
State of the art 6
Relational DMS 8
Hierarchical/network DMS 13
Sandard files DMS 15
Generic methods 15
Others 17
Summary 18
Outline of the thesis 21
CHAPTER 2 Data schema specification. 23
Introduction 23
A wide-spectrum specification model 23
Conceptual specifications 24
Logical specifications 26
Physical specifications 28
Different levels of abstraction and different paradigms 29
DM S-specific data structure specification 29
Therelational model 30
The network model 31
Program Understanding in DBRE \"

Table of Contents

The standard file model 32
Other constructs 34
Schema transformation 35

CHAPTER 3 A generic methodol ogy for database
reverse engineering39
Database reverse engineering is the reverse of forward engineering 39
The DBRE methodology 42
Data structure extraction 43
DDL code analysis 44
Physical integration 44
Schema refinement 14
Schema cleaning 45
Data structure conceptualization 46
Preparation 48
Basic conceptualization 50
Conceptual normalization 53
The data structure conceptualization transformations 54
Example 60
CHAPTER 4 Data structureextraction 63
Introduction 63
The methodology 64
DDL code analysis 66
Physical schema integration 66
Schema refinement 68
Schema cleaning 68
Explicit/implicit constructs 69
Implicit structures and constraints 70
The information sources 75
Elicitation techniques 78
The conflicts 82
Refinement methodol ogy 83
The refinement methodol ogy 84
Hypothesis validation 85
How to decide that refinement is completed 86
Refinement strategy 87
Heuristics usage 88
Application to foreign key elicitation 89
CHAPTER 5 Program under standing in database reverse engineering
95
Program understanding 95
Program understanding in database reverse engineering 98
Program understanding difficulties 100
Program understanding techniquesin DBRE 102
Vi Program Understanding in DBRE

CHAPTER 6 Program understanding techniques 103

Introduction 103
Pattern matching 104
Variable dependency graph 105
Program slicing 108
Program dlicing state of the art 108
Program dependency graph 110
The system dependency graph 1
Interprocedural dicing 115
Arbitrary control flow 119
SDG construction 122
The program slicing for embedded code 132
Select 134
Insert 135
Delete 136
Update 137
Cursor 138
Other SDG analysis/ usage 139
Type inference 143
Graphical visualization of the program 144
CHAPTER 7 Using program understanding inDBRE. 147
Fine-grained structure, attributes aggregation, anonymous attributes 148
Variable dependency graph 148
System dependency graph 149
Meaningful names 149
Variable dependency graph 149
System dependency graph 150
Referential constraints and data dependencies 150
Variable dependency graph 151
System dependency graph 151
Array set type, exact cardinality and attribute identifier 153
Identifier 153
Restricted domain 153
Embedded SQL 154
Graphical visualization 155
CHAPTER 8 CASE SUPPOrt .o 157
The limits of current CARE tools 157
Requirements 158
The DB-MAIN CASE environment 161
User interface 162
DDL extractors 165
Pattern matching 166
Variable dependency graph 168
Programslicing 169
Referential key assistant 173

Program Understanding in DBRE Vil

Table of Contents

Schema and object integration 175
Schema analysis 175
Transformation tool kit 176
Graph visualization 177
CHAPTER 9 Casestudy. ... 179
COBOL DBRE, manual process 180
Project preparation 180
Data structure extraction 181
Data structure conceptualization 189
COBOL DBRE, (semi-)automatic process 192
Data structure extraction 192
Data structure conceptualization 197
COBOL with embedded SQL 199
Project preparation 199
Data structure extraction 201
Data structure conceptualization 208
Real DBRE projects 209
COBOL 209
ADS- IDMS 211
Centural / SQL 213
IDEAL - Datacom-DB 214
CHAPTER 10 DBRE project managementissues............... 217
DBRE justification 218
Information / training 219
Project cost evaluation 220
Automation 223
Limits of automation 224
Economic advantage of automation 225
Cost Vs. quality 226
DBRE project evaluation 227
CHAPTER 11 Conclusion ... 229
Contributions 231
Comparison with related work 232
Methodol ogy 232
Tools 233
Validation 233
Future work 233

viil Program Understanding in DBRE

References........... ... i i 237
ANNEX A DBREtoolsusermanual 1
Pattern definition language 1
Search for text pattern 4
Procedure triggered by a pattern 5
Dependency graph 10
Program slicing 14
Creating schema 16
Search aschemafor referential constraints 19
Miscellaneous Voyager2 programs 29
ANNEX B SOUrCECOdE. . ot 35
Order.cob 35
Validation program (automatically generated) 39
SQL-DDL code 42
Embedded code 43
Modified embedded code 48
ANNEX C Srange Data Sructures/ real case studies. 55
Chained lists 55
Hierarchical foreign key 62
Computed referential constraint (1) 65
Computed referential constraint (2) - Y2K 67
Computed referential constraint (3) 69
Create atemporary file 70
COBOL 73
History 76
Technical file 83
Complete physical schema 84
Conceptual schema 84
Is-ain SQL 84
ANNEX 4 ANNEX. . o 89
Utilisation de db-main pour représenter les SDG 89
Screenshot 89
Codein figure 89
Words/ dictionnary 89
Summary of the corrections 97
Explicitly state the thesis 97
Why do we need a generic model 97
Conflict between data structures 97
Probability of an hypothesis 97
COBOL procedure parameters 98
Complexity of the dlicing algorithm 98
Miscellaneous corrections in the “ Program under standing techniques’ chapter 98
Program Understanding in DBRE iX

Table of Contents

Real case studies
Economic advantage of automation

98
99

Program Understanding in DBRE

CHAPTER 1 | ntroduction

1.1. General introduction

For many years software engineering has primarily focused on the development of new systems.
Research and industrial efforts have concentrated on creating new and more efficient software
development methodologies and processes to increase the quality of the applications, to decrease
the time to market and to develop applications that really meet the demand of the customers. By
focusing on those aspects, maintenance, which is one of the major (in time and cost) activities of the
software cycle life, has been neglected. Maintenance typically represents 70% of the cost during the
life cycle of the system [Leintz et al.-1980]. All large programs would undergo significant mainte-
nance during their in-service phase. As changes are introduced into a system, its structure beginsto
deteriorate. Members of the original and intervening programming teams disperse. The documenta-
tion, if any, gradualy becomes outdated. Such systems, called legacy systems contain business
knowledge and mission-critical data. They become more and more difficult to change, correct,
enhance but they need to evolve to follow evolution in business such as new laws, new business
habits, new business opportunities, enterprise merges or absorption, new technologies, new soft-
ware architectures, etc.

Newly created companies, without legacies, can just purchase or develop new software that take
advantage of the latest technology like the web, client/server or open system standards (XML,
CORBA). But older companies have to dea with their existing legacy systems in which consider-
able effort has been invested, and the replacement of which can prove highly risky.

Brodie [Brodie et al.-1995] defines alegacy system as "any system that significantly resists modifi-
cations and changes. Typically, alegacy system isbig, with millions of lines of code, and more than
10 yearsold." Bennett [Bennet-1995] definesit as a"large software system that we don’'t know how
to cope with but that is vital to our organization".

Many legacy systems do not satisfy the flexibility and growth requirements of modern enterprises.
They were built with focus on efficiency rather than on interoperability and maintenance. They are
often badly documented. On the other hand, legacy systems are of great value because they incor-
porate important business knowledge and manage a vast amount of mission critical business data.

Program Understanding in DBRE 1

Introduction

This resistance to change increases the cost of the maintenance. Maintenance is defined by Corbi
[Corbi-1989] as "understanding and documenting existing systems; extending existing functions;
adding new functions; finding and correcting bugs; answering questions for users and operations
staff; rewriting, restructuring, converting, and purging software; managing the software of an
operational system, and many other activities that go into running a successful software system".

To reduce the maintenance cost, that can be up to 70% of the total life cycle cost of the application,
the enterprise has two solutions. The first one is to rebuild from scratch the entire system to meet
the new requirements. This strategy, called cold turkey [Brodie et al.-1995], carries substantial risk
of failure: such a project might require several years, during which the legacy system is likely to
evolve.

Even if we want to replace the current system, we need to acquire a deep knowledge of the old one,
because the new one needs to offer, at least, the same functionalities as the previous one and alot of
the current business rules are not explicitly described in some documents but are implemented in
the system. For example, a given application obviously includes afunction that computes mortgage
rates, but nobody understands how it does it. Even if one decides to rewrite the application from
scratch, an important part of the legacy system cannot be discarded, that is, its database. The list of
customers, orders, products and unpaid invoices cannot be lost, but must be migrated to the new
system. This migration clearly requires a deep understanding of the meaning of the data, their
format and how they are stored in the database.

For all thesereasons, it isimpossible or very risky to throw away all the legacy systems and to build
anew one from scratch.

Another strategy, called chicken little, is to migrate the legacy system by small incremental steps
until the desired long-term objective is reached. The analysis and migration of a sub-component to
new technol ogies while other legacy components remain unchanged is usually called reengineering.

To alow an efficient and safe maintenance of alegacy system, for which no precise and up-to-date
documentation exists and of which the existing team does not master all the aspects, we need to
reverse engineer it to reconstruct this missing documentation. The correct understanding of the
system is a strong prerequisite before any modification. For instance, this knowledge is needed to
evaluate the implication of the changes needed, to identify the parts of the system that will be
affected and finally the cost of the modifications. If the programmer responsible for the change only
has a partial view of the system, he cannot anticipate the implication of the change. The cost and the
time needed to perform it exceed the forecast. When the change has been applied, some other parts
of the system often do not work correctly anymore, so that the last change involves additional
correction, and so forth.

Tilley [Tilley-1996] defines reengineering as "the systematic transformation of an existing system,
or a part of it, into a new form to carry out quality improvements in operation, system capability,
functionality, performance, or evolvability at alower cost, schedule, or risk to the customer”.

To achieve reengineering, we need to understand the structure and interrel ationships of the system,
through a process called reverse engineering. It has been defined by Chikofsky and Cross [Chikof-
sky-1990] as "the process to achieve understanding of the structure and interrelationships of a
subject system. It is a goal of reverse engineering to create representations that document the
subject and facilitate our understanding. As a process, reverse engineering can be applied to each of
the three principal aspects of a system: data, process, and control”.

2 Program Understanding in DBRE

General introduction

In information systems, or data-oriented applications, i.e. in applications whose central component
is a database or a set of permanent files, the complexity can be broken down by considering that
files or databases can be reverse engineered (almost) independently of the procedural parts.

» The semantic gap between the so-called conceptual specifications and the physical implementa-
tion is most often narrower for data than for procedura code. For example, a COBOL field
structureis easier to understand than a COBOL procedure.

» The permanent data structures are generally the most stable part of the applications.

» Evenin very old applications, the semantic structures that underlie the file structures are mainly
procedure-independent, though their physical structure is highly procedure-dependent.

* Reverse engineering the procedural part of an application is much easier when the semantic
structure of the data has been dlicited.

It is therefore much more efficient to first concentrate on the reverse engineering of the applica-
tion’s data components than to cope with the whole application. The reverse engineering of the
data, called database reverse engineering (DBRE), is defined by Chikofsky and Cross [Chikofsky-
1990] as "[a process that] concentrates on the data aspect of the system that is the organization. Itis
a collection of methods and tools to help an organization determine the structure, function, and
meaning of itsdata’ or by Hainaut [Hainaut et al.-19934] "[the process of] recovering the schema(s)
of the database of an application from DMS-DDL text and program source code that uses the data
(and from any relevant source) in order to understand their exact structure and meaning'".

The recovery of the lost information about the data structure of an information system (1S) is mate-
rialized by the creation of new system documentation. This documentation needs to be recons-
tructed because it has never existed or has been lost or has deteriorated during years of maintenance
operations. Up-to-date and complete documentation is necessary for different purposes.

¢ Maintenance

For efficient maintenance it is necessary to have a complete understanding of the current system
to correctly evaluate the cost of arequested change. A global view of the system is aso neces-
sary to identify side effects of a given modification.

« Database administration

A database administrator needs a good view of its database to eval uate the storage space needed
and to forecast its evolution. The knowledge of the program that uses the data can help him to
optimize (tune) the database to reach optimal response time.

« Data conversion

To perform some data conversion, as was required for the year 2000 or Euro, the analyst needs
to know the exact semantics of each field to know which one needs to be converted.

« Data migration

A common problem, that requires an in-depth knowledge of an application, is the migration of
the data from one database to another. This occurs when the hardware or software environments
change, in order to publish the data on the web, to set up an ERP solution or to merge two infor-
mation systems.

» Data extraction
The knowledge of the data semantics is important when we want to use our current database to
supply data to other information systems. Such extractions are used to populate datawarehouses

or data mining tools to support strategic decisions. Data extraction is aso necessary to support
fashionable applications such as e-business and B2B.

Program Understanding in DBRE 3

Introduction

* Reuse

When users ask for anew function, it isimportant to know what the existing data structures are,
in order to prevent the creation of new data structures and thus the creation of redundancy.

» Evaluation of existing software

DBRE can aso be used to assess the overall quality of software systems. A data structure with
significant design flaws indicates poorly implemented software. Thusit can represent one of the
evaluation criteriafor a potential software product (homemade or vendor software).

1.2. Scope and motivation of the thesis

Experience quickly teaches us that recovering conceptual data structures can be much more
complex than merely analyzing the data description language code of the database. Data Descrip-
tion Language (DDL) is a part of the Database Management S)/stem1 (DMYS) facilities intended to
declare or build the data structures of the database. Untranslated data structures and constraints, non
standard implementation approaches and techniques, old or esoteric DMS and ill-designed data
structures are some of the common difficulties that the analyst encounters when trying to under-
stand an existing database from operational components. Since the DDL code is no longer the
unique information source, the analyst is forced to refer to other documents and system components
that will prove to be more complex to analyze and less reliable. The most frequent sources of
problems have been identified [Anderson-1996], [Blaha et a.-1995], [Hainaut et al.-1993a], [Petit-
1996], [Premerlani et al.-1993] and can be classified as follows:

* \Weakness of the DMS models

The technical model provided by the DMS such as CODASYL-like systems, standard file
managers and IMS DM S, can express only a small subset of the structures and constraints of the
intended conceptual schema. In favorable situations, these discarded constructs are managed in
procedural components of the application: programs, dialog procedures, trigger, etc. and can be
recovered through procedural analysis.

* Implicit structures

Such constructs have intentionally (or unintentionally) not been explicitly declared in the DDL
specification of the database for optimization reasons, due to an oversight, or in order to be
backwardly compatible with an older DM S. They have generally been implemented in the same
way as the constructs discarded due to the weakness of the DMS models such as mentioned
above.

» Optimized structures

For technical reasons, such as time and/or space optimization, many database structures include
non semantic constructs. In addition, redundant and unnormalized constructs are added to
improve response time.

» Awkward design

Not all databases were built by experienced designers. Novice and untrained developers, gene-
raly unaware of database theory and database methodology, often produce poor or even wrong
structures.

1. We use the term Data Management System (DM S) which encompasses DataBase Management System
(DBMS) and File Management System (FMS) such as COBOL file management libraries.

4 Program Understanding in DBRE

Scope and mativation of thethesis

» Obsolete constructs
Some parts of a database can be abandoned, and ignored by the current programs.
* Cross-model influence

The professional background of designers can lead to very peculiar results. For instance, some
relational databases are actually straightforward translations of IMS databases, of COBOL files
or of spreadsheets [Blaha et a.-1995]. A CODASY L database carelessly trandated into a rela-
tional database can explicitly introduce DB-keys (physical record identifiers) as columnsin the
new tables. Similarly, a COBOL record type looses its hierarchical field structure when trans-
lated into a single table.

¢ |nconsistent standard

These systems have been developed and maintained for many years (several decades in some
cases) and during which time the programming standards and methodol ogies, software and hard-
ware have changed. The system is no longer homogeneous, but appears to be a collection of
small subsystems, each one with its own characteristics. In some unfavorable cases, the system
uses several programming languages or more than one DMS. For example, systems where
COBOL indexed files coexist with arelational DM S are not infrequent.

o Jzeof the system

Systems integrate more and more business processes and are developed over many years. As a
result, such systems can be very large. For example, several million lines of code and more than
500 tables or record types is not exceptional. So, methods and techniques that seem fine for
small projects become useless for medium or large ones.

Our experience showed us that most of the implicit structures and constraints are buried into the
source code of the programs and that this code is often the most reliable place where such
congtraints can be found. Analyzing program source codes requires sophisticated techniques
pertaining to the program understanding domain.

Miller [Miller-1996] defines program understanding (PU) or program comprehension as "the task
of building mental models of the underlying software at various abstraction levels, ranging from
models of the code itself to ones of the underlying application domain, for maintenance, evolution,
and re-engineering purposes’.

Thisintroduces an interesting apparent paradox: DBRE is often intended to provide a better under-
standing of a data intensive program while program understanding contributes to DBRE. In the
context of thisthesis, the program understanding techniques that will be developed are not intended
to build a mental model of the whole system, but to enhance our comprehension of the persistent
data structure used by the application. In particular, we will study and develop three techniques,
namely programming pattern anaysis, data flow analysis and program slicing.

It quickly appears that systematic methodologies, relying on rigorous techniques and on powerful
tools are necessary to successfully undergo such DBRE projects. In this thesis, we will present a
generic DBRE methodology that can be applied to any DBRE projects independently of the DMS
used. We have also developed tools that support this methodology, and that have been integrated
into the DB-MAIN CASE environment [Hainaut et al.-1996b].

One of the major failure factors is the inability to manage and master the high volume of informa-
tion, such as the source code of the programs and the data schemas. For instance, retrieving the
foreign keys of a 250 record type database, totaling 10,000 fields, processed by 250,000 lines of

Program Understanding in DBRE 5

Introduction

code, theoretically requires examining every pair of fields against each line of code, to check
whether this pair represents a foreign key/unique key pattern. Though clever heuristics can radi-
cally reduce this search space, powerful tools are indispensable to automate, at least partialy, the
search for hidden constructs.

This thesis also explains why full automation of the whole DBRE process is often impossible. We
have noticed that no two DBRE projects are identical, nor even similar. Major aspects such as the
DMS (sometimes more than one), the programming language (quite often more than one), the
specific way to code constraints and to name objects (those rules may change in a given applica
tion), can widely vary from one system to another one. For this reason, no predefined tool with
hardwired techniques and heuristics can cope with this variety of situation. Hence the need for a
programmable and extensible CASE environment through which analysts can develop new tools
quickly.

1.3. Thethesis

In this thesis, we will prove that program understanding techniques and tools significantly contrib-
ute to good quality DBRE for real size projects.

To prove the thesis, we will develop a DBRE methodology that covers all the DBRE life cycle and
that can be applied to any kind of DBRE projects. In the context of this methodology, we will show
that the program’s source code is an up-to-date and complete source of information to recover the
database structure.

Due to the size and complexity of programs, techniques are necessary to understand the programs.
These techniques will be adapted to DBRE and tools will be developed to support the work of the
analyst.

Finally to prove that our methodology and its supporting tools are adapted to real size projects, we
will use them to solve real size case studies.

1.4. Sateof the art

Since 1980, awide range of DBRE methods have been published. All of them consist of extracting
the conceptual schema from an operationa legacy system. The conceptual schema can be expressed
in some variant of the entity-relationship model or of the object-oriented model (ODMG, UML,
OMT).

Each method exhibits its own rules and heuristics, produces its own outputs and requires specific
inputs and assumptions. Surprisingly, the amount of work on how to translate relational schemas
into a conceptual model outweighs the work on the mapping from other physical model. There can
be several reasons for this phenomenon. In the last few decades, alot of work was done on the rela-
tional theory: (mathematical) formalization of the theory, methodology to design efficient relationa
databases, transformation of a conceptual schema into relational structures. No such theoretical
background exists for network or hierarchical models and even less for standard files. Relational

6 Program Understanding in DBRE

Sate of theart

database design is taught in al schools, universities and professional training database courses, so
relational databases are supposed to be better designed than other (older) databases. Therefore, itis
easier to recover the original design. Modern relational databases allow the implementation of
amost al the constraints of the conceptua schema through foreign keys, primary keys, indexes
(unique or not) and null values. The constraints that are not explicitly expressed in the DDL
language are validated in the procedural part of the application using the data manipulation
language (DML or queries). Complex queries can be expressed using this DML, therefore to
recover the implicit constraints the analyst can only analyze the DML fragment without worrying
about the other procedural part of the application. In some favorable (academic) cases the physical
schema of the database contains all the constraints and thus does not require a program source code
or data analysis.

For less powerful models, in particular the standard files, the physical model expresses very few
constraints and makes it necessary to anayze the source code to recover the missing constraints.
This code analysisis not an easy task aswill be shown in thisthesis.

Relational databases usually work on modern computers, nowadays these computers are powerful
and disk accesses are very fast. Most of the relational database courses present the concept of
normalization and encourage the building of normalized databases. On the other hand legacy data-
bases are heavily optimized because when they were designed computers were expensive, and as a
conseguence, the designer was asked to save disk space and disk access. Moreover, the program-
mers were not trained in database design and did not use standard design methods.

All these reasons, and the fact that researchers prefer to work with and to study modern languages,
explain why most of the DBRE methods address the problem of reverse engineering relational data-
bases.

Various criteria can be used to classify the DBRE methods. We note in particular the following:

* DMSsupported
Most methods are specific to a DM S maodel.

e Target model
M ethods express the conceptual schema according to a conceptual model. This model can be a
variant of the entity-relationship model (EER, ERC+, etc.) or some object-oriented model
(ODMG, UML, OMT, etc.).

* Prerequisites
Some methods have prerequisites regarding the database to be reverse engineered. The schema
must bein third normal form (3NF), attributes names must have some coherency (two attributes
with the same name represent the same thing and two attributes with different names have diffe-
rent semantics) or there isno error in the data.

» Thoroughness of domain semantics acquisition

Some methods require that the physical schema contains al the semantics (meaningful names,
al the identifier are present) and the analyst knows the domain to interpret the missing informa-
tion. Other methods analyze additional sources of information to retrieve the semantic missing
in the physical schema.

Program Understanding in DBRE 7

Introduction

» Heuristics and techniques used

Description of the heuristics and techniques employed during the reverse engineering process.
Some authors just explain some abstract heuristics, others give agorithms and tools are sug-
gested or implemented.

» Completeness and robustness

Legacy databases are real databases designed and maintained by real programmers. So these
databases are rarely (if ever) designed according to the textbook rules and methods. Due to their
maintenance, databases become inconsistent in object naming, some data structures are not used
anymore, they are optimized, they exhibit design flaws, etc. Any reverse engineering process
should be evaluated against these common characteristics. The completeness of a method is
achieved if the process addresses the possible method flaws of the method. The robustness of a
method represents how the method behaves when such flaws are present.

« Automation/user interaction

To use amethod in areal project, it isimportant to know what part of the method can be auto-
mated and when the interaction with the user is necessary.

e Sources of information

There are a lot of information sources that can be analyzed (physical schema, program, data,
documentation, user knowledge, etc.). Most of the methods only use some of them.

In the remainder of this section different methods will be briefly presented. They have been
grouped according to the DM S they support.

1.4.1. Relational DM S

Thefirst research efforts focused on transforming arelational schema with known primary keys and
foreign keys to a conceptual schema. These approaches used information on tables, column names
and primary keys. They did not specify the sources of information (the physical schema is given)
and had heavy prerequisites on the physical schema (3NF, meaningful names, etc.). Some works try
to recover an abject-oriented conceptual schema and thus concentrate on the discovery of generali-
zation hierarchies.

A trend in recent work is to put more emphasis on the information acquisition phase. Different
sources of information for keys, foreign keys and inclusion dependencies are explored.

1.4.1.1. [Dumpala et al.- 1983]

[Dumpala et al.- 1983] is one of the earliest works where a description is given of how to map from
the relational, network and hierarchical model to a conceptual model. This method requires, as
input, logical schema in third normal form with information on (primary) keys and foreign keys.
The output is an entity-relationship model with attributes and relationship types.

The methodology is presented as an algorithm to transform the logical model. This algorithm is
based on the classification of the relations and the keys (primary keys, foreign keys). The different
classes are defined, but no algorithm to automatize this classification is given, it must be done
manually by the user.

8 Program Understanding in DBRE

Sate of theart

1.4.1.2. [Navatheet al.-1987]

[Navathe et al.-1987] method is an enhanced version of the mapping algorithms of [Dumpala et a .-
1983]. It requires, as input, the relations in third normal form and the key attributes which are used
in more than one relation must have the same name throughout the schema. The output is a concep-
tual schema expressed in an enhanced version of the entity-relationship model, called Entity-Cate-
gory-Relationship model (ECR), that introduces the concepts of subclasses and generalization
hierarchies.

The methodology classifies relations and attributes. The conceptual schema is generated much in
the same way as in [Dumpala et al.- 1983] except for the order of the phases and that the system
interacts heavily with the user. Supertypes are created for entity types that have the same primary

keys.
1.4.1.3. [Casanova et al.-1983]

[Casanovaet al.-1983] method requires, asinput, arelational schemawith primary keys and foreign
keys. This schema is expected to come from the user. The target conceptual schema is an entity-
relationship model without complex objects nor generalization.

The method takes into consideration primary keys and foreign keys. Tables are split and merged
(fold) into entity types that each represent one item in the conceptual schema. An agorithm that
generates a schemais presented together with aformal proof that the generated schemais correct.

1.4.1.4. [Markowitz et al.-1990]

[Markowitz et al.-1990] method continues the formal approach taken in [Casanova et a.-1983]. It
reguires, as input, the relational schema, key dependencies and key-based inclusion dependencies,
i.e referential constraints. Relations are assumed to be in Boyce-Codd normal form. The output is
an extended entity-relationship (EER) model.

The methodology has four steps. The first one transforms relational schemainto aform appropriate
for identifying EER object structures. The second step of the methodology examines relation-
schemes, functional dependencies and inclusion dependencies obtained after the transformationsin
order to detect whether they satisfy a set of properties. The third step determines the type of object
interactions, such as weak-entity-set and specialization, for each inclusion dependency. The fourth
step derives a candidate EER schema using some mapping rules, finaly the quality of generated
EER schema is examined.

This method is very demanding on the input. The main contributions of the work are the indepen-
dence from attribute names and the formalization of the mapping between schemas.

1.4.1.5. [Daviset al.-1987]

[Davis et al.-1987] method requires, as input, the relational schema in third normal form. It is not
specified how this schemais to be obtained. The target model is the entity-relationship model with
no complex objects nor generalization.

Program Understanding in DBRE 9

Introduction

Table with a single attribute as key and tables with a key containing multiple attributes (if all the
attributes of the key are a referential constraint or none of them) are trandated into entity types.
Tables with dangling keys (a part of the attribute of the key isareferential constraint) are translated
into weak entity types with attached integrity constraints specifying that an instance of the weak
entity type cannot exist without a corresponding instance of the strong entity type on which it is
dependent. A table with a key that is a concatenation of primary keys of tables translated to entity
type is translated into a many-to-many relationship type. Relationship types with an order higher
than two are handled. If key attributes of atable that is translated into an entity type also appear as
non-key attributes in another table translated into an entity type, then a many-to-one relationship
typeis created.

1.4.1.6. [Premerlani et al.-1993]

[Premerlani et al.-1993] method requires, as input, the data dictionary of the data description
language source, the data of application and the analyst must know the semantics of the application.
No assumptions are made on the relation and it copes with design optimization and bad design
implementation. The method adopts the Object Modeling Technique (OMT) notation for modeling
the conceptual schema.

Candidate keys are used rather than primary keys. Candidate keys are identified through an analysis
of unique indexes, automatic scanning of data and from the user knowledge. In a modern system,
the foreign keys may be present in the DMS. If not, foreign keys can be deduced by investigating
matching names, domain and data types. Join clauses in views embody information on foreign keys
as well as secondary indexes. Groups of foreign key attributes are searched for. A generalization
hierarchy may complicate the identification of foreign keys. Inclusion analysisis retrieved from an
analysis of the database extension.

A large number of data structures are searched for in the source schema and translated into the
target schema. Classes that are linked with a one-to-one association indicate a generalization.
Generalizations may have been implemented by pushing attributes of the supertype down to the
subtypes. Mutually exclusive groups of attributes indicate that the subtypes have been pushed up to
the supertype. Once a translation is generated, a large number of post-trand ation transformations
are advocated, i.e. fusion of vertical fragmented classes.

This method recognizes that all the constraints are not expressed into the physical schema. Other
sources of information, such as database extension, user knowledge, programs, need to be analyzed.

1.4.1.7. [Johannesson-1994]

[Johannesson-1994] method requires, as input, the relational schema, function dependencies and
inclusion dependencies. The input relations must be in third normal form. The output is givenin an
entity-relationship model without complex objects but with generalization.

This method defines a set of transformations used to split relations that represent more than one
object type. Different relations representing the same object type are collapsed into one single rela-
tion. The principle of the schema mapping algorithm is to map each relation into an object type and
each inclusion dependency into either a generalization constraint or arelationship type. It is shown
that a generated conceptual schema can represent as much information as the original relationa
schema. The method is based on the well-established concepts of relational database theory. It is

10 Program Understanding in DBRE

Sate of theart

very complete, in terms of the description of the reverse engineering steps, but with the drawback of
needing all keys and inclusion dependencies.

1.4.1.8. [Signoreet al.-1994]

[Signore et al.-1994] method requires, asinput, the relational schema, SQL and host language code.
The output is an entity-relationship model defining complex multivalued attributes and generaliza-
tion.

The methodology has three phases. Thefirst phase identifies primary keys. If they are not present in
the relational schema, they are deduced from the source code. The user must verify their correct-
ness. The second phaseisfor the detection of the indicators of synonyms and referential constraints.
These indicators are searched for in the source code (host language and SQL queries), if not present
in the relational schema, and are then verified from integrity constraint enforcement in the code and
by the user. The last phase is the conceptualization. Using the indicators found in the previous
phases the conceptual model is derived.

It should be noted that this method is based on clues. The clues are adopted to cope with unusual
implementation techniques, optimization choices, poor data definition language and code errors,
among others. A possible tool to support this method is sketched.

1.4.1.9. [Chiang-1995]

[Chiang-1995] method requires, as input, a populated database. The relations are in third normal
form and key attributes with the same domain must have the same name in all tables, since the
names of key attributes are used to infer references between tables. If a non-third normal form
structure cannot represent more than one entity type, it must be decomposed into detailed modeling
structures manually. The input database contains any erroneous data instances in its key attributes.
The output is an extended entity-relationship (EER) model with generalization hierarchies.

The methodology has three major steps. The first one classifies relations and attributes, based on
therelational schemaand its primary keys. In the second step, the inclusion dependencies (referen-
tial constraints) are searched for. The possible inclusion dependencies are automatically detected
based on the identifiers and the attributes' names. Then, these inclusion dependencies are validated
by querying the database. Finally, the EER components are identified using alist of rules.

It differs from the articles mentioned above in that it addresses the problem of information acquisi-
tion and takes inclusion dependencies into consideration. It produces an EER model that is semanti-
cally richer than the relational schema.

The article presents a tool, Knowledge Extraction System (KES), that supports the method. This
tool is developed in Prolog and C and queries an ORACLE database.

1.4.1.10.[Ramanathan et al.-1996]

[Ramanathan et al.-1996] method requires, as input, a relational schema in third normal form with
primary key and foreign keys. The output is a schema using the Object Modeling Technique (OMT)
notation.

Program Understanding in DBRE 11

Introduction

The methodology is broken down into three steps. The first identifies the tables that correspond to
object-classes. The second step identifies the relationships. It defines three types of relationships:
associations, generalizations/specializations and aggregations. The last step identifies the exact
cardinalities of the associations. All the information required by the process comes mostly from the
information on primary keys and foreign keys. The method thus provides a great potential for auto-
mation, but no tool is presented.

The article gives some hints on how to cope with non 3NF schema when this denormalization
comes from an optimization process. It suggests how to resolve horizontal and vertical partitioning
optimization.

1.4.1.11. [Petit-1996]

[Petit-1996] method requires, as input, the relational schema with unique and not null constraints,
data instances and code (SQL queries). The output is an extended entity-relationship (EER) model.
The methodology analyzes conditions in queries and views to recover the foreign keys and the
functional dependencies. Then the schema is restructured to obtain a logical schema in the third
normal form. Finaly the schema is translated into a conceptual schema and a domain expert vali-
dates this schema.

In [Lopes et al.-2002], this method is extended by the analysis of the logical navigation to recover
the inclusion dependencies. The logical navigation isthe use of join columns, as an access path, to
navigate in a relational database. The tool, DBA companion, that discovers such constructs, is
presented.

1.4.1.12.Varlet [Jahnke et al.-1999], [Jahnke-1999]

The Varlet method requires, as input, al the available sources of information about a relational
database; declaration of the relationa database (SQL-DDL), procedural code (embedded SQL),
extension of the database (the data), the documentation, etc. The output is an object-oriented
conceptual schema (OMT).

This method, named Varlet, consists of two main phases. schema analysis and conceptual schema
migration. In the schema analysis phase, the different parts of the database are analyzed to obtain a
consistent and complete logical data structure. In the conceptual migration phase, this logical data
structure is transformed into a conceptual schema.

The main contribution of this method is the use of a graphical language named Generic Fuzzy
Reasoning Nets (GFRN) to represent the analyst’s knowledge of the logical schema. GFRN specifi-
cations separate declarative knowledge from operational aspects. This approach allows uncertain
and inconsistent analysis results to be dealt with.

A prototype CARE environment has been developed that uses GFRN specifications and includes a
customizable front end.

12 Program Understanding in DBRE

Sate of theart

1.4.1.13.[Alhaij et al.-2001]

[Alhaij et a.-2001] method requires, as input, the physical schema with primary keys and foreign
keys and the user knowledge of the legacy database. The output is an object oriented schema, no
specific model is specified. The method translates the relational schema into an intermediate model
called Relational Intermediate Direct Graph (RIDG). The RIDG is a graph where each node repre-
sents a table and the edges show that there is aforeign key between two tables. The RIDG is trans-
formed into classes.

The paper also presents an algorithm to migrate the data from the relational database to the object
oriented database.

1.4.2. Hierarchical/network DM S

There are very few works on the DBRE of network and hierarchical databases and some of them are
an extension of work on relational databases. They only rely on the physical schema and user
knowledge and do not analyze the application programs nor the data.

1.4.2.1. [Dumpala et al.- 1983]

[Dumpala et al.- 1983] method requires, asinput, the network or hierarchical physical schema. The
output is an entity-relationship schema.

The method to recover anetwork schema takes recursive set types into account. The transformation
isstraightforward. Each record type is converted into an entity type, each set typeinto arelationship
type with the same cardinality constraint and each recursive link into arecursive relationship type.

The method to recover a hierarchical schema is done by a two step process. First, adl trees in the
hierarchical schema are connected with respect to common, but eventually renamed record types.
The result is a network-like schema. Second, all record types are replaced by entity type and all
parent-child relationship types are replaced by relationship type.

1.4.2.2. [Fongetal. - 1993]

[Fong et al. - 1993] method requires, as input, the network or hierarchical physical schema and
relies on user expertise in the domain. The output conceptual schemais an extended entity-relation-
ship (EER) model.

The methodology to translate a network model into an EER model is divided into seven steps. 1)
Each record type is mapped to an entity type. 2) Each set is mapped to a binary relationship type.
The user has to determine its semantics (1-1, 1-N or isa and whether it is mandatory or not). 3)
Record types in network schema can form a loop such that two different navigation paths can be
used to access the same member record type. Either these two access paths carry different semantics
and both need to be kept, or both carry the same semantics, where there are two access paths for
some optimization and only one of them must be kept. The user must decide which access path
needs not to be mapped to EER model. 4) Derive N-N and N-ary relationship types. 5) Derive

Program Understanding in DBRE 13

Introduction

generalizations. 6) Map each record attributes to a corresponding entity type attribute. 7) Derive
entity type keys.

The methodology to translate a hierarchical model into a conceptual one is the same except that
step 3is not applicable.

1.4.2.3. [Navathe et al.-1987]

[Navathe et al.-1987] method requires, as input, a hierarchical schema containing records and
parent-child relationship. The assumption is made that each record has a unique key field or identi-
fier. The output is an entity-category-relationship (ECR) model.

The methodology requires a preprocessing of the schema in order to simplify the structure. The
duplicate records as well as al pointer records are eliminated. The mapping process itself is
composed of seven steps. 1) Records representing an N-N relationship type are replaced by arela
tionship type. 2) Thelinks, that represent an isa, are replaced by an isahierarchy. 3) If the identifier
of arecord contains the identifier of its parent record, then this record is said to be weak. 4) All the
records that represent an N-ary relationship type are transformed into an N-ary relationship type.
Steps 5 and 6 find different kinds of isa hierarchy (depending on whether the keys of the records are
the same or not). 7) All the remaining records are transformed into entity types and all the remain-
ing links are transformed into relationship types.

1.4.2.4. [Winanset al. - 1990]

[Winans et al. - 1990] method requires, as input, an IMS DBD and explicit behavior (the program
that updates the database). The output is an entity-relationship model.

This methodology collects the information present in the IMS DBD. Then the segments are trans-
lated into entity types and relationship types are created to represent the parent-child links. The
fields declared within the IMS DBD are translated into attributes of the appropriate entity type,
sequence fields are translated into identifiers. Finally, al the entity types are examined to determine
whether or not they can be combined. The behavior is used to add new constraints.

1.4.2.5. [Tangorra et al.-1995]

[Tangorra et a.-1995] method requires, as input, a hierarchical physical schema. The output is an
entity-relationship schema.

This methodology is broken down into four steps. In the first, each segment is trandated into an
entity type with corresponding attributes and identifier. In the second step, the links in the hierarchi-
cal schema are trandated into relationship types. Through a global entity-relationship schema
analysis, the third step recovers N-ary relationship types and N-N relationship types. Finally the
schemais restructured to make it more readable and meaningful.

14 Program Understanding in DBRE

Sate of theart

1.4.3. Sandard filesDM S

In the database reverse engineering community, most research is on the topic of reverse engineering
from a database (relational, network or hierarchical) into a conceptual (ER or OO) model. Less
research has been devoted to reverse engineering applications using afile system for persistent stor-

age.

1.4.3.1. [Daviset al. - 1985]

[Daviset d. - 1985] method requires, asinput, a physical schema of the conventional files with file
reference keys (kind of foreign keys). The output schema s an entity-relationship model.

The methodology translates the conventiona file schema into the Current Physical Model (CPM).
This CPM is composed of physical data units (PDU). PDU are created from record types, a
composite dataitem (connected to its parent PDU), repeating groups (connected to its parent PDU)
and an optional data item (REDEFINE, connected to its parent PDU). Each PDU is assigned to a
data item in the COBOL data structure as its key. A set of PDU reference keys between PDU is
derived based on the position of the PDU within the record type and partly given by the user.

The CPM isthen trandated into the conceptual schema. Each PDU is translated into an entity type,
the major task being to locate the relationship types.

An experimental expert system, AUGUST, assists database designersin the translation of a conven-
tional file system into a conceptual model.

1.4.3.2. [Anderson-1996]

[Anderson-1996] method requires, asinput, COBOL source files. The output is an extended entity-
relationship model, called ERC+, that extends the entity-relationship model with multi-instantia-
tion, multivalued and complex objects.

This methodology recovers the third normal form schema of the database and then trandates it into
an ERC+ schema. To recover the former schema, the references between records and the dependen-
cies must be identified. This is done by the construction of sets of variables that share the same

value, called spreading sets. The fields of record types that are used to represent references are
called anchors.

1.4.4. Generic methods

Methods are called generic if they are not specific to a particular DMS.

1.4.4.1. [Hainaut-1981]

[Hainaut-1981] method requires, asinput, alogical schemain which al the constraints of the data-
base are expressed. The output is abinary entity-relationship model.

Program Understanding in DBRE 15

Introduction

This paper does not explicitly describe a DBRE method. It describes a set of reversible transforma-
tions from abinary entity-relationship model toward aDMS model. It usesrelational and total DMS
models to illustrate the examples. It is shown that the proposed transformations are reversible so it
is possible to transform from an entity-relationship model to DM S model and the entity-relationship
model can be deduced back from the DM S model. Each transformation is formally described and
can be easily done automatically.

1.4.4.2. DB-MAIN [Hainaut-1991]

The DB-MAIN method requires, asinput, al the information about the legacy database such as the
DDL, the source code, the data, the documentation, etc. It produces two outputs. The logical
schema, that is the schema the programmer must understand to be able to modify the legacy data-
base and the programs that modify the data. The second output is the conceptua schema as an
entity-relationship schema.

The method does not make any assumption about the language used by the legacy database nor its
level of optimization. The method is decomposed into two main processes. The first one, the data
structure extraction, produces the logical schema through the analysis of all the sources of informa-
tion available. It contains two sub-processes, the DDL analysis, that extracts all the constraints
declared in the DDL code, and the schema refinement, that extracts all the other constraints through
the analysis of the other sources of information. The second main process is the data structure
conceptualization. This process transforms the logical schema into the conceptua schema. It is
made up of three sub-processes. The de-optimization removes the optimizations of the schema. The
untranglation transforms the constructions specific to the DMS model into their conceptual equiva
lent. Finally the conceptual normalization gives to the final schema the desired quality of a concep-
tual schema.

This method is applied to standard files, hierarchical DMS, network DMS and relational DMS.
Thereisatool (DB-MAIN) that support the method.

1.4.4.3. MeRCI [Comyn et al.-1996]

The MeRCI method is not specific to aDMS model, but it is explained using the relational model.
This method requires, as input, the source code of the application: the declaration of the database
(SQL-DDL) and the procedural code of the application (with embedded SQL). The output is an
extended entity-relationship (EER) model with complex attributes and generalization/speciaiza
tion.

The name of this method is MeRCl (Méthode de RétroConception Intelligente). This method is
made up of five steps. The first extracts the physical schemafrom the data dictionary, the DDL, the
views. The second step applies a set of physical reverse engineering rules to "deoptimize” the
physical schema. To detect the optimization they examine the DDL, SQL queries and the database
extension. The third step identifies entity types, relationship types and cardinalities through the
analysis of the embedded SQL, synonyms and references constraints. They enrich the indicators
rules proposed by [Signore et a.-1994]. The fourth step recovers the generalization/specification
through the analysis of the queries and the data. The last step is the conceptualization that identifies
multivalued attributes, entity types and relationship types.

[Akokaet al.-1998] presents an expert system that implements the MeRCI method.

16 Program Understanding in DBRE

Sate of theart

1.4.5. Others

1.45.1. MeRCI-M [Akoka et al .-1999]

The MeRCI-M method is an extension of the MeRCI method [Akoka et al.-1998] to the reverse
engineering of a datawarehouse. It requires, asinput, thelogical schema of the datawarehouse (with
the different dimensions, variables and relations), it questions the users and it queries the data.
While the MeRCI method foresees the extraction of the physical schema and its deoptimization,
thisis not yet implemented into MeRCI-M. Only the conceptualization process is presented.

The output is an extended entity-relationship model. The reverse engineering process is expressed
as a set of rules that transform the datawarehouse logical schema into its conceptual counter part.
These rules can be classified into three categories:

» Therulesof "presumption” which emit a suspicion regarding the presence of a concept.

» Therules of "consolidation" which, by the exploration of a second source of information, rein-
force the suspicion.

» Therulesof "confirmation" which establish the presence of the concept.

1.45.2. FORE [Leeet al.-2000]

The FORE method, called form driven object-oriented reverse engineering (FORE), captures the
form’s semantics to derive a conceptual object-oriented model. The conceptual model is expressed
via the object model on the CRC (class, responsibilities and collaborators) cards. A mapping is
proposed to produce an UML model (class and sequence diagram).

It states that most of the knowledge about business applications can be compiled from business
forms and the user’s interaction with alegacy system. This methodology is divided into two major
processes. The first, the form analysis, extracts the form structure and the user interaction with the
legacy application. The second process, the reverse engineering, recovers the conceptua schema
using the knowledge captured from the previous phase. The reverse engineering is divided into four
phases. form object slicing, object structure modeling, scenario design and model integration. The
form object dicing splits the form knowledge into semantic units according to the input types. The
objective of the object structure modeling phase is to identify objects from the result of the previous
phase. The scenario design phase produces an object process action scenario diagram. Finally the
model integration phase integrates the models.

1.45.3. [Tan et al.-1997]

[Tan et al.-1997] method recovers inclusion dependency by the analysis of the programs. It starts
from the observation that most (or al) of the inclusion dependencies in existing databases are
enforced in the programs which update the databases.

The proposed theory is based on the fact that the records in a database result from the executions of
the programs which update the database. Therefore dependencies can be inferred from the waysin
which the program updates the database. The proposed approach is divided into two processes,
recovery and validation. During recovery, inclusion dependencies are detected from dataflows
between a record manipulation instruction (read, write, update) and an output instruction (write,

Program Understanding in DBRE 17

Introduction

update) of another record. Validation checks if the inclusion dependencies found during the recov-
ery process are not violated by another program.

There are no tools to support this method but aformal proof of its correctnessis given.

1.4.6. Summary

This section presents a table summarizing the characteristics of the methods presented. The DMS
column specifies the DM S supported by the method (R=relational, N=network, H=hierarchical and
gen=generic model). The target column gives the target conceptual model. The prerequisites
column enumerates the method prerequisites regarding the database to be reverse engineered. The
sem. recovery column gives the technique used to recover the semantics (if the semantics is recov-
ered) that is not expressed in the physical schema. The heuristic column lists the heuristics used by
the method to recover the conceptual schema. Transfo means that the conceptual schemais obtained
by the transformation of the physical schema. Most of the authors do not use the term transforma-
tion but the term rewriting, they create the conceptua schema by adding to this schema the objects
that correspond to the elements of the physical schema. For simplicity, we have grouped thisin the
term transformation. The tool column gives the name of the tool that supports the method if it
exists. And finally the source info. column is the list of information sources used by the method.

18 Program Understanding in DBRE

Sate of theart

" 'o0p elep ojsuel) ssAfeue [666T-2xuer] ‘[666T
“TNA ‘1aa adA0j0.d ‘SsAjeuUe Yos | elep pue apod - 1NO o | -re ®ayuyer] vlIEA
12312]0) uoiuedwaod ojsuel] ‘s
-1
‘“INa ‘1aa vaa | -Aeue Aenb | ssAjeue Aenb - SEE| o [o66T-3190c]
M4
- [966T
p| ‘uoireziw -
yos sAyd pa1salitns ojsuel) - | -ndoou ‘4Ng LINO o [e 1 Ueyjeuewey]
abpa|mouy| ojsuen erp
urewop ‘erep ‘sisAeue (dureu) ul Jold ou [se6T-BURIYD]
‘YsssAyd | wesfs 1edxe | erep pue yos sisAeue Yos ‘Dueu ‘4NE 33 |
apoo ojsuel] ‘sis .
“10s “1ad poebbns | -Ajeueapod | sisAfeue apod -)= y | [e6T-1 P aoubs]
Salouap
-uadep *foul [¥66T-uosssuueyor]
yos sAyd - osuen - UM 4NE a4 o
abpa |mou ojsuel]
, [e66T
c_.mEoc SsARue abpa “ P IUe| PUBIJ]
‘elep ‘1aq [00L NO | ®eEppueyds | -|mouy Jesn - 1LINO S|
yos sAyd - - - dANE a4 o [286T-"[e ®© sineq]
[066T
yos sAyd - ojsuen - M4 Pl a4 d| -rewzumoyren]
yos sAyd - ojsueln) - M4 Pl a4 d | [€86T-'[e 1 eAOUESED)]
yos sAyd - ojsueln - auweu ‘4NE ISOE H'd | [286T-'[e ®ayrenreN]
yos sAyd pa1sahins ojsuen - 4 ‘Pl g4 H ‘N Y | [€86T -"[e 1 eedwn(]
0JU132IN0S [001 SoIslINeH AJoN03D I se1sinb wbre| SING

2P Id

19

Program Understanding in DBRE

Introduction

OB e [966T
eRp ‘sisAeue SisAeue .
- uAwo £
“TINA ‘1aa ad/)0104d | emep puespod | erep pue spod - NEE w9 er o] 1ID¥e N
abpa |mou ojsuel) [1661
urewop ‘erep ‘ssAeue SisAeue
-lneure -
'9po0 “1ad | NIVIN-Q | elep pueapod | eep pue apod - NE tog | MEUEHINIVIA-8A
yos Boj - ojsueln - Uos eolbo| SE U9 [T86T-1NeureH]
oJsuel] ‘sis SKA H _uos opuy]
9p02 adA010.d -Aleue apod | -jeue Mo|erep - +243 4 9661 puv
yos sAyd snbny ojsuel) - M 443 4| [s86T - e ®Ssined]
yos sAyd - ojsuen sisAeue yas - 44 H | [s66T- e 1 eliobue]]
8poo ‘1aa - ojsuel) - - 44 SINI | [066T - e ©sueuip]
yos sAyd - ojsuel) - - 44 H'N| [€66T - e ® buod]
abpa|mou
utewiop [Tooz-"Te ®© [rey|v]
‘yos sAyd - oJsuel) - M4 Pl 1LNO d
0JU132IN0S [001 SoIslINeH AJoN03D se1sinb wbre| SING
“wies 2,lId

Program Understanding in DBRE

20

Outline of the thesis

1.5. Outline of thethesis

Thisthesisis organized as follows. The next chapter describes a generic data structure model accor-
ding to which schemas of different abstraction levels and according to the most common paradigms
can be described precisely. It explains how the various concepts of physical, logical and conceptual
schema can be expressed in this model. Then, schema transformation operators that can model
inter-schema transitions are presented.

Chapter 3 introduces a generic database reverse engineering (DBRE) methodol ogy as the reverse of
the database forward engineering. This method is divided in three processes (project preparation,
data structure extraction, data structure conceptualization) and produces two schemas (logical
schema and conceptual schema). The project preparation identifies the information available and
the resource needed. The data structure extraction process aims at rebuilding the logical schema of
the database through the analysis of al the information sources available. This schemais the view
the programmer has (or must have) of the database to correctly write or modify any program that
accesses the database. The data structure conceptualization process transforms the logical schema
into a conceptual schema.

Chapter 4 describes in detail the data structure extraction process. This process is divided in four
steps. The first, the DDL code analysis, extracts from the data description language script the
explicit structures and constraints in order to produce the raw physical schema. If more than one
raw physical schemas exist, the physical integration step integrates them into a single schema. The
schema refinement step enriches the integrated schema with explicit constraints revealed by the
analysis of the source code, the data, etc. Findly, the schema cleaning step discards the physica
constructs that are no longer needed. The main constraints that are searched for are described as
well as the elicitation techniques that are used to recover the constraints during the schema refine-
ment steps.

Chapter 5 shows that implicit constraints can be elicited through the analysis of the source code. It
is also stated that the source code is one of the most accurate and up-to-date sources of information
for the recovery the implicit constraints. Due to the difficulty and cost of source code analysis, the
analyst must have program understanding technigues and tools.

In chapter 6, program understanding techniques are adapted to help the analyst in histask of retrie-
ving the implicit constraints that are implemented in the programs. Five program understanding
techniques used to retrieve data constraints are presented: pattern matching, variable dependency
graph, program dicing, system dependency graph and graphical visualization.

Chapter 7 explores how the program understanding techniques presented in the previous chapter
can be used to retrieve the implicit constraints and structures presented in chapter 4. For the
constraints that are generaly searched for, it is explained how the program understanding tech-
niques can be used and some hints are given on how the constraint discovery can be automated.

The DB-MAIN CASE tool is presented in chapter 8. To introduce the functionalities offered by
DB-MAIN, the limits of the current reverse engineering CASE (CARE) tools are described and the
requirements of an ideal CARE tool are given. It is shown how DB-MAIN fulfills these require-
ments and the CARE functions are explained.

Program Understanding in DBRE 21

Introduction

Chapter 9 contains three case studies that implement the techniques described in this thesis. These
case studies are small case studies that show different aspects of DBRE projects. The first case
study isa COBOL program and stores the data into files. This case study shows how such a project
can be done manually. The second case study is the same program as the previous one, but thistime
most of the work is done automatically. The last case study is a COBOL program with embedded
SQL, to show how to cope with embedded code.

Chapter 10 tackles a less technical, but very important, aspect of DBRE projects namely manage-
ment and planning issues. DBRE projects are risky and costly projects that do not bring new func-
tionalitiesto the applications. Thusit isimportant for such projects to be supported by the managers
of the company and not only by the technical team. Another difficulty of DBRE projects is that
reverse engineering is not awell known process, so at the beginning of a new project it is necessary
to explain to the managers and to the technical team what DBRE is. The cost of such a project must
be evaluated. This cost evaluation utilizes many parameters such as the size of the database, the size
of the program, the programming language, the analyst’s experience, etc. The automation of the
different stepsis presented as a way to decrease the cost of the DBRE.

22 Program Understanding in DBRE

chapTER 2 Data schema
Soecification

This chapter describes a generic data structure model according to which schemas can be described.
Thismodel can represent schema at different abstraction levels and of the most common paradigms.
It explains how the various concepts of physical, logical and conceptual schema can be expressed in
this model. Then, schema transformation operators that can model inter-schema transitions are
presented.

2.1. Introduction

Database reverse engineering mainly deals with schema extraction, analysis and transformation. In
the same way as for any other database engineering process, it must rely on a model that contains a
rich set of data structures. This model must be able to describe data structures at different levels of
abstraction, ranging from physical to conceptual, and according to various modeling paradigms.
During DBRE, it is common to have parts of a schema of different levels of abstraction or of differ-
ent modeling paradigm. The chosen model must be able to represent such situations.

In addition, statically describing data structures is insufficient. We must be able to describe how a
schema has evolved into another one. For instance, a physical schema leads to a logical schema,
which in turn is translated into a conceptual schema. These transitions, which form the basic of
DBRE, can be explained in a systematic way through the concept of schema transformation.

2.2. A wide-spectrum specification model

In database development methodologies, the complexity is broken down by considering three
abstraction levels. The engineering requirements are distributed among these levels, ranging from
correctness to efficiency. At the conceptual level, the designer produces a technol ogy-independent
specification of the information, expressed as a conceptual schema, relying on an ad hoc formalism,
called a conceptual model. At the logical level, the information is expressed in amodel for which a
technology exists. For instance, the required information is organized in a relational or object-

Program Understanding in DBRE 23

Data schema specification

oriented logical schema. Since reverse engineering is concerned with legacy systems, we will also
consider network, hierarchical, relational, indexed files, shallow, inverted files logical schemas.
While alogical schemais based on afamily of DMS models, a physical schema is dedicated to a
specific DMS. In addition to logical constructs, it includes technical specifications that govern data
storage, access mechanisms, concurrency protocols or recovery parameters. We will talk about
network logical schemaand about, say, IDMS physical schema.

Schemas manipulated during DBRE usually contain parts in different levels of abstraction or model
abstraction. For example, the reverse engineered application can use COBOL files and an SQL
database together. Both data structures must be displayed on the same schema, to represent relations
between the data stored in the COBOL files and the one stored in the SQL database. For those
reasons, specific formalisms cannot be adopted for each of the abstraction levels. Instead, the
discussion will be based on a generic model that can easily be specialized in specific models. For
instance, this model hierarchy can be trandated into UML/relational/oracle 9i, into ERA/CODA-
SYL/IDMS or into ORM/OO/Oracle ORDBMS design methodologies. These models are derived
from aunique model. The formal basis of this generic model has been developed in [Hainaut-1989].

For the ease of the presentation, the generic model will be presented according to the three levels of
abstraction (conceptual, logical and physical) in three different sections.

2.2.1. Conceptual specifications

In this thesis, all the conceptual schemas will be expressed using an extended entity-relationship
model.

A conceptual schema mainly specifies entity types (or objects classes), relationship types and
attributes. Entity type can be organized in isa hierarchies (organizing supertype and sub-types), the
hierarchy can be total and/or digoint. Total (T) means that a supertype must be specialized in at
least one sub-type and Digoint (D) means that a supertype can be specialized in at most one sub-
type. A isa hierarchy that is both total and digjoint is called it a partition (P). An entity type can
inherit from more that one entity type (supertype), thisis called multiple-inheritance.

Entity types can comprise attributes that can be atomic or compound. The source value set of an
atomic attribute can be a basic domain (e.g., numeric, boolean, character, time, etc.), a user-defined
domain (e.g., VAT-number, address, URL, etc.) or an object class (in some OO models). A
compound attribute is an attribute that is decomposed into at least one attribute (atomic or
compound). Attributes are characterized with a cardinality constraint [i-j] stating how many values
can be associated with aparent instance (default is[1-1]). i is the minimum cardinality, i.e. the mini-
mum number of values that need to be associated and j is the maximum cardinality, i.e. the maxi-
mum number of values that can be associated. The following constraints on the values of i and |
must be satisfied
O<i<N and 0<j<N and i<j

with N representing the infinity. If the minimum cardinality is 1, the attribute is said to be manda-
tory and if it is O, the attribute is, then, said to be optional. If the maximum cardinality isequal to 1,
the attribute is single-valued and if it is greater than one, it is said multivalued.

A relationship type has two or more roles. Each role also has a cardinality constraint [i-j] that states
in how many relationships an entity will appear with thisrole. A relationship type with two rolesis
called binary, while arelationship type with n>2 roles is generally called n-ary. Roles can be multi-

24 Program Understanding in DBRE

A wide-spectrum specification model

domain, i.e. aroleis connected to more than one entity type. Relationship types can also comprise
attributes.

Entity types and relationship types can have constraints (such as identifiers), made up of attributes
and/or remote roles. Those constraints are expressed through the concept of groups. A group is
made up of components, which are attributes, roles and/or other groups. A group represents a
construct attached to a parent object (entity type, relationship type or compound attribute). It is used
to represent concepts such asidentifiers, exclusive or coexistence constraints:

Primary identifier (id)

The components of the group make up the main identifier of the parent object. A parent object
can have at most one primary id; all its components are mandatory.

secondary identifier (id’)

The components of the group make up a secondary identifier of the parent object. A parent
object can have any number of secondary identifier.

coexi stence (coex)

The components of the group must be simultaneously present or absent for any instance of the
parent object.

exclusive (excl)

Among the components of the group at most one must be present for any instance of the parent
object.

at-least-1 (at-1st-1)

Among the components of the group, at least one must be present for any instance of the parent
object.

exactly-1 (exact-1)

Among the components of the group, one and only one must be present for any instance of the
parent object (= exclusive + at-least-1).

PERSON </Entlty type .
PO rum (2 - ——————————Atomicattribute (with type

Name: char (30) and Iength)
Address: compound (74) <\Compound attribute

Num([0-1]: char (4)

Sreetchar(50) |+ —————————— Optional atomic attribute

Ph%r%[g:s?r ((:i?r 1w |— Multivalued attribute
id: PID <« Primary identifier
D :\Super type
Isa hierarchy
CUSTOMER |q SUPPLIER [¢ o
Category: char (3) Account: num (5) Sub-type
0-N AN /Role
TromSee L Binary relationship type
2 Ternary relationship type
ORIIDER id: ORDER PRODUCT
ONum: char (5) 1 PRODUCT /~0-N_|PNum: num (4)
Date: date (1) gr’s_\mg char 2120)
id: for?\‘m.CUSTOM ER id:ICSN:L:nm() Processing Unit
il Price with VAT |4

FIGURE 1. Example of a conceptual schema.

Program Understanding in DBRE 25

Data schema specification

A processing unit is any dynamic or logical component of the described system that can be associ-
ated with a schema, an entity type or arelationship type. For instance, aprocess, a stored procedure,
aprogram, atrigger, a business rule or a method can each be represented by a processing unit.

Some of these constructs are illustrated in figure 1. This schema includes entity types PERSON,
CUSTOMER, SUPPLIER, ORDER and PRODUCT. PERSON has two digoint (D) sub-types,
CUSTOMER and SUPPLIER. Relationship type fromis binary while detail is ternary. Each ORDER
entity appears in exactly one from relationship (cardinality [1-1]). Entity types and relationship
types have attributes. For entity type PERSON, attribute Name is atomic, single-valued and manda-
tory. Address is a compound attribute. Its component Num is atomic, single-valued and optional
(cardinality [0-1]). Phone is multivalued and optiona (cardinaity [0-5]): there are from 0 to 5
values per entity.

{PID} isthe primary identifier of PERSON. The identifier of ORDER is made of the role of the
externa entity type from.customer and of local attribute ONum ({from.customer, ONum}). The
identifier of detail states that the relationship type detail isidentified by its ORDER and its PROD-
UCT. There cannot exist more than one detail relationship with the same ORDER and PRODUCT
entity types.

2.2.2. Logical specifications

A logica schema comprises data structure definitions according to one of the commonly used fami-
lies of models: relational model, network model (CODASYL DBTG), hierarchica model (IMS),
shallow model (TOTAL, IMAGE), inverted file model (DATACOM/DB), standard file (COBOL,
C, RPG, BASIC), object-oriented model (Versant), object-relational (Oracle) to mention the most
important ones.

The logical specification use the same concepts, of the generic model, as the one presented in the
conceptual specification. Some of the concepts presented in the conceptual specification are not
alowed in some logical models. For example relationship types, compound attributes, multival ued
attributes, isa hierarchies are not allowed in the relational model. These concepts need to be
expressed by equivalent constructs allowed in the model. Some parts of the conceptual schema
cannot be trandated into the logical one because the logical model is more restrictive. Those
constraints are noted as atextual annotation below the schema.

New constructs that appear at thislevel are:

» Special kinds of multivalued attribute

In the conceptual specification a multivalued attribute represents sets of values, i.e. unstructured
collections of distinct values. At the logical level thereissix categoriesto implement amultival-
ued attribute:

» Set: unstructured collection of distinct elements (default).

» Bag: unstructured collection of (not necessarily distinct) elements.
» Unique list: sequenced collection of distinct elements.

» List: sequenced collection of (not necessarily distinct) elements.

» Unique array: indexed sequence of cells that can each contain an element. The elements are
distinct.

» Array: indexed sequence of cellsthat can each contain an element.

26 Program Understanding in DBRE

A wide-spectrum specification model

» Reference constraint (ref)

This is an inter-group constraint where the origin group is the reference group and the target
group is the referenced group. The referenced group must be an identifier (primary or second-
ary). Each instance of thefirst group must be an instance of the second group.

* Inclusion constraint (incl)

Thisisan inter-group constraint where each instance of the first group must be an instance of the
second group; since the second group does not need to be an identifier, the inclusion constraint is
ageneralization of the referential constraint.

» Equality constraint (equ)
Asthe reference constraint, in addition, an inclusion constraint is defined from the second group
to thefirst one.

PERSON

PID: um (4 prone [Entity type.
A PERSON could not be a NAME: char (30) PID: num (4) «—— Atomic attribute
CUSTUMER and aSUPPLIER | ADD_NUM[O0-1]: char (4) PHONE: char (12)
(theisahierarchy was"D") | il ADD_STREET: char (50) \ 'd PID . s
i ADD_CITY: char (20) PHONE <«—— Primary identifier
id: PID ref: PID «¢—— Reference constraint

Optiona attribute

DETAIL
CUSTOMER PID: num (4) SUPPLIER
PID: num (4 ONUM: char (5) PID: num (4)
CATEGORY:: char (3) PRODUCT: num (4) ACCOUNT: num (5)
a4 PID PRD_NAME: char (20) id PID
ref PRD_PRICE_VAT: num (4) ref
QTY: num (2)
SUPPLIER: num (4) Equality constraint
ORDER id: PID /
PID: num (4 ONUM PRODUCT
ONUM: char (5) PRODUCT PNUM: num (4)
DATE: date (1) ref: SUPPLIER NAME: char (20)
id PID equ: PID / PRICE: num (4)
ONUM ONUM _/l> id: PNUM
ref: PID ref: PRODUCT Price_with VAT

FIGURE 2. Logical schema, this relational schema is an approximate translation of the
schema of figure 1.

For instance, the schema of figure 2 can be considered as a possible relational tranglation of the
conceptual schema of figure 1. In this schema, all the relationship types and compound and multi-
valued attributes have been transformed to obtain a schema with only entity types, mandatory or
optional atomic single-valued attributes, primary identifiers, referential constraints and equality
constraints. Some constraints of the conceptual schema could not be expressed in this schema and
are kept as annotation; such as the digoint property of the isa hierarchy.

Similarly, it is possible to design a network, hierarchical or object-oriented equivalent schema.
Since we want to discuss reverse engineering problems independently of the DM S model, we will
use general terms such as entity type, relationship type and attribute. For a specific model, these
terms will be translated into the specific terminology of the model. For instance, entity type will be
called table in relational schemas, segment types in hierarchical schemas, and data sets in shallow
schemas. A relationship type will be read set type in the network model, access path in the shallow
model and parent-child relationship in the hierarchical model.

Program Understanding in DBRE 27

Data schema specification

The level of details of the logical schema must be sufficient to the programmer to write the
programs that use those data structures. So the needed level of detail differs from one model to the
other. For example, to write a program that uses a relational DMS, the programmer only needs to
know the entity type and attributes names, the identifiers and the referential constraints. On the
other end, if the application uses standard files, he needs to know the name of the entity types and
attributes, the identifiers and the foreign keys, like for the relational one. But he also needs to know
the name of the collections and the access keys.

2.2.3. Physical specifications

Finally, physical specifications can be expressed through a physical schema. Due to the large vari-
ety of DM S-dependent features, it is not easy to propose ageneral model of technical constructs. As
far as reverse engineering is concerned, two essential concepts will be considered that may bring
structural or semantic hints:

* Caoallection
Collection is an abstraction of file, data set, tablespace, dbspace and any record repository in
which datais permanently stored.

» Accesskey (acc)
Access key is a group that represents any path providing a fast and selective access to entity
types that satisfy a definite criterion. Such as indexes, indexed set (DBTG), access path, hash

files, inverted files, indexed sequential organizations all are concrete instances of the concept of
access key.

PERSON PHONE [&—Entity type
A PERSON could not be a PID: num (4) PID: num (4) «—— ___Atomic attribute
CUSTUMER and aSUPPLIER || NAME: char (30) PHONE: char (12)
(theisa hierarchy was"D") ADD_NUMY[0-1]: char (4) id: PID
ADD_STREET: char (50) PHONE |dentifier and
ADD_CITY: char (20) acc ¢ K
i@ PID ref: PID access Key
acc
custoMER | Collection
SUPPLIER | o —
PERSON
PHONE
CUSTOMER DETAIL SUPPLIER
PID: num (4) PID: num (4 PID: num (4)
CATEGORY : char (3) ONUM: char (5) ACCOUNT: num (5)
i PID PRODUCT: num (4) i PID
ref acc PRD_NAME: char (20) ref acc . .
PRD_PRICE_VAT: num (4) Equality constraint
QTY: num (2)
SUPPLIER: num (4)
id: PID
ONUM
ORDER PRODUCT PRODUCT CD)FEQEAEIFIQ_
PID: num (4) acc PNUM: num (4)
ONUM: char (5) ref: SUPPLIER NAME: char (20)
DATE: date (1) acc PRICE: num (4)
id: PID equ: PID id: PNUM
ONUM || ONUM acc Access key
acc ref: PRODUCT acc: NAME
ref: PID acc Price with_ VAT

FIGURE 3. Physical schema. This schema grossly derives from the schema of figure 2.

28 Program Understanding in DBRE

DM S-specific data structure specification

These constructs have been given a graphical representation (figure 3). In database design and
development, other physical constructs can be of interest, such as page size, extent size, file size,
various fill factors, index technology, physical device and site assignments, etc. They will be
ignored in this presentation.

Figure 3 schema is made up of seven physical entity types and three collections. Collection
CUS STO will store entity types CUSTOMER, SUPPLIER, PERSON and PHONE. The primary
identifiers are supported by an access key, denoted by the symbol acc. An accesskey is aso associ-
ated with some foreign keys and another one is defined on plain column { NAME} (to optimize the
access to a product through its name).

Other technical details are not shown in this graphical representation, such as record clusters,
physical column sizes and coding schemes, page lengths, buffer management, index technologies
and parameters, etc. But they are stored as textual annotations.

The physical specification adds to the logical one all the information needed to implement effi-
ciently the database using a given DMS. The physical specification has particular characteristics
regarding its syntax, the constraints that can be expressed and its performances.

2.2.4. Different levels of abstraction and different paradigms

DBRE is an exploratory process that has to deal with existing (legacy) systems. The exploratory
aspect implies that at any steps of the process the analyst can discover a construct that he is not
looking for (opportunistic approach). He must be able to represent this construct in the schema. For
example, if during the analysis of the source code of the program, to refine the physical schemaof a
relational database, he discoversthat atable is a sub-type of another, he must be able to noteit in the
physical schemaevenif it isaconceptua model concept.

DBRE tries to recover the conceptual schema of the persistent data of alegacy application. It is not
exceptional that alegacy system does not have only one database but severa and possibly of differ-
ent paradigms. This may append because the system is old and functions have been added. These
added functions may require other data and the programmer has decided to create a new database
(of adifferent paradigm) to store them. Another origin for more than one database for an applica-
tion is the integration of different applications. At the beginning there was two different applica-
tions (possibly of different companies or departments) and these applications were merged into a
single application, but the databases were not merged into a single one.

For al those reasons, it is necessary that our model must be able to represent schemas with different
levels of abstraction and different paradigms.

2.3. DMS specific data structure specification

This section describes how the generic model represents data structures that can be found in legacy
systems. Four different families of models will be studied: relational model (SQL), network model
(CODASYL), hierarchical modd (IMS) and standard file model (COBOL). For each model, the
trandation of the model concepts to the generic model conceptsis described: how the data structure

Program Understanding in DBRE 29

Data schema specification

can be specified and what are the differences between the logical and the physical schema. We will

also describe how different implicit data structures and constraints can be specified.

Relational M odel

Generic model

Tablespace, Storage area, DBspace

Collection

Table

Entity type

Column

Atomic single-valued attribute (.-1)

Column not null

Mandatory attribute (1-1)

Column null Optional attribute (0-1)
Primary key Primary identifier
Index Access key
Unique index Secondary identifier and access key
Foreign key Reference group
FIGURE 4. Relational model concepts translation.

SUP_PROD

SUPPLIER
PRODUCT

SUPPLIER
PID: num (4)

NAME: char (20)

ADD_STREET[0-1]: char (40)
ADD_CITY: char (20)
TELEPHONEL: char (15)
TELEPHONE2: char (15)
TELEPHONES3: char (15)
TELEPHONE4: char (15)
TELEPHONES: char (15)
id: PID

acc
acc: ADD_CITY

PRODUCT
PNUM: char (5)
NAME: char (20)
PRICE: num (4)
SUPPLIER: num (4)
id: PNUM

acc
id: NAME

acc
ref: SUPPLIER

acc

create dbspace SUP_PROD;
create tabl e SUPPLI ER (

PI D numeric(4) not null,

NAME char (20) not nul |,
ADD_STREET char (40) nul I,
ADD CI TY char (20) not null,
TELEPHONE1 char (15) not nul |,
TELEPHONE2 char (15) not nul |,
TELEPHONE3 char (15) not nul |,
TELEPHONE4 char (15) not nul |,
TELEPHONE5 char (15) not nul |,
primary key (PID))

i n SUP_PROD;

create tabl e PRODUCT (

PNUM char (5) not null,

NAME char (20) not nul |,

PRI CE nuneric(4) not null,
SUPPLI ER nuneric(4) not null,
primary key (PNUM,

uni que (NAME),

forei gn key (SUPPLIER) references SUPPLIER)

in SUP_PROD;

create i ndex ACC _SUPPLI ER

on SUPPLI ER (ADD_CITY);

create i ndex ACC_PRODUCT

on PRODUCT (SUPPLI ER);

FIGURE 5. SQL physical schema with its corresponding creation SQL-DDL code.

2.3.1. Thereational model

The relational model does not contain a relationship type. Only atomic single-valued attributes are
accepted, they are called columns and they can be optional or mandatory. The main explicit
constraints are the primary identifier, called primary key, the secondary identifier, called unique

30 Program Understanding in DBRE

DM S-specific data structure specification

index and the referential constraint, called foreign key. Access keys can be declared with duplicates
or not and are called index or unique index. Each identifier is supported by an access key (index).
An entity typeis called atable. A collection, called tablespace, storage area or dbspace depending
on the DM S, can contain more than one entity type.

The table of the figure 4 summarizes concepts translation between the generic model and the rela-

tional model. Figure 5 is an example of an SQL schema and of the SQL-DDL code used to create
such a database.

2.3.2. The network model

Network Model Generic model
Area Collection
Record Entity type
Field Mandatory attribute (1-1)
Array (occurs|) Multi-valued attribute (1-1) - array
Calc ... duplicates not allowed Primary identifier and access key (contains
only attributes)
Calc... Access key (contains only attributes)
Key is... duplicates not allowed Primary identifier and access key (contains the
role of the owner and attributes)
Keyis... Access key (contains the role of the owner and
attributes)
Set Relationship type
Owner O-Nrole
Member ?-1role
If more than one member Multi-domain role

FIGURE 6. Network model concepts translation.

In the network model thereis no isahierarchy. A collection, called area, can contain more than one
entity type, called record, and an entity type can be stored in more than one collection. The
attributes, called fields, can be single-valued or multivalued (array), atomic or compound but they
are mandatory. The relationship types, called sets, are binary, one to many, cannot be cyclic and do
not contain attributes. The 0-N role is caled the owner and the 0-1 (or 1-1) role is caled the
member.

The network model has two kinds of access key, calc key and key. The calc key contains only
attributes. Thereisat most one all-attribute identifier per entity type, called calc key ... duplicate not
allowed. The second kind of access key, called key, contains one member role and at least one
attribute. The key ... duplicate not allowed is a secondary identifier.

The network model has a specia entity type, called system, that contains no data. The system entity
typeis use has the owner of an entity type that has no natural owner and for which it is necessary to
create akey.

Program Understanding in DBRE 31

Data schema specification

Each entity type has an implicit technical identifier, called DBkey, that is the physical number of the
entity type which can be used to access the entity type. The DBkey is not explicitly represented in
the schema. If the DBkey needs to be represented (because it is referenced by a foreign key, for
example) atechnical attribute, called DBKkey, is added and declared as an identifier.

___» AREA NAME |'S SUP- PROD.
RECORD NAME | S SUPPLI ER
LOCATI ON MODE |'S CALC USI NG (SUPP- | D)
DUPL| CATES ARE NOT ALLOWED
W THI N AREA SUP- PROD.
02 SUPP-1D PIC 9(4).

SUP-PROD

SUPPLIER
PRODUCT

W 02 SUPP- NAMVE Pl C X(20).
O“év_r,‘f' 02 SUPP- ADDRESS.
ySsuPP 04 SUPP- STREET PI C X(40).
b 04 SUPP-CITY Pl C X(20).
01 \ 02 SUPP- TELEPHONE PI C 9(5) OCCURS 5.
SUPPLIER RECORD NAME |'S PRODUCT
SUPP-ID: num (4) LOCATI ON MODE |'S VI A SUPP- PROD

SUPP-NAME: char (20)
SUPP-ADDRESS: compound (60)
SUPP-STREET: char (40)
SUPP-CITY: char (20)
SUPP-TELEPHONE[1-5]: num (5)
id: SUPP-ID
acc
acc: SY S-SUPP.owner
SUPP-ADDRESS.SUPP-CITY
owner
O-N
SUPP-PROD

\‘»
member
0-1
PRODUCT
PROD-NUM: char (5) /

PROD-NAME: char (20)
PROD-PRICE: num (4)
id’: SUPP-PROD.owner
PROD-NAME
acc

FIGURE 7.

code.

W THI N AREA SUP- PROD.
02 PROD- NUM PI C X(5).
02 PROD- NAME PI C X(20).
02 PROD- PRI CE PIC 9(4).
SET NAME |'S SYS- SUPP
OMER | S SYSTEM
ORDER | S PERVANENT LAST.
MEMBER | S SUPPLI ER
KEY 1'S (SUPP-CI TY ASCENDI NG)
DUPL| CATES ARE FI RST.
SET NAME |'S SUPP- PROD
OMER | S SUPPLI ER
ORDER | S PERVANENT LAST.
MEMBER | S PRODUCT
KEY 1S (PROD- NAME ASCENDI NG)
DUPL| CATES ARE NOT ALLOWED.

CODASYL physical schema with its corresponding creation CODASYL-DDL

The table of figure 6 summarizes concepts trandlation between the generic model and the network
model. Figure 7 is an example of a CODASY L physical schema and of the CODASYL DDL code
used to create such a database.

2.3.3. The standard file model

The standard file model does not include the concept of relationship type nor that of foreign key.
The attributes, called fields, are single-valued or multivalued (array), atomic or compound and are
mandatory. Two fields or more can have the same physical position by the usage of the clauses
redefine or rename. A collection, called file, can include severa entity types, called records. An
entity type can bein only onefile.

32 Program Understanding in DBRE

DM S-specific data structure specification

Standard file M odel Generic mode
File Collection
Record type Entity type
Field Mandatory attribute (1-1)
Array (occurs|) Multi-valued attribute (1-1) - array
Record key Primary identifier and access key
Alternate record key without duplicate Secondary identifier and access key
Alternate record key with duplicate Access key
Redefine, rename Group with "redef" function

FIGURE 8. Standard file model concepts translation.

ENVI RONVENT DI VI S ON.
sup | NPUT- OUTPUT SECTI ON.
SUPFLIER FI LE- CONTROL.
SELECT SUP ASSI GN TO " SUP"
ORGANI ZATI ON | S | NDEXED
PROD ACCESS MODE |'S DYNAM C
PRODUCT RECORD KEY |'S PI D
ALTERNATE RECORD KEY |'S CI TY W TH DUPLI CATES.
SELECT PRCD ASSI GN TO " PROD'

- 4SUPPL'ER ORGANI ZATI ON | S | NDEXED
. num
A o 20 ACCESS MODE |'S DYNAM C
ADDRESS: compound (60) RECORD KEY |'S PNUM
STREET: char (40) ALTERNATE RECORD KEY |'S NAME.
CITY: char (20) DATA DI VI SI ON.
TELEPHONE[5-5] array: char (15) FI LE SECTI ON.
a-Po FD SUP.
acc: ADDRESS.CITY 01 SUPPLI ER
02 PID PIC 9(4).
PRODUCT 02 NAME PI C X(20).
PNUM: char (5) 02 ADDRESS.
NAME: char (20) 03 STREET PIC X(40).
PRICE: num (4) 03 CITY PIC X(20).
SUPPLIER: num (4) 02 TELEPHONE PIC X(15) OCCURS 5 TI MES.
id. PNUM
acc FD PROD.
id’: NAME 01 PRODUCT.
acc 02 PNUM PIC X(5).

02 NAME PIC X(20).
02 PRICE PIC 9(4).
02 SUPPLIER PIC 9(4).

FIGURE 9. COBOL physical schema example with its corresponding file declarations code.

The standard file model encompasses different types of file. In this section we only describe three
of them (sequential, relative and indexed). There are other types that are not used to store perma-
nent data but temporary elements, such as sort, merge and report files. The sequential file, as its
name suggests, is a file that can only be accessed sequentialy. So, there is no identifier or access
key defined. In arelativefile, the only means to access directly one of its entity typesis through the
entity type number, called relative key. This entity type number is the only identifier of the record.
To represent arelative file, atechnical attribute is added to the entity type that represents the record

Program Understanding in DBRE 33

Data schema specification

number and this attribute is the primary identifier of the record and it is supported by an access key.
In an indexed file, the user can define its own identifiers and indexes. The primary identifier, called
record key is supported by an access key. A secondary identifier, called alternate record key without
duplicate, is supported by an access key. Non identifying access keys are called alternate record key
with duplicate.

The table of figure 8 summarizes concepts translation between the generic model and the standard
file model. Figure 9 is an example of a COBOL physical schemawith its declaration code counter-
part.

2.3.4. Other constructs

As shown in the previous pages, DMS models do not have very rich set of data structures and
constraints. A lot of constructs could not be expressed in the DMS model. For example, the
COBOL model does not have reference constraints nor relationship type. None of the DM S model
offers mechanism to indicate that there is some redundancy. It is not because the DMS model does
not offer some constraints that the programmer does not need them. In such situations, the program-
mer implements, implicitly, these constraints in the application program.

During DBRE, if the anayst discovers through some code or data analysis, a constraint or data
structure that does not belong to the DM S model, he must expressit in the schema. If the constraint
exists in another DMS model or in the conceptua model, the other model notation is used. For
example, a reference constraint discovered during the analysis of COBOL files is noted as a refer-
ence group into the schema. Another example is an attribute of a relational database that can be
decomposed into severa attributes (the address can be decomposed as street, city, zip code) is
represented as a compound attribute.

INVOICE
—Pr?dgce tote FISCAL_YEAR
invoice

total year

id: code / Id: year
cfk:invoice date

year = the year of invoice_date

FIGURE 10. Computed reference constraint example.

It is necessary to define some techniques to represent non standard constraints, i.e. constraints that
do not appear in DM'S models nor in text books but that programmer use. We have identified some
of them:

» Computed referential constraint (cfk)

In standard foreign key, the target and the origin of the foreign key have the same value. Some-
times a function is applied to the value of the origin to obtain the value of the target. For exam-
ple, in figure 10, invoice_date is the date of the invoice and year is the number of the year. The
later can be extracted from the invoice_date. The computed foreign key is represented by an
inter-group constraint where the first group is the reference group (noted cfk, for computed for-
eign key) and the second group is the reference identifier with the expression of the matching
function recorded as a annotation.

34 Program Understanding in DBRE

Schema transfor mation

ORDER

code CUSTOMER
cus_code id
date name
Cus_name address
discount category

If (category = "good") | |id: code _/{> id:id

then discount = 10% || ref: cus_code _/{> :name

€lse discount = 0% il rd: cus_name _/{> : category

dd: discount

FIGURE 11. Redundancy and data dependency constraint example.

» Redundancy constraint (rd)

A common optimization technique consist in copying some information from one record to
another. In the schema of figure 11, CUSTOMER name is copied into ORDER.cus_name. The
redundancy constraint is represented as an inter-group constraint representing that the value of
the origin group is a copy of the target group. The target group has no specific type.

» Data dependency constraint (dd)

Data dependency is an inter-group constraint representing that every instance of the origin group
depends on the value of the target group. In the schema of figure 11 discount is data dependant
on category. The annotation gives the function to compute the value of discount.

e Obsolete / unused data structure

During the maintenance and evolution of the database, it is possible that some attributes or entity
types were created and are not used any more. It is important to mark these data structures as
obsol ete to prevent any further analysis and to suggest to suppress them later, during some main-
tenance or migration process.

» \Working data structure

Entity types or attributes found in the database can have no relation with the application domain,
they are working data structures. For example, it can be stored in an entity type the login and
password of the user of the application, the last customer’s number used. These data structures
are dependent on the way the application is implemented and not on the domain of the applica-
tion. For example, if the operating system offers some access control to the application, it is not
necessary to maintain an entity type with the login and password.

Other type of constraints can be found, for which no standard representation has been defined. It is
up to the analyst to define and document his own notations to represent them.

2.4. Schema transformation

Most database engineering processes can be modeled as data structure transformation. Indeed, the
production of a schema can be considered as the derivation of this schema from a (possibly empty)
source schema through a chain of elementary operations, called schema transformations. Adding a
relationship type, deleting an identifier, translating names or replacing an attribute with an equiva-
lent entity type, are all examples of basic operators through which one can carry out such engineer-
ing processes as building a conceptual schema [Batini et a.-1992][Batini et al.-1993], schema

Program Understanding in DBRE 35

Data schema specification

normalization [Rauh et a.-1995], DM S schema translation [Hainaut et al.-1993b][Rosenthal et a .-
1988][Rosenthal et al.-1994], schema integration [Batini et al.-1992], schema equivalence [D’ Atri
et a.-1984][Jgodia et a.-1983][Kobayashi-1986][Lien-1982], data conversion [Navathe-1980],
schema optimization [Hainaut et al.-1993a][Halpin-1995] and others [Blaha-1996][De Troyer-
1993][Fahrner et al.-1995]. As it will be shown later on, they can be used to reverse engineer
physical data structure as well [Bolois et al.-1994][Casanova et al.-1984][Hainaut et al.-
1993a][Hainaut et al.-1993b][Hainaut et al.-1995].

O-N
&2
oN 0

O-N -N
/ R\ - R
o W oN 2;
1-1- 1-1-
@ id R ELEL @
R E2.E2
R E3.E3

a) Relationship type into an entity type.

E - EA2
Al - AEl 1-5—€>—1-1 A2
A2[1-5] ~ i RE
A3 A2

b) Attribute into an entity type by instance representation.

E2 E1 E2
1] BI AL BI
H‘@‘M" B2 - B1 B2

id: B1 ref:B1 —————— >{id: B1

¢) Relationship type into a reference group.
FIGURE 12. Example of semantic-preserving transformations.

A (schema) transformation is most generally considered as an operator by which a source data
structure C is replaced with a target structure C'. Though a general discussion of the concept of
schema transformation would include techniques through which new specifications are inserted
(semantics-augmenting) into the schema or through which existing specifications are removed from
the schema (semantics-reducing), we will mainly concentrate on techniques that preserve the speci-
fication (semantics-preserving). A complete discussion about schema transformation can be found
in [Hainaut et a.-1993b]. Some examples of semantic-preserving transformations are given in
figure 12. Thefirst transformation is the transformation of arelationship type into an entity type and
itsinverse (figure 12.a). The second transform an attribute into an entity type by instance represen-
tation, in which each instance of A2 in each entity type is represented by an EA2 entity type and its
inverse (figure 12.b). Finally, figure 12.c shows the transformation of a relationship type into a
reference group and itsinverse.

36 Program Understanding in DBRE

Schema transfor mation

for each isa hierarchy (i sa)
transformi sa into relationship type
for each compl ex! rel ationship type (rt)
transformr t into entity type
for each binary many-to-many relationship type (rt)
transformr t into entity type
while there is some multivalued or compound attribute
for each multivalued attribute (at t)
transform at t into entity type
for each compound attribute (at t)
disaggregate at t
for each relationship type (r t)
transformr t into reference group
(add technical identifier if necessary)

1. relationship type with more than one role or with attribute.

FIGURE 13. Transformation plan to transform a conceptual schema into its logical relational
equivalent.

Being functions, transformations can be composed in order to form more powerful operators.
Complex transformation combinations can be built through transformation plans which are high
level semi-procedural scripts that describe how to apply a set of transformations in order to fulfill a
particular task or to meet agoal. These scripts are composed of transformations that are executed if
some predicates (about properties of the schema) are satisfied. It isimportant to note that atransfor-
mation plan can be considered as a strategy for higher level transformation to be performed on a
whole schema. For example, the transformation plan to transform a conceptual schemain itslogical
relational equivalent isgivenin figure 13.

This analysis leads to an important conclusion for the following: all engineering processes, be they
related to forward or reverse engineering, can be considered as schema transformations.

Program Understanding in DBRE 37

Data schema specification

38

Program Understanding in DBRE

cnarters A generic methodology
for database
reverse enginesring

The database reverse engineering (DBRE) methodology is introduced as the reverse of the database
forward engineering. A generic DBRE methodology is presented. This method is divided into three
processes. project preparation, data structure extraction and data structure conceptualization. And it
produces two schemas, the logical schema and the conceptual schema. The project preparation
identifies the components to be analyzed, the resources to be allotted and the planning. The data
structure extraction process aims at rebuilding the logical schema of the database. This schema can
be described as the database view the programmer has (or must have). The data structure concep-
tualization process tries to specify the semantic structure of the logical schema as a conceptual
schema.

3.1. Databasereverse engineering isthe reverse of
forward engineering

Since reverse engineering consists in recovering (among others) the conceptual schema from the
operation code, it is reasonable to consider that this processis just the reverse of forward engineer-
ing [Baxter-1997].

Reversing a hierarchically decomposable process consists in inverting the order of the sub-
processes, then replacing each sub-process with its inverse. For databases that have been devel oped
according to an idea approach, the output of forward engineering, thus the input of reverse engi-
neering process, is of three kinds: Codeyy represents the DDL code, Code,,; represents the non-
DDL code (part of the structure and constraints that are not expressed in the DDL code) and E(Q) is
the part of the specification that islost during the forward engineering. The forward engineering is
composed of the following processes (left part of figure 14):

» Conceptual design

Produces the conceptual schema, a computer-independent description of the information struc-
tures to be implemented by the database. It is divided in two sub-processes.

» Conceptual analysis. trandates user’s requirements in formal specifications.

Program Understanding in DBRE 39

A generic methodology for database rever se engineering

Database Forward Engineering Database Rever se Engineering

‘ Conceptual analysis

Conceptual
Design

‘ Normalization I—

Conceptual schema
Conceptua schema

|— Normalization I
‘ Optimization I__ inv _-‘ De-optimization I O
5 8o
.) . c
g | Model Trandation : inv I Untranslation I %g’
S 22
k= I Preparation I S
-
Logica schema Logical schema
| Physical design | inv i Schema Cleaning | 5
me
- _'q Schema Refinement I é g
Physical schema L =
inv ™| 25
= ; o
Cinv —__{ DDL -code Extraction I 5c
| Coding ®

e Conteg

FIGURE 14. The main DBRE processes as the inverse of forward processes.

» Normalization: gives the conceptua schema desirable qualities such as normality, minimal-
ity, readability, clarity and compliance with corporate standards.

Logical design

Transforms the conceptual schema into a DM S-compliant optimized logical schema (called

logical schema). This schemais expressed in the data model of the chosen DM S and it satisfies

operational criteria such as space and time performance. It is divided in two sub-processes

» Optimization: modifies the schemain order to giveit better performance.
» Model translation: converts the schemainto data structures that are compliant with the model
of theDMS.

Some constructs of the conceptual schema are not transformed into the logical schema (E(A)).
This lost of semantics happens because the DMS model is weaker than the conceptual model
and some constructs are to complex (expensive) to express or the program does not know how to
express them.

Physical design

Technical parameters are set and physical constructs are defined to generate the physical
schema.

40

Program Understanding in DBRE

Database rever se engineering is therever se of forward engineering

» Coding
Produce an executable version of the database. Translate the DM S constructs into DMS-DDL
definition (called the codeyy) and non-DMS constructs into, e.g., procedural sections (called
code,,). Some constructs are not translated (intentionally or not) in code (E(A)).

If DBRE is the reverse of those processes, it can be sketched graphicaly (figure 14) in order to
show the links with the forward process. The correspondence forward / reverse marked with "inv"
means that each process is the inverse of the other, while the symbol "=" indicates that they are of
the same nature. DBRE comprises two steps:

« Data structure extraction

Recover the logical schema from the operational code (codey, and code,). This consists in
uncoding the codeyy (DDL-code extraction) and uncoding the code,, (schema refinement).
Some parts of the non implemented specification (E(A)) can be recovered during the schema
refinement through the analysis of other information sources such as the data, the user or pro-
gramer interview, etc. To obtain the logica schema, the physical design process should be
undone. Thisis fairly ssmple since the forward process consist in adding technical constructs to
thelogical constructs; this sub-processis called schema cleaning.
» Data structure conceptualization

Recover the conceptual schema from the logical one, i.e. removing and transforming the optimi-
zation called de-optimization (reverse of the optimization), interpreting the logical constructsin
terms of their conceptual structures called untranslation (reverse of the model transformation)
and gives the conceptual schema desirable qualities (normalization).

This approach seems correct if the application that is reengineered has been devel oped according to
an ideal approach. But a lot of applications have been developed according to some empirical
approach or have evolved. How can the suggested methodology be applied to such applications?

O-N 0-N

<~
DETAIL
O-O'N o 1-11id: reference.PRODUCT|1-1:

of . ORDER

FIGURE 15. Two equivalent conceptual schema.

The purpose of the DBRE is not to recover the conceptual schema that was used during the concep-
tion of the database, but to recover a possible conceptual schemathat expresses the semantics of the
database. More than one conceptual schema can specify the same database. All the schemas have
the same semantics, i.e. they represent the same domain. For example, the schemas of figure 15
both represent the same domain (orders, details and products) and are equivalent. To choose
between one of them as the conceptual schema is a matter of corporate standards, habits, method-
ological standard, etc. Thus, even if the conceptual schema never existed, it is possible to recover a
conceptual schemathat represents the database.

A DBRE difficulty is that a part of the semantics may lie outside the system, i.e., it has not been
wired in the coded part of this system (E(A)). The system (DMS, application, etc.) is not aware of
the existence of these constructs. This semantics can be found elsewhere, for instance in the envi-

Program Understanding in DBRE 41

A generic methodology for database rever se engineering

ronment of the application, in the documentation or in the data. Therefore, the extraction process
needs to analyze other source of information than the code of the application.

Project preparation

- v T,

Data structure extraction

complete
logical schema

Data structur e conceptualization

conceptual
schema

FIGURE 16. General architecture of the reference database reverse engineering methodology.

3.2. The DBRE methodology

The genera architecture of the reference DBRE methodology is outlined in figure 16.

Project preparation is apreliminary step, which aims at the identification and the evaluation of the
components to be analyzed, the evaluation of the resources necessary and the definition of the plan-
ning of the operations. Even if this step is not strictly areverse engineering task but more a manage-
rial one, experience teaches us that managing the whole project and identifying the relevant
information sourcesis not an easy task and is crucia for the correct development of the project. The
project preparation is composed of the following processes.

I dentification of the relevant components and of their quality

The files, programs, screens, reports, forms, data dictionaries, repositories, program sources,
data, and documentation are identified and evaluated, not all the components bring the same
quality and quantity of information. For example, DDL gives very precise information and is
cheap to anayze, procedural source code gives also precise information but its analysisis quite
expensive. Documentation, if up-to-date and carefully written, can be very useful and cheap to
analyze (and even make the reverse engineering process useless!). When the documentation is
obsolete and/or not structured, its analysis can take times and, even worse, lead to fal se assump-
tions.

Architecture recovery

It consistsin drawing the main procedural and data components of the system and their relation-
ships.

Project definition

It defines precisely the part of the application that will be analyzed and what are the expected
results. Usual only a part of the applications will be reverse engineered. It isimportant to define

precisely the border of the analyzed applications, because all the applications deeply interact and
it can be difficult to know if, for example, an entity type belongs to the analyzed application or

42

Program Understanding in DBRE

Data structure extraction

not. It is also important to explain to the customer which results he can expect to avoid surprise/
conflicts during or after the project. The nature of the result must be specified (the expected
result will be a conceptual schema, a logical schema or a new database) and its weakness and
strength explained (for example, only the structure of the entity types will be discover).

* Resource identification

Evaluates the resources needed in terms of skill, work force, calendar, machine, tools and bud-
get.

* Operational planning

For each step of the project a completion date and a budget is given. It is important to schedule
some meeting where the state of the project is presented, the difficulties met are explained and
the planning can be adjusted.

The data structure extraction process aims at rebuilding a complete logical schemain which al the
explicit and implicit structures and properties are documented. The main difficulty is that many
constructs and properties are implicit, i.e. they are not explicitly declared, but they are implemented
in procedura sections of the programs. Recovering these structures uses all the available informa-
tion sources to extract explicit and implicit constructs.

The data structure conceptualization process tries to specify the semantic structures of this logical
schema as a conceptual schema. While some constructs are fairly easy to interpret (e.g., a standard
foreign key generaly is the implementation of a one-to-many relationship type), others use tricky
implementation and optimization techniques.

3.3. Data structure extraction

This phase consists in recovering the complete logical schema, including al the implicit and
explicit structures and constraints. This schema can be described as the database view the program-
mer has (or must have) to develop new applications and to maintain them correctly. So this schema
contains a description of all the collections, the entity types and attributes of the database, with their
physical names and all the constraints, implemented or not, that the data must verify.

True database systems generally supply, in some readable and processable form, a description of
this schema (data dictionary contents, DDL text, etc.). Though essential information may be
missing from this schema, the latter is arich starting point that can be refined through further anal-
ysis of the other components of the application (views, sub-schemas, screen and report layouts,
procedures, fragments of documentation, database content, program execution, etc.). The problem
is much more complex for standard files, for which no computerized description of their structure
exists in most cases. The analysis of each source program provides a partial view of the collection
and entity type structures only. For most real-world applications this analysis must go well beyond
the mere detection of the entity type structures declared in programs.

Program Understanding in DBRE 43

A generic methodology for database rever se engineering

Preparation

schema
T =
4 DDL code

S

Data structure
extraction Schema
¢ refinement

Complete ' i
C N Physical
logical schema " integration Complete
. physical sch.
Data structure

conceptualization N Integrated
) physical sch, Schema
' cleaning
| !
schema Complete
logical schema

FIGURE 17. General architecture of data structure extraction phase.

Data structure extraction

The main processes of data structure extraction are shown in figure 17.

3.3.1. DDL code analysis

This rather straightforward process consists in analyzing the data structure declaration statements
(in specific DDL) included in the schema creation scripts and/or application program declarations
(see annex for adetailed description of the DB-MAIN DDL code extractors). It produces a physical
schema, called raw physical schema. Extracting physical specifications from the system data dictio-
nary, such as DMS system catal og, is of the same nature as DDL analysis.

3.3.2. Physical integration

When more than one DDL source has been processed, the analyst is provided with several extracted
schemas. This can occur when the DM S does not provide a unique data dictionary. For example
each COBOL program declares the files it uses and thus each COBOL program declares a part of
the files used by the application. Other DM S, as CODASY L declaresaglobal schemathat givesthe
list of the entity type and the identifier and access keys. The sub-schemas do not define the identi-
fiers and access keys but can declare different (more precise) data structures of the entity type. With
such DMS, the global schema and the sub-schema must be integrated. A last situation with several
physical schemaiswhen the application uses several different databases of possibly different DMS.
The analysis of each database produces a physical schema and all those schemas need to be inte-
grated.

3.3.3. Schemarefinement

The schema refinement process is a complex task through which various information sources are
searched for evidence of implicit or lost constructs. The explicit physical schema obtained so far is

44 Program Understanding in DBRE

Data structure extraction

enriched with these constructs, thus leading to the complete physical schema. The complexity of the
process mainly lies in the variety and in the complexity of the information sources. Indeed the
implicit constraints are hidden, among others, in procedura sections in the application programs,
JCL scripts, GUI procedures, screens, forms and reports, triggers and stored procedures. To perform
reverse engineering of one application, usually more than one of those potential sources of informa-
tion need to be analyzed and for each one there exists more than one way to express a constraint.
For example, in a COBOL program there are at least six different ways to validate a reference
constraint.

In addition, the non encoded part of the system must be analyzed as well because it can provide
evidence for lost constructs. This part includes file contents (the data), existing documentation,
experimentation (execution of the program), user and programmer interviews as well as the envi-
ronment behavior. Environment behavior are the constraints that are enforced by the environment
of the application. For example, the list of the customers is provided by another application that
verifies al the constraints and thus the current application does not validate that the customer
number is unique (an identifier). So it isimpossible to discover the identifier of the customer by the
analysis of the current application.

3.3.4. Schema cleaning

This process transforms the complete physical schema into the complete logical schema by remo-
ving or transforming all the physical constructsinto logical ones. All the physical constructs can be
discarded at this point because they do not provide any information about the database logical struc-
ture. They were useful for technical reasons such as optimizing the performance of the database or
implement some access mechanisms, due to DMS limitations. The main transformations that can
be applied are:

* Removing access keys.
* Removing collections.

Program Understanding in DBRE 45

A generic methodology for database rever se engineering

Complete
logical schema

Preparation

Preparation

physica
schema

,
,
,
,
,
,
e 3
,
,
,

Data structure
extraction

De-optimization

Untranslation

Basic
Conceptualization

Data structure

conceptualization
Raw conceptua
| N schema
Conceptual BN .
schema S L
N Normalization

|
Conceptua
schema

FIGURE 18. General architecture of the data structure conceptualization phase.

Data structure conceptualization

3.4. Data structure conceptualization

This second major phase addresses the conceptual interpretation of the logical schema. It consists
for instance in detecting and transforming or discarding non-conceptual structures, redundancies,
technical optimizations and DM S-dependent constructs and in interpreting them. The conceptual-
ization phase comprises three main processes, namely preparation, basic conceptualization and
conceptual normalization (figure 18).

Preparation

The complete logical schema obtained so far may include constructs that must be identified and
discarded or transformed because they convey no semantics. There are two main kinds of such
constructs. The dead data structures are obsolete structures that have been carefully |eft in the
database by the successive programmers. The technical data structures have been introduced as
internal constructs of the programs and are not intended to model the application domain (pro-
gram counter, name of the last user, etc.).

Basic conceptualization

The main objective of this processisto extract all the relevant semantic concepts underlying the
prepared logical schema. Two different problems, requiring different reasoning and methods,
have to be solved: schema untranslation and schema de-optimization.

The logical schema is the technical translation of conceptua constructs. Through schema
untranglation, the analyst identifies the traces of such translations and replaces them with their

46

Program Understanding in DBRE

Data structure conceptualization

equivalent conceptual constructs. Though each data model can be assigned its own set of trans-
lating (and therefore of untrandating) rules, two facts are worth mentioning. First, several data
models can share an important subset of trandating rules (e.g. COBOL files and CODASYL
structures both have multivalued attributes but not optiona attributes). Secondly, translation
rules considered specific to a data model are often simulated in other data models (e.g. foreign
keysin IMS and CODASY L databases). Hence the importance of generic approaches and tools.

The logical schema is searched for traces of constructs designed for optimization purpose, this
activity is called schema de-optimization. Four main families of optimization techniques should
be considered: discarding constructs, denormalization, structural redundancy and restructuring.
Conceptual normalization

This process restructures the basic conceptual schemain order to giveit the desired qualities one
expects from any final conceptual schema, such as expressiveness, simplicity, minimality, read-
ability, genericity, extensibility. For instance, some entity types are replaced with relationship
types or with attributes, is-a hierarchies are made explicit, names are standardized, etc.

CUSTOMER TELEPHONE CUSTOMER
Name 0_1_1 Num hnd Name
Telephone[0-N]
a) Untranslation transformation.
CUSTOMER
Picture Name
CUSTOMER
Name 1'11-1— File PN Picture
Format File
Format
b) De-optimization transformation.
ORDER
DETAIL Ord Num
Prod_Num detail[1-N]
ORDER — Prod_Num

L1 1| Quantity '
Ord Num H Nl i Rl - Quantity

— o
id: Ord_Num id: contains.ORDER — e
Prod Num id: Ord_Num
= id(detail):
Prod_Num

¢) Normalization transformation.

FIGURE 19. Example of entity type transformed into attribute used in different process.

The transformations used in each step will not be detailed, but section 3.4.4 gives the list of al the
transformations used in reverse-engineering with their forward counterpart and in which process
they are usually used. Several of those transformations are not used only in one process and need to
be described more than once. For example, the transformation of an entity type into an attribute can
be used in the untranslation, the de-optimization and in the normalization processes, depending of
the DM S and the schema:

Untranslation

A relational database does not support multivalued attribute. One solution to store a multivalued
attribute in arelational database is to transform it into an entity type. During the untranslation
processif the analyst find an entity type that contains only one attribute and has only one role of
cardinality 1-1, thisentity type can be untranslated as an attribute (see figure 19.a).

Program Understanding in DBRE 47

A generic methodology for database rever se engineering

» De-optimization
If an entity typeis accessed quite often and it contains a huge attribute that is rarely used, acom-
mon optimization is to transform this attribute into an entity type. For example, in figure 19.b, if
the CUSTOMVER entity type contains the picture of the customer and this entity type is accessed
each time the customer orders a product to have its name, but the picture is used only once a
year. During the de-optimization an entity type that is connected by a one-to-one relationship
type can be transformed into an attribute.

¢ Normalization

An entity type, that plays only a 1-1 role and is dependent on the entity type to which it is con-
nected, can be transformed into an attribute during the normalization of the schema. For exam-
ple, in figure 19.c, DETAI L plays a 1-1 role with ORDER, it can be transformed as a multivalued
attribute of ORDER.

3.4.1. Preparation

This phase prepares the schema in such a way that it only contains structures and constraints that
are necessary to understand the semantics of the schema. They are two kinds of constructs that
need to be discarded: dead data structures and technical data structures.

In addition, this phase carries out cosmetic changes such as naming improvement and physical
construct removing. DM S impose restrictions about the name of the objects (not all the characters
are accepted, the length of the names is limited, names are case sensitive or not). A database has
been developed by several programmers and has been maintained, so the naming convention are not
aways the same: synonyms have been used (in some entity type the customer term has been used,
in other the term buyer is used, etc.), more than on language has been used (mixture of English,
French and Dutch word). Through screen and report analysis meaningful names can be found. For
al those reasons it is necessary to rename the objects with meaningful name to have a more read-
able schema.

Thelogical schemastill contains physical constructs that are useless in the conceptual schema such
asindexesfiles. These constructs can be removed.

ORDER
ord_id ORDER ORDER
detai ‘ggtjai'ld ord_id
id ord id L0
Sl N detail§20-20] 0 de::'f'_j;f’gio]

f-det-stk
01 DETAILS OCCURS 20 TI MES. v cpy _ord-y
03 REF- DET-STK PIC 9(5). id ord id id: ord_id

03 ORD-QTY PIC 9(5).

a) Raw schema and vari- b) Refined c¢) Prepared
able declaration. schema. schema.

FIGURE 20. Example of unnecessary attributes decomposition.

Some awkward parts of the schema can be also restructured. For example, during data structure
extraction, the structure of some attributes is refined. During this phase, unnecessary attribute
decomposition can be created. Figure 20.a shows the physical schema and the data structure decla
ration used to refine the attribute Detail. The result (figure 20.b) gives the attribute Detail that is

48 Program Understanding in DBRE

Data structure conceptualization

composed of only one attribute (Details). This unnecessary decomposition can be suppressed
(figure 20.c).

VEHICULE
Local_Num VEHICULE
Manuf_Num[0-1] Manuf_Num
Type N Type
Color Color
id: Loca_Num id: Manuf_Num
id': Manuf_Num

FIGURE 21. The local_num attribute is not used any more and can to be removed.

3.4.1.1. Dead data structures

The dead data structures are obsol ete data structures, which have been carefully left in the database
by the successive programmers. These data structures typically appear during the evolution of the
applications. For example, a car seller gives to each of the vehicles he sells an identification
number and the car manufacturer also gives (another) identification number to the car. The two
numbers are needed, because when the order is created the manufacturer number is not yet known.
So the car description entity type contains two identifying attributes, see figure 21, one for the
number generated by the seller (Local_Num) and one for the number given by the manufacturer
(Manuf_Num). After some years, the car seller has a direct access to the manufacturer information
system and immediately knows the car number given by the manufacturer. So he decides to use
Manuf_Num asthe only identifier, so the attribute Local_Num becomes redundant, but the program-
mer does not remove the attribute from the database, he just discard its uses. During the data struc-
ture extraction phase we have noticed that the field is not used anymore and it can be removed.

Anather origin of dead data structure is that the programmer anticipates a possible evolution of the
application. For example, the programmer notices that the supplier has an E-mail address, while the
customer has none. He adds such a attribute to the customer entity type to anticipate a possible
evolution. Yearslater, this attribute was never used and it can be removed.

Programmers are reluctant to remove such data structures during classical maintenance because
they need to be sure that the data structures are not used any more and usually they only master a
part of the application. Another reason is that to remove a data structure (record or field), most of
the DM S (see [Hick-2001]) require the creation of a new database and to download the old datainto
the new database. This is a non trivial operation: all the applications that use the data need to be
shutdown, it takes alot of time (to download the data) and space (to create the temporary database).

For very big databases, with alot of data, it cannot be done in one night. It has to be done during a
holiday where the enterprise is closed to perform this download.

Severa hints can help to identify dead data structures. The main oneis that they are not referenced

(read or write) by any programs or only by dead sections of programs. We can a so notice that they
have no instances or their instances have not been updated for along time.

3.4.1.2. Technical data structures

Technical data structures have been introduced as internal constructs by the programmer for techni-
cal reasons and are not intended to model the application domain. An example of such structures are

Program Understanding in DBRE 49

A generic methodology for database rever se engineering

various program counters (number of recordsin afile, number of detailsin an order, etc.), name of
the last user, copy of screen layouts, the list of the messages text, program save points, etc.

ORD-CUS-LINK
ORDER o-c-id
orckid Oo-CUS CUSTOMER ORDER CUSTOMER
ord-cus o-c-ord cus-id Orgi_ld cus-id
0-C-next-link[0-1. cusfirst-ord[0-1] ord-cus
id: ord-id id: o-c-id I T ordid id: cus-id
ref: ord-cus ref: o-c-next-link j(‘i id: cus-id : '.or !
ref: o-c-cus ref: cus-first-ord ref: ord-cus
ref: o-c-ord
a) The physical schema. b) The logical schema.

FIGURE 22. A physical schema with its logical counterpart.

Those physical constructs need to be transformed into their logical counterpart (or removed). For
example, access path can be explicitly implemented in the database (figure 22.a) and can be trans-
formed into asingle foreign key in the logical schema (figure 22.b).

3.4.2. Basic conceptualization

This process concentrates on extracting a first cut conceptual schema without worrying about
esthetical aspects of the result. Two kinds of reasoning have been identified, namely untrandation
and de-optimization. Though distinguishing between them may be arbitrary in some situations
(some transformation pertain to both).

The reader will probably be surprised that the processing of some popular constructs will generally
be ignored in this section. In fact, these problems have been discarded, except when they appear
naturally, since they are common to all DMS and there is no general agreement on whether they
must be recovered or not. Therefore they will be addressed in the conceptual normalization
process. As an example, we could interpret an identifying foreign key, that is, a unique key that
also is aforeign key, as the trace of a subtype/super-type relation. We prefer to transform it as a
mere one-to-one relationship type, which in turn will be interpreted, in the normalization phase,
either as a pure one-to-one relationship type or as entity type fragmentation or as a subtype/super-
type relation.

3.4.2.1. Schema untransation

At first glance, this process seems to be the most dependent on the DM S model. Indeed arelational
schema, a CODASY L schema and a standard file schema, though they express the same conceptual
schema, are made up of quite different data structures. They have been produced through different
transformation plans and therefore should require different reverse untrandation rules as well.
However, it can be shown that these forward plans use a limited set of common primitive transfor-
mations [Hick-2000]. A set of about 30 elementary operations has proved sufficient to define logi-
cal design strategies for al past and current DMS, from COBOL standard files to OO-DBMS
([Hainaut et al.-1996a]). Since reverse engineering is basically the inverse of forward engineering, a
toolbox comprising the inverse of these forward transformations would count no more than one or
two dozens of operators.

50 Program Understanding in DBRE

Data structure conceptualization

3.4.2.2. Schema de-optimization

Both conceptua and logical optimization processes will be considered as awhole since they use the
same set of transformations, though possibly through different strategies. Let us recall that we have
to find traces of four major families of optimization techniques based on schema transformations,
namely discarding constructs, structural redundancy, unnormalization and restructuration. They
must be precisely understood in order to reverse their effect. In particular, some of them are more
specificaly fitted for some DM S than for others.

A. Discarding constructs

This optimization resorts to the part of the specification that is lost during the forward engineering
and should be addressed in the data structure extraction phase through the analysis of the data, the
environmental properties and the domain knowledge.

ORDER
O-N— OrderNumber -O-N
11 id: OrderNumber 11

INVOICE

InvoiceNumber
Date
Amount

id: for. ORDER
InvoiceNumber

LINE-of-ORDER|

ItemCode

Qty

id: from.ORDER
ItemCode

0-N

0-N LINE-of-INVOICE-,
LineNumber \‘\\
6 QY 1
@ 1 Amount 1 @
id: from.INVOICE N
LineNumber

| in LINE-of-INVOICE :
|.from.INV OI CE.for. ORDER.OrderNumber
=|.for.LINE-of-ORDER.from.ORDER.OrderNumber

FIGURE 23. Example of expression (I.from.INVOICE.for.ORDER.Order Number

= |.for.LINE-of-ORDER.from.ORDER.Order Number) between two constructs that
do not express redundancy.

B. Sructural redundancy

The main problem is to detect the redundancy constraint that states the equivalence or the derivabil-
ity of the redundant constructs. The expression of such constraint is of the form C = fC,....,
where C is the designation of the redundant construct. Note that expressions such as
(G Ci) = (G 1.C)) generaly do not express redundancy, but rather a pure integrity
constraint, in which case no construct can be removed. For example in figure 23, the schema can be
interpreted as follow. There can be several invoices for an order and an invoiceis associated to only
one order. Each line of an invoice (LINE-of-INVOICE) corresponds to a (part) of the line of an order
(LINE-of-ORDER). There exist a cycle into the schema and we can wonder if there is some redun-
dancy in this cycle (a relationship type can be suppressed). But in this example, each relationship
type is necessary because the constraint "I.from.INVOICE.for. ORDER.Order Number

= |.for.LINE-of-ORDER from.ORDER.OrderNumber" express the fact that for each line of an
invoice, the number of the order (Order Number) associated with theinvoice isthe same as the order
number of the line of the order to which the line of invoice is associated with. Thisis not a redun-

Program Understanding in DBRE 51

A generic methodology for database rever se engineering

dancy, we could not suppress a relationship type, but an integrity constraint that need to be
expressed..

REGION
Name
e L oN— : > REGION
SalesMan ON Name
id: l\!ame 1-1 Sdesan l O-N
0-N CUSTOMER id: Name 11
%‘ CUSTOMER
] Custld
' 1-1 .Afjdr% Name
| f id: Custld - Address
i| ORDER | it Cusild
i [Ordid O-N I
! |Date ORDER _1 ON
{ [1temCode —1-1— of > Ordid
| o
."I SalesMan |, ItemCode
i 19999 |t [eoral 01n ORDER: SLA—
i Y O.sdesMan i
'-| from = of.in = O.from.REGION.SalesMan

FIGURE 24. Example of structural redundancy elimination.

Figure 24 depicts the elimination of a composed relationship type and of a duplicate attribute. The
attribute ORDER.SalesMan has been recognized during the data structure extraction phase as dupli-
cate attribute that has the same value as REGION.SalesMan connected through the from relation-
ship type. The relationship type from was recognized as the composition of of and in. So those two
constructs can be removed.

EMPLOYEE
EmplD
Name EMPLOYEE DEPARTEMENT
DepartName EmplD 1 1@1 N DepartName

PN 1- -NH
Manager Name Manager
id: EmpID id: EmpID id: DepartName
fd: DepartName|
Manager

FIGURE 25. Normalization redundancy elimination.

C. Normalization redundancy

An unnormalized structure is detected in entity type B by the fact that the determinant of a func-
tional dependency is not an identifier of B. Normalization consists of splitting the entity type by
aggregating the components of the dependency as illustrated in figure 25. Note that the relationship
type should be one-to-many (transforming an attribute into an entity type by value representation)
and not one-to-one, otherwise, there would be no redundancy.

D. Restructuration.

We will discus the reversing of some of the more specific restructuration techniques:
» \ertical partitioning optimization (split)

Entity types E1 and E2 are linked by a one-to-one relationship type and represent complemen-
tary properties (attributes or roles) of the same entity type.

52 Program Understanding in DBRE

Data structure conceptualization

» \ertical merging optimization (merge)
Entity type E includes properties related to several entity types.
» Horizontal portioning optimization (HorPart)
Entity types E1 and E2 have the same properties and represent the same kind of entities.
» Horizontal merging optimization (Asclnher)
Entity type E has unclear semantics that seem to encompass two similar but distinct entity cate-
gories.

These techniques introduce no redundancy, so it is optiona to reverse them at this level. For
instance, similar reasoning will be found in the normalization phase.

3.4.3. Conceptual normalization

Let us first observe that what we call normalization generally does not encompass the relational
interpretation of the term. Indeed, relational normalization aims at removing redundancy anomalies,
therefore resorting to de-opti mization reasoning.

The goal of the normalization transformations is to improve, if necessary, the expressiveness, the
simplicity, the readability and the extensibility of the conceptual schema. In particular, it tries to
make higher level semantic constructs (such as is-a relations) explicit. Whether such expressions
are desirable is a matter of methodological standard, of local culture and of personal taste. For
instance, a desigh methodology that is based on a binary, functional ER model (e.g. the Bachman's
model of the seventies) will accept most of the conceptual schema obtained so far. More powerful
models will require the expression of, e.g. is-arelations or N-ary relationship types when relevant.
In addition, the final conceptual schema is supposed to be as readable and concise as possible,
though these properties basically are subjective.

Some constructs that need to be looked for and transformed:

» Relationship entity type (Et-Rt)
By this term, we mean an entity type whose aim obviously isto relate two or more entity types.
It will be transformed into a many-to-many and N-ary relationship type.

» Attribute entity type (Et-Att)
Such entity type has a small number of attributes only and is linked to one other entity type A
through a[1-j] role. All its attributes participate to its identifier.

» one-to-onerelationship type (Merge)
It may express the connection between fragments B1 and B2 of a unique entity type B (vertical
partitioning).

» One or several one-to-one relationship types (Rt-1s-a)
If the relationship types show a common entity type A, they may express a specialization rela-
tion in which A isthe supertype.

» Long entity type (Split)
An entity type that comprises too many attributes and roles can suggest a decomposition into
semantically homogeneous fragments linked by one-to-one relationship type.

Program Understanding in DBRE 53

A generic methodology for database rever se engineering

0-N

SALESMAN
— 0- SALESMAN
1

1-
=4
EQUIPEMENT|-0-1< rented EQUIPEMENT m@m
11
O-N
o-N-|CLIENT
CLIENT (o >-on-[oreT
I
O-N SALESMAN
01
EQUIPEMENT
coex: by. SALESMAN
t0.CLIENT

Co—on—foET

FIGURE 26. Decomposition of a N-ary relationship type through its [i-1] role.

* N-ary relationship type with a[i-1] role (Rt-Et + Merge)
It can be transformed into binary many-to-many relationship types (see figure 26).
» Entity type with common attributes and roles (I ntegration(common supertype))

If two entity types have common attributes and roles, they can be made the sub-types of a com-
mon supertype that inherits the common characteristics.

STAFF
PID STAFF
Name PID
Address Name
Level[0-1] = Address
Function[0-1]
Speciaty[0-1] /A\
coex: Level WORKER EMPLOY EE|
Function Speciaty Level
exact-1:Level Function
Speciaty

FIGURE 27. Defining subtype from coexistence subsets of optional attributes and roles.

» Groups of coexistent attributes and roles (Att-Et + Rt-1s-a)
Each coexistence group can be extracted as a subtype of the parent entity type (figure 27).

An in-depth analysis of is-arelations implementation can be found in [Hainaut et al.-1996c].

3.4.4. Thedata structure conceptualization transfor mations

In this section, the most important transformations used during the data structure conceptualization
process are presented. It presents, for each transformation, the step in which it can be used (U:
untranglation, D: de-optimization, N: normalization) and which forward transformation can lead to
the source construct and why the developer needs this transformation. A complete description of

54 Program Understanding in DBRE

Data structure conceptualization

each transformation, with a detailed description of the pre and post conditions, can be found in
[Hick-2000].

3.4.4.1. Entity typeto attribute (DN)

A EA2
(4] ; En2
Al A2 - Al Al A2 A
A3 id: A2 AD[2-5 A3 id:r.A And Al
[2-5] A2 A2[2-5]
A3

e
2-5—@1“ A3 T
2-5—@1-1

An entity type, that plays only one role can be transformed into an attribute.

Forward transformation. There are two transformations that can lead to this structure: transfor-
mation of an attribute into an entity type by representing the possible duplicate attribute instances
(by instance) or by representing the distinct attributes value (by value).

Those transformations are used during the normalization (N) to eliminate multivalued or compound

attributes because the corporate standard does not allow them. They are also used during the trans-
lation (U) and optimization (D) to eliminate some constructs.

3.4.4.2. Attribute aggregation (UN)

A A
AL = s

A2 A21 o1
A2 A22 Ao

Aggregating several attributes, those contribute to the same domain concept, as a compound
attribute.

Forward transformation. Disaggregating a compound attribute. Such transformation is necessary
to comply with some DM S that does not support compound attributes, as relational DMS.

3.4.4.3. Attribute disaggregation (UN)

A
Al Puy Al
A2 A21

A2l A22

A22

Disaggregating a compound attribute into its components, if the components are not of the same
concept domain.

Forward transformation. Some DMS require, as COBOL, that identifiers or access keys contain
only one attribute (U). So if an identifier or an access key is composed of more than one attribute,
the programmer aggregate them into atechnical attribute.

Program Understanding in DBRE 55

A generic methodology for database rever se engineering

3.4.4.4. Foreign key into relationship type (U)

B

A B Al B1

" 8 - [AL] Bl
B1[2-5] B2 id:B1

ref: B1[*]—————>>id: B1 T
25— 1 >—0N

Transforming a foreign key into its relationship type counterpart. In this section, we only present
the standard foreign key, according to which a set of attributesin an entity typeis used to designate
elements in another entity type. A careful analysis of existing databases puts into light a surpri-
singly large variety of non standard forms of foreign keys. Most of them are quite correct and
perfectly fitted to the requirements the developer hasin mind. However, their conceptual interpreta
tion can prove much more difficult to formalize than the standard form. A complete discussion to
the concept of foreign key can be found in [Hainaut-19974)].

Forward transfor mation. The relationship types were transformed into foreign keys because most
of the DM S does not support relationship types.

3.4.45. Ligt of attributesinto a multivalued attribute (U)

A
A
AL: char (6) o
A21: char (5) A1: cher (6)
A22[0-1]: char (5) A2[1-3]: char (5)
A23[0-1]: char (5)

A series of single-valued attributes, of same type and length, are transformed into a multivalued
attribute.

Forward transformation. Replacing a multivalued attribute with a series of single-valued

attributes that represent its instance. This transformation can be used if the DM S does not support
multivalued attributes, as relational DMS.

3.4.4.6. Singleattribute into a multivalued attribute (U)

A A
<~
AL: char (6) Al: char (6)
A2: char (15) A2[3-3]: char (5)

A single attribute is transformed into a multivalued one, the length of the original attribute must be
amultiple of the length of the target one.

Forward transfor mation. Replacing a multivalued attribute by a single-valued attribute that repre-
sents the concatenation of its instances. This transformation can be used if the DMS does not
support multivalued attributes, as relational DMS.

56 Program Understanding in DBRE

Data structure conceptualization

3.4.4.7. Remove technical identifier (UD)

A
IDA A
Al D Al
A2 A2
id: IDA D id:Al
id:Al

Remove the technical identifier of an entity type if this attribute is not a concept of the domain.

Forward transformation. A semantic-less attribute is added and made primary identifier of the
entity type. This can be necessary because an entity type does not have an identifier and the DMS
requires that each entity type has an identifier (U) or thereisan identifier but its type istoo long or
incompatible to use it as an identifier, e.g. asthe target of aforeign key (D).

3.4.4.8. Object attribute into a relationship type (U)

B
A B
Al B1
Al B1 = 2] B2
B[2-5]: *B B2 id: B1

id: B1 o C OIN
Transforming an object attribute (reference or pointer) into arelationship type.

Forward transformation. Transforming a binary relationship type into an object attribute (refer-
ence or pointer). This can be useful if the target DM S is object oriented.

3.4.4.9. Relationship type into multi-domain role (N)
Texactt 12 < B'.N®1-

0-17 ri.rl
1 L2
B Jon

Transforming relationship types (whose roles participate in exactly one constraint) into the corre-
sponding rel ationship type with a multi-domain role.

Forward transformation. Transforming a multi-domain role into the corresponding relationship
types.

3.4.4.10.Multi-domain role into relationship type (UN)

s
rl P 0-1 C
&N@l‘ exact-1: r2.l

| @01’ rLrl
& Jon

Transforming amulti-domain role into the corresponding relationship types.

Program Understanding in DBRE 57

A generic methodology for database rever se engineering

Forward transformation. Some DMS can represent multi-domain role, as the CODASY L multi-
member relationships.

3.4.4.11. Merge entity types (DN)

o Al
Al 1—}@1- A3 A2
e

A4

Merge two entity types connected by a one-to-one relationship type into one entity type.

Forward transfor mation. Splitting an entity type into two entity types connected by a one-to-one
relationship type. The entity type can be split because it has too many attributes and the schemaiis
more readable with two entity types (N). It can also be split to optimize the access time (D), if some
of the attributes are very often accessed and the other not very often. For example, the product
record contains the name of the product (name) and its picture (picture); name is used each time
product is accessed but picture is only used once per year to print the new product catalogue. Then
product is split into two parts, one with the attributes that are accessed very often and the other with
the remainder. Like that the record that is access very often is smaller and can be quickly loaded and
once ayear it takes more time to retrieve the picture of the product.

3.4.4.12.5plit an entity type (DN)

Al -
A2 Al 1-@1— A3
A3 A4
A4

Splitting an entity type that contains attributes of different application domain concepts into two
entity types connected by a one-to-one relationship type.

Forward transformation. Merge two entity types connected by a one-to-one relationship type into
one entity type. The two entity types represent different application domain concepts but are
merged for optimization (D) purpose, if the program aways need both concepts together.

3.4.4.13.Entity type into relationship type (N)
>

1-1 O-N
1-1 ; 1-1 And
r
s; O-N R1 O-N
id:raA R2
rb.B
rc.C

Transforming an entity type, which seemsto be the representation of arelationship type, into arela-
tionship type.

58 Program Understanding in DBRE

Data structure conceptualization

Forward transformation. Transforming a relationship type into an entity type. DMS does not
support relationship types with attributes and N-ary relationship types, they need to be transformed
into entity types.

3.4.4.14.Relationship typeintois-a (N)

A2
11 1-1 <

8

One-to-one relationship types with a common entity type are transformed into an is-arelation.
Forward transformation. Materializing an is-a relationship into relationship types. If the DMS

does not support is-a relations, they must be transformed. One of the possible transformationsis to
materialize them by relationship types.

3.4.4.15.Common supertype (DN)

8 |

Al Al =
A2 A2

A3 A4

Transforming two entity types with common attributes or roles (attributes and roles representing
same concept) by the creation of a common supertype.

Forward transformation. The attributes and roles of the supertype of an is-a relation are copied

into each sub-type. If the DM 'S does not support is-arelations, they must be transformed. One of the
possible transformation is to copy al the attributes and roles of the supertype into its sub-types.

3.4.4.16.Integration (D)

a
Al Al = AD
A2 A2

A3 B4 A3

B4

Two entity types that represent the same application domain concept are merged into an entity type.

Forward transformation. An entity type is duplicated, both entity types represent the same appli-
cation domain concept. To reduce the size of afile, we can decide to horizontally partitioning it, i.e.
duplicate the structure and to store one instance in the first one and the other one in the other. For
example, to reduce the size of the file containing the orders, we can decide to store in one file the
current orders! (stored on afast disk) and the other ones that contain the archived orders (stored on
another disk or on a CD-Rom or on atape).

Program Understanding in DBRE 59

A generic methodology for database rever se engineering

3.5, Example

This section presents a small DBRE example. The only source of information available is a frag-
ment of the COBOL source code of the application (file and record declarations and some proce-
dural code). Figure 28 sketches the DBRE process with the different products used and produced.

Thefirst step analyzesthe DDL code, i.e. transates the file declarations (thef i | e- cont r ol of the
i nput - out put section) and the record declarations (the file section) to produce the
physical schema. The sel ect clauses are trandated into collections, ther ecord key’sinto iden-
tifiersandtheal ternate record key wi th dupli cat e into an access key. The Ol level vari-
ables of thefil e section aretranslated into entity types with their respective sub-variables as
attributes.

This schema contains only the collections and entity types with access keys and identifiers, but no
referential constraints. Additional implicit constraints can be discovered (schema refinement)
through the procedural fragment anaysis. The structure of CUS- DESC can be decomposed as
DESCRI PTI ON because there is an assignment instruction (nove CUS- DESC t o DESCRI PTI ON)
between CUS- DESC and DESCRI PTI ON and DESCRI PTI ON has a more precise decomposition
(decomposed into two sub-variables) than CUS- DESC (only along string of characters). A referen-
tial constraint can be discovered through the analysis of the second part of the code fragment: the
user is asked for a CUS- CODE, if CUS- CODE exists in the CUSTOMVER file (r ead) then it is copied
into ORD- CUS and the CUS record is stored into thefile.

Now we have the complete logical schema, the data structure conceptualization transforms the logi-
cal schemainto a conceptual schema:
* Preparation

Removing the indexes and collections. Before removing the collections, the entity types are
renamed as the collections, because the collections have more meaningful names. A COBOL
habit is to prefix fields by the name of the record to have unique names. So the common prefix
of the attributes be removed.

* Untrandlation
Transforming the referential constraints into relationship type.
» Conceptual normalization
Disaggregating the compound attribute (CUS-DESC) and renaming objects.

1. Ordersthat are not already paid.

60 Program Understanding in DBRE

Example

I nput - out put secti on. file section.

file-control. .FD CUSTOMER.
Sel ect CUSTOMVER assign to "cus.dat" 01 CUS.
organi sation is indexed 02 CUS- CODE Pl C X(12).
record key is CUS- CODE. 02 CUS- DESC Pl C X(80).
Sel ect ORDER assign to "ord. dat" \FD ORDER.
organi sation is indexed 01 ORD.
record key i s ORD- CODE . 02 ORD- CODE Pl C 9(10).
alternate record key is ORD CUS 02 ORD- CUS Pl C X(12).
with duplicates. 02 ORD-DETAIL PI C X(200).

a) The collections and entity types declaration (DDL).

* DDL code analysis

01 DESCRI PTT ON. raccept CUS- CODE.
CUS%EE ORD}?:F(*)DDE 02 NAME pic x(30). ' read CUSTOVER
CUSDESC ORD-CUS 02 ADDRESS pic x(50).; invalid key
id: CUSCODE| |ORD-DETAIL + X go to c-not-found.
acc id: ORD-CODE nove CUS- DESC ' nove CUS- CODE
acc
acc. ORD-CUS to DESCRI PTI ON. . to CRD-QUS.
‘write CUS.
@ c- not - f ound.
cus @ ' di spl ay "customer
' not found".
b) The physical schema. ¢) Procedural fragments.
* schema refinement
CUSTOMER
cus ORD o 5 Code
CUS-CODE ORD-CODE 5® Name
CUS-DESC ORD-CUS 8 N Address
NAME ORD-DETAIL 2 g id: Code
ADDRESS id. ORD-CODE 2= oN
id: CUS—CODEQL acc % §
acc ref: ORD-CUS c place
|
Comoue> >
Code
CcuS M Detail
id: Code
d) The complete logical e) The conceptual
schema. schema.
FIGURE 28. Database reverse engineering example.
Program Understanding in DBRE 61

A generic methodology for database rever se engineering

62

Program Understanding in DBRE

cHAPTER4 Data Sructure
extraction

This chapter describes in detail the data structure extraction process. This processis divided in four
steps. The first, the DDL code analysis, extracts from the data description language script the
explicit structures and constrainsin order to produce the raw physical schema. If more than one raw
physical schemas exist, the physical integration step integrates them into a single schema. The
schema refinement step enriches the integrated schema with explicit constraints revealed by the
analysis of the source code, the data, etc. Finadly, the schema cleaning step discards the physical
constructs that are no longer needed. The main constraints that are searched for are described as
well as the elicitation techniques that are used to recover the constraints during the schema refine-
ment steps.

4.1. Introduction

The data structure extraction is the most crucial and difficult part of the DBRE. Data structure
extraction anayzes the existing (legacy) system to recover the complete logical schema. This chap-
ter details the data structure extraction processes and deeply analyzes the schema refinement
process. The schema refinement recovers the implicit constructs, i.e. the constructs that are not
explicitly declared in the DDL code. The implicit constructs that are looked for are enumerated and
analyzed. The possible sources of information used to recover the data structure are presented.
Techniques that can be used to recover implicit constructs through the analysis of the different
source of information are presented. Those techniques are called elicitation techniques.

Finally, a schema refinement methodology is presented. This methodology is a repetitive process
that searches for a possible missing constraint (called hypothesis) and tries to validate this hypothe-
sis. This processisiterated until no new hypothesisis discovered. The conditions to decide when all
the hypotheses have been discovered are discussed as well as how the elicitation techniques are
used to discover and to validate the hypotheses.

Program Understanding in DBRE 63

Data structure extraction

DDL code User views

DDL code
analysis

Integrated
physical schema
Physical

integration
Schema
- analysis
8 Programs
% under standing
Schema c
refinement % Data
— Analysis data
©
g Screens, forms
. < analysis forms screens ¢ reports
"\ (% Other analysis
K vezitligiss data dictionariesy ¢ documentation
Schema .
cleaning Qec_utiD

* Complete
Complete physical schema
logical schema

FIGURE 29. Data structure extraction.

4.2. The methodology

The main processes of the data structure extraction are the following (Figure 29).

DDL code analysis

It analyzes the physical schema, DDL code or user views, in order to extract the explicit con-
structs and constraints. It provides the raw physical schema. This schema contains al the data
structures and constraints declared and only them.

Physical integration

When more than one source has been processed, several raw physical schemas can be available.
All those schemas are integrated into a global one, giving the integrated physical schema.
Schema refinement

The integrated physical schema obtained so far is enriched with implicit constructs that are
found through the analysis of the other sources of information as the procedural code, the screen
layout, etc. The result of the schema refinement is caled the complete physical schema. This
schema.is the memory of the whole data structure extraction phase; it contains al the data struc-
tures and constraints discovered. It contains the details about the physical implementation of the
database (as indexes, page size, etc.) and the structure of the data.

64 Program Understanding in DBRE

The methodology

COBOL statement Physical abstraction

select S assign to P collection S assigned to physical file P

record key is F primary identifier with attribute F;
and access key with field F.

alternate record key is F attribute F is a secondary identifier
and an access key.

alternate record key is F attribute F is an access key.

with duplicates

fd S. entity type Rwithin storage S.

01 R

05 F pic 9(n) numeric attribute F of size n, associated with
its parent structure (entity type or compound
attribute).

05 F pic X(n) alphanumeric attribute F of size n, associated

with its parent structure (entity type or
compound attribute).

05 F1. compound attribute F1, with sub-attribute
10 F2 ... F2, etc.
05 F ... occurs n tines multivalued attribute F, with cardinality n- n.

FIGURE 30. Main abstraction rules for COBOL file structures.

SQL statement Physical abstraction

create dbspace S ... collection S.
create table T (...) in S entity type T within collection S.
F nuneric(n) numeric attribute F with size n.
F char(n) character attribute F with size n.

not nul | the current attribute as mandatory
primary key (F) primary identifier with attribute(s) F

uni que (F) secondary identifier with attribute(s) F
foreign key (F) references T attribute(s) F aforeign key referencing entity

typeT.

create index on T(F) access key with attribute(s) F.
create unique index on T(F) secondary identifier with attribute(s) F;

access key with attribute(s) F.

FIGURE 31. Main abstraction rules for relational structures.
» Schema cleaning

Discards physical constructs that are no longer needed in order to get the complete logical
schema (or simply the logical schema).

The complete logical schema includes all the data structures and constraints discovered during the
data structure extraction. This schemamay no longer be DM S compliant for at least two reasons. It
isthe result of the refinement process, which enhances the schema with recovered constraints, these

Program Understanding in DBRE 65

Data structure extraction

constraints are mainly constraints that cannot be expressed in the DMS. The complete logical
schema describes the structure of the persistent data of the application and in some application more
than one DM Sis used. For example, some data are stored in COBOL files and othersin a SQL data-
base. If two DMS do not have the same data model, the resulting complete logical schema is
compliant with none of the DMS.

On the other hand, this schemais still very close to the current implementation. It can be described
as the programmer’s view of the database with all the constraints and details needed to write or
modify programs that access the database.

4.2.1. DDL code analysis

This process clearly is the simplest one in the data structure extraction. It consists in deriving phys-
ical abstractions from each DDL construct. The set of rulesis easy to state in most DMS, provided
the target abstract physical model includes a sufficiently rich set of features. It must be noticed that
each DDL, even in the most modern DM S, includes clauses intended to declare physical concepts
(e.g. indexes and clusters), logical concepts (entity types, attributes and referential constraints) as
well as conceptual concepts (identifiers). Separating the DM S constructs in the standard abstraction
levelsis sometimes tricky (asin IMS for instance). Figure 30 and figure 31 show the main abstrac-
tion rules for converting COBOL and SQL-2 code into abstract physical structures. These conver-
sion rules should be adapted to the specificity of each DMS. Similar rule sets can be defined for
CODASYL, DL/1, TOTAL/IMAGE or OO data structures.

create tabl e CUSTOVER(
C ID integer primary key,
C DATA char (80));

ORDERS CUSTOMER
O_ID: num (10) C_ID: num (10)
create t abl e O?DERS(L |owNER: num (10) C_DATA: char (80)
O ID integer primry key, id: O_ID _‘(>id: C1D
OMER i nt eger, ref: OWNER

foreign key(ONNER)
ref erences CUSTOMER) ;

FIGURE 32. SQL-DDL and its physical abstraction.
Figure 32 shows a code fragment SQL-DDL and its corresponding physical abstraction.
Almost all CASE tools propose some kind of DDL code analysis for the most popular (generally

relational) DMS. Some of them are able to extract relationa specifications from the system data
dictionary aswell. Few can cope with non relational structures.

4.2.2. Physical schema integration

When more than one DDL source has been processed, the analyst is provided with several extracted
schemas. Let us mention some common situations; DBD?! and PSB2 (IMS), schema and sub-sche-
mas (CODADYL), file structures from each the application program (standard files), database

1. Database Description.
2. Program Specification Block.

66 Program Understanding in DBRE

The methodology

schema, COBOL copy books (source code fragment that are included in the source program at
compile time) etc. All these schemas have some common elements and each one may include
specific elements not present in the other one. The final logical schema must include the specifica-
tions of al the partial views, through the physical integration process. This process differs from the
approaches proposed in the literature on the integration of conceptual views ([Garcia et al.-1995]).
In particular, we can identify three specific characteristics of physical schema integration.

01 ORD 01 ORD DET.
02 ORD-NUM PIC X(5). 02 ORDDET-NUM Pl C X(5).
02 ORD-DATAL PIC X(15). 02 ORDDET-LINE Pl C X(5).

02 ORD-DATA2 PIC X(15). | ‘\>{ 02 ORDDET- DATAL PI C X(20).
02 ORDDET-DATA2 PIC X(5).

FIGURE 33. Example of incompatible record declarations.

1. Each physical schemaisaview of aunique and fully identified physical object, namely the leg-
acy database. Consequently, syntactic and semantic conflicts do not represent divergent user
views but rather insufficient analysis. There isa syntactic conflict if two declarations of the same
physical object are incompatible. For example figure 33 represents two COBOL declarations
that are incompatible because the structure of one of them is not included in the other one. A
semantics conflict occurs when the same physical object can represent different kind of informa-
tion with a different semantics.

Program A Program B
FD CUSTOMER. FD CUSTOMER. CUSTOMER
01 CUST 01 CLIENT. D e
02 NUMPIC X(5). 4 021D PICX(5). 0 ADR
02 NAME PI C X(30). 02 NAME PI C X(30). STREET
02 ADR PIC X(97). | 02 STREET PI C X(60). Sy
A 02 zIP PIC X(7).

02 CITY PIC X(30).
FIGURE 34. Example of integration based on data’s offset and length.

2. Physica and technical aspects of the data can be used in correspondence heuristics, such as off-
set and length of data fields. For example, if two COBOL programs use the same physical file
(same file on the disk) but the declarations of the corresponding record types are not exactly the
same, the offset and length of the fields can be used to find a common representation as shown in
figure 34.

3. There may be alarge number of such views. For instance, a set of COBOL files serving a portfo-
lio of 1000 programs unitswill be described by 1000 partial views. In addition, thereis no global
schema available for these files. The latter will be recovered by integrating these views.

This process integrates only the elements of the different raw physical schema that are different
views of the same physical object, e.g. the same file on the disk. This process does not integrate
different physical objects that have the same semantic. For example, in an hospital, the health care
system records administrative information about the people in the patient entity type and the
invoice system records these information in the customer entity type. These two entity types are not
integrated during this process, but will be integrated during the conceptualization process.

Program Understanding in DBRE 67

Data structure extraction

4.2.3. Schema refinement

The main problem of the data structure extraction phase isto discover and to make explicit, through
the refinement process, the structures and constraints that were either implicitly implemented or
merely discarded during the development process. The variety of implicit constructs can be very
large; the main implicit structures and constraints we are looking for are the following: entity type
and attribute disaggregation, identifier, referential constraints, functional dependency, meaningful
names, etc.

This process will be developed in section 4.8.

4.2.4. Schema cleaning

The complete logical schemaincludes al the data structures and constraints discovered during the
datastructure extraction. It isstill very close to the current implementation to describe the program-
mer view of the database. To fulfil those criteria, the complete physical schema cannot be deeply
reorganized to obtain the complete logical schema. For example, an object cannot be renamed,
otherwise the programmer could not write applications that access the database. Redundancies are
noted but cannot be suppressed, otherwise when the programmer modifies the program he will
forget to maintain the redundancy.

The constructs that can be modified or suppressed during the schema cleaning depend on the DMS
used. For example, for COBOL files, the indexes are needed, because to access the data, the
programmer has to specify which index to use. On the other hand, for arelational DMS, indexes
can be discarded because the programmer does not need to know the indexes to write programs that
access the data (queries).

create tabl e CUSTOVER(
C-ID integer primry key,
C- DATA char (80))

create tabl e ORDER(
O ID integer primary key,
OMER i nt eger
forei gn key(OMNER)

r ef erences CUSTOMVER)

FIGURE 35. Tables declaration with explicit foreign key.

exec SQL

create tabl e CUSTOVER(sel ect count(*) in : ERR-NBR from ORDER

C-ID integer primry key, where OMNER not in

C- DATA char (80)) (sel ect C-ID from CUSTOVER)
create tabl e ORDER(end SQL

O ID integer primary key,

OMNER i nt eger) if ERR-NBR > 0 then

di spl ay ERR- NBR,
"referential constraint violation’;

a) Table declaration without foreign b) Procedural code fragment that verifies the validity of

key. the foreign key.

FIGURE 36. Tables creation and implicit foreign key implementation.

68 Program Understanding in DBRE

Explicit/implicit constructs

4.3. Explicit/implicit constructs

An explicit construct is a component or a property of a data structure that is declared through a
specific DDL statement. An implicit construct is a component or a property that holds in the data
structure, but that has not been declared explicitly. In general, the DMS is not aware of implicit
constructs, though it can contribute to its management (through triggers for instance). The anaysis
of the DDL statements alone leaves the implicit constructs undetected. The most popular example
certainly isthat of referential constraint, which we will use to explain this point. Let us consider the
code of figure 35 in which two tables, linked by a foreign key, are declared. Thisforeign key isan
explicit construct because a specific DDL statement has been used to declare it. On the other hand,
the code of figure 36.ais the declaration of two tables in which no referential constraint has been
declared and the code of figure 36.b represents a fragment of the application that strongly suggests
that column OWNER is expected to behave as areferential attribute. If the analyst is convinced that
this behavior must be taken for an absolute rule, then OWNER is an implicit referential attribute.

The problem is much more complex for standard files, for which no computerized description of
their structures and constraints exists in most cases. The analysis of each source program only
provides a partial view of the collection and entity type structures. All the other constraints need to
be represented and checked by other means such as procedural sections. Unfortunately, these prac-
tices are a'so common in (true) databases, where all the expressiveness of the DM S is not necessar-
ily used. For example, in the above example (figure 36), the referential constraint was not declared
in the DDL athough it would have been possible.

By examining the expressive power of DMS, compared with that of semantics representation
formalism, and by analyzing how programmerswork, we can identify five major sources of implicit
constructs.

* Sructure hiding

Structure hiding concerns a source data structure or constraint S1, which could be implemented
in the DMS. It consists in declaring it as another data structure S2 that is more general and less
expressive than S1. In COBOL applications for example, a compound/multivalued attribute, or a
sequence of contiguous fields can be represented as a single-valued atomic attribute (e.g., a
filler). InaCODASY L or IMS database, a one-to-many relationship type can be implemented as
amany-to-many link, through a record/segment type, or can be implemented by an implicit ref-
erence attribute. In an SQL-2 database, some referential constraints can be left undeclared by
compatibility with older DMS (see the previous example). The origin of structure hiding is
always a decision of the programmer, who tries to meet requirements such as attribute reusabil -
ity, genericity, program conciseness, simplicity, efficiency. Structure hiding can also be the result
of bad practices such as poor programming practice, straightforward transformation of a legacy
system, disorganization that results from prolonged maintenance as well as consistency with leg-
acy components of the application.

» Generic expression

Some DM offer general purpose functionalities to enforce alarge variety of constraints on the
data. For instance, current relational DM S propose column and table check predicates, views
with check option, triggers mechanisms and stored procedures. These powerful techniques can
be used to program the validation and the management of complex constraints in a centralized
way. The problem is that there is no standard way to cope with these constraints. For instance,
congtraints such as referentia integrity can be encoded in many forms, and their icitation can
prove much more complex than for declared foreign keys.

Program Understanding in DBRE 69

Data structure extraction

Non declarative structures

Non declarative structures have a different origin. They are structures or constraints that cannot
be declared in the target DM S, and therefore are represented and checked by other means, exter-
nal to the DMS, such as procedural sections in the application programs or in the user interface.
Most often, the checking sections are not centralized, but are distributed and duplicated (fre-
quently in different versions), throughout the application programs. For example, standard files
commonly include referential constraints, though current DM S ignore this construct. In the same
way, CODASYL DMS do not provide explicit declaration of one-to-one relationship types,
which often are implemented as (one-to-many) set types and integrity validation procedures.

Environmental properties

In some situations, the environment of the system guarantees that the external data to be stored
in the database satisfy a given property. Therefore, the developer has found useless to translate
this property in the data structure, or to enforce it through DM S or programming techniques. Of
course, the elicitation of such constraints cannot be based on data structure and program analy-
sis. For example, if the content of a sequential file comes from an externa source in which
uniqueness is guaranteed for one of its attribute, then the database file inherits this property, and
an identifier can be asserted accordingly.

Lost specifications

L ost specifications correspond to facts that have been ignored or discarded, intentionally or nat,
during the development of the system. This phenomenon corresponds to flaws in the system that
can translate into corrupted data. However, lost specifications can be undetected environmental
properties, in which case the data generaly are valid.

4.4. Implicit structures and constraints

This section describes some of the main implicit structures and constraints that can be found in
actual reverse engineering projects of various size and nature. It isimportant to keep in mind that
this analysis is DM S-independent. Indeed, ailmost all the patterns that will be discussed have been
found in practically all the types of database.

Finding the fine-grained structure of entity types and attributes.

An attribute, or an entity type, declared as atomic, has an implicit decomposition, or is the con-
catenation of contiguous independent attributes. The problem is to recover the exact structure of
this attribute or of this entity type. This pattern is very common in standard files and IMS data-
bases, but it has been found in modern databases as well, for instance in relational tables.

01 C addr. CUSTOMER
L i Cust-id
CUSTOMER Oz (oL [El @ .X(9 Cﬂst—:’:ddr
Cusad + 02 C-street pic X(60). B C-num
Cust-addr 02 Ccity pic X(30). C-street
~ 71 i C-city
02 Czip pic X(6). Coin
nove Cust-addr to C addr.
a) The raw entity b) Some code fragment.) The refined entity
type. type.

FIGURE 37. Example of an attribute refinement.

70

Program Understanding in DBRE

Implicit structures and constraints

For example, the extraction of the DDL gives the raw entity type of figure 37.a. There is some
procedural code that assigns an attribute to a variable with a finer decomposition (figure 37.b).
So that the schema can be modified to obtain the refined entity type (figure 37.c).

01 Prof.
PERSON 02 Office pic x(3).
Name :
PERSON Type 02 Tel pic X(10).
Name Professor[0-1] PERSON 01 Stud.
- Office = ?‘a";e + 02 Section pic x(11).
PROFESSOR (-7 \~|STUDENT Stzjei‘t’[h&:]e D’;tpa 02 Level pic x(2).
Office Section . i — upn
Telephone Level Section L Type =
Level nove Data to prof
exact-1: Professor el se
Student
nove Data to Stude.

FIGURE 38. Example of optimization that merge two attributes into one.

The attribute and the target variable may have incompatible structures, such that one of the
structures is not included in the other one. There are three reasons for this incompatibility. The
first oneisthat thereisan error in the program. The second oneis an misunderstanding (error) in
the analysis of the information sources. The third one is that the attributes (or entity type) have
more than one usage, which is acommon optimization technique. In legacy systems, the number
of files that can be opened simultaneously was limited, so to reduce the number of files used by
an application, different entity types were stored in the same file. For example, order headers
and order details were stored in the same file with the order details following their order header.
Another advantage was that it was easy and fast to access the details when the header was found.
Another optimization to save disk space used by an entity type is to use the same physical loca-
tion to store two attributes. This is possible if the two attributes are never present together
(exactly-one constraint). An attribute is added (Type in figure 38) to the entity type to know
which valueis stored in the common attribute (Dat a). Type istested (in the procedural code) to
know how to interpret the value contained into the Dat a attribute.

Finding optional (nullable) attributes

Most DMS postulate that each attribute of each entity type has a value. In general, giving an
attribute no value consists in giving it a specia value, to be interpreted as missing or unknown
value. Since there is no standard way to implement this constraint, it must be discovered
through, among others, program and data analysis.

Usually the programmer uses the high-value or low-vaue to represent the Null in a numeric
attribute and he fills al phanumeric attributes with space or some special character to represent an
alphanumeric Null value.

CUSTOMER CUSTOMER
Cusnum Cus-num
Add-num D Ac’i\ldr&ss
Add-street um
. Street
Add-city City
Add-zip Zip
a) The raw entity b) Entity type with
type. attributes aggregate.

FIGURE 39. Example of an attribute aggregate.

Program Understanding in DBRE 71

Data structure extraction

Finding attribute aggregates

A sequence of seemingly independent attributes are originated from a source compound
attribute which was decomposed. The problem isto rebuild this source compound attribute. This
is atypical situation in relational, RPG, IMS and TOTAL/IMAGE databases that impose flat
structures.

For example, figure 39.a contains attributes Add-num, Add-street, Add-city and Add-zip that are
obviougly the different parts of an address. They have the same prefix (Add-) and domain
knowledge tells us that an address is composed of a number, a street, acity and azip code. They
can be aggregated as the Address compound attribute (figure 39.b).

Finding multivalued attributes

An attribute, declared single-valued, appears to be the concatenation of the values of amultival-
ued attribute. Or alist of single valued attributes of the same type and same length appear to be
the materialization of a multivalued attribute. The problem is to detect the repeating structure,
and to make the multivalued attribute explicit. Relational, RPG, IMS and TOTAL/IMAGE data
bases, that cannot represent multivalued attribute, commonly include such constructs.

E
Telephones: char (30) E
Namel: char (20) [] Telephone[3-3]: char (10)
Name2: char (20) Name[3-3]: char (20)
Name3: char (20)

a) The raw entity b) The entity type with mul-
type. tivalued attributes.

FIGURE 40. Example of single-valued and list of single valued attributes transformed into
multivalued attributes.

Telephones (figure 40.a) is 30 characters long. The associated code shows that it is split into an
array. So Telephones can be transformed into Telephone[3-3] of 10 characters (figure 40.b). In
figure 40.a, the list of attributes Namel, Name2 and Name3 can be transformed into a multival-
ued attribute (Name in figure 40.b).

Finding multiple attribute and entity type structures

The same attribute, or entity type structure, can be used as a mere container for various kinds of
value.

For instance, a CONTACT entity type appears to contain entity types of two different types,
namely CUSTOMER and SUPPLIER.

Finding entity type identifiers

The identifier (primary or secondary) of an entity type is not always declared. Such is the case
for sequential filesor CODASYL set types.

An example of a pattern used to detect that there is an undeclared identifier in a sequential field,
isthat the user is asked for the name of the customer. Then there isaloop that goes through the
fileand the loop is exited when thefirst customer with the given nameisfound and no other cus-
tomer with that name is looked for.

Finding identifiers of multivalued attributes

Structured entity types often include complex multivalued compound attributes. Quite often too,
these values have an implicit identifier.

72

Program Understanding in DBRE

Implicit structures and constraints

Purchase
CUSTOMER Prod Qty
Name
P1 10
Purchase[0-20]
Prod P15 1
i P2
id(Purchase):
Prod P3 5
P4 20
a) CUSTOMER b) A possible instance of
entity type. Purchase.

FIGURE 41. Example of identifier of a multivalued attribute.

For instance (figure 41), in each CUSTOMER entity type, there are no two PURCHASE com-
pound values with the same PRODUCT value.

Finding referential constraints

In multi-file applications, there exist inter-file links, represented by referential constraints, i.e.,
by attributes whose values reference an entity type in another collection. The most common
form of referential constraint (called standard foreign key) is made of one or several mandatory
attributes. It targets the identifier of an entity type and both ends of the referential constraint are
defined on the same domain. In legacy systemsthere are not only standard foreign keys, but alot
of tricky patterns such as optional, recursive or computed foreign key. For a compl ete discussion
about non standard foreign keys see [Hainaut-19974].

For example, figure 32 shows an implicit referential constraint that is validated by some proce-
dura code.

read CUS ORDER
i nvalid .key go to Err. Ord-id
move Cus-id to Ord-cus. Ord-cus
nove Cus-nane to O d-cus-nane. CUSTOMER Ord-cus-name
Cusid Ord-tot Referential
s Cus-name id: Ord-id -
wite ORDER i Cusid |a—]ref:Ord-cus g~ CONStraint
: Cus-name [+ rd: Ord-cus-name| «g— Rajundancy

FIGURE 42. Example of redundancy parallel to a referential constraint.

Finding functional dependencies

As commonly recognized in the relational database domain, normalization is a recommended
property. Thus functional dependencies should not be found in ideal applications. However,
many actual databases include unnormalized structures, generally to get better performance.
Functional dependencies save disk access and computation but increase disk space needed and
complexity of the management rules that maintain the coherence of the data. For example (fig-
ure 42), storing the name of the customer (Ord-cus-name) and the total amount of the order
(Ord-tot) into ORDER entity type saves disk access to get the name of the customer and cpu
time to compute the total amount of the order when the invoice is printed. The drawbacks of this
optimization is when the list of the ordered products is updated, Ord-tot must be computed.
When the name of the customer changes (spelling error), all his orders need to be updated.

Redundancies are a special kind of functional dependencies where the function is the identity.
The value of the origin field is copied into the target one.

Program Understanding in DBRE 73

Data structure extraction

Functional dependencies are usually parallel to areferential constraints. In order to know which
entity type is the origin of the dependency, the program follows a referential constraint. For
example, in figure 42, thereis areferential constraint from ORDER to CUSTOVER and Cus- name
iscopied into Or d- cus- name (redundancy).

Be aware of the conclusion. If during the analysis of a program fragment a dependency is
detected between two attributes, it does not automatically mean that this data dependency is
aways verified. This data dependency can be true at some moment but not all the time. This can
be seen as a business rule and must be documented.

New- det ai | . Modi f - prod- pri ce. —l
accept Prod-id. di spl ay pro_duct id". Seord PRODUCT
read Prod accept Prod-id. Det-prod Prodiid
invalid key go to Err. + read Prod [] |Det-price Prod-price
nmove Prod-id to Det-prod. invalid key go to Err. ref: Det-ord ——=>{id: Prod-id
nmove Prod-price to Det-price. di spl ay "new price". br: Det-pri —> : Prod-price
write DETAIL. accept Prod-price.
rewite PRODUCT Business rule:
: 4 Stores the product price
a) Det ai | creation. b) Product pri ce modification. at the order time.

FIGURE 43. An example of business rule.

Figure 43 gives an example of a very simple business rule. Each time a product is ordered, its
price (PRODUCT. Pr od- pri ce) iscopied in the DETAI L. Det - pri ce record (figure 43.8), so it
can be concluded that there is some data dependency. The analysis of product price (Pr od-

pri ce) modification (figure 43.b) shows that when the price of the product is changed for a
PRODUCT this change is not propagated to DETAI L. Det - pri ce. It can be concluded that there
is no data dependency between Det - pri ce and Prod- pri ce as firstly assumed. The price
stored in Det - pri ce isthe price of the product at the order time and not the current price of the
product. This priceis kept to compute the amount of the order at the price of the order time when
the invoice will be printed (perhaps several weeks later).

It is important to make the difference between data dependencies and business rules, because
attributes that are data dependent are removed, during the conceptualization process, whereas
the attributes that take part in a business rule must be kept.

Finding sets behind arrays

Multivalued attributes are generally declared as arrays, because the latter is the most obvious, if
not the only construct available in host languages and DM S to store repeating va ues. Unfortu-
nately, an array is a much more complex construct than a set. Indeed, while a set is made up of
an unordered collection of distinct values, an array is a storage arrangement of partially filled,
indexed cells that can accommodate non distinct values. In short, an array basically represents
ordered collections of non distinct values with possible holes (empty cells). For each array, one
must answer three questions: are the values distinct? Is the order significant? What do holes
mean? Clearly, usage pattern and data analysis are the key techniques to get the answers.

Finding exact minimum cardinality of attributes and relationship types

Multivalued attributes declared as arrays, have a maximum size specified by an integer, while
the minimum size is not mentioned, and is under the responsibility of the programmer. For
instance, attribute DETAIL has been declared as"02 DETAI L OCCURS 20", and its cardinality
has been interpreted as [20-20]. Further analysis has shown that this cardinality actualy is[1-
20].

74

Program Understanding in DBRE

The information sources

» Finding exact maximum cardinality of attributes and relationship types

The maximum cardinality can be limited to a specific constant due to implementation con-
straints. Further analysis can show that thislimit is artificial, and represents no intrinsic property
of the problem. For instance, an attribute cardinality of [0-100] has been proved to be implemen-
tation-dependent, and therefore relaxed to [0-N], where N means unlimited.

* Finding existence constraints

Sets of attributes and/or roles can be found to be coexistent, that is, for each entity type, they all
have a value or all are null. There are other similar constraints, such as exclusive (at most one
attribute is not null) and at least one (at least one attribute is not null). These constraints can be
the only trace of embedded attributes aggregates or of sub-type implementation.

For example in the CUSTOMER entity type there are Wedding-date and Spouse-name attributes.
It can be discovered that there is a coexistence constraint between these two attributes.

» Finding enumerated value domains

Many attributes must draw their values from alimited set of predefined values. It is essential to
discover this set.

A typica enumerated attribute is the Sex attribute that has{M F} as domain value.
» Finding constraints on value domains

In most DM, declared data structures are very poor as far as their value domain is concerned.
Quite often, though, strong restriction is enforced on the allowed values.

For example the ordered quantity of a product is a strict positive (>0) number but it is store into
anumeric attribute that allows negative value to be stored.
* Finding meaningful names

Some programming disciplines, or technical constraints, impose the usage of meaningless
names, or of very condensed names whose meaning is unclear. On the contrary, some applica-
tions have been developed with no discipline at al, leading to poor and contradictory naming
conventions. During data structure extraction, objects cannot be renamed, otherwise the com-
plete logical schema will not represent the current implementation. If more meaningful names
are found, they are noted in order to be able to rename the object during the data structure con-
ceptualization process.

For example, an attribute named Cus-F2 that is used to fill a screen field that is labeled "cus-

tomer name". It is noted that the attribute Cus-F2 represents the name of the customer and dur-
ing the data structure conceptualization it will be renamed Name or Cus-Name.

4.5. Theinformation sources

To discover an implicit construct, the analyst generally cannot limit his analysis to one information
source. On the contrary he has to rely on al the possible information sources, such as: application
programs, data, HIM procedural fragments, screen and report layout, generic DMS code frag-
ments?, existi ng documentation, interviews, domain knowledge, operation environment knowledge,
etc.

1. Some DMS offer general functionality to enforce alarge variety of constraints on the data.

Program Understanding in DBRE 75

Data structure extraction

The anayst needsto analyze several of those sources because none of them contains all the hintsfor

al

the constraints. For example, some constraints are not implemented in the application program

because they are verified by some environmental properties (the input data are always correct, they
come from another fully reliable application). Constraints are not discovered by the data analysis
because there is some erroneous data. On the other hand, spurious constraints can be discovered in
the data because the set of dataistoo small, for example, an attribute is an identifier.

The most common sources are:

DMS-DDL (schemas and views)

Thisis the database declaration statements, which specify the explicit structures and constraints.
The database can also contain some procedural code fragments, trigger, check or stored proce-
dure, that need to be analyzed to discover someimplicit constraints (see generic DM S code frag-
ments below).

Data dictionary/physical schema

The data dictionary contains the description of the actual state of the database structures and
constraints. Usually it is updated by the DMS itself and is the most up-to-date information
source. Asthe DMS-DDL statements, it contains the explicit data structures but also some pro-
cedural code.

Generic DMS code fragments

Modern databases may include code sections that monitor the behavior of the database. Check/
assertion predicates, triggers and stored procedures are the most frequent. They generaly
express in a concise way the validation of data structures and integrity constraints. As any code,
they are less easy to analyze since there is no standard way to code a specific integrity con-
straint. They implement implicit constraints.

Application source code

Many data structures and constraints that are not explicitly declared are coded, among others, as
procedural sections of the programs. For this reason, one of the most important information
sources is the application program.

Screen and report layout

A screen form or a structured report can be considered to be derived views of the data. The lay-
out of the output data as well as the labels and comments can bring essential information on the
data.

Current documentation

In some reverse engineering projects, there is some kind of documentation available. Though
these documents are often partial, obsolete and even incorrect, they can bring useful informa-
tion. Of course, the comments that programmers include in the programs can also be a rich
source of information. Most DM S allow administrators to add short comment to each schema
object.

External data dictionaries and CASE repositories

Third-party or in-house data dictionary systems allow data administrators to record and maintain
essential descriptions of the information resources of an organization, including the file and
database structures. They can provide informal but very useful description of the data with
which one can better grasp their semantics. The main problem with these sources is that they
generally have no automatic 2-way link with the databases, and therefore may include incom-
plete, obsolete or erroneous information. The same can be said of CASE tools, which can record
the description of database structures at different abstraction levels. While such tools can gener-

76

Program Understanding in DBRE

The information sources

ate the database definition code, they generally offer no easy way to propagate direct database
structure modifications into these schemas.

Domain knowledge

It isinconceivable to start a reverse engineering project without any knowledge on the applica-
tion domain. Indeed, being provided with an initial mental model of the objectives and of the
main concepts of the application, the analyst can consider the existing system as an implementa-
tion of this model. The objectiveisthen to refine and to validate this first-cut model. Thisiswhy
the analyst must have some deep domain knowledge or he must be in tight contact with a client
analyst that is assigned to the reverse engineering project. In this context, interviewing regular or
past users, developers or domain knowledge experts can be a fruitful source of information,
either to build afirst domain model, or to validate the model elaborated so far.

Data

The data themselves can exhibit regular patterns, or uniqueness or inclusion properties that pro-
vide hints that can be used to confirm or disprove structural hypotheses. The analyst can find
hints that suggest the presence of identifiers, referential constraints, attribute decomposition,
optiona attributes, functional dependencies, existence constraints, or that restrict the value
domain of an attribute for instance.

Non-database sources

Small volumes of data can be implemented with general purpose software such as spreadsheet
and word processors. In addition, semi-structured documents are increasingly considered as a
source of complex data that also need to be reverse engineered. Indeed, large text databases can
be implemented according to representation standards such as SGML, XML or HTML that can
be considered as specia purpose DDL.

Program execution

The dynamic behavior of a program working on the data gives information on the requirements
the data have to meet to be recorded in the files, and on links between stored data. In particular,
combined with data analysis, filled-in forms and reports provide a powerful examination means
to detect structures and properties of the data.

DMSlogs

Some DM S storein alog al the data access or queries performed with some statistics. The anal-
ysis of such log can be interesting to know which queries are performed, specialy for DM S with
powerful query language such as SQL databases.

Environment properties

The environment properties, as the DMS, the development tools, development language, pro-
gramming principle, the hardware used can imply some non functional requirements. Those
requirements can influence the way some constraints are verified or simply discarded.
Application history

Who are the analysts who write and maintain the application, what are the different DMS and
programming languages used? This information can explain the techniques used to code some
constrains and data structures. For example, if the application was migrated from flat files to a
relational DM, typical file structures are found and not relational one.

Corporate practice

Some corporate have an in-house methodology and habit. Their knowledge can ease the data

structure extraction. For example, al the names of the identifier start by the keyword ‘id’, or at
the beginning of each procedure there is a comment describing its goal.

Program Understanding in DBRE 77

Data structure extraction

Move A to B A—> B

Conmpute A*B to C A—>C B—>C

FIGURE 44. Some common dataflow.

4.6. Elicitation techniques

Though there exists a fairly large set of potentially implicit constructs and information sources,
thereisalimited set of common analysis techniques. We describe some of them.

Dataflow analysis

Examining in which variable data values flow in the program can put into light structural or
intentional similarities between these variables. For instance, if variable B, with structure Sb
receives its values from variable A, with structure Sa, and if Sb is more precise than Sa (S hasa
finer decomposition), then A can be given structure Sb. The term flow must be taken in a broad
sense: if two variables belong to the same path in the dataflow, at some time, and in some deter-
mined circumstances, their values can be the same, or one of them can be a direct function of the
other. Figure 44 presents some common dataflow applied to the COBOL language.

More sophisticated, or less strict relations can be used asi f A=B and Conpute A*B to C.
Such patterns do not define equality of values between A and B, but rather a certain kind of sim-
ilarity. This dependency could imply that A and B have compatible value domains. We are not
only interested in direct relations between variables but also in transitive relations. For example,
Move A to BandMve B to C,imply therelation between A and B and between B and C, but
also the trangitive relation between A and C.

Programming clichés

Disciplined programmers carefully use similar standard patterns to solve similar problems.
Therefore, once the pattern for a definite problem has been identified (called programming cli-
ché), searching the application programs or other kind of procedural fragments for instances of
this pattern alows us to locate where problems of this kind are solved [Henrard et al.-19984],
[Petit et al.-1994], [Quiilici et al.-1997] and [Signore et al.-1994].

Accept @rg_id .

Read @rgin Key Is @rg_id
Invalid Key Go To @rror_| abel

Move @rg id to @arg_ref.

Wite @arget.

FIGURE 45. A cliché to detect a referential constraint.

For example, we can write a cliché (see figure 45) that matches one of the many algorithms to
validate the presence of areferential constraint in a COBOL program. Finding all the instances
of this cliché in a huge COBOL program (one million LOC, split in 100 text sources) can be
quickly done. Each time an instance of the cliché isfound there is a strong evidence that there is
areferential constraint. Actual data names have been replaced with cliché variable names (pre-

78

Program Understanding in DBRE

Elicitation techniques

fixed with @), the dots (. . .) represent any instructions and the italic words are the reserved
words of the language.

FD CUSTOMER.
01 CUS.

02 CUS-NUM PI C 9(3).

02 CUS-NAME PI C X(10).

02 CUS-ORD PIC 9(2) OCCURS 10. FD CUSTOVER.

A 01 CUS.
01 ORDER PIC 9(3). 02 CUS-NUM PI C 9(3).

02 CUS- NAME PI C X(10).

1 ACCEPT CUS- NUM 1 ACCEPT CUS- NUM

2 READ CUS KEY | S CUS- NUM 2 READ CUS KEY | S CUS- NUM

3MOVE 1 TO | ND. 8 DI SPLAY CUS- NAME.

4 MOVE 0 TO ORDER.

5 PERFORM UNTI L | ND=10

6 ADD CUS- ORD(| ND) TO ORDER

7 ADD 1 TO | ND.

8 DI SPLAY CUS- NAME.

9 DI SPLAY ORDER.

a) COBOL program P. b) Slice of P with respect to CUS- NAVE and

line 8.

FIGURE 46. Example of program slice.

Program dlicing

This very powerful technique provides extracts (dices) from a large program according to
defined criteria[Weiser-1984]. Considering program P, apoint p in P (e.g. an instruction) and an
object V (avariable or arecord), the backward program slice of P with respect to the slicing cri-
terion <p, V> isthe set of all statements of P that can contribute to the state of V at point p. In
other words, executing P and executing the dice give V the same value whatever the external
conditions of the execution (section 6.4). Figure 46.b is the slice of the program of figure 46.a
with respect to variable CUS- NAME and line 8.

This technique allows the analyst to reduce the search space when he looks for definite informa-
tion in large programs.
Names analysis

Experimented programmers carefully chose the names they give to the entity types, attributes
and variables to ease program devel opment and maintenance. They give meaningful names that
suggest the semantics and the function of the objects. The analysis of the name of the objects can
give very useful hints about the semantics and the structure of the data. In addition, thisanalysis
can detect synonyms (several names for the same object) and homonyms (same name for differ-
ent objects). Attributes called Total _Amount, Rebate, Shipment_cost or Average_Salary could be
derived attributes since they suggest values that usually are computed or extracted from refer-
ence attributes. Names can also include important meta-data, such as structural properties
(attribute names Add- City-Name, Add-City-Zipcode suggest a 3-level hierarchy), datatype (Inte-
ger-Level), unit (Molume-Tons), language (Title-engl, Title-germ).

For example, a common usage is to prefix or suffix the identifier by one of the following key-
words: id, code, num, etc. Quite often the name of a reference attribute suggest the name of the
target attribute or entity type.

Program Understanding in DBRE 79

Data structure extraction

Physical structure

Some physical structures (address alignment, entity type offset, abnormally long attributes,
access keys, clusters, multi-record-types fields, etc.) may give hints on possible logical struc-
tures and constraints.

For example, identifiers are usually supported by a (unique) access key because objects are
accessed through their identifier. To optimize this access, the programmer usually declares an
access key. Another exampleisthat abnormally long attributes are candidates to refinement into
compound or multivalued attributes.

Screen and reports analysis

Screen and reports are used to present data and/or let users modify them. They are views of the
data, therefore, their structure generally gives important hints on the structure and semantic of
the data they transmit. Frequently, one screen panel includes data from several entity types.
Three kinds of information can be derived from the examination of screens and reports:

» SJpatial relationships between data fields.
The way the fields are located on the screen may suggest implicit relationships.
» Labelsand comments included in the panel

They bring information on the meaning, the role, meaningful name and the constraints of
each screen field.

» Discarded attributes.
An attribute that does not appear on the screen can lead to several conclusions;
» Theattribute is an obsolete attribute that is not used anymore.
» The attribute can aso be optional and has no value in this context.
» Thisattribute is redundant with another one that is already displayed in the form.

» This may mean that this attribute designates an information that is given by the context,
for instance about the customer of the order.

CUSTOMER
Cus id
Cus_name
Cus_street
Cus city
Cus zip

id: Cus_id

B New Order _ O]}

Custamer

-
1n] |
Mame |
Address |
|

Order details
Product | Quantity |
»

| \
Enrs 14 [12 -

V[r#] sur 3

ORDER
Ord id
Ord_cus
Ord_date
Ord_street
Ord_city
Ord_zip
id: Ord_id

Order n*

DETAIL
Det_ord
Det_prod
Det_qty

A

FIGURE 47. Dataflow between a dialog box and the entity types.

A screen layout can be examined as a stand-al one component, as suggested above. It can also be
analyzed as source/target data structures of the programs that use it to communicate with their
environment. Figure 47 shows a dialog box, used to enter a new order, with its associated entity

80

Program Understanding in DBRE

Elicitation techniques

types. The dataflow between the dialog box and the entity type is represented by arrows. There
are two sub panels that contain respectively a customer and the list of the order details. Each of
them is associated with an entity type. They can be analyzed as follow:

Cusid - ID - Ord.id

Cus idisthe identifier of CUSTOMER and it is copied into Ord_cus. So there may be aref-
erential attribute from Ord_custo Cus id.

*(Cus_streset, Cus city, Cus zip) - Address - (Ord_street, Ord city, Ord_zp)

the three attributes are grouped under the same label (Address), so they can be aggregated.
Ord_street, Ord_city, Ord_zip are redundant attributes, they are copies of the corresponding
CUSTOMER attributes that are "parallel" to the referential constraint.

*Ordern°® - Ord_idand Det_ord

suggests areferential constraint between Det_ord and Ord _id.
*Product - Det_prod and Quantity - Det_qty

more meaningful names can be noted for these two attributes.
*Ord_date

It does not receive its value from the dialog box. The source code must be analyzed to notice
that it receives its value from the system (the date of the day).

The refined schemais shown in figure 48.

ORDER

- DETAIL
Ord_id Bt ord .
CUSTOMER ord_cus Det_OF n Name: Product
Cus id Ord_date _pro
Cus_name Ord_address Det_qty \ i .
Cus_address ord street ref: Det_ord |] Name: Quatity

Cus _street Ord_city

Cus _city Ord_zip

Cus zip id: Ord_id
id: Cus_id <+—— ref: Ord_cus Redundant with
: Cus_addressjcd——— rd: Ord_address}-—"""" ~| Cus_address

FIGURE 48. The refined schema.

Data reports can be considered both as data structures and as populated views of the persistent
data. The first aspect is quite similar to that of screen layout: areport is ahierarchical data struc-
ture that makes relationships between data explicit. The second one relates to the data analysis
heuristics.

Data analysis

Through the analysis of the contents of files and databases, some properties may be discovered
or some hypotheses can be supported, proved or disproved.

For example, if Order.O-cust is areferential attribute to Customer, then the referential integrity
should be satisfied and each of its values must identify a Customer record. The following SQL
query will check this condition by computing the number of violations:
sel ect count (*)
from O der
where O-cust not in (select Cd
from cust oner)

Program Understanding in DBRE 81

Data structure extraction

However, the result, n, returned by this query must be interpreted with caution, because several
conclusions can be drawn from it, depending, among others, on the size of the data sample
which was analyzed:

Outcome Inter pretation
n=0 1. O-custisareferential attribute.

2. Statistical accident, tomorrow, the result may
be different. O-cust is not a referentid
attribute.

0<n<eg 1. O-custisnot areferential attribute.

2. O-cust is areferential attribute, but the query
detected data errors.

3. O-custisaconditional referential attribute®
0«n 1. O-custisnot areferentia attribute.
2. O-cust isaconditiona referential attribute.

a. A conditional referential constraint is areferential constraint that is
not always verified. It is only verified when some condition is satis-
fied: the reference attribute is null or another attribute has a given
value.

* Program execution analysis

The principle isto analyze the reactions of the program to selected stimuli, for instance, in terms
of acceptance and rejection of input data and update queries. A running program also popul ates
the screen panels and printed reports. So it is strongly linked with screen and report layout anal-
ysis.

* Documentation analysis

When it still exists, and when it can be relied on, the documentation is the first information
source to use. Normally, collection structures, attribute description and particularly their roles
(such as referencing) should be documented. Before being used, the quality of the documenta
tion should be assessed. Is it up-to-date? Does it describe the current version of the system or a
previous one? Which formalism does it use?

» Schema analysis

The analysis of working schema, i.e., the schema that is currently refined, can give hints about
which constraints still need to be found. For example, if an entity type is not connected to the
rest of the schema, with referential constraints or relationship types, it can suggest that there
must be some missing referential constraint that has this entity type as target or origin. The
schemaanalysisis quite easy to do because the schema is an abstraction of the database structure
and it is stored in a CASE tool that offers analysisfacilities.

4.7. The conflicts

During the data structure extraction some conflicts or inconsistencies can arise. These conflicts can
have three different origins:

82 Program Understanding in DBRE

Refinement methodology

1. The same physical structurein the database can be used to materialize different logical concepts.
For example, the same character string can contain the address of the customer and at another
moment the label of the product, because the string is the parameter of a procedure that capital-
izes the characters of the string. Of course, this does not mean that the address and the |abel have
the same structure.

2. There can be an error in the application (program, screen or report layout, etc.) or in the database
(instance of the data that can lead to ignore an existing constraint or to find a spurious one). This
happen quite often, because many of the difficulties enumerated for the data structure extraction
are aso present during the conception and the maintenance of the application. During the life
time of the application some constraints can be added or removed and those modifications may
be incompletely propagated to the entire program or data.

3. During the data structure extraction the analyst can also make some mistakes, i.e. misunder-
standing some parts of the code, ignore some constraints, etc. These missing constraints can also
lead to some conflicts.

The last two origins of conflicts are errors and will not be further discussed here, even if the proba-
bility to detect one of them (or both) in every project isvery high (if not equal to one). Real applica-
tions are written by real programmers, they are maintained by real maintaineers and they are
analyzed by real analysts with all these human factors and reliability that can be imagined. We have
to keep in mind that information extracted from an existing system may be uncertain and incom-
plete.

A conflict (that is not an error but a misinterpretation) means that the physical construct is used to
represent two (or more) different logical concepts and/or that some constraints are missing.

An example of aphysical construct that represents two different logical concepts could be afile that
contains two entity types with conflicting decompositions. This is a common practice in COBOL
(especiadly in old programs) because the number of opened filesis limited and this permit to open
only onefile where two can be necessary.

An example of a missing constraint would be areferential constraint between two entity types that
is not always verified. This can mean that the referential constraint is optional and its presence or its
absence depend of the value of another attribute.

4.8. Refinement methodology

The main problem of the data structure extraction phase isto discover and to make explicit, through
the refinement process, the structures and constraints that were either implicitly implemented or
merely discarded during the development process. The variety of implicit constructs can be very
large. This chapter presents a generic refinement methodology.

Due to the large amount of information to manipulate attempting an exhaustive search for all the
conceivable constraints is unrealistic. A methodology is needed that guides the analyst in his
constraints investigation.

Program Understanding in DBRE 83

Data structure extraction

Integrated
physical schema

Y

orking
Hypothesis — (3
discovery <
Hypothesis no
Hypothesis Schema
validati on Hypothesi S’) enhancement

proved
Validation /
report
v
Q Complete
physical schema

FIGURE 49. The refinement methodology.

4.8.1. Therefinement methodology

The refinement methodol ogy will reduce the search space to the possible constraints. For example,
it is not redlistic to query the data to check each attribute combination being an identifier. We have
to decide which attributes are potential identifiers depending on their names (containing a keyword
such as "code", "id", "num", etc.), their structure (mandatory), their position in the entity type (the
first attribute of the entity type), etc.

Figure 49 sketches the proposed Schema refinement method. In this figure rectangles represent
processes, ellipses represent the different products (schema, data passed form one process to the
others) and diamond shapes represent decision points. The execution flow is materialized by bold
arrows and plain arrows represent product usage. The schema refinement process receives the inte-
grated physical schema and all the information sources such as input and produces the complete
physical schema (see figure 29).

The schema refinement contains three processes:

* Hypothesis discovery

This process analyzes the working schema and all the sources of information to find a potential
missing construct or constraint, called hypothesis. Usually the hypothesis is discovered by the
analysis of the name, structure of the physical schema or by some inexpensive analysis of the
other sources of information. For example, a hypothesis can be "Ref-A of B is a referentia
attribute to the identifier of A (1d-A)". The techniques used to discover this hypothesis can be
name analysis (Ref-A contains the keyword "ref" and the name of the referenced entity type, A)
or the structure analysis (length and type of Ref-A and Id-A are the same and Id-Ais an identifier,
etc.).

84 Program Understanding in DBRE

Refinement methodology

The purpose of this processis to guide the implicit constraint discovery. We focus our attention
on some potential constraints using some inexpensive analysis techniques.

» Hypothesisvalidation

The validation of the hypothesis discovered by the previous processis done by an in-depth anal -
ysis of the working schema and of some of the sources of information. This validation can
require heavy and expensive analysis, such as program understanding or data analysis. For
example, the analyst can use program understanding techniques to understand how the entity
type B, specidly the attribute Ref-B, is managed by the program. At the end of this process the
analyst needs to be convinced that the hypothesisisvalid or not.

e Schema enhancement

Based on valid hypotheses (proved correct) and the validation report, the corresponding con-
struct is added to the working schema. For example, in this example, the referential constraint
from Ref-Ato 1d-Ais created.

The schema refinement is iterated until no new hypotheses are generated by the hypothesis discov-
ery process.

Thereis apre and a post processing, not explicitly displayed in figure 49, that can be seen such as
the input and output parameters definition. The pre-processing copies the integrated physical
schema to obtain the working schema. Before the first iteration both schemas are the same. The
post-processing copies the working schemato obtain the complete physical schema.

It is always possible to find a new hypothesis, but a limit must be set to the hypothesis discovery.
One of those limitsisthat we are only interested by some kinds of constraints or constraints discov-
ered by some analysis techniques. Another limit is to stop when the discovery of a new hypothesis
or its validation become too expensive.

4.8.2. Hypothesisvalidation

A good practice isto apply as many heuristics as possible to validate (or disprove) ahypothesis. If a
heuristic succeeds that does not mean that the hypothesis is verified. For example, data analysisis
used to validate the hypothesis "Al isan identifier of A" and this heuristicsis applied on asmall set
of datain which, by chance, al the value of Al are unique. If thetest is done again on alarger data
sample some non unique value of A1 may be found. On the opposite, if a heuristic fails, the hypoth-
esisis not necessarily disproved. For example, during the verification the hypothesis that thereis a
referential constraint between two entity types and a source code, afragment of codeisfound where
the referential constraint isnot checked before the entity type is written. This does not mean that the
referential constraint does not exist, it can be a mistake in the program, the programmer forgot to
validate the referential constraint in this fragment of the code. Or this referential constraint is an
environment constraint and thus it is not validated by the program. Or it is an optional referential
constraint and the analyzed code fragment writes the entity type instances for which the referential
constraint is not present. This can be formalized as follows:

» Let h bean hypothesis on the existence of an implicit construct C (for example, attribute B2 of B
isareferential attribute to the identifier of A, Al); so far, his stated with probability pg < 1%,

1. The probability (Pg and p1) do not have a numerical value but represent the trust the analyst has.

Program Understanding in DBRE 85

Data structure extraction

* TheheuristicsH is applied; h is now stated with probability p;:

» if H succeeds
p; > Po; the existence of C is more certain, though p; < 1.
For instance, in the example above, if thereis an index on B2 it is one more evidence that B2
isaforeign key to the identifier Al of A, but we are not yet completely certain.

» if H fails, one the three interpretations can hold:
* p; = 0; hisdisproved, the constraint C does not exist.

For example, half of the values of B.B2 are not in A.Al value set, thus there is no referen-
tial constraint from B.B2 to A.Al.

* p1 < po; hislesscertain, but could still be proved through other heuristics.
For example, there is only one value of B.B2 (out of one million) that is not in A.Al value
set. It cannot be concluded that there is no referential constraint, it is perhaps an error in
the data.

» H does not contribute to the search; p; = py.

For example, thereisno data stored in B so no data violated the constraint and no data that
validated it!

Experience has exhibited some restrictions in the application of this method in rea projects.
Analyzing all theinformation sources with all the heuristics generally proves too expensive, so that
the analyst has to determine which sources to analyze with which heuristics. There are no general
rules to decide which source of information to use, the analyst has to choose depending on what he
islooking for, what are the respective quality of the different sources of information, the tools avail-
able, etc.

This method considers that all the information sources are reliable. What about the result of a
heuristic applied on unreliable information (corrupted data, programming errors, etc.)? Thisis why
it issuggested to apply more than one heuristics and to analyze more than one source of information
because in real projects some unreliable information can be found. A hypothesis cannot be proved
by heuristics alone, it is up to the analyst to decide when he is convinced that the hypothesisis vali-
dated or invalidated. Hence the importance of the analyst’s skill and his knowledge of the applica-
tion domain.

During a hypothesis validation other constraints can be discovered, these constraints must be added
to the schema (the opportunistic approach [Tilley-1998]). For example, to validate a referentia
constraint, the analyst analyzes a program slice. This slice contains, in additions to the validation of
the referential constraint, the instructions that verify that the value of the referential constraint is
unique (the attribute is also an identifier).

This method is presented as an algorithm, but it is far from being deterministic. The hypothesis
discovery and hypothesis validation processes heavily rely on the analyst skills and on the tools he
uses.

4.8.3. How to decide that refinement is completed

The ending condition is one of the most difficult and less formalized point of the refinement meth-
odology. It isimpossible to know when al the implicit constraints have been discovered, because
there is no reference schemawith which the current schema can be compared.

86 Program Understanding in DBRE

Refinement methodology

Theanalyst is never sure that he has found all the constraints. There is always some part of the code
that has not been analyzed or some heuristics that have not been applied.

So the analyst has to decide, with some methodological and economical guideline, that the refine-
ment process is terminated. An important element to decide if the refinement processis finished, is
to know before to start the DBRE project why the DBRE is done and what are the expected results.
The simplest DBRE project is to recover only the list of all the entity types with their attributes as
declared in the DDL. In such a project the refinement process is not done at al, the ending condi-
tion is always true. The result of such projectsis the integrated physical schema. The final product
is an incomplete logical schema. This can be useful to make a first inventory of the data structures
used by an application to prepare another reverse engineering or maintenance project.

On the other hand, all the possible constraints may have to be recovered to get a complete view of
the database. Thisis necessary in migration or maintenance projects. For example, to add new func-
tionalities to an existing application, al the constraints of the database need to be known before any
modification. Otherwise, thereisarisk to add some functions that corrupt the data.

Due to time and budget limitation, the analyst has to decide, in dialogue with the customer, what
kind of constraints heislooking for and which heuristics he is using. The customer hasto explain to
the analyst what he wants to do with the DBRE results, the time and budget he can devote to this
project. Then the analyst can say if it is possible to perform the project within the given time and
budget. The analyst has also to explain the analysis techniques he will use and what are the weak-
ness and strengths of the proposed solutions.

4.8.4. Refinement strategy

To have a homogeneous result, it is preferable to search for constraints using heuristics on the
whole information source than to apply alot of heuristics but only on a part of this source of infor-
mation. For example, it is preferable to use dataflow analysis on the complete source code, than to
apply dataflow analysis, program slicing, etc. on only some part of the source code. Indeed, if the
analyst applies alot of heuristics on a subset of the information source that cover only a part of the
schema, the resulting schema will not be homogeneous. For some part of the schema a lot of
implicit constraints will be recovered while on another one very few (or none) of the implicit
constraints will be recovered. It is particularly difficult to use such a schema when a constraint is
not present. The analyst is never sure that the constraint is not present because this part of the
schema was not analyzed or because the constraint does not exist.

For example, when the analyst uses dataflow analysis to recover referential constraint. He applies
this techniques on the source code of the application. If there is an entity type that is not connected
to the rest of the schema, he can be confident that this entity type is not connected with another
entity type of the schema. But if he has chosen to apply dataflow analysis to only a part of the
source code of the application and there is an entity type that is not connected to the rest of the
schema. Does it mean that this entity type is not connected to another entity type or that the code
that materialize the connection with another entity type was not analyzed?

Program Understanding in DBRE 87

Data structure extraction

v| © c 4}
50| 80| 52 v 85| % | «8| 5S| £
g 5| °8 5? B sg| O & 8| ©c¢c
8 X
fine-grained structure bv bv D DV |V D
i ' \ DV |V DV D
optional fields
i DV DV D DV V DV D
field aggregates
multivalued fidds | PV Dv | D D V DV | D
multi structure DV bv D \% D
record identifiers v v D D DV |V DV |D
field identifiers v v D v |V oV | D
: DV V DV D D DV V DV D
foreign keys
: DV V DV D DV V DV D
functional
dependencies
\ \Y D DV |V DV D
array / set
existence constraints v v D DV v DV |D
inali v \ vV |V DV |D
exact cardinality
: Dv \Y DV DV \Y DV D
enumer ate domains
' v \ DV |V DV | D
const. on domain
- DV DV |D DV DV |D
meaningful name

FIGURE 50. The techniques applied to discover constraint (D = hypothesis discovery, V =
hypothesis validation).

4.8.5. Heuristics usage

In figure 50, we give, for each implicit constraint, the elicitation techniques that can be used to
discover it. We note if the technique is better suited for hypothesis discovery (D) or hypothesisvali-
dation (V). This table is not exhaustive (rigid). As usual it is possible to find some project where
hypothesis discovery or hypothesis validation can be performed by an heuristic that we have not
been noted. This table is the result of our experience and the analysis of the capabilities of the
different elicitation techniques.

88 Program Understanding in DBRE

Refinement methodology

For example, it is possible to imagine a program where al the optional attribute’'s names are
suffixed by the keyword ’opt’. So name analysis can be used to discover the optional attribute. But
our experience shows us that thisisimprobable.

A Bl
Al B2
id: Alg—ref:B2

FIGURE 51. The concept of foreign key.

4.8.6. Application to foreign key elicitation

This section illustrate how the refinement methodology is applied to the referential constraint
discovery.

A referential constraint is an attribute (or combination thereof) of each value that is used to refer-
ence an entity type. The standard configuration of referential constraint B2 can be symbolized by
B.B2 >> A Al, where B2 isasingle-valued attribute (or a set of attributes) of entity typeB and Alis
the primary identifier of entity type A. B.B2 and A.Al are defined on the same domain (figure 51).
However, practical referential constraint do not always obey the strict recommendations of the rela-
tional theory and richer patterns can be found in actual applications [Hainaut-19973].

customer order order
c-id: num (5) 0-id: char (6) customer 0-id: char (6)

c-name: char (22)
address: char (32)

id: c-id

o-date: char (8)
o-cust: char (5)

id: o-id

c-id: num (5)
c-name: char (22)
address: char (32)

o-date: char (8)
o-cust: char (5)

id: o-id

id: c-id <+—ref: o-cust

FIGURE 52. Foreign key elicitation, the source and final schema.

Let us base the discussion on the schema of figure 52, in which two entity types cust omer and
or der may belinked by areferential constraint. It is assumed that c-id is the identifier of customer
and there should exist areferential constraint in order that would reference this identifier (in short,
the target identifier is known).

The refinement methodology is applied to find the referential constraint that exists between order
and customer. The remainder of the section is divided into two parts. The first one presents the
different techniques that can be applied to discover hypotheses. The second part applies the differ-
ent elicitation techniques to the hypothesis validation.

Program Understanding in DBRE 89

Data structure extraction

ENVI RONMENT DI VI SI ON.
I NPUT- QUTPUT SECTI ON.
FI LE- CONTROL.
SELECT CUSTOMER ASSI GN TO " CUST. DAT"
ORGANI ZATI ON | S | NDEXED
ACCESS MCDE | S DYNAM C
RECORD KEY IS G ID.
SELECT ORDER ASS| GN TO " ORDER. DAT"
ORGANI ZATI ON | S | NDEXED
ACCESS MCDE | S DYNAM C
RECORD KEY IS O ID
ALTERNATE RECORD KEY | S O CUST
W TH DUPLI CATES.
DATA DI VI SI ON.

FI LE SECTI ON.
FD F- CUSTOVER
01 CUSTOMER
02 G 1D PIC 9(5).
02 C- NAME PI C X(22).
02 C-ADDRESS PIC X(32).
FD F- ORDER.
01 ORDER
02 01D PI C X(6).
02 O DATE PIC 9(8).
* O CUST REFERENCE CUSTOVER
02 O CUST PIC X(5).
WORKI NG- STORAGE SECTI ON.
01 C PIC 9(5).

PROCEDURE DI VI SI ON.

PRI NT- REPORT SECTI ON.
ASK- CUST.
DI SPLAY " ENTER CUSTOVER NUMBER ".
ACCEPT C.
MOVE C TO C- I D.
READ F- CUSTOVER
I NVALI D KEY GO TO ERROR-1.
MOVE C TO O CUST.
MOVE 1 TO END- CUST.
PERFORM DI SP- ALL- ORD UNTI L END- CUST=0

DI SP- ALL- ORD.
READ F- ORDER
I NVALI D KEY MOVE O TO END- CUST.
IF END-CUST = 1
PERFORM DI SPLAY- ORDER.

CREATE- ORD SECTI ON.
DI SPLAY " ENTER CUSTOVER NUMBER'.
ACCEPT C-ID.
READ F- CUSTOVER
I NVALI D KEY GO TO ERROR- 2.
MOVE C-I D TO O CUST.
*ASKS FOR THE ORDER | NFORVATI ON

VR TE ORDER
I NVALI D KEY GO TO ERROR- 3.

FIGURE 53. Excerpts from a program working on cust oner and or der.

N

c-id ——p o-cust

FIGURE 54. The dataflow graph of the code of figure 53.

4.8.6.1. Hypothesis discovery

A. Dataflow analysis

If areferential constraint holds between two entity types, then it should exist, in some program, a
dataflow between variables that represent the referential constraint and the target identifier. Consid-
ering assignments and equality relations in the code of figure 53, the dataflow graph of figure 54 is
computed. It shows that, at given time points, c-id and o-cust share the same value. It is reasonable
to think that this property is aways verified, hence the hypothesis that attribute o-cust could be a

referential attribute is confirmed.

90 Program Understanding in DBRE

Refinement methodology

Custonmer : Smith

O der Dat e

1 1-1- 200

5 1-10- 2000

9 2-3-2001
Cust omer : Dupont

O der Dat e

2 3-2-2000

6 5-11-2000

FIGURE 55. Example of a report that display customer and order.

B. Screens/ forms/ reports layout analysis

Reports can be considered a populated view of the persistent data. The anaysis of the report of
figure 55 shows that below each customer there is alist of orders. This analysis suggests that there
isareferential constraint from or der to cust omer.

cust oner or der
c-id pic 9(5) 0-id pic X(6)

c-nane pic x(22) \ o-date pic 9(8)

c-address pic x(32) o-cust pic X(5)

FIGURE 56. An fragment of the application documentation.

C. Current documentation analysis

The code of figure 53 includes comments that suggest that o- cust is a referential constraint that
references customer.

There still exists some documentation written during the development of the application. Figure 56
shows an excerpt of the documentation of the application that describes o-cust as the referential
attribute that references c-id.

D. Domain knowledge usage

Everybody knows that customers place orders. Obviously, entity types customer and order should
be linked in some way.

E. Program execution analysis

The program refuses to delete a customer record because the customer still has pending order. This
behavior can be translated into the fact that order entity type depends on the customer entity type.

F. Physical structure analysis

A referential constraint is a mechanism that implements a link between entity types and is the priv-
ileged way to represent inter-entity relationships. We can assume with little risk that application

Program Understanding in DBRE 91

Data structure extraction

programs will navigate on records following these relationships. Therefore, most referential
constraints will be supported by such access mechanisms as access key. Heuristics: an attribute
supported by an access key could be areferentia attribute, specially when it is not an identifier. In
the example an accesskey (record key with dupli cat e) hasbeen declared on o- cust .

Quite naturally, the candidate attribute should have the same domain of values, i.e. the same type
and length, as the identifier. However, some matching distortions can be found as far as lengths and
even types are concerned. Heurigtics. the candidate referential attribute must match, strictly or
loosely, the identifier of the candidate referenced entity type. In our example, o- cust isdeclared as
pic X(5) andc-idispic 9(5),thelengths are the same but the types are not. Thisisacommon
COBOL habit to mix alphanumeric characters and numeric characters.

G Nameanalysis

The name o-cust includes a significant part of the name of the target entity type (customer). This
suggests that o-cust references customer.

4.8.6.2. Hypothesisvalidation

During the hypothesis discovery process a potential referential constraint has been discovered.
Depending on the heuristic used the hypothesis can be formulated in two different ways:

* Thereisareferential constraint between CUSTOMER and ORDER.
 Thereisareferential constraint between CUSTOMER.O-CUST and ORDER.C-ID.

Usually, hypothesis validation heuristics are techniques that give reliable result but are more expen-
siveto apply.

A. Cliché analysis

To validate the referentia constraint hypothesis, each WRI TE (and REWRI TE) instruction that stores
the origin entity type must match a referential constraint cliché. Indeed to enforce a constraint the
program must verifiesit before storing the entity type.

There is half a dozen clichés which make it possible to detect areferential constraint in a COBOL
program. Cliché of figure 45 on page 78 matches with the CREATE- ORD section of the code of
figure 53.

B. Programdlicing

To validate a referential constraint hypothesis, the analyst must check that each time the ORDER
entity type is stored there is afragment of code that ensures that the referential constraint is verified.
This fragment of code must be executed before a WRI TE (or REWRI TE) instruction and it must
contain an access (READ) to the target entity type. Program dicing can be used to discover such a
fragment of code. The program slice computed with respect to aWRI TE (or REWRI TE) instruction of
the referential constraint entity type must contain a READ instruction to the target entity type. This
dlice is analyzed to detect which attributes (in the origin entity type and in the target entity type) are

92 Program Understanding in DBRE

Refinement methodology

used to ensure the referential constraint. Such a program slice must be computed and analyzed for
each WRI TE (or REWRI TE) instruction to ensure that the referential constraint is always verified.

CREATE- ORD SECTI ON.
DI SPLAY "ENTER CUSTOVER NUMBER'.
ACCEPT C-ID.
READ F- CUSTOVER
I NVALI D KEY GO TO ERROR-2.
MOVE C-I D TO O CUST.
*ASKS FOR THE ORDER | NFORVATI ON

VWRI TE ORDER
I NVALI D KEY GO TO ERROR- 3.

FIGURE 57. Program slice of program of figure 54 with respect to WRI TE ORDER.

In the example of figure 53, the program dlice is computed with respect to the WRI TE ORDER
instruction (see figure 57). The analysis of this slice proves that before ORDER storage, the program
checksif O CUST isan existing value of C- 1 D (the identifier of CUSTOVER).

MOVE 0 TO NUM ERR READ- ORD.

MOVE 0 TO NUM CRD. READ F- ORDER NEXT

MOVE 1 TO END- FI LE. AT END MOVE 0 TO END- FI LE
PERFORM READ- CRD UNTI L END- FI LE = 0. NOT AT END

DI SPLAY "nunber of order: " NUM ORD. PERFORM VERI F- CUST.

DI SPLAY "nunber of error: " NUM ERR
VERI F- CUST.
ADD 1 TO NUM ORD.
MOVE O CUST TO C- I D.
READ F- CUSTOMER
I NVALI D KEY ADD 1 TO NUM ERR

FIGURE 58. Program that counts the number of O- CUST that does not appear in C- | D.

C. Data analysis

To validate a referential constraint through the data analysis, the database contents needs to be
queried to know the number of instances that violate the constraint. This can be easily done with
modern DMS as SQL. For such DM S it can be implemented as a query. For less powerful DMS (as
COBOL) asmall program needs to be written to query the database.

The program of figure 58 counts the number of ORDER that violate the referential constraint. This
sample program does not only count the number of erroneous ORDER but also the total number of
ORDER. In the idealistic situation, where the data does not contain errors, the among of erroneous
datais enough to decide if the constraint is present or not. If the number of errorsis 0 then the refer-
ential constraint is validated otherwise there is no referential constraint. On the other hand, in real
databases there are often errors in the data and thus it is useful to know the number of errors with
respect to the total number of instances. If the number of errors is very small with respect to the
total number of data, the analysis can assume that the referential constraint is verified.

Program Understanding in DBRE 93

Data structure extraction

D. Program execution

If the program rejects any tentative data entry concerning an or der unless its o- cust value
appears as the c-i d value of some cust oner record, then we can conclude that the program
enforces some kind of inclusion property between these value sets, which can be interpreted as

referential integrity.

oa Program Understanding in DBRE

CHAPTER 5

Program understanding
In databasereverse
engineering

At first sight, it can be strange to use program understanding to perform DBRE. DBRE recoversthe
datastructure that is more or lessindependent from the programs. It is shown in this chapter that the
implicit constraints can be elicited through the analysis of the source code. The source code is one
of the most accurate and up-to-date sources of information for the recovery of the implicit
congtraints. Due to the difficulty and expensiveness of source analysis, the analyst must have

program understanding techniques and tools .

FIGURE 59. Program understanding is the mapping between the program and the problem

domain.

Problem/
application
domain

Program
mapping

understanding

Programming
implementation
domain

5.1.

Program understanding is the process of acquiring knowledge about a computer program [Corbi-
1989][Rugaber-1995][Tilley-1998b][von Mayrhauser et al.-1994][Young-1996]. Increased knowl-
edge enables such activities as reverse engineering, documentation, bug correction, enhancement
and reuse. Program understanding is not only understanding the code, but also the mapping

Program under standing

between program domain and problem domain (see figure 59).

Program Understanding in DBRE

Program under standing in database rever se engineering

While efforts are underway to automate the understanding process, such significant amounts of
knowledge and analytical power is required that today program understanding is largely a manua
task.

In [Rugaber-1995], Rugaber explains that program understanding is difficult because it must bridge
different conceptual areas. He describes five gaps that need to be bridged:

1. Application domain and program

Programs are solutions to problem situations from some application domain. It is the job of the
person trying to understand the program to reconstruct the mappings from the application
domain to the program.

2. Physical machines and abstract descriptions

Computer programs are incredibly detailed. One of the jobs of the analyst is to decide, from all
the programs details, which are the important concepts (abstraction).

3. Coherent models and incoherent artifacts

During the design the program is constructed as a coherent set of details. Through maintenance
activities such as porting, bug fixing and enhancement, the original structure of the program may
have deteriorated. The analyst needs to detect the high level structure of the program when the
original purpose of the program may have change.

4. Hierarchical world of program and associative nature of human cognition

Computer programs are highly formal. Human cognition seems to work associatively. The pro-
cess of human understanding is controlled by expectations derived from the application domain
and the programming knowledge. A program is understood to the extent that the reverse engi-
neer can build up correct high level chunks from the low level details evident in the program.

5. Bottom-up program analysis and top-down synthesis

When an experienced analyst looks at a program, he detects patterns that indicate the intent of
some section of code (bottom-up). At the same time, he has some idea of the overall purpose of
the program and how it might be accomplished (top-down). The difficulty is that both of these
activities need to proceed at the same time, in a synchronized fashion.

Most program understanding work is currently done by humans. To understand a program three
kinds of actions can be taken [Corbi-1989]:

* Read about it: the analyst can read (or analyze) any kind of documentation available about the
program. The problem isthat the documentation does not always exist and when it existsit is not
necessarily up-to-date, correct or well written.

* Read it: the analyst can read (or analyze) the code itself. Usually the code is the primary source
of information because it is the only really accurate representation of the system.

* Runit: an interesting source of information about a program is its execution to analyze (through
some tracing processes) how it work on real data.

In order to study the program understanding process, it is important to look at the human factors
involved in comprehension. The cognitive aspect [Corbi-1989] [Tilley-1998b] of program under-
standing is the study of the problem-solving behavior of software engineers engaged in understand-
ing tasks. Three theories appear in the literature: the bottom-up, the top-down and the opportunistic
one. In the bottom-up theory, by reading the code, an analyst essentially iteratively abstracts a
higher-level understanding of the program by recognizing and then naming more and more of the
program. The top-down theory proposes that programmers use their own experience and repeatedly

96 Program Understanding in DBRE

Program under standing

try to confirm their expectations or the basic of what they believe the design to be. Now, when they
pick up the code, they look for where these elements occur and fill in their belief of what the design
most probably is. If something is missing or radically different from his expectations, the surprise
causes some new experience to be stored for the next encounter. The opportunistic theory says that
understanding is a mixture of top-down and bottom-up strategies. Understanding a program
involves a knowledge base (which represents the expertise and background knowledge of the
analyst), a mental model (which is an encoding of the analyst’s current understanding of the
program) and an assimilation process.

Because the productivity of software engineers varies by more than an order of magnitude, the strat-
egies of successful practitioners are of great interest in producing methodologies, tools and tech-
niques that better support program understanding. These tools proceed from straightforward textual
analysis to the dynamic analysis of executing programs. The main program analysis techniques are
the following:

1. Textual analysis

One of the simplest ways to understand a program is to manually flip through source code or to
search for agiven string.

2. Yyntactic analysis

The syntactic analysisis performed by a parser that decomposes a program into expressions and
statements. The result of the parser is stored in a structure called an abstract syntax tree (AST)
that isthe basic of most sophisticated program analysis tools. Because an AST isatree, it can be
traversed or queried.

3. Control flow analysis

There are two forms of control flow analysis. Intraprocedural analysis provides a determinator
of the order in which statements can be executed (sequence, condition, loop, etc.) within a pro-
gram. Interprocedural analysis determines the calling relationship among the program unit, as
call graph.

4. Dataflow analysis

The dataflow analysis is the anaysis of the flow of the values from variables to variables
between the instructions of a program. To compute the dataflow of a program the variables
defined and the variables referenced by each instruction must be known. A variable is defined
by an instruction, if the instruction modifies the value of the variable (e.g. through an assign-
ment). A variable is referenced by an instruction when its value is used by the instruction (e.g. a
variable that appears in a conditional instruction). Dataflow analysis is concerned with answer-
ing questions related to how definition flows are used in a program.

5. Sicing
The slice of a program with respect to program point p and variable v consists of all the program

statements and predicates that might affect the value v at point p. This concept was originally
discussed by M. Weiser [Weiser-1984], see 6.4.

6. Clichérecognition

A cliché is a programming pattern. The program source code can be searched for these pattern.
An example of acliché is a pattern describing loops for performing linear search.

7. Abstract interpretation
The basic idea behind abstract interpretation is to approximate (usually undecidable) properties
by using an abstract domain instead of the actual domain of computation. As a consequence, the
program as a whole can be given an approximated meaning, hopefully capturing interesting

Program Understanding in DBRE 97

Program under standing in database rever se engineering

properties while leaving out irrelevant detail as much as possible.
8. Dynamic analysis
The analysis techniques described so far have all been static that is they are performed on the

source code of the program. It is aso possible to gain increased understanding by systematically
executing aprogram. This process is called dynamic analysis.

Such support mechanisms can manage the complexities of program understanding by helping the
analyst extract high-level information from low-level code. These support mechanisms free
analysts from tedious, manual and error-prone tasks such as code reading, searching and pattern-
matching by inspection.

5.2. Program understanding in database reverse
engineering

At first glance, it can be strange to use program understanding to perform DBRE. In the introduc-
tion of this thesis, we have explained that we restrict ourselves to the DBRE because it can be
performed more easily than the reverse engineering of the procedural part of the application and
because the database is independent from the application. Moreover the understanding of the under-
lying database can ease the understanding of the whole program.

Some authors only use the DDL, the physical schema or data themselves to reverse engineer the
database. This approach can be valid if the DMS is powerful enough to express al the constraints
and the programmer has used all the expressiveness of the DM S when he has developed the appli-
cation. In such situations al the constraints are explicitly declared and there is no implicit
constraint. Such condition can be verified in some modern and well designed (academic?) data
bases. But it can not be assumed in general and certainly not for legacy system.

Legacy DMS do not offer arich set of constraints and the programmer needs to express complex
constraints as referential constraints, data dependency, multivalued attributes, etc. Thus the
programmer implement these constraints as implicit constraints (non declarative structure). As said
in the previous chapters, even constraints or data structures that can be explicitly declared in the
DMS are not aways declared and are implicitly implemented (structure hiding). Constraints are not
explicitly declared in the DM S for numerous reasons. reusability, genericity, simplicity, efficiency,
poor programming practice, previous version of the DM S does not support such constraints, disor-
ganization that results from prolonged maintenance [Tilley-1998b].

All the implicit constraints are recovered during the data structure extraction and more precisely
during the schema refinement process. Without the recovery of the implicit constraints DBRE only
produces another (graphical) view of the physical schema. The DBRE takes al its significance if it
enhances the semantic of the physical schema to produce the conceptual schema.

All the DBRE processes, except the schemarefinement, are quite well known. The DDL analysisis
studied since the early 80's (see 1.4) and there exist many commercial tools to perform it. The data
structure conceptualization is taught in schools and universities and there exist commercial tools to
support it. But there exists very little research to tackle the schema refinement. The only implicit
constraint discovery techniques usually suggested by some methodologies is the analyst domain

98 Program Understanding in DBRE

Program under standing in database rever se engineering

knowledge or some knowledge about the program. But they do not suggest how this knowledge is
acquired!

In real projects aso most of the refinement processrelies on the analyst’s knowledge and on alot of
manual work.

The schema refinement process gives very important added values to the logical schema. Since
1992, some authors have recognized that the procedural part of the application programs is an
essential source of information to retrieve data structures ([Anderson-1996], [Hainaut et al.-19934a],
[Joris et al.-1992] and [Petit-1996]) and that understanding some programs aspects is one of the
keys to fully understand the data structure. In data-oriented applications, many (if not al) data
structures and constraints that are not explicitly declared are coded, among others, as a procedural
section of the program. The code is the only really accurate representation of the system.

The data in a database are the result of the executions of the programs which update the database.
Therefore all the implicit constraints can be inferred from the ways that the programs update the
database. If the database satisfies some constraints before the execution of a program and still satis-
fiesthese constraints after the execution, then the program must verify that the modified data do not
violate the constraints. Thus a program must validate all the constraints before modifying the data.
Some constraints can also be found through the analysis of programs that only access the data and
do not modify them. Indeed when a program reads data, to print a report or display results on a
screen, it uses some of the database constraints. For example, if there exists areferential constraint
between the CUSTOMER entity type and the ORDER entity type, this referential constraint is used,
to access to find the customer when the invoice is printed.

The program source code is an accurate and up-to-date source of information. Programs are the
only way for the users to access the data so al the constraints that the programmer wants to enforce
must be present in the code. Programming languages are very precise and deterministic, there is
only one interpretation of what a fragment of program is doing. The knowledge acquired through
the analysis of the code is quite sure. The source code is an up-to-date source of information
becauseit is used to generate (compile) the application.

The drawback of source code analysis is that it is a difficult and expensive task. The difficulty
comes from the fact that the programs are written using legacy languages that the analyst needs to
master. The analyst needs to have a deep understanding of the language to understand programs that
have been written by other programmers. The analyst must also have a good knowledge of the
forward engineering process to understand the code produced by other programmers. The size of
the application is also a source of difficulties. It is not rare to have application of several 100000
LOC.

For all those reasons, the program text source is a very useful source of information in which we
can discover alot of implicit construct during the data structures extraction. But to use this source
of information effectively, the anayst needs program understanding techniques and tools.

Another asset of procedural code analysis is that it can help in the comprehension of the data's
semantics. The understanding of the business rules, the data manipulation algorithms give impor-
tant hints to understand the meaning of the data and thus to increase the domain knowledge of the
analyst.

Program Understanding in DBRE 99

Program under standing in database rever se engineering

5.3. Program understanding difficulties

The analysis of the program source is a complex and tedious task. This is due to the fact that proce-
durally-coded data constructs are spread in a huge amount of source files, can be duplicated, and
also because there is no standard way to code a definite structure or constraint.

As an example of this, there is only one way to declare explicitly a referential constraint in SQL-
DDL (..foreign key <colum> reference <table>),itisdoneonly once (inthe database
declaration) and the constraint is always satisfied. This declaration is easy to detect in the DDL
code. Onceit has been found, the analyst is sure that the constraint is present and he can add it to the
schema without any other verification.

new- or der 1. new- or der 4.
di spl ay "custoner nunber". di spl ay "custonmer nunber".
accept CUS-| D. accept WO ORD- CUS.
read CUS key CUS-I1D move WO-ORD- CUS to CUS- I D.
invalid key go to error. read CUS key CUS-ID
nove CUS-1D to ORD- CUS. i nval id key move 0 to FI ND-CUS
di spl ay "order nunber". not invalid key nove 1 to Fl ND-CUS.
accept ORD-ID. i f FI ND-CUS
nmove WO ORD- CUS t o ORD- CUS
write ORDER di spl ay "order nunber"

accept ORD-ID

new- or der 2.

di spl ay "custoner nunber". wite ORDER

accept ORD- CUS. end-if.

nove ORD-CUS to CUS-ID.

read CUS key CUS-I1D

invalid key go to error.
di spl ay "order nunber".
accept ORD-| D.

wite ORDER

ORD
CUs ORD-ID
new- or der 3. CUSID ORD-CUS

di spl ay "custoner number".
accept WO ORD- CUS. id: CUSID<}\id: ORD-ID
nove WO ORD- CUS to CUS- I D. ref: ORD-CUS
read CUS key CUS-ID

invalid key go to error.
nove WO- ORD- CUS t o ORD- CUS.
di spl ay "order nunber".
accept ORD-|D.

wite ORDER
FIGURE 60. Four different fragments of code that verify the same referential constraint.

On the other hand, there are many different ways to implement an implicit referential constraint.
Each time an occurrence of one of the entity types that take place in the constraint is modified,
inserted or deleted, code that validates the constraint must be produced. The code is scattered in the

100 Program Understanding in DBRE

Program under standing difficulties

application and can be different. To be sure that the constraint is always verified, the analyst needs
to check all the fragments of code that modify, insert or delete the entity types.

Figure 60 presents four fragments of COBOL code that verify the same referential constraint
(between ORDER and CUSTOMER) before the recording of a new ORDER (implicit constraint), and we
can easily imagine other algorithms to validate this referential constraint that usesgo t o. From the
user point of view, those four fragments verify exactly the same constraint. The pattern (or cliché)
to search for the discovery of the referential constraint is different in each example. In the first one
the dataflow is from CUS- | D to ORD- CUS, in the second one it is the opposite. In the third one an
intermediate variable (WO- ORD- CUS) is used and the dataflow is from this variable to CUS- | D and
to ORD- CUS. This shows the different usage patterns that must be checked to detect very similar
constraint; there are many other ways to verify a referential constraint in a source code. Those
examples are simple because they are entirely written in COBOL and these code fragments are
adjacent lines of code that only validate the referential constraint. It is easy to imagine that the
complexity can increase if the instructions are spread over different paragraphs that perform many
other verifications. So the analyst has to gather the pertinent instructions by the analysis of thou-
sands of lines of codes, following the control flow (i f, go to, perform). This complexity can
also be increased by the use of some embedded DM S queries (as SQL). The analyst (and the tool)
needs to understand (parse) two different languages. To understand programs with embedded DM S
queries, another difficulty is that the DM S physical schema is not declared in the programs. The
physical schema must be extracted from the DMS-DDL and the analyst must do the mapping
between the physical schema and the program’s variables.

Each programmer has his personal way(s) to express the constraints (variable naming, comments
usage, algorithm, code presentation) depending on his skill, his programming experience, his mood.
This will increase the understanding difficulty because the analyst has to first discover how the
programmer has worked. For example, if the programmer uses a variable (cus- nane) to store two
different information (the customer name and the product name) to save memory space, it can be
very difficult to read (understand) the code. The constraints coding also depends on the program-
ming language, the target DM S, the enterprise rules (naming convention, comments usage, features
of the DM S used), the level of optimization needed, the history of the application (the maintenance
process, the different migrations), the tools used. For example, if the name of the origin of arefer-
ential attribute contains the name of the target attribute or entity type, it can ease this referential
constraint discovery. But if both attributes have meaningless names, it can be very difficult to
understand the referential constraint validation code.

The same section of code can be used to validate several constraints. For example, if the ORDER
entity type contains a multivalued attribute to store the products ordered and if a product can only
be ordered once per order. The section of code, that validates a new product added to the order,
must check that the new product is a valid product and that the product was not already ordered in
the current order. The analyst needs to dissociate the different constraint validations.

STUDENT
for sin STUDENT: Name
s. Country = "Belgium" Country SCHOOL
iff \\ School Name
s. School = SCHOOL. SchoolName ref: School >id: Name

FIGURE 61. Example of optional referential constraint.

Program Understanding in DBRE 101

Program under standing in database rever se engineering

If the constraints are not explicitly declared in the database, each module (or function) that modifies
the data must verify them. Thus the validation code is duplicated and each occurrence of the valida-
tion can be coded differently. Quite often at least one of the validation code does not verifies the
same constraints as the other. This can have different interpretations. It is possible that the analyst
has misunderstood the constraint and must find another interpretation that includes all the code
fragment. For example, if a code fragment validates the referential constraint shown in figure 61
and another one does not validate it. It can also be interpreted as the fact that the referential
constraint is optional, it is only present if the STUDENT.Country attribute is equal to "Belgium”,
otherwise STUDENT.School does not reference SCHOOL.Name. Another reason for which two
fragments of code do not implement the same constraint, is that there are errorsin one of them.

5.4. Program understanding techniques in DBRE

We do not need to retrieve the complete program specification; we are merely looking for evidence
that are relevant to find the undeclared structures and constraints on persistent data. More precisely,
we are looking for evidence of the implicit structures and constraints described in chapter 4 as
attributes refinement and aggregation, referential constraints and exact cardinalities, to mention
only afew.

Several industrial projects (see 9.4) have proved that powerful program understanding techniques
and tools are essential to support data structure extraction process in realistic size DBRE projects.

We have studied and adopted some program understanding techniques that ease the discovery of
those implicit constraints. These program understanding techniques are:
» Pattern matching: the search for patterns in a source text.

» Variables dependency graph: thisis a graph where the nodes represent variables of the program
and the arcs are relations (usually dataflow) between the variables.

* Program dlicing: extract from a program only the lines necessary and sufficient to understand
the value of avariable at a given instruction.

» Program visualization: different representations (call graph, data flow diagram,...) of a program.

All those techniques will be studied in detail in the following chapter.

102 Program Understanding in DBRE

cHAPTER6 Program
understanding
techniques

Program understanding techniques can be adapted to retrieve the implicit constraints on data that
are implemented in the programs. This chapter presents five of those techniques used to understand
the mentioned data constraints. pattern matching, variable dependency graph, program dlicing,
system dependency graph and graphical visualization of programs.

6.1. Introduction

As said in the previous chapter, program understanding has been developed by the software engi-
neering communities to acquire knowledge about programs for debugging, maintenance, enhance-
ment and reuse. Many techniques have been developed to help the analyst in the comprehension of
the existing programs.

This thesis focuses on the program understanding used in database reverse engineering. To perform
thistask, the analyst does not need to understand all the aspects of the program but wants to map the
persistent data usage to a database schema. This chapter presents different program understanding
techniques that can be used to better understand how the persistent data are used and which
constraints, on those data, are ensured by the program. Different program understanding techniques,
that can be used to better understand how the persistent data are manipulated, are studied:

» Pattern matching
Search of patterns (strings) in source code.
* Variable dependency graph
A graph that represents the rel ation between the variables.
* Programdlicing
Decomposition technique that extracts from program statements relevant to a particular compu-

tation. An extension of program slicing to analyze programs with embedded SQL is aso pre-
sented.

Program Understanding in DBRE 103

Program under standing techniques

» System dependency graph analysis
The system dependency graph is the program representation used by program slicing. It is possi-
ble to imagine other usage (querying) of the system dependency graph than to compute slices.

» Graphical visualization of program

Some aspect of the program architecture as call graph, data usage, can be visualized as graphs.

6.2. Pattern matching

The simplest program understanding technique isto search for a string in the text sources. The tech-
nique presented to search for a string in a text source is not a simple string searching tool, but a
more sophisticated pattern matching engine. The term pattern is used and not just string, asin atext
editor, because a pattern describes a set of possible strings. It can include wildcard, characters
ranges, multiple structures and variables and can be based on other defined patterns. For example, a
simplified version of the COBOL assignment (Move A to B) can be defined as the characters
"MOVE", followed by at least one separator (space, new line, tab,...), followed a COBOL variable
(that must be defined before), followed by at least one separator, followed by the characters "TO',
followed by at least one separator, followed by a second COBOL variable.

We have defined a Pattern Definition Language (PDL) has been defined to describe the patterns.
This language is close to the BNF notation; it defines the following structures (the complete PDL
syntax can be found in the annex A.1.1):

* Terminal segment
A string that is matched asiit is, the matching is case sensitive or not.
* PDL variable

Thisisavariable namethat is assigned to an already defined pattern. If a variable with the same
name appears more than once in a pattern, then each occurrence of the variable must have the
same value. A value can be assigned to the variable, before the search takes place, to specialize
the pattern. The value that matches to the variable can be used by other processors.

» Range of characters
Matches any character belonging to the range.
* Optional segment
This segment can be matched to the empty string.
* Repetitive segment
This segment can appear more than once.
» Choice segment
It must match one of the segments of the choice.
* Regular expression
Pattern can contain grep regular expression ([Robbins-2002]).
* Pattern
A pattern definition can contain areference to an already defined pattern.

104 Program Understanding in DBRE

Variable dependency graph

The COBOL assignment can be expressed in PDL as follow:
move ::= "MOWE" - @ar_1 - "TO - @ar_2;

where nove is the name of the pattern, " MOVE" and " TO' are two terminal segments, -, var _1,
var _2 are patterns defined before and @var _1 and @ar _2 are two PDL variables.

Several program understanding tools use the pattern matching engine: search of a pattern, link the
execution of a program to a pattern, variable dependency graph (see section 6.3).

The pattern matching searches for a given pattern in atext or in the description of the object of the
current schema. The user can ask to search for the next occurrence of the pattern or to select all the
occurrences of the pattern in the current document.

It is possible to associate the execution of a procedure to a pattern. Each time a pattern matches, the
procedure is executed with the variables of the patterns as input parameters of the procedure. This
can be very useful to automate a process. generate a report with the pattern found or creates
constraints each time the pattern is found. For example, if we have a SQL database where the views
materialize sub-types of tables, the views are defined as follow:

Create view

as select (...)

from <t abl e>

where <colum> = <string>;

We d like to create an is-arelation between the table and its views. The SQL extractor will create an
entity type for each view and put its definition into the technical description (see section 8.3.2 of
chapter 8). So we can search for the following pattern in the technical description of the database
schema

is-a ::="fron - @able - "where" - @olum ~ "=" ~ @tring;

and link it to a procedure that will create the is-a relation between the table (variable t abl e) and
the current entity type.

6.3. Variable dependency graph

In DBRE, it is often useful to know to which other variables (or attributes) an attribute of the data-
base is connected. For example, it can be very useful to refine the attributes decomposition. If an
attribute is mapped to a variable that is decomposed in sub-variables, we can conclude that the
attribute can be decomposed as the variable. It is useful to have aweak, easy to compute, version of
a dataflow diagram, called variable dependency graph (VDG). In this graph, each variable of the
program is represented by a vertex, while an arc (directed or not) represents a direct relation
(assignment, comparison, etc.) between two variables. If there is a path from variable A to variable
Cinthe graph, then there s, in the program, a sequence of statements such that the value of Aisin
relation with the value of C.

The very meaning of the relation between variables is defined by the analyst depending on the type
of relation materialized by the arcs. The interpretation of the variable A being in relation with vari-
able C can be one of the following: the structure of one variable is a variant of the other one, the

Program Understanding in DBRE 105

Program under standing techniques

variables share the same values, they denote the same real world object, there is a dependency
between the two variables, etc.

To construct this graph, it is only needed to search the program for definite statement patterns.
Without worrying to write a complete parser that analyzes the whole program. Figure 62.b illus-
trates the variable dependency graph of the program fragment shown in figure 62.a.

MOVE A TO B. A B
MOVE B TO C. /
. o 5
IF (C = D)

a) The code fragment. b) The VDG.

nmove: : ="MWWE' - @ar_1 - "TO' - @ar_2;
conpare::=@ar_1 - rel _op - @ar_2 ;

¢) The patterns.

FIGURE 62. The variable dependency graph.

In DB-MAIN, the relation is defined as a pattern in which the two variables in relation are repre-
sented by two PDL variables (var _1 and var _2). The patterns used to construct figure 62.b graph
are displayed in figure 62.c.

The usage of the variable dependency graph can lead to three kinds of silence and to two kinds of
noise.

01 Al Pl C X(10).

01 A2 PIC X(10). Al A2
01 B.

02 Bl PIC X(10).

02 B2 PIC X(10). B1 B2
01 C PIC X(20). 7 2.7
MOVE Al TO BL. v
MOVE A2 TO B2. B c
MOVE B TO C.

a) The code fragment. b) The VDG.

FIGURE 63. Example of silence in variable dependency graph due to variable decomposition
unawareness.

Thefirst source of silence liesin the relations that are represented by the arcs. If we use assignment
statements only, then all the other instructions that contribute to the dataflow (compute, multiply,
string,...) are ignored. This kind of silence can be reduced by increasing the number of statements
we are looking for.

The second source of silence is that the graph is not aware of the structure of the variables. Figure
63 gives an example where such silence appears. The decomposition of B in B1 and B2 is not repre-
sented, so that the path between (A1, A2) and C remains undetected.

106 Program Understanding in DBRE

Variable dependency graph

fd A 0 Mai n.
01 REC A 1 read A
2 if(Al =°T")
02 A-l... . 3 nove “cl” to B-J
fd B. el se
01 REC B. 4 nove “c2” to B-J.
5 wite REC B.
02 B-J...

FIGURE 64. The dependency between A-l and B-J is implemented using a test (i f).

Finally, ignoring control flow can aso generate silence. For example in figure 64, the result of the
tesson A-1 (if(A1="T")) is necessary to discover the dependency (a computed dependency)
between A-1 and B-J. The value of B-J is influenced by the value of A-1. The corresponding
VDG is empty because there is no assignment between variables in this example, but there is a
dependency. The last two kinds of silence are very difficult to address with this technique.

MOVE A TO B
.............. A E
MOVE B TO C NS
B

MOVE E TO B S O\
.............. C D
MOVE B TO D

a) The code fragment. b) The VDG.

FIGURE 65. Example of variable dependency graph noise.

Noise can be generated because the graph only represents dataflow and not the control flow. There
exist variables that are connected by a path in the graph though they are not in relation at execution
time. As show in figure 65, there is a path between variables A and D in the graph, but they are not
in relation during the execution. Between the assignment for A to B and the assignment from B to D,
thereis an assignment that overwrites the value of B.

The second source of noise is that if a variable represents a record field, it does not necessarily
contain avalue that appears in the database. L et us consider the following tricky program:

READ A. AL
MOVE "cst” TO AL N
MOVE Al TO BL. Bl
VRl TE B.

... Where Al is an attribute of entity type A and B1 of entity type B. The graph shows a relation
between A1 and B1, so we can conclude erroneously that there is a dependency between the entity
types A and B. The value of Al that is assigned to B2 is not a value stored into entity type A, but a
constant, so it is erroneous to conclude that there is a dependency between both entity types.

Program Understanding in DBRE 107

Program under standing techniques

6.4. Programslicing

This section describes the program slicing developed in the DB-MAIN CASE tool. This slicing tool
analyzes COBOL program, so it needs to analyze programs with procedures and arbitrary control
flow (go t o).

Inthe DB-MAIN program slicing tool, a program is represented by a graph (the system dependency
graph) and the dlicing problem is simply a vertex-reachability problem, and thus slices may be
computed in linear time in the number of edges when the graph is already computed. The computa-
tion of the graph is more expensive. As said earlier, we are interested in interprocedural slicing with
arbritary control flow, generating a slice of an entire program, where the slice crosses the bound-
aries of procedura calls and with go t o’s. For the interprocedural slice, we use uses the system
dependency graph to represent the program and the agorithm to compute the slice that was
described by S. Horwitz et a. in [Horwitz et al.-1990]. It uses the augmented system dependency
graph as proposed by Ball et al. in [Ball et al.-1992] to resolve the orthogonal problem of the slicing
of procedure with arbitrary control flow.

The remainder of this section is organized as follows. Section 6.4.1 is a brief state of the art of the
different slicing techniques. Section 6.4.2 provides background material, including the definition of
control flow graph and program dependence graph. Section 6.4.3 presents the system dependency
graph. Section 6.4.4 discusses the slicing algorithm. Section 6.4.5 provides information about the
augmented SDG to resolve the problem of procedures with arbitrary control flow. Section 6.4.6
describes how to construct the augmented SDG from the COBOL source text.

6.4.1. Program dlicing state of the art

Program dlicing is a decomposition technique that extracts from a program the statements relevant
to a particular computation. Informally, a slice provides the answer to the question "What program
statements do potentially affect the computation of variable V at point p?*

The dlice of a program with respect to program point p and variable V consists of all statements and
predicates of the program that might affect the value of V at point p. This concept, originaly
discussed by M. Weiser in [Weiser-1984], can be used to debug programs, maintain programs,
understand programs behavior. The task of computing program dlices is caled program dicing.
Weiser claims that a dice corresponds to the mental abstractions that people make when they are
debugging a program.

Various slightly different notions of program slices have been proposed, as well as number of meth-
ods to compute slices. Features of programming languages such as procedures, arbitrary control
flow, composite data types and pointers each require a specific solution. An important distinction is
that between static and dynamic slice. The former notion is computed without making assumptions
regarding a program’s input, whereas the latter relies on some specific test case.

A complete overview of the difference notion of slicing and of the computation methods can be
foundin [Binkley et al.-1996] and [Tip-1994].

108 Program Understanding in DBRE

Program slicing

6.4.1.1. Saticdicing

In Weiser’s approach, slices are computed by computing consecutive sets of indirectly relevant
statements, according to dataflow and control flow dependencies. Only statically available informa-
tion is used for computing slices; hence, this type of diceisreferred to as a static slice. In Weiser's
terminology, a slicing criterion is a pair <p,V>, where p is a program point and V is a subset of the
program’s variables. Computing a slice from a control-flow graph is atwo-step process. First requi-
site dataflow information is computed. The dataflow information is the set of relevant variables at
each point p. The second step identifies the statements of the slice. These include al points p that
assign to a variable relevant at p and the slice taken with respect-to any predicate statement that
directly controls p’s execution.

An aternative method for computing static slices was suggested by Ottenstein and Ottenstein
[Ottenstein et al.-1994], who restate the problem of static slicing in terms of a reachability problem
in a program dependence graph (PDG). A PDG is a directed graph with vertices corresponding to
statements and control predicates, and edges corresponding to data and control dependencies. The
slicing criterion is identified with a vertex in the PDG, and a slice corresponds to all PDG vertices
from which the vertex under consideration can be reached. Various program dlicing approaches
utilize modified and extended versions of PDGs as their underlying program representation.

The dlices mentioned so far are computed by gathering statements and control predicates by way of
a backward traversal of the program, starting at the dlicing criterion. Therefore, these dlices are
referred to as backward dlices. Horwitz et al. were the first who introduced the notion of forward
dlicing in [Horwitz et a.-1990]. A forward slice consists of all statements and control predicates
dependent on the slicing criterion.

Interprocedural slicing as a graph reachability problem requires extending the PDG and it also
requires modifying the slicing algorithm. [Horwitz et a.-1990] introduced the term system depen-
dence graph (SDG) for the dependence graphs that represent multi-procedure graphs. See section
6.4.3 for a compl ete description of the system dependence graph.

[Ball et a.-1992] and [Choi et al.-1994] present two methods for slicing in the presence of arbitrary
control flow (programs containing go t o’'s). Both methods require modifying the control depen-
dence subgraph of the PDG, but not the slicing algorithm. See section 6.4.5 for a complete descrip-
tion of the Ball et al. method.

In the presence of pointers (and procedures), situations may occur where two or more variables
refer to the same memory location; this phenomenon is commonly called aliasing. Algorithms for
determining potential aliases can be found in [Choi et a.-1993] and [Landi et al.-1992]. Slicing in
the presence of aliasing requires a generalization of the notion of data dependence to take potential
aliasesinto account.

6.4.1.2. Dynamic dicing

Korel and Laski introduce the notion of dynamic slicing [Korel et al.-1988]. In the case of dynamic
slicing, only the dependences that occur in a specific execution of the program are taken in account.
An dternate view of the difference between static and dynamic dicing is that dynamic slicing
assumes a fixed input for a program, wheresas static slicing does not make assumptions regarding

Program Understanding in DBRE 109

Program under standing techniques

the input. The availability of run-time information makes dynamic slices smaller than static dlices,
but limits their applicability to that particular input.

Agrawal et a. presented the first algorithm for finding dynamic slices using dependence graphs
[Agrawal et al.-1991].

Hybrid approaches are a combination of static and dynamic information used to compute dices.

6.4.2. Program dependency graph

Different definitions of program dependence representations were proposed, depending on the
intended application, and share the common feature of having an explicit representation of data
dependencies (see below). The "program dependence graphs' defined in [Ottenstein et al.-1994]
introduced the additional feature of an explicit representation for control dependencies (see below).

The program dependence graph (PDG) for program P, denoted by Gg, is a directed graph whose
vertices are connected by several kinds of edge. The vertices of G, represent the assignment state-
ments and control predicates that occur in program P. In addition, Gy includes three other categories
of vertices:

1. Thereisadistinguished vertex called the entry vertex.

2. For each variable x for which there is a path in the standard control flow graph for P on which x
is used before being defined, there isavertex called theinitial definition of x. This vertex repre-
sents an assignment to x from theinitial state. The vertex islabeled "x := Initial Sate(x)".

3. For each variable x named in P's end statement, there is a vertex called the final use of x. It rep-
resents an access to the final value of x computed by P, and islabeled "FinalUse(x)".

The edges of G, represent dependencies among program components. An edge represents either
control dependence or data dependence. Control dependence edges are labeled either true or false,
and the source of a control dependence edge is always the entry vertex or a predicate vertex. A
control dependence edge from vertex v, to vertex v, means that, during execution, whenever the
predicate represented by vy, is evaluated and its value matches the label on the edge to v, then the
program component represented by v, will eventually be executed if the program terminates.

A data dependence edge from vertex v, to vertex v, means that the program’s computation might be
changed if the relative order of the components represented by v, and v, were reversed.

110 Program Understanding in DBRE

Program slicing

WORKI NG- STORAGE SECTI ON.
01 s pic 99.
01 i pic 99.

PROCEDURE DI VI SI ON.
ENTRY.

MOVE O TO s.

MWE 1 TOi. Amoveltoil-----f---N------\:----

PERFORM UNTI L i >11 R
ADD i TO s \ ‘ e
ADD 1 TO i . A g T
DI SPLAY s. oY)
DI SPLAY i .

STOP RUN.

FIGURE 66. A program and its PDG. The solid arrows represent control dependence edges
and dashed arrows represent data dependence edges.

Example. Figure 66 shows a program and its corresponding program dependency graphs. The
solid arrows represent control dependence edges and dashed arrows represent data dependence
edges.

The agorithm to construct the PDG will be presented in section 6.4.6.

6.4.3. The system dependency graph

The system dependence graph, an extension of the dependence graphs defined in section 6.4.2,
represents programs in alanguage that includes procedures and procedure calls.

The definition of the system dependence graph (SDG) models a language with the following prop-
erties:

1. A complete system consists of a single (main) program and a collection of auxiliary procedures.

2. Procedures end with return statements instead of end statements (as defined in section 6.4.2). A
return statement does not include alist of variables.

3. Parameters are passed by value-result.

Further assumptions are made that there are no call sites of the form P(x, X) or of the form P(g),
where g is a global variable. The former restriction sidesteps potential copy-back conflicts. The
latter restriction permits global variables to be treated as additional parameters to each procedure;
thus, we do not discuss global variables explicitly in this section.

A system dependence graph includes a program dependence graph, which represents the system’s
main program, procedure dependence graphs, which represent the system’s auxiliary procedures
and some additional edges. These additional edges are of two sorts: (1) edges that represent direct
dependencies between a call site and the called procedure, and (2) edges that represent transitive
dependencies due to calls.

Extending the definition of dependence graphs to handle procedure calls requires representing the
passing of values between procedures. When procedure P calls procedure Q, values are transferred

Program Understanding in DBRE 111

Program under standing techniques

from P to Q by means of intermediate temporary variables, one for each parameter. A different set
of temporary variables is used when Q returns to transfer values back to P. Before the call, P copies
the values of the actual parameters into the call temporaries variables; Q then initializes local vari-
ables from these temporaries variables. Before returning, Q copies return values into the return
temporaries variables, from which P retrieves them.

P

i = 1;
call Qi);
print i;
Qj)

120 =1

FIGURE 67. SDG with the new kinds of vertices and edges named.

Thismodel of parameter is represented in procedure dependence graphs through the use of five new
kinds of vertices (seefigure 67). A call siteisrepresented using a call-site vertex; information trans-
fer is represented using four kinds of parameter vertices. On the calling side, information transfer is
represented by a set of vertices called actual-in and actual-out vertices. These vertices, which are
control dependent on the call-site vertex, represent assignment statements that copy the values of
the actual parameters to the call temporaries variables and from the return temporaries variables,
respectively. Similarly, information transfer in the called procedure is represented by a set of verti-
ces called formal-in and formal-out vertices. These vertices, which are control dependent on the
procedure’s entry vertex, represent assignment statements that copy the values of the formal param-
eters from the call temporaries variables and to the return temporaries variables, respectively.

Using this model, data dependencies between procedures are limited to dependencies from actual-in
vertices to formal-in vertices and from formal-out vertices to actua -out vertices. Connecting proce-
dure dependence graphs to form a system dependence graph is straightforward, involving the addi-
tion of three new kinds of edges:

1. A call edgeisadded from each call-site vertex to the corresponding procedure-entry vertex.

2. A parameter-in edge is added from each actual-in vertex at a call site to the corresponding for-
mal-in vertex in the called procedure.

3. A parameter-out edge is added from each formal-out vertex in the called procedure to the corre-
sponding actual-out vertex at the call site.

Call edges are a new kind of control dependence edge; parameter-in and parameter-out edges are
new kinds of data dependence edges.

Another advantage of this model isthat flow dependencies can be computed in the usual way, using
data-flow analysis on the procedure’s control-flow graph. That graph includes vertices analogous to
the actual-in, actual-out, formal-in and formal-out vertices of the procedure dependence graph. A
procedure’s control-flow graph starts with a sequence of assignments that copy values from call
temporaries to formal parameters and ends with a sequence of assignments that copy values from

112 Program Understanding in DBRE

Program slicing

formal parameters to return temporaries. Each call statement within the procedure is represented in
the procedure’s control-flow graph by a sequence of assignments that copy values from actual
parameters to call temporaries, followed by a sequence of assignments, which copy vaues from
return temporaries to actual parameters.

An important question is which values are transferred from a call site to the called procedure and
back again. This point is discussed further in section 6.4.4, which presents a strategy where the
results of interprocedural data-flow analysis are used to omit some parameter vertices from proce-
dure dependence graphs. For now, it is assumed that all actual parameters are copied into the call
temporaries and retrieved from the return temporaries. Thus, the parameter vertices associated with
acall from procedure P to procedure Q are defined as follows (Gp denotes the procedure depen-
dence graph for P):

princi pal . proc- a. proc- add.

nove 0 to s. nove s to a. conpute a = a + b.

nove 1 to i. move i to b.

performproc-a until i>11 perform proc-add. proc-inc.

stop run. nove a to s. nove z to a.
nove b to z. nove 1 to b.
perform proc-inc. perform proc- add.
move z to i. nove a to z.

principal

perform proc-

moveOtos move 1toi }- juntil i>11 display s display i
\\ ‘\ ~
\ \ A 1
Y \ N Y

[mve bto z] [move atos] |
4

[ped
-1

L
D(movei to b] g

e\ A
> | "*D(movestoajﬁ:l_m |-
|
!

(a=aout) (b:=b_out)

i D[move zto a] [move 1to b] [perform proc-adg[move atoz

\q p
b in:=b a:=a out
|

FIGURE 68. A program and its corresponding SDG. The PDG are connected with parameter-
in, parameter-out and call edges.

Program Understanding in DBRE 113

Program under standing techniques

In Gp, subordinate to the call-site vertex that represents the call to Q, there is an actual-in vertex
for each actual parameter e of the call to Q. The actual-in verticesare labeled r_in := e, wherer
isthe formal parameter name.

For each actual parameter a that is a variable (rather than an expression), there is an actual-out
vertex. These are labeled a := r_out for actual parameter a and corresponding formal parameter
r.

The parameter vertices associated with the entry to procedure Q and the return from procedure Q
are defined as follows (G, denotes the procedure dependence graph for Q):

For each formal parameter r of Q, Gg contains aformal-in vertex and aformal-out vertex. These
verticesarelabeled r := r_inand r_out := r, respectively.

Example. Figure 68 shows a COBOL program and its corresponding system dependence graph,
connected with parameter-in edges, parameter-out edges and call edges. Edges representing control
dependencies are shown as plain lines, edges representing intraprocedural data dependencies are
shown using dashed lines; parameter-in edges, parameter-out edges, and call edges are shown using
bold lines. In COBOL programs there are only global variables and there is no parameter passed by
procedure call (PERFORM). Since the SDG graph does not accept global variables, we simulate them
through parameters of procedure calls. All the variables that areinitialized before the procedure call
and that are used by the procedure are represented as formal-in vertex. All the variables that are
modified by the procedure and that are used outside the procedure are represented as formal-out
vertex.

Using the graph structure defined as far, interprocedural dicing could be defined as a graph-reach-
ability problem, and the slices obtained would be imprecise. This method does not produce as
precise slices as possible because it fails to account for the calling context of a called procedure.

Example. This can be illustrated using the graph shown in figure 68. In the graph-reachability
vocabulary, the problem is that thereis a path from the vertex of procedure main labeled "s in:=s"
to the vertex of main labeled "i: = i_out", even though the value of i after the call to procedure proc-
aisindependent of the value of s before the call. The source of this problem is that not all pathsin
the graph correspond to possible execution paths (e.g., the path, greyed in figure 68, from vertex
"s in:= s" of main to vertex "i := i_out" of main corresponds to procedure proc-add being called
by procedure proc-a, but returning to procedure proc-inc).

To overcome this problem, an additiona kind of edge is added to the system dependence graph to
represent transitive dependencies due to the effects of procedure calls. The presence of transitive-
dependence edges permits interprocedural slices to be computed in two passes, each of which is
cast as a reachability problem.

The system dependence graph is constructed by the following steps:

1. For each procedure of the system, construct its procedure dependence graph.

2. For each call site, introduce a call edge from the call-site vertex to the corresponding procedure-
entry vertex.

3. For each actual-in vertex v at acall site, introduce a parameter-in edge from v to the correspond-
ing formal-in vertex in the called procedure.

4. For each actual-out vertex v at a call site, introduce a parameter-out edge to v from the corre-
sponding formal-out vertex in the called procedure.

114 Program Understanding in DBRE

Program slicing

5. Atall call sites that call procedure P, introduce flow dependence edges that represent transitive
dependence due to the effects of procedure calls. Such edges are called def-order edges.

principal

[move Oto s] [move 1to i}— l>(unti| i>11] [display s] [display i]

perform proc-

[move bto z] [moveato sji perform proc-ind {moveztoi |-

>
ove ato Z} >z out:= Zj

[z =z n}D(move zto a] [move 1to b] [perform proc-ac@ [m
", N 4

FIGURE 69. The complete SDG of figure 68 program.

Example. Figure 69 shows the complete system dependence graph for figure 68 program. Control
dependencies are represented using plain arrows; intraprocedural flow dependencies are repre-
sented using dashed arrows; transitive interprocedural data dependencies (corresponding to subor-
dinate characteristic graph edges) are represented using dashed, bold arcs; call edges, parameter-in
edges, and parameter-out edges (which connect program and system dependence graphs together)
are represented using bold arrows.

The construction of the SDG will be explained in section 6.4.6.

6.4.4. Interprocedural slicing

This section describes how to perform an interprocedural slice using the system dependence graph
defined in section 6.4.3.

The difficult aspect of interprocedural slicing is keeping track of the calling context when a dlice
"descends" into a called procedure.

Program Understanding in DBRE 115

Program under standing techniques

The key element of this approach is the use of the edges that represent transitive data and control
dependencies from actual-in vertices to actual-out vertices due to procedure calls. The presence of
such edges permits to sidestep the "calling context” problem; the dlicing operation can move
"across" acall without having to descend into it.

Suppose the god isto slice system dependence graph G with respect to some vertex sin procedure
P; Phases 1 and 2 can be characterized as follows:

Phase 1. Phase 1 identifies vertices that can reach s, and are either in P itself or in a procedure that
calls P (either directly or transitively). It follows flow edges, control edges, call edges and parame-
ter-in edges. Because parameter-out edges are not followed, the traversal in Phase 1 does not
"descend" into procedures called by P. The effects of such procedures are not ignored, however; the
presence of transitive flow dependence edges from actual-in to actual-out vertices (subordinate-
characteristic-graph edges) permits the discovery of vertices that can reach s only through a proce-
dure call, athough the graph traversal does not actually descend into the called procedure.

Phase 2. Phase 2 identifies vertices that can reach s from procedures (transitively) called by P or
from procedures called by procedures that (transitively) call P. It follows flow edges, control edges
and parameter-out edges. Because call edges and parameter-in edges are not followed, the traversal
in Phase 2 does not "ascend" into calling procedures; the transitive flow dependence edges from
actual-in to actual-out vertices make such "ascents' unnecessary.

Both Phases 1 and 2 traversed the system dependence graph to find the set of vertices that can reach
a given set of vertices along certain kinds of edges. The traversal in Phase 1 follows flow edges,
controls edges, call edges, and parameter-in edges, but does not follow parameter-out edges. The
traversal in Phase 2 that follows flow edges, control edges, and parameter-out edges, but does not
follow, call edges, or parameter in edges.

116 Program Understanding in DBRE

Program slicing

principal

moveltoi }->{until i>11

/

2\
4~

D[move zto a] [move 1to b] [perform proc—a@_[move ato z} 7
. 4

NEEDI
- o

FIGURE 70. The example program’s SDG is sliced with respect to the formal-out vertex for
parameter z in procedure proc-inc. The vertices marked by Phase 1 of the slicing
algorithm as well as the edges traversed during this phase.

Figure 70 and figure 71 illustrate the two phases of the interprocedural dlicing algorithm. Figure 70
shows the vertices of the example system dependence graph of figure 69 that are marked during
Phase 1 of the interprocedural dlicing algorithm when the system is sliced with respect to the
formal-out vertex for parameter z in procedure proc-inc. Edges "traversed” during Phase 1 are also
included in figure 70.

Program Understanding in DBRE 117

Program under standing techniques

principal

L

moveltoi }->{until i>11
V ~

\

[move 1to b] [perform pr

\\ .
.. - P 4

oc—adg_[move ato z} 3

FIGURE 71. The vertices marked by phase 2 of the slicing algorithm as well as the edges
traversed during this phase are shown in boldface.

Figure 71 adds (in boldface) the vertices that are marked and the edges that are traversed during
Phase 2 of the dlice.

118 Program Understanding in DBRE

Program slicing

principal

moveltoi }->{until i>11
| J

FIGURE 72. The complete slice of the example program’s system dependence graph sliced
with respect to the formal-out vertex for parameter z in procedure proc-inc.

The result of an interprocedural slice consists of the sets of vertices identified by Phase 1 and Phase
2 and the set of edges induced by this vertex set. Figure 72 shows the completed example dice
(excluding def-order edges.)

6.4.5. Arbitrary control flow

A lot of COBOL programs, especially legacy ones, contain Go To statements (arbritary control
flow) that are not correctly handled by the algorithm of Horwitz et al. [Horwitz et al.-1990] as
shown in the following example. The problem of slicing in presence of arbritary control flow is
orthogonal to the multiple procedures problem discussed in the previous sections. The SDG is
augmented as suggested by Ball and Horwitz in [Ball et al.-1992].

Program Understanding in DBRE 119

Program under standing techniques

move O to s.
nmove 1 to p.
nmove O to i.
performuntil (i >= N)
add 1 to i
i f(p > highvalue) then
subtract 1 fromi
go to break
end-if
10 add i to s
11 multiply i by p.
12br eak.
13 display i.
14 display s.
15 display p.
16 stop run.

O©oO~NOOOThA~WNPE

a) The program.

2 move 1 to p. c) The PDG.
3 nmove 0 to i.

4 performuntil (i >= N)

5 add 1 to i

6 i f(p > highval ue) then

8 go to break

9 end-if

11 multiply i by p.

12br eak.

15 display p.
d) The correct slice.

FIGURE 73. A program with its control flow graph (CFG), its program dependency graph
(PDG) and the correct slice with respect to di spl ay p.

Example. Consider the program shown in figure 73.a. Figure 73.b shows the standard control flow
graph (CFG) for this program and figure 73.c shows the program dependence graph that corre-
sponds to this CFG. The bold part of the figure 73.c indicates the vertices that would be identified
by our dlicing agorithm with respect to the statement display p. Figure 73.d shows the correct slice
with respect to the statement display p with in bold the lines that are not marked by our slicing algo-

120 Program Understanding in DBRE

Program slicing

rithm. It is clear that the result of the slicing algorithm does not satisfy the semantic goal of program
slicing because for some value of N and highvalue, different final values of p will be output by the
original program and by the dlice.

The problem with the slicing agorithm is that if does not correctly detect when unconditional
jumps in the program (such asgo t o) are required in the program projection. Simply including a
vertex for the go t o in the CFG does not solve the problem. The dicing algorithm will still omit
thego t o becausethereisno path fromthego t o vertex to the vertex that represent the statement
di spl ay p.Infact, thego t o vertex has no outgoing edges, so it will not be included in any dlice
other than the dlice with respect tothego t o itself.

The new dlicing algorithm itself is similar to the previous one in that it uses the program depen-
dency graph to identify the program componentsin the slice.

The important difference between the two algorithms is that the new one uses an augmented control
flow graph (ACFG) from which the PDG is build. In particular, jump statements are explicitly
represented as a pseudo-predicate vertex. The jJump vertex’s true-successor is the target of the jump
and its false-successor is the vertex that represents the jump statement’s continuation (that is, the
vertex that would be the jump vertex’s successor if it was a"no-op" rather than ajump).

Representing a jump statement this way causes it to be the source of control dependence edges in
the PDG. Thisin turn allows the jump vertex to be included in the set identified by the slicing algo-
rithm.

Program Understanding in DBRE 121

Program under standing techniques

V
moveOtos

V
move ltop

V
V /X
(perform until (i>:n))—(>(add 1to i)—(>(if(p > highvalue))
A W

o multiplyibyp)~

FIGURE 74. The augmented CFG and its corresponding PDG.

Example. The augmented CFG and the correct PDG of figure 73.a program are displayed in figure
74. The bold part of the figure indicates the vertices that would be identified by our new dicing
algorithm with respect to di spl ay p.

6.4.6. SDG construction

A dlicing algorithm based on Horwitz et a. [Horwitz et al.-1990] and Ball and Horwitz [Ball et a .-
1992] has been presented. During this presentation, it has been sketched that the slicing problem is
quite easy (graph traversal) when the SDG is used, but the SDG computation is not a trivial task.
This section will present how to compute this SDG from a COBOL program source code.

The different steps of the SDG construction are the following:

. COBOL program parsing to obtain the Abstract Syntax Tree (AST).
Augmented control flow graph (ACFG) construction from the AST.
Computation of the post dom graph from the ACFG.

Construction of the PDG using the ACFG and the post dom graph.
Construction of the SDG using the PDG.

a s~ DB

122 Program Understanding in DBRE

Program slicing

01 cus-address pic X(100).

01 wk- address. nmove cus-address to wk-address.
02 wk-street pic X(60). di spl ay wk-street.
02 wk-city pic X(30).
02 wk-zip pic X(10).

FIGURE 75. Example of the need to manipulate part of a variable (cus- addr ess).

UL Vv
02 V1 PIC X(2).

01 V2. (2) variable ancestor start stop

03 V21 PIC X(3). \\51 \\; % g

03 V22 PIC X(4). V2 vV 3 9

Vi V2 V21 V 3 5

s opelel L 1°) [vz22 v 6 9

VZ] VZZ

FIGURE 76. Variable declaration and its internal representation.

6.4.6.1. General consideration

This section will present some general considerations about how we represent variables.

During the SDG construction and its querying, variables comparison is needed (check if a variable
is included in another one) to compute variable unions and intersections. Variable names are not
necessary, except to display the results. Sometimes, only a part of a variable needs to be manipu-
lated. For example, infigure 75, di spl ay wk_st r eet depends on the 60 first characters of cus-

addr ess.

To ease those computations, the variables are represented as their physical position relatively to
their ancestor (level 01 variable). Figure 76 gives an example of avariable declaration and its inter-
nal representation.

6.4.6.2. The abstract syntax tree

The abstract syntax tree (AST) represents the program as a tree where each vertex represents an
instruction. The (oriented) arcs represent the syntactic or nested successor of the instruction, vertex
can have one or two successors. |f avertex has two successors, the arcs are labeled true and false.

It is not necessary to be able to reconstruct the original program from its control flow graph or its
system dependency graph. So the instructions representation can be simplified. There are only 10
types of instructions:

» Read: instruction that reads afile.

* Write: instruction that writes or modifies afile (asWRI TE or REWRI TE).

o If: atest.

* While: aloop.

» Call: aprocedure call (COBOL PERFORM).

» Paragraph: aCOBOL paragraph name.

» Section: aCOBOL section name.

Program Understanding in DBRE 123

Program under standing techniques

» End: aninstruction that terminate the program (STOP RUN).
e goto:aGO TOingtruction.
* Normal: all the other instructions.

For each instruction, there are two lists of variables: the ones that are used (referenced) by the
instruction (Ref) and the list of the variables that are or may be affected (defined) by the instruction
(Def).

In the abstract syntax tree and in the CFG each instruction has a pointer to its next instruction (the
next instruction of the go to is the instruction that follows syntactically). The while, call and go to
instructions have a pointer to the next instruction executed (to the loop body for the while). The
read, write and if instructions have two next instructions (the true and fal se successor).

6.4.6.3. Theaugmented control flow graph

A control flow graph (CFG) is a directed graph that satisfies the following conditions. The CFG
has three types of vertices: Fall-through vertices (either assignment statements or output state-
ments), which have one successor, predicate vertices, which have one true-successor and one false-
successor, and an EXIT vertex, which has no successors. The root of the CFG is the ENTRY
vertex, which is a predicate that has the EXIT vertex asits false-successor. Every vertex is reach-
able from the ENTRY vertex, and the EXIT vertex is reachable from every vertex. Edges in the
CFG are labeled; the outgoing edges of a predicate vertex are labeled true or false (as appropriate)
and the outgoing edge of afall-through vertex islabeled null.

The augmented control flow graph (ACFG) [Ball et a.-1992] is a CFG in which a Go To is repre-
sented as a pseudo-predicate vertex (that always evaluatesto true). The Go To vertex’s true-succes-
sor isthe target of the jump, and its false-successor isthe vertex that represents the jump statement’s
continuation (that is, the vertex that would be the jump vertex’s successor if it wasa"no-op" rather
that ajump).

To compute the ACFG of each procedure, we parse the program to obtain an abstract syntax tree
(AST) of the program using the classical compiler techniques [Aho et al.-1989]. This AST can be
easily transformed into the ACFG,

In aCOBOL program a procedure can be a section or a paragraph, but a paragraph or a section can
also represent a label that is the target of a go to statement. So the same instruction can belong to
several execution paths. We have decided, to facilitate the computation, to duplicate such code, so
the same instruction is part of the ACFG of the section and of the ACFG of the paragraph.

124 Program Understanding in DBRE

Program slicing

SECTI ON S1. PROCEDURE S1.
P1. PERFORM S2.
PERFORM S2. c
c PRCCEDURE S2.
SECTI ON S2 c
P2. PERFORM P2.
c PROCEDURE P2.
P3.
PERFORM P2.
a) The original program. b) Program in which P2 code

has been duplicated.

FIGURE 77. Program with a paragraph that is part of a section and called as an independent
procedure.

Example. Consider figure 77.a program in which the paragraph P2 is executed as a part of section
S2 (PERFORM P2). To facilitate the computation of the SDG the representation of P2 is duplicated
inthe AST (figure 77.b).

proc = | 1£Then’(expr seq){

Procedur e(seq){ stmt.entry = Pred("expr", seg.entry, stmt.cont)
proc.entry=Pred("ENTRY",seg.entry, seq.cont seq.cont = stmt.cont
proc.cont=seq.cont=Fall Through("EXIT", null) }

}; | 1fThenElse?(expr seq; sedy){
stmt.entry = Pred("expr",seq;.entry,seqg.entry)
seq = Seq,.cont = segy.cont = stmt.cont
NullSeq(){ }
seq.entry = seq.cont | Paragraph(ID) {
} stmt.entry = stmt.cont
| Sequence(stmt seqq){ insert(ID, stmt.entry)
seg.entry = stmt.entry }
stmt.cont = seq.entry | GoTo(IDX
Seq, .cont = seg.cont stmt.entry =
} Pred("GoTo ID", lookup(I D), stmt.cont)
}
stmt = | Call(ID){
While(exp seq) { stmt.entry = FallThrough("call ID", stmt.cont)
stmt.entry = Pred("expr", seg.entry, stmt.cont) stmt.call = ID
seg.cont = stmt.entry }
} 1. IfThen representsalf, a R r a\Write with onl
| Normal (expr_){ ., ., trueei;cistﬁodt?al S:Oslt?ccr.e e
stiribieniyy = FellTsielitegar e 2. IfThenElse represents a If, a Read or aWrite with a
} true-successor and a false-successor.

FIGURE 78. Abstract syntax for the AST with attributes that define the ACFG.

Figure 78 presents an attribute grammar for our AST [Ball et al.-1992], in which the attributes are
used to define the translation from an AST to its ACFG. Each production in the grammar is of the
form "x, = op(x;...x) ", where op is an operator name and each x, is a non-terminal. Every non-
terminal hastwo synthesized attributes entry and call and an inherited attribute cont. Entry and cont

Program Understanding in DBRE 125

Program under standing techniques

represent vertices in the ACFG and call is only valued for the Call vertex; it is used to store the
name of the called procedure. The constructor pred(t, v, w) creates a predicate vertex with text t and
true-successor v and false-successor w, while the constructor Fall Through(t, v) creates afall-through
vertex with text t and successor v. A global symbol table (with operators insert and lookup) is used
to manage the control flow between Go To and Paragraph.

D(ny) = {ng
OnON-{ng) doD(n) = N

until one of the D(n) change
OnON-{ng) do

D) ={nt O ~ D(p)
p O succ(n)

O(nON) do D(n) = D(n)—{n}

FIGURE 79. Algorithm to compute the post-dominates.

6.4.6.4. The post-dominators computation

Let vand w beverticesin an ACFG. Vertex w post-dominates v iff vz w and wison every path from
v to the Exit vertex.

The algorithm to compute the post-dominance is based on the algorithm to compute dominance
[Aho et al.-1989]. If N is the set of the vertices of the ACFG and n, is the Exit vertex of the graph
then at the end of the algorithm of figure 79, d belongs to D(n) iff d post-dominates n.

n D(n)

16:Exit

15:display p 16

14:display s 15, 16

13:display i 14, 15, 16

11:multiply i by p 4,13, 14, 15, 16

10:additos 4,11, 13, 14, 15, 16 T

8 go to break . 13’ 14’ 15' 16 perform until (i>=n) Qf(p > highvalue)) (go to breek)
7. subtract 1 fromi | 8,13, 14, 15, 16 - " p p

6: If(p > hlghval ue) 13,14, 15,16 (moveOtoi) (multipyi by p) (addltoi) (subtractlform i)
5. add1toi 6, 13, 14, 15, 16

4; performuntil (i>=N)| 13, 14, 15, 16 (move1top) (additos)

3: moveOtoi 4,13, 14, 15, 16 v

2. move 1ltop. 3, 4,13, 14, 15, 16

1: moveOtos 2,3,4,13,14, 15,16

0: Entry 16

FIGURE 80. The post-dominator computed by the algorithm and the post-dominator tree.

Example. Figure 80 is the results of the algorithm applied to figure 74 ACFG,

126 Program Understanding in DBRE

Program slicing

6.4.6.5. The PDG construction

The PDG computation is divided in two parts. The control dependencies and the data dependencies
computation.

Control dependencies. Given the post-dominator tree, we can determine control dependencies by
examining certain ACFG edges and annotating vertices on corresponding post-dominator tree paths
[Ferrante et al.-1987]. Let Sconsist of al edges (A,B) in the ACFG such that B is not an ancestor of
A in the post-dominator tree (i.e., B does not post-dominate A). Let L denote the least common
ancestor of A and B in the post-dominator tree. By construction, we cannot have L equal B.

Either L is A or L isthe parent of A in the post-dominator tree.
» L =parent of A. All verticesin the post-dominator tree on the path from L to B, including B but
not L, are control dependent on A.

* L = A All vertices in the post-dominator tree on the path from A to B, including A and B, are
control dependent on A.

After all edgesin Shave been examined, al control dependencies have been determined.

C =the ACFG's arcs; N = the ACGF's vertices
T = post-dominator tree’s arcs
S={(A/B)|(AB)0Cand(AB) 0T}

OnON do D(n) = O

OAB OS
L = predecessor(A) in T
D(A) = {n|nonthepathfrom L to BinT and B # L}

FIGURE 81. The control dependencies computation.

The algorithm of figure 81 computes D(n) [Aho et al.-1989] as the set of the vertices control depen-
dent on n ([Aho et a.-1989]).

S verticesmarked | control dependent on
(0,2) 1,2,3,4,13,14,15 | O: Entry

(4,5) 5,6 4: perform until (i >=N)
(6,7) 7,8 6: if(p > highvalue)
(6,120) 4,10,11 6: if(p > highvalue)
(8,20) 4,10,11 8: go to break

FIGURE 82. The vertices marked control dependent and the control dependence edges.
Example. Figure 82 represents the vertices marked by our algorithm for each couple of S

Data dependencies. To compute the data dependencies edges in the PDG, we need to know for
each vertex, n, the vertices that define the variables referenced in vertex n (n.def). The dataflow
information can be expressed as the following equation [Aho et al.-1989]:

Out(n) = Prod(n) O (In(n) — Supp(n))
and it can be interpreted as "information at the end of a vertex (Out(n)) are produced inside the

Program Understanding in DBRE 127

Program under standing techniques

vertex (Prod(n)) or are present before the vertex (In(n)) and are not suppressed (Supp(n)). In our

implementation Prod(n)

= Supp(n) = n.def.

The vertices that define the variables referenced in avertex n (n.ref) are In(n) n n.ref.

In(n) can be computed,
following equation:

FIGURE 83.

if the ACFG (without the false-successor of Go to) is known, using the

In(n) = [] Out(p)

p OPred(n)

N = ACFG without the Go To fal se-successors
OnON do
Out(n) = n.def

while some Out(n) change
OnON do
In(n) = [1 Out(p)

p O Pred(n)
Out(n) = Out(n) O (In(n) — n.def)

In and Out computation algorithm.

The algorithm in figure 83 computes In and Out for each vertex of the ACFG.

n n.def| n.ref In(n) QOut(n)
1. moveOtos S (1)
2: moveltonp. p s(1) p(2)s(1)
3: moveOtoi [p(2)s(1) i(3)p(2)s(1)
4: perform until (i>=N) [i(3,5)p(2,11)s(1,10) i(3,5)p(2,11)s(1,10)
5 add1ltoi [[i(3,5)p(2,11)s(1,10) i(5)p(2,11)s(1,10)
6: if(p > highvalue) p i(5)p(2,11)s(1,10) i(5)p(2,11)s(1,10)
7. subtract 1 from i i i i(5)p(2,11)s(1,10) i(7)p(2,11)s(1,10)
8: goto break i(7)p(2,11)s(1,10) i(7)p(2,11)s(1,10)
10:addi tos S i,S i(5)p(2,11)s(1,10) S(10)i(5)p(2,11)
11:multiply i by p p i,p 5(10)i(5)p(2,11) p(11)s(10)i(5)
13:display i [i(3,57)p(2,11)s(1,10) | i(3,5,7)p(2,11)s(1,10)
14:display s S iI(3,57)p(2,11)s(1,10) | i(3,5,7)p(2,11)s(1,10)
15:display p p iI(3,57)p(2,11)s(1,10) | i(3,5,7)p(2,11)s(1,10)

FIGURE 84. In and Out computed by figure 83 algorithm (in 6 iterations).
128 Program Understanding in DBRE

Program slicing

(moveltop) (moveOtos) (moreOtm) (‘perform)V(dlsplayl) (dlsplays) (dlsplayp)

\’ ,/ /

, - \‘ \/,\ - . -
A = B s '
- if(p>h|ghvaJue ,
\’

N

// -

AN

A SRR
substract 1 formi \\\\
AN

\\
\\\ S !
N
_ \IP\
~
~

- = A - /
~o ~_______>mult|ply|byp s

\ \
«Q
o \
—
o
o
=

FIGURE 85. PDG's data dependencies edges of figure 66 program.

Example. Theresult of the algorithm applied to figure 74 ACFG (without the false-successor of Go
to) isgiven in the figure 84 and the PDG’s data dependence arcs are shown in figure 85.

6.4.6.6. The SDG congtruction

When the PDG of each procedure has been constructed, the construction of the SDG is quite easy.
The SDG can be constructed as follows:

» For each call site (call vertex in the PDG), a call edge is added from the call site vertex to the
corresponding procedure entry vertex. The actual-in and actual-out vertices are connected to the
call site vertex.

» For each actual-in vertex v at the call site, introduce a parameter-in edge from v to the corre-
sponding formal-in vertex in the called procedure.

» For each actua-in vertex v at the call site, introduce a parameter-out edge to v from the corre-
sponding formal-out vertex in the called procedure.

o Atadl cal sitesthat cal procedure P, introduce flow dependence edges that represent transitive
dependences due to effects of procedure calls. The flow dependence edges are quite easy to
compute for COBOL program because the is no recursivity in the procedure calls. So the proce-
dures can be sorted to compute the flow dependence edges.

6.4.6.7. The complexity of the dlicing algorithm

The complexity of the slicing algorithm must be divided in two parts. The first part isthe complex-
ity of the SDG construction and the second one is the complexity of the slicing algorithm itself once
the SDG is computed. They are dissociated because the SDG is computed only once and stored to
compute all the dlices needed.

A. Complexity of the SDG construction

The complexity of the SDG construction is the sum of the complexity of each step of its construc-
tion as presented in section 6.4.6.

The cost of constructing the SDG can be expressed in terms of the parameters given hereafter:

Program Understanding in DBRE 129

Program under standing techniques

« #.OC Thelargest number of LOC in asingle procedure.

o #Params The largest number of formal parametersin any procedure.
« #VAR Thelargest number of variable in any procedure.

o #E The largest number of edgesin asingle PDG.

o #P The number of procedure in the system.

The AST construction complexity

The complexity of the construction of the AST of a single procedure is linear in the number of
LOC.

O(AST)=O(#.0OC)

The ACFG construction complexity

The complexity of the construction of the ACFG of a single procedure is linear in the number of
verticesin the AST, thanks to the use of the attributed grammar. The number of verticesin the AST
is of the same order as the number of LOC.

O(ACFG)=O(#LOC)

The post-dominator tree construction complexity

The agorithm to compute the post-dominator tree of a single procedure is given in figure 79. This
algorithm can be divided in three steps (the initialization, the iteration and the termination). The
complexities of the initialization and of the termination are linear in the number of vertices of the
ACFG. The number of vertices of the ACFG is of the same as the number of vertices of the AST,
which is of the same order as the number of LOC. So the complexity is linear in the number of
LOC.

The complexity of the inner loop of the iteration is also linear in the number of vertices of the
ACFG. The complexity of the iteration itself (until one of the D(n) change) can be evaluated as
follows. If a D(n) changes then its number of elements decreases, because it is the intersection of
elements. During the initiaization each D(n) has#LOC elements. At each iteration at least one D(n)
is modified, i.e., its number of elements decreases at least by one. In the worse case the loop exist
when all the D(n) are empty. So the complexity of the outer-loop is O(#LOC?).

The total complexity of the post-dominator tree construction of asingle procedureis
O(post-dominator) = O(initialization) + O(iteration) + O(termination)
= O(#LOC) + O(#LOC3) + O(#LOC)
=O(#LOC + #LOC8)

The control dependencies construction complexity

The agorithm to compute the control dependencies of a single procedure is given in figure 81. The
size of Sisat most the number of edges of ACFG. Each vertices of ACFG has at most two succes-

130 Program Understanding in DBRE

Program slicing

sors (a true and a false branch). So the size of Sis at most two times the number of vertices of
ACFG (= 2@L.0cC).

The complexity of the construction of D(A) is linear in the size of the post-dominator tree
(=o®#L0C)). The complexity of the construction of the control dependencies for a single procedure
is

O(control dependencies) = O(2 FHLOC F#LOC)

= O#LOC)H

The data dependencies construction complexity

The agorithm to compute the data dependencies of a single procedure is given in figure 83. The
complexity of theinitiaization islinear in the size of the ACFG (=O(#L OC)).

The maximum number of elements of in(n) for any nis equal to #VAR 3L.OC, because at most al
the variables can be defined in each vertex. If an in(n) changes, its number of elements increases by
one, because it is an union. So the complexity of the iteration is

O(#VAR B#LOC FLOC)

= O#VAR #LOC?

because each in(n) has at most (#vAR 3#L.0OC) values and at each iteration at least one of thein(n) is
incremented by one and thereis#LOC n.

So

O(Data dependencies) = O(#LOC + #LOC? (#VAR)

The PDG construction complexity

The complexity of the PDG construction is the sum of the complexity of the above graph construc-
tions, i.e.,, AST, ACFG post-dominator tree, control dependencies, data dependencies.

O(PDG)=0O(AST) + O(ACFG) + O(post-dominator) + O(control dependencies)
+ O(data dependencies)

= (O(#LOC) + O(#LOC) + O(#LOC + O#HLOC)) + O#HLOC?) + O(#LOC + #LOC* HVAR))
= O(#LOC + #LOC? + #LOC" + #LOC* AVAR)

The SDG construction complexity

The complexity of the SDG construction is the complexity of each PDG construction, plus the
complexity of the creation of the transitive dependence edges.

To determine the dependencies among the parameters of a procedure, the slice with respect to each
formal-out is computed. These dependencies are copied to the actual-out to produce the transitive

Program Understanding in DBRE 131

Program under standing techniques

edges. The complexity to compute the slice with respect to a formal-out is linear in the size of the
PDG (O@#E + #.0C)), because the slice is computed by the traversal of the PDG.

The complexity to compute the dependencies among of the parameters of a procedure is
O(#Params . (#LOC + #E)
The complexity to compute the SDG is

O(SDG)=#P . O(PDG) + O(#P . #Params . (#LOC + #E))

=O(#P . (#LOC + #LOC? + #LOCS + #LOC? . #VAR + #Params .(#LOC + #E)))

B. Complexity of the slice computation

Aninterprocedura diceis performed by two traversals of the SDG, starting from some initial set of
vertices. The cost of each traversal is linear in the size of the SDG

O(dlicing)=O(#P . (#LOC + #E))

6.5. The programdlicing for embedded code

Many legacy COBOL applications do not only use standard files, but also store and manipul ate data
from DMS. To understand the programs and to recover the implicit constraints of these databases, it
is necessary to make the link between the program variables and the database entity types and
attributes.

For IDMS/ICODASYL DMS, the COBOL language provides built-in instructions (GET, STORE,
FI ND,...) to access the database and thus those instructions are already analyzed by the program
slicing. The only things to add is an option in the program slicing to load the definition of the phys-
ical schema referenced by the SUB- SCHEMA SECTI ON of the DATA DI VI SI ON. This physica
schemais obtained through the DDL analysis.

For other DMS, such as SQL or IMS, COBOL does not have built-in data access instructions. To
access those DMS, the programmer writes embedded instructions in the program. An embedded
instruction belongs to another language, in this case the DMS-DML, that is used in the main
program language, called the host language. The DM 'S manufacturer provides a pre-processor (pre-
compiler) that translates those embedded DMS-DML instructions into COBOL calls to externd
functions (programs) that implement the access to the DMS. The difficulties with the embedded
instructions is that they are not standardized and thus vary from one DM S to the other and they do
not conform to the host language syntax. For example, in an SQL embedded instructions block,
each instruction isended by a";" whilein aCOBOL program there is no explicit instruction separa
tor. In SQL, identifiers can contain *_" but no "-" while the reverse holdsin COBOL.

Another difficulty, when analyzing programs with embedded code, is that the physical schemais
not explicitly declared in the program itself. But the physical schemais necessary to understand the
instructions that access the database. The physical schema is obtained through the analysis of the
DDL. To compute program slices for a program that contains embedded code, the SDG has to be

132 Program Understanding in DBRE

The program dlicing for embedded code

produced. This SDG must represent control and dataflow of the COBOL and of the embedded
language. To produce such a SDG, a parser that understands COBOL and the embedded language
has to be written. To get around these difficulties, we propose to use a preprocessor that translates
the embedded instructions into their equivalent COBOL instructions. These instructions are equiva-
lent in that the SDG computed with those instructions or with the embedded instructions is the
same. To stress the fact that those instructions do not really implement the embedded code but give
an equivalent SDG, two new instructions are added to the COBOL grammar [Sellink et al.-2000].

e DI RECT-MAP var-1 TO var-2
DI RECT- MAP has the same behavior as the COBOL MOVE, wherevar - 1 and var - 2 must be of
compatible type, the value of var - 1 isassigned to var - 2.

e |NDI RECT-MAP list-var-1 TO |list-var-2
All the variables of |i st-var-1 are referenced and all the variables of |ist-var-2 are

defined by the instruction | NDI RECT- MAP. But the values of the variables of | i st -var-1 are
not assigned to the variablesof | i st - var - 2.

To illustrate the preprocessing step, we will apply it to COBOL with embedded SQL instructions.
The embedded SQL instructions that need to be analyzed to understand dataflow and control flow
of aprogram are sel ect, i nsert, updat e, del et e, decl are cursor,open andf et ch.

The data exchange between the program and the DMS is done through host variables. The DMS
uses output host variables to pass data and status information to the program. The program uses
input host variables to pass data to the DMS.

To express the trand ation rules, some functions, that extract host variables and column name from

SQL expressions, are heeded:

* input-couple(exp)
The list of the couples (h- v, c¢), such that h- v is an input host variable used in an SQL expres-
sion exp and c isthe column associated with h- v in exp.

* output-couple(exp)
Thelist of the couples (h- v, ¢), such that h- v is an output host variable used in an SQL expres-
sion exp and ¢ isthe column associated with h- v in exp.

* host-var(list-couple)
The list of the host variables contained in | i st -coupl e. | i st-coupl e is alist of couples
(h_v,c), where h_v isan input host variable and ¢ is acolumn. | i st - coupl e isusualy pro-
duced by input_output(exp) or output_couple(exp).

» column(list-couple)
Thelist of columnscontainedinl i st - coupl e.li st-coupl eisalist of couples(h_v,c), such
as h_v is an input host variable and c is a column. |i st - coupl e is usualy produced by
input_output(exp) or output_coupl e(exp).

» output-host-var(exp)
The list of al the output host variables used in exp and that do not appear in host-var(output-
couple(exp)). This function is useful because there exist some output host variables that are not
associated with a column, such as the status variables (telling if the query is correct or suc-

ceeds,...) or aggregation queries such as
sel ect count(x) into :nbr from custoner

the variable nbr is associated with no column.

Program Understanding in DBRE 133

Program under standing techniques

CUSTOMER
NUM

NAME
ADDR

FIGURE 86. The CUSTOMVER table.

To illustrate the trand ation process, the simple database schema of figure 86, will be used.

for each (h-v,c) in input-couple(query)
gener at e(DI RECT- MAP h-v TO c)

gener at e(| NDI RECT- MAP col unm(i nput - coupl e(query))
TO col um(out put - coupl e(query)) 0O out put-host-var(query))

for each (h-v,c) in output-couple(query)
gener at e(DI RECT- VAP ¢ TO h-v)

FIGURE 87. The algorithm to translate a sel ect query (query).

6.5.1. Select

A sel ect query istranslated in three parts. The first one represents the direct mappings between
the input host variables and their corresponding columns. Those mappings appear in the wher e
clause of the query. The second part is the indirect mapping from the columns associated with the
input host variables (column(input-couple(query))) to the columns associated with the output host
variadbles and the output host variables not associated with a column
((column(input-couple(query)) O output-host-var(query)). The last part represents the direct mapping
between the selected columns and their corresponding output host variables (output-couple(query)).
These last mappings appear inthesel ect ... i nto clause of the query. The algorithm to trans-
lateasel ect query isgivenin figure 87.

The transation may appear complicated but the resulting SDG has two interesting properties. The
first one (that is the minimum requirement of the SDG) is that it is possible to compute a correct
program slice for any instruction of the program. This slice contains the queries that influence the
value of the variable for which the dlice is computed and the slice aso traverses the query, i.e., the
slice contains also the instructions that influence the query. The second property of this SDG, isthat
the columns of the database that are used appear explicitly in the SDG. This is not necessary to
compute a correct program slice, because the program does not know those columns since they are
externa to the program. But it is very important in the context of DBRE to know which column is
linked to which host variable.

134 Program Understanding in DBRE

The program dlicing for embedded code

accept CUS- NUM 1 accept CUS- NUM

exec sql 2 direct-map CUS-NUMto NUM
sel ect NAME, ADDR 3 indirect-map NUM
i nto : CUS- NAME, : CUS- ADDR to NAME ADDR SQLCODE.

from cust oner 4 direct-map NAME to CUS- NAME.
where NUM = : CUS- NUM 5 direct-map ADDR to CUS- ADDR
end- exec 6 if (SQ.CODE = 0) THEN
if (SQLCODE = 0) THEN 7 di spl ay CUS- NAMVE

di spl ay CUS- NAMVE 8 di spl ay CUS- ADDR

di spl ay CUS- ADDR.
a) The program fragment. b) The translation.

¢) The SDG.

FIGURE 88. A program fragment with a sel ect query, its translation and SDG.

Figure 88.ais afragment of a COBOL embedded SQL program, figure 88.b is the trandation of the
fragment and figure 88.c is the corresponding SDG. The bold lines of figure 88.b are the lines that
belong to the slice computed with respect to the di spl ay CUS- NAME instruction.

for each (h-v,c) in input-couple(insert)
gener at e(DI RECT- MAP h-v TO c)

gener at e(| NDI RECT- MAP col umm(i nput - coupl e(i nsert))
TO out put - host -var (i nsert))

FIGURE 89. The algorithm to translate ani nsert instruction (i nsert).

6.5.2. Insert

Aninsert instruction can be easily translated as a direct mapping between each input host vari-
able and its corresponding column and an indirect mapping between the columns and the status
variables (SQLCODE). The algorithm to translate ani nser t instructionis given in figure 89.

Asinthesel ect trangdation, if we only need a correct SDG to understand the program and we are
not interested in its relation with the database, the translation can be simplified.

Program Understanding in DBRE 135

Program under standing techniques

accept CUS- NUM 1 accept CUS-NUM
accept CUS- NAME. 2 accept CUS- NAME.
accept CUS- ADDR. 3 accept CUS- ADDR.
exec sql 4 direct-map CUS-NUMto NUM
insert into CUSTOMER 5 direct-map CUS- NAME to NAME.
(NUM NAME, ADDR) 6 direct-map CUS- ADDR to ADDR
val ues (: CUS- NUM 7 indirect-map NUM NAME ADDR
1 CUS- NAME, : CUS- ADDR) To SQLCODE.
end- exec 8 if (SQ.CODE = 0) THEN
if (SQLCODE = 0) THEN 9 go to ERR-| NSERT.
go to ERR-| NSERT.
a) The program fragment. b) The translation.

FIGURE 90. A program fragment with an i nsert instruction, its translation and SDG.

Figure 90.ais a fragment of a COBOL embedded SQL program that contains an i nsert instruc-
tion. Figure 90.b isits tranglation and figure 90.c the corresponding SDG.

for each (h-v,c) in input-couple(delete)
gener at e(DI RECT- MAP h-v TO c)

gener at e(| NDI RECT- MAP col umm(i nput - coupl e(del ete))
TO out put - host - var (query))

FIGURE 91. The algorithm to translate a del et e instruction (del et e).

6.5.3. Delete

A del et e instruction can be translated as a direct mapping between each input host variable and its
corresponding column that appears in the wher e clause and an indirect mapping between the
columns and the status variable (SQLCODE). The algorithm to translate a del et e instruction is
givenin figure 91.

136 Program Understanding in DBRE

The program dlicing for embedded code

accept CUS- NUM 1 accept CUS-NUM
exec sql 2 direct-map CUS-NUM to NUM
del et e CUSTOMVER 3 indirect-map NUM
where NUM = : CUS- NUM to SQLCODE.
end- exec 4 if (SQLCODE = 0) THEN
if (SQLCODE = 0) THEN 5 go to ERR- DELETE.
go to ERR-DELETE.
a) The program fragment. b) The translation.

c) The SDG.

FIGURE 92. A program fragment with a del et e instruction, its translation and SDG.

Figure 92.aisafragment of a COBOL embedded SQL program that contains adel et e instruction.
Figure 92.b isits translation and figure 92.c the corresponding SDG.

for each (h-v,c) in input-coupl e(update)
gener at e(DI RECT- MAP h-v TO c)

gener at e(| NDI RECT- MAP col umm(i nput - coupl e(updat €))
TO out put - host - var (updat e))

FIGURE 93. The algorithm to translate an updat e instruction (updat e).

6.5.4. Update

An updat e query can be translated in two parts. The first one represents the direct mapping
between the input host variables and their corresponding columns. This mapping appears in the
wher e clause and in the updat e clause. The second is the mapping between the columns associ-
ated with the input host variables (column(input-couple(update))) and the output host variables not
associated with a column (output-host-var(update) = SQLCODE). The algorithm to translate an
updat e query isgivenin figure 93.

Program Understanding in DBRE 137

Program under standing techniques

accept CUS- NUM
accept CUS- NAME.
direct-map CUS-NUM to NUM
updat e CUSTOVER direct-map CUS- NAME to NAME.
set NAME = : CUS- NAME i ndirect-map NUM NAME
where NUM = : CUS- NUM to SQLCODE.

accept CUS- NUM
accept CUS- NAME.
exec sql

abhwNPRE

end- exec 6 if (SQCODE = 0) THEN
if (SQLCODE = 0) THEN 7 go to ERR- UPDATE.
go to ERR- UPDATE.
a) The program fragment. b) The translation.

¢) The SDG.
FIGURE 94. A program fragment with an updat e instruction, its translation and SDG.

Figure 94.ais a fragment of a COBOL embedded SQL program that contains an updat e instruc-
tion. Figure 94.b isits tranglation and figure 94.c the corresponding SDG.

6.5.5. Cursor

The difficulty of the cursor trandation is that there are four instructions (decl are cur sor, open,
f et ch and cl ose) that cannot be translated individually. The translation of thedecl are cur sor

instruction does not produce any mapping (or SDG vertices). But it declares the input host-variables
and the columns that will be used by the other instructions (open, f et ch). The open instruction is
translated as the mapping between the input host variables and the corresponding column as
declared in the cursor. The f et ch instruction is translated by the mapping between the selected
columns, defined in the cursor and the output host variables of the i nt o clause of the fetch instruc-
tion. And finally, the cl ose is not translated because it does not generate any mapping.

gener at e(| NDI RECT- VAP

for each (h-v,c) in col um(i nput - coupl e(decl are_cur))
i nput - coupl e(decl are_cur) TO col um(out put - coupl e(decl are_cur
gener at e(DI RECT- MAP h-v TO c) O fetch)

gener at e(| NDI RECT- MAP 0 out put-host-var(fetch))

col um(i nput - coupl e(decl are_cur))

TO out put - host - var (decl are_cur)) er ezel (1.8 T

out put - coupl e(decl are_cur O fetch)
gener at e(DI RECT- MAP h-v TO c)

a) The algorithm to translate the open instruction. ~b) The algorithm to translate the f et ch
instruction.

FIGURE 95. The algorithm to translate the open and f et ch instructions that use the cursor
declared by decl ar e- cur instruction.

Figure 95.ais the algorithm that translates an open instruction and figure 95.b is the algorithm that
translates af et ch instruction.

138 Program Understanding in DBRE

Other SDG analysis/ usage

exec sql
decl are C_ORD cursor for
sel ect NUM ADDR

from CUSTOVER
where NAME = : CUS- NAME
end- exec.
LI ST- ORD.
exec sql
open C_ORD end- exec.
per f or m READ- ORD
until SQ.CCDE NOT = 0.
exec sql
cl ose C_CORD_SEQ end- exec.

READ- ORD.
exec sql
fetch C_ORD
into : CUS-NUM : CUS- ADDR
end- exec.
if SQLQCODE = 0

1 LIST-ORD.
2 direct-map CUS- NAME to NAME.
3 indirect-map NAME to SQLCCDE.
4 perform READ- ORD
until SQLCODE NOT = 0.
5 READ- ORD.
6 indirect-map NAME
to NUM ADDR SQLCODE.
7 direct-map NUMto CUS- NUM
8 direct-nmap ADDR to CUS- ADDR.
9 if SQLCODE = 0
10 di spl ay CUS- NUM
11 di spl ay CUS- ADDR.

di spl ay CUS- NUM
di spl ay CUS- ADDR.

a) The program fragment b) The translation.

¢) The SDG.

FIGURE 96. A program fragment with cursor manipulation instructions, its translation and SDG.

6.6. Other SDG analysis/ usage

In the previous sections, program slicing was presented as a SDG traversa. In this section other
SDG querying (traversal or visualization) will be presented.

The SDG is arepresentation of the program that contains all the control flows, dataflows and vari-
able usages of the program. Program slicing is only one way to query it, but many other usages of
this program representation can be considered. The SDG is easier to query than the program itself
because it is an abstract representation stored as a graph and it is aimost independent from the
programming language. Therefore, many of the graph traversal techniques can be used. Because it

Program Understanding in DBRE 139

Program under standing techniques

is language independent, once querying techniques and tools have been developed, they can be
reused for other languages. The first SDG querying is some variant of the program slicing traversal
restricted to data dependency arcs.

A dataflow program slicing can be defined as the program dlicing where only the data dependency
(data dependency, parameter-in, parameter-out) edges are used (the control edges are discarded). If
a dataflow program dlice, computed with respect to the instruction A, contains the instruction B, it
means that there is a dataflow between some parts of variable of B to some parts of variable of A.
This slicing technique gives incomplete dices, because it does not follow control edges. But it can
be useful to find which variables are assigned to the dlicing criterion variable to solve structure
hiding problems such as decomposition of fields, anonymous fields and procedurally controlled
foreign keys.

1if (...) A
2 nmove Ato B \
3else B ' \
4 nove Bto C
o
a) The program b) The VDG. c) The SDG.
fragment.

FIGURE 97. The variable dependency graph and the SDG of a program fragment.

This querying technique gives more precise results than the variable dependency graph. The latter is
constructed by an analysis of each instruction independently of the other one and does not take into
account the control flow between instructions. The SDG construction uses the control flow of the
program and thus, if there is no execution path between two instructions, it will never create a data-
flow arc between them. In figure 97, the variable dependency graph shows that there is a dataflow
between A and C (through B), but this dataflow is impossible because each instruction isin a differ-
ent branch of the test and it is impossible to execute both instruction sequentially. On the other
hand, the SDG does not discover this dataflow, because it is aware that both instructions are in
different branches of the test.

A data dependency edge from vertex v to vertex w meansthat thereisavariable defined in v that is
referenced by w. If an instruction contains more that one variable (or a compound one), it isimpos-
sible to know (in the SDG as defined until now) which variables influence the dataflow. So, if we
follow the data dependency edges, it is possible to reach some vertex from which there is no data-
flow to the dicing criteria.

140 Program Understanding in DBRE

Other SDG analysis/ usage

01 A pic X(10). nove A to CI.
01 B pic X(5). nove B to C2.
01 C nmove C to D g
02 Cl pic X(10). nove D1 to E
02 C2 pic X(5). b) The program fragment.
pobe A] [] 1
02 D1 pic X(10). . <L -
02 D2 pic X(10). T 7 L
01 E pic X(10). o[T]
. = e
a) The variables declaration. ¢) The dataflow between d) The SDG without con-
variables. trol flow.

FIGURE 98. A program and its corresponding SDG.

For example, the dataflow dlice of figure 98, with respect to the instruction nrove D1 to E and
variable D1, containsall the program lines. But there is no dataflow nor control flow from nove B
to C2tothedlicing criteria. Thisisbecausenove D1 to E only referencesthefirst 10 characters
of D(D1). nrove C to Ddefinesall the characters of D and references all the characters of C. The
first 10 characters of C are defined innove A to Cl andthelast5innmove B to C2.Inthe
instruction move C to D, thefirst character of Cisassigned to the first character of D, the second
character of Cisassigned to the second character of D, etc. Thus there is no dataflow between nove
B to C2andnmove D1 to E, butthe SDG only stores the variable defined and referenced by a
vertex and not which referenced variable influence (dataflow) which of the defined variables.

To increase the precision of this technique, each instruction can be analyzed to determine which
parts of the variable are used. This technique is called dataflow program slicing with variable
follow-up. To compute this result, a path in the data dependency graph is chosen and this path is
walked backward. For each vertex, on the path, anew parameter, loc_ref, isadded. loc_ref isthelist
of the variables referenced by the current vertex and that influence the dicing criteria, i.e. thereisa
dataflow between loc_ref and the slicing criteria variable. loc_ref is computed recursively starting
from the dlicing criteria. loc_ref of the slicing criteriavertex (thelast one) isinitialized with the slic-
ing criterion variables. To compute n,.loc_ref for the previous vertex (with n; the current vertex), we
compute the intersection between n..loc_ref and n._,.def and substitute the variables with the corre-
sponding one of n;,.ref.

Program Understanding in DBRE 141

Program under standing techniques

fd A OMai n.
01 REC-A lread A Al lloc_ref: A[31- 41]
03 Al X(20). [T A | A
03 Al. 2nmove Al to W. —— Wll 2.loc ref: Al 31-41]
04 Al X(10). ‘Dle
04 AI2 X(10). 3nmove W1 to W2. —_— 3.loc_ref: W[11- 20]
fd B. 4 move WO to W2. L
01 REC B. ,DWZ
03 Bl X(15). 5mve W to B]. ——» .~ 5.oc_ref: Ve[1- 10]
03 BJ X(10). 18] | B -
01 W. Gwite B. 6.loc_ref: B[1- 25]
02 W0 X(10).
02 WL1 X(10).
01 W2 X(10).
a) The program. b) The dataflow. c) loc_ref.

FIGURE 99. Attribute dependency detection using dataflow program slicing.

Figure 99 shows an example of this dataflow program slicing with variable follow-up. This tech-
nique gives very precise results with no noise, but there is some silence because it does not use the
control flow edges of the SDG.

This technique works very well when there is a direct mapping between the referenced variables
and the defined variable, asinmove A to B instruction, where the first byte of A is assigned to the
first byte of B and so on. However with the instruction conpute A = B * C, itisvery difficult, or
impossible, to know which part of B and C goesinto which part of A. Instructions such as conput e
are called indirect mapping instructions. When a dataflow program slice with variable follow-up is
computed and it goes through a vertex that represents an indirect mapping. Compute loc_ref as the
variable referenced by the current vertex and the slicing criteria is impossible for a indirect
mapping, because it is not possible to know which part ofthe referenced variable influence which
part of the defined variable. So for an indirect mapping, loc_ref receives the list of the variables
referenced in the vertex

0 new- or der 4. 7 if FIND CUS

1 display "custoner numnber". 8 nmove WO ORD- CUS to ORD- CUS
2 accept WO ORD- CUS. 9. di spl ay "order nunber”

3 mve WO-ORD-CUS to CUS-ID. 10. accept ORD-ID

4 read CUS key CUS-ID

5 invalid key nove 0 to FIND CUS 11 write ORDER

6 not invalid key nove 1 to FI ND- CUS. end-if.

FIGURE 100. A paragraph that validates a foreign key and its SDG.

142 Program Understanding in DBRE

Typeinference

The analysis of the data dependency edges alone is sometimes insufficient to understand a program
and to discover constraints. For example, the code of figure 100 implements areferential constraint
between ORD and CUS, but if only the data dependency edges of the SDG are analyzed, the foreign
key is not discovered. The value of ORD- CUS does not take its value from CUS but from WO- ORD-
CUS. But if the control dependency edges are also used, asin classical program slicing with respect
toline 11 and ORD- CUS, instruction 11 depends on 8, which depends on 7, through a control edge.
Instruction 7 receives its value from 5 or 6 that are control dependent form 4 (read CUS). So
through this path that uses control and data dependency edge the foreign key can be discovered.

To extend the dataflow program dlicing with variable follow-up to the usage of control dependency
edges, the same rules are used as for the data dependency edges and when a control dependency
edge istraversed backward, the loc_ref receives the list of the variables referenced in the vertex.

Until now al different SDG walk through algorithms presented are pre-defined algorithm (built-in a
tool). It can also be useful to offer some kind of SDG querying language or SDG visualization tools
to help the analyst to analyze the SDG. Such querying languages must offer primitives to select the
vertices that define or reference a given variable, to select all the vertices that can be reached from
the current one by following some kind of edges, to select vertices of a given type, etc. The visual-
ization of the SDG is very difficult because of the large number of vertices and edges, so aredlistic
SDG visualization must only display some selected (with the querying language) vertices and
edges.

6.7. Typeinference

The basic idea of type inference ([Moonen - 2002)]) is simple: if the value of avariable is assigned
or compared to another variable, we want to infer that these two variables should have the same
type. A type can play a number of roles; indicating the set of values that is allowed for a variable;
grouping variables that represent the same kind of entities; hiding the actual representation used;
providing a signature of a procedure.

The COBOL language does not support the notion of types. It is not possible to separate type defi-
nitions from variable declarations. When two variables need the same structure, this structure is
repeated. The size of the data division makes difficult to determine if a structure repetition is acci-
dental or whether it isintentional. Finally the absence of explicit types leads to lack of abstraction,
since there is no way to hide the actual representation of a variable into same type name.

In DBRE, type inference can be useful to find new decompositions of attributes, data dependencies
between two (groups of) attributes. If an attribute is of a given type and this type has amore precise
decomposition, it is possible to refine this attribute such as the type definition. If two attributes are
of same type, thisisahint that there is a potential dependency between these attributes.

To be able to analyze the types of the variablesit is necessary to infer (automatically) the type of the
variables. Moneen ([Moonen - 2002]) describes how type relation can be derived from the state-
mentsin asingle COBOL program, and how this approach can be extended to system-level analysis
leading to inter-program dependencies.

Program Understanding in DBRE 143

Program under standing techniques

He defines three primitive types: 1) elementary types such as numeric values or strings; 2) arrays,
3) records. Initially every declared variable gets a unique primary type.

By looking at the expressions occurring in statements, an equivalence relation between primitive
types can be inferred.

By looking at the assignments, a subtype relation can be inferred between primitive types. From an
assignment of theform nove u to v, it can beinferred that the type of u is a subtype of the type
of v.

In addition to inferring type relations within individual programs, type relations can be derived at
the system-wide level. The types of the actual parameters of a program call (listed in the USI NG
clause) are subtypes of the formal parameters (listed in the LI NKAGE section) and that variables
read form or written to the same file or table have equivaence types.

6.8. Graphical visualization of the program

To perform program understanding, the analyst needs tools to easily represent and manipulate
graphs. The graphs can be used to represent many different kinds of information, such as:

» Inter-program call graph: the vertices represent programs and the edges the call between two
programs.

* Intra-program call graph: represents the call relations between the procedures inside a program
(performin COBOL).

» Database usage graph: the vertices are of two types (the programs and the collections/entity
types) and the edges link the programs with the collections/entity types they use. The edges are
labeled according to their usage (input, output or update).

» JCL graph: represents the chain of execution of the different programs with the files they use.
Vertices are programs or files and the edges represent program chains and file usage.

» Hyperlink graph: the vertices represent documents and the edges the hyperlinks between the
documents. This kind of graph can be useful for the analysis of Web documents.

Thislist of graphsisfar from being complete and some of them can be combined, as the call graph
and database usage. Some projects may need some particular graphs. The analyst needs flexible
techniques and tools that allow representing ailmost any kind of graphs [van Deursen et al.-1998].
Those graphs can have different kinds of vertices and of edges. Those graphs are usually huge and
complex. For example acall graph with 500 vertices is hot exceptional. So the analyst need drawing
and analysis help.

The drawing tools must offer functions to help laying out the graph such as minimizing the number
of edges crossing, sorting the vertex by level, vertices alignments. But they must also offer some
display functions as to color the vertices and the edges, to annotate them (visible annotations or
invisible that can be used by further functions). Navigation functions are useful in big schemas to
go from one vertex to the other through an edge.

Besides drawing tools the analyst needs analysis tools. For small graphs, the analyst can easily
discover visualy the graph’s property, i.e. count the number of vertices, how many procedures call

144 Program Understanding in DBRE

Graphical visualization of the program

agiven one, find al the vertices that are reachable directly or indirectly from a given one, whether
there exist some disconnected sub-graphs, etc. But in large graphs, he needs tools such as some
statistical functions, functions to marks the vertices reachable directly or indirectly from a given
one, functions to analyze or search vertices and edges of a given type.

Graphical visualization of the program can give very important hints about the structure of the
program. But for large systems with several hundreds of programs the analyst can be flooded by the
size and the complexity of these graphs. He needs help (tools) to manipulate and query these

graphs.

Program Understanding in DBRE 145

Program under standing techniques

146 Program Understanding in DBRE

CHAPTER 7

Using program

undergtanding in
DBRE

All the program understanding techniques presented in the previous chapter are general techniques,
they are usually used by software engineers or maintainers to understand what a program is doing
and how it is done. The scope of this thesis is not to understand the program itself but to use
program understanding techniques to recover the implicit constraints that are enforced by the proce-

dural part of the application.

This chapter explores how those program understanding techniques can be used to retrieve the
implicit constraints and structures presented in section 4.3. For the most interesting constraints, the
onewho are generally searched for, it is explained how those techniques can be used and some hints
are given on how the constraints discovery can be automated.

01 REC-A.
02 AID
03 A-CUS PIC X(5).
03 A-NUM PI C X(5).
02 A-DATA PI C X(40).

01 CUS- I NFO.

02 CUS-NAME Pl C X(30).

02 CUS-BIRTH D PI C X(10).
01 ORD-| NFO.

02 ORD-DATE PI C X(10).

MOVE CUS-1D TO A- CUS.
MOVE SPACE TO A- NUM
MOVE CUS- NUM TO A- NUM
MOVE CUS-1 NFO TO A- DATA.
VWRI TE A- REC.

MOVE ORD- CUS TO A- CUS.
MOVE ORD- NUM TO A- NUM
MOVE ORD- NUM TO A- NUM
MOVE ORD- | NFO TO A- DATA.
VWRI TE A- REC.

CUS-I NFO ORD-1 NFO

4

02 ORD- SALSEMAN PI C X(30) . A- DATA
a) The source code. b) The variable depen-
dency graph.
A-DATA | [RecA
ORD- | NFO | [|[A-ID :
A-CUS if A-NUM = space then
CUS- | NFO | | | a-nUMIT cusinFo T

¢) The variables decomposition.

A

CUS-INFO ORD-INFO
CUSNAME ORD-DATE
CUS-BIRTH-D ORD-SALSEMAN

d) The refined data structure.

FIGURE 101. Example of incompatible attributes decomposition.

Program Understanding in DBRE

147

Using program under standing in DBRE

7.1. Fine-grained structure, attributes aggregation,
anonymous attributes

Fine-grained structures, attributes aggregations and anonymous attributes are grouped in the same
section because the same methods and techniques are used to detect them.

To discover a fine-grained structure using program understanding, the analyst has to find an
attribute that has the same structure as a variable for which there exists a finer decomposition.
Sometimes, the structure of both variables are incompatible, i.e. none of the structuresisincluded in
the other one. For example, in figure 101.b, there is a path in the variable dependency graph
between CUS- | NFO and A- DATA and thus the structure of A- DATA can be refined as CUS- | NFO
structure. There is another path in the variable dependency graph between ORD- | NFO and A- DATA
that has A- DATA as target. But the structure of CUS- | NFO and ORD- | NFO are incompatible. ORD-

I NFO is divided into 10+30 characters and CUS- | NFO is divided into 30+10 characters (figure
101.c). There are at | east two reasons for thisincompatibility. Thefirst oneisthat thereisan error in
the program. The second one is that the analyst misunderstood the program and needs to find
another modelization for this data structure. In this example, the entity type REC- A is used to store
two different kinds of information, the customer and the order. REC- A must be modeled as two
different entity types (figure 101.d).

To discover attributes to be aggregated there must exist a variable in a program that is decomposed
asthe attribute. To refine (give a name and a decomposition) an anonymous attribute, a new decom-
position of the parent (an attribute or an entity type) of the anonymous attribute is searched.

01 REC-A

02 A-CODE PIC X(5).

02 A-DATA PI C X(100). A- DATA—P W DATA —# ADDR
01 W DATA PI C X(100). b) The variable dependency graph.
01 ADDR.

02 NUM Pl C X(5).

02 STREET PIC X(60). REC-A

A-CODE
02 CITY Pl C X(25). RECA A-DATA
02 ZIP Pl C X(10). A-CODE NUM
A-DATA STREET
MOVE A- DATA TO W DATA. cITy
MOVE W DATA TO ADDR. zIP
a) The source code. c) The raw d) The refined
schema. schema.

FIGURE 102. Example of attributes decomposition.

7.1.1. Variable dependency graph

Usually the relations used to construct the variable dependency graph are the assignment and the
comparison operators. With these relations, the variable dependency graph can been seen as a
simplified dataflow graph. The advantage of such variable dependency graph isthat it is quite easy
to compute, because a complete parser is not needed, only some instructions need to be parsed. The
variable dependency graph is well appropriate to analyze some esoteric legacy language for which
there does not exist a complete grammar and no parser is available. The drawback is that the vari-

148 Program Understanding in DBRE

M eaningful names

able dependency graph is not a complete dataflow graph because some path in the graph can be
infeasible during a correct execution of the program (see section 6.3).

If two variables are connected (directly or indirectly) in the variable dependency graph, then both
variables are in relation, the analyst has to check if there exists a dataflow between these variables
to determine if this is not noise generated by the variable dependency graph.

If the variables arein relation and the structure of thefirst oneisfiner than the structure of the other,
the structure of the second one can be refined as the structure of the first one. For example, in the
variable dependency graph of figure 102.b, computed with respect to the code of figure 102.a, A-
DATA and ADDR are in relation and the structure of ADDR is finer than the one of A- DATA. Then the
structure of A- DATA can be refined as the one of ADDR (figure 102.d).

7.1.2. System dependency graph

To know if there exists another decomposition for an attribute, the program slice with respect to this
attribute (and its storage instruction) can be computed and analyzed to see if the attribute isin rela-
tion with avariable that has another structure. Classical program slicing with the control flow is not
necessary, the dataflow program dlicing is sufficient because only the variables that are connected
to the selected attribute in the dataflow are of interest.

This can be easily automated by other SDG querying techniques that for each entity type storage
instruction and each attribute, give the list of the variables (and their structure) from which thereis
adataflow to or from the attribute.

7.2. Meaningful names

To find more meaningful names for entity types and attributes, the analyst needs to know the names
of the variables that have different names, but have the same semantics (contains at some moment
the same value). Another waysto find names isto look at the message displayed by the application
or the comment in the source code.

He has to note the more meaningful name, but he must not change the attribute’'s name because
during the data structure extraction process the logical schema must contains the original names,
otherwise the programmer can have great difficulties to make the link between the current databases
and programs and the logical schema.

This process is impossible to automate because the concept of meaningful is very subjective.

7.2.1. Variable dependency graph

If an attribute or an entity type is connected, directly or indirectly, in the variable dependency graph
to variables, the analyst should decide that the name of one of the other variables is more meaning-
ful than the attribute or entity type name.

Program Understanding in DBRE 149

Using program under standing in DBRE

7.2.2. System dependency graph

To find another name for an attribute (or an entity type), a program slice with respect to this
attribute can be computed and analyzed to find a more meaningful name in the dice. Dataflow
program dlicing with variable follow-up is a good means to reduce the search space because only
the variables assigned to the attribute are of interest and thus the control flow of the program is
useless.

Program slicing can also be used to find in which context a variable is used by analyzing the
messages displayed by the program slicing and the comments in the source code.

accept A- CODE. read REC-B.
read REC A .
invalid key go to ERR. nove B-REF-A to A- CODE.
nove A-CODE to B- REF- A read REC A H H
. REC-B
wite B. REC-A B-CODE
A-CODE B-REF-A
A-CODE——> B-REF-A B-REFFA —» A-CODE - id: B-CODE
. . . .) id: A-CODE <} ref: B-REF-A
a) Referential constraint vali- b) Referential constraint :
dation. usage (navigation). ¢) The refined schema.

FIGURE 103. Two examples of procedurally verified referential constraint.

7.3. Referential constraints and data dependencies

Referential constraints can be seen as a specia kind of data dependency. To find data dependencies,
the analyst is searching for relations between two attributes (or groups of attributes).

There are two situations where a referential constraint can be detected. The first one is the referen-
tial constraint validation, where before the value of the referential constraint is stored (entity type
modification, insertion or deletion) there must be some code that validates the value of the referen-
tial constraint (see figure 103.a). To validate the value of areferential attribute, the program reads
the target entity type to check if there is a value of the target identifier. To detect such areferentia
constraint, a slice is computed with respect to the storage instruction and to validate the referential
constraint, this slice must contains aread instruction of the target entity type.

The other situation where a referential constraint can be detected is during its usage, as in report
generation (figure 103.b), because referential constraints can be viewed as a constraint but also asa
navigation mechanism [Lopes et a.-2002]. To access the referenced entity type, the value of the
referential attribute is used to access the referenced entity type through its identifier or in the other
way, the value of the identifier of the first entity type is used as an access key to the second one,
with respect to the referential attribute. To detect a referential constraint usage, a program diceis
computed with respect to aread instruction and the attribute(s) that is used as an access key. This
slice must contain another read instruction.

150 Program Understanding in DBRE

Referential constraints and data dependencies

7.3.1. Variable dependency graph

Data dependencies and referential constraints can be discovered by the variable dependency graph
if thereisa path between attributes. Figure 103 shows two examples of variable dependency graphs
with their respective code that can be used to detect a referential constraint. As suggested by this
example the direction of the arcs in the graph does not influence the direction of the referential
constraint (or the data dependency). If two nodes (variables) are connected (directly or indirectly),
it means that there is a relation between these two nodes. The analyst is responsible to interpret the
relation (referential constraint, data dependency).

The variable dependency graph generates noise and silence that the analyst has to deal with. The
noise can be easily detected by further analysis of the schema structure, domain knowledge, data
and program code. But as usual, the silence is difficult to detect. One way to reducing the danger of
the silence is to understand its origin and which kinds of constraints are not discovered.

Variable dependency graph generates silence because it does not use the control flow and does not
know the variable structure. The lack of control generatesalot of silence in the detection of referen-
tial constraint validations, because referential constraint validation relies alot on control (to check
if the referential attribute is present in the target entity type). But it produces less silence in referen-
tial constraint usage, when they are used to navigate in the database. So variable dependency graph
can be agood choice to detect referential constraint in report generation modules.

There is less silence in data dependency detection because the target of the dependency is
constructed from the origin, using mainly assignment (redundancy) and some computations. The
main source of silence is the ignorance of the data structure of the variables.

7.3.2. System dependency graph

When a dlice (with respect to a store or aread instruction) contains a read instruction, the probabil-
ity to have a referential constraint is high, but the slice must be analyzed to determine between
which attributes there is a referential constraint. It is up to the analyst to determine which attribute
is used by the referential constraint. This validation is not difficult because the search space is
reduced. He knows between which entity types there is a potential referential constraint and with
the name, type and length of the attributes and domain knowledge he can easily discover the refer-
entid attribute.

Dataflow program slicing with variable follow-up can be used to know which attributes are in rela-
tion and thus gives more precise results to the analyst. It produces few silences for referential
constraint usage because this usually only relies on dataflow. But it can produce silence in the case
of referential constraint validation, because the validation often relies on control flow.

Data dependency as referential constraint is characterized by a relation (dataflow) between two
entity types. The target of areferential constraint is an identifier of the entity type and data depen-
dency isusually paralle to areferential constraint. They are parallel and in the samedirection in the
sense that if there is a data dependency between two entity types there must exists a referential
constraint between these two entity types.

Program Understanding in DBRE 151

Using program under standing in DBRE

MOVE ORD- CUS- CCDE TO CUS- CODE. ORD

READ CUSTOMER oUs ORD-AUM
ORD-CUS-CODE
| NVALI D KEY GO TO CUS- ERR. CUS.CODE ORD-CUS-NAME
MOVE CUS- NAME TO ORD- CUS- NAMVE. CUS-NAME
o id. ORD-NUM
id CUS-CODE k| ref: ORD-CUS-CODE
VRI TE ORD . CUSNAME k| rd: ORD-CUS-NAME
| NVALI D KEY ...

FIGURE 104. An example of data dependency.

For example in figure 104, there exists a referential constraint between ORD- CUS- CODE and CUS-
CODE and a data dependency between ORD- CUS- NAME and CUS- NAME. The data dependency is
parallel to the referential constraint because to fill the value of ORD- CUS- NAME, the program needs
to know in which CUS to look.

Asfor the referential constraint, the slice with respect to a store instruction contains a read instruc-
tion, usually the same read instruction that is used to verify the referential constraint since the data
dependency is paralel to the referential constraint. If program dlicing is used, the dice has to be
analyzed to know which attributes are in relation. So for the referential constraint, a more precise
result can be obtained using program dicing with variable follow-up. If the identifier of the read
entity type is copied into the stored entity type, there is a great chance that it is a referentia
constraint otherwise it can be a data dependency.

Usually data dependency can only be detected during insertion and modification of an entity type.
Data dependency is an optimization technigque used to save disk access, to prevent to read the other
entity type. When the entity type is read, the other entity type referenced by the referentia
constraint does not need to be read.

FD ORDER. NEW ORD.
01 ORD.
. MOVE ORD- DET- PROD(| ND) TO PROD- CODE.
02 ORD- DETAI LS OCCURS 10. READ PRODUCT KEY |'S PROD- CODE
03 ORD- DET- PROD PI C X(3). I NVALI D KEY GO TO PROD- ERR
MOVE PROD- PRI CE TO ORD- DET-
03 ORD- DET- PRI CE PI C 9(3). PRI CE(| ND)..
FD PRODUCT. o
01 PROD. WRI TE ORD
02 PROD- CODE PI C X(3). I NVALI D KEY ...
02 PROD- PRI CE PI C 9(3) CHANGE- PROD- PRI CE.
READ PRODUCT.
ACCEPT PROD- PRI CE.
REWRI TE PROD.

FIGURE 105. Example of non permanent data dependency.

Be aware of the conclusion, if program slicing detects that some attributes arein relation, it does not
automatically mean that there is some data dependency. It can be some kind of business rule that
can be documented but that is out the scope of the DBRE; it is more a part of the software reverse
engineering. Sometimes data dependency isonly verified at some moment, but it is not always veri-
fied. For example (figure 105), if ORD records the price of the ordered products (ORD- DET- PRI CE),
copied from the PROD entity type, but when the price of the product changes (in CHANGE- PROD-

152 Program Understanding in DBRE

Array set type, exact cardinality and attributeidentifier

PRI CE paragraph), ORD- DET- PRI CE is not changed, to know the price of the product at the order
time. Thisis not a data dependency. This proves that al the data usage needs to be analyzed to be
sure of aconstraint and not only one usage!

7.4. Array set type, exact cardinality and attribute
identifier

To find the set type and exact cardinality of a multivalued attributes the analyst needs to compute
the program dice with respect to the store instruction and the multivalued attribute and then
analyzes the dice to understand the algorithm used to fill the attribute. Does the user haveto give at
least one element or not (to find the exact minimal cardinality)? Does the user has to fill the entire
attribute or can he stops when he wants (to find the exact maximum cardinality)? Is there an order
or are there two elements with the same value in the attribute (find the set type)?

All thisrequires alot of manual (and intellectual) work to understand the filling agorithm. Thereis
Nno suggestion how to automate this process.

7.5. ldentifier

To check an implicit identifier (attribute(s)’ value is not yet present), the program has to read
(sequentially) the existing instances of the entity type before it can write the new instance into the
database to check. If the program dice is computed with respect to the write instruction and the
whole entity type, the slice must contain a read instruction that reads the entity type itself. The
analyst needs to check that the entity type isread to verify that the current value is not present in the
database. This pattern (a write depending of aread of the same entity type) can also be the material-
ization of arecursive referential constraint.

7.6. Restricted domain

An attribute is of arestricted domain if the slice computed with respect to the store instruction and
the attribute contains some tests that check the validity of the attribute’s domain.

Program Understanding in DBRE 153

Using program under standing in DBRE

7.7. Embedded QL

di sp_ord.

di spl ay "ord-nun".

accept ORD- NUM

exec SQL
sel ect c.nane, o.ord_date
into : CUS- NAME, : ORD- DATE
fromc custoner, d order
where c.num = 0. cust oner

0. num = : ORD- NUM
end- exec.
i f(SQLCODE = 0)
di splay "Cust name : " CUS- NAMVE
di splay "Order date : " ORD DATE

di splay "Price Quantity"
exec SQL
decl are cursor ord_detail
select p.price, d.qty
fromp product, d detail
where p.num = d. product
d. order = : ORD- NUM
end- exec
exec SQL
open ord_det ai |
end- exec
perform read- det ai |
until SQ.CODE not= 0
end-if.

read-detail .
exec SQL
fetch ord_detail
into : PROD- PRI CE, : DET-QTY
end- exec.
di spl ay PROD- PRI CE DET- QTY.

a) The original code fragment.

0
1
2
3
4

o o1

= © 00 N

11
12

13

14
15
16
17

di sp_ord.

di spl ay "ord-nun".
accept ORD- NUM
direct-map ORD-NUM to 0. hum
indirect-map o0.num

to c.nanme o.ord_date SQLCODE.
direct-map c. name to CUS- NAME.
direct-map o.ord_date to ORD- DATE.

i f (SQLCODE = 0)
di splay "Cust name : " CUS- NAMVE
di splay "Order date : " ORD DATE
di splay "Price Quantity"

direct-map ORD-NUM to d. order
i ndi rect-map d. order
to p.price d.qgty SLQCODE.
perform read- det ai |
until SQ.CODE not= 0
end-if.

read- detail .
indirect-map to SQ.CODE.
direct-map p.price to PROD PRI CE.
direct-map d.qty to DET-QTY.

di spl ay PROD- PRI CE DET- QTY.

b) The transformed code fragment.

FIGURE 106. Example of program with embedded SQL.

In the previous chapter, an extension of the SDG has been presented to anayze the behavior of
embedded code. This extended SDG, as presented, can be used to understand the program with
embedded code but it is useless to analyze the embedded code itself.

For example, the analysis of the figure 107 SDG (that represent the program of figure 106) shows
that the execution of the f et ch instruction (lines 15-17) depends of the SQLCODE returned by the
sel ect (line7) and thus the value of the or der . numattribute (line 4). Thisisahint that thereisa
referential constraint between det ai | . order and order. num But the two other referentia
constraints between or der and cust oner and between det ai | and pr oduct are not visible in
the SDG because they are materialized by the embedded SQL queries (thesel ect andthecur sor

declaration) and thus are not coded in the procedural part of the code.

154 Program Understanding in DBRE

Graphical visualization

FIGURE 107. The SDG of figure 106.b source code.

To analyze embedded code, it is suggested to work in two steps. During the first one, each block of
embedded code is analyzed individually [Petit-1996]. The purpose of thisanalysisisto extract from
each embedded instruction the data structures and constraints implicitly implemented in this
instruction. For example, if thereisajoin isan SQL query, then it can be interpreted as areferential
constraint or a data dependency. This embedded code analysis need to be supported by tools such as
tools to extract embedded code from the host language source code, pattern matching to find
specific patterns (join, string manipulation, etc.) in the embedded code.

The second step is the analysis and the understanding of the program itself. To perform this analy-
sis, classical SDG analysis is applied on the extended SDG. Only the host language program is
analyzed without to worry about the embedded language. Thisis used, among other thing, to under-
stand the links between the different embedded instructions.

7.8. Graphical visualization

Call graphs and database usage graphs can be very useful during project preparation [von
Mayrhauser et al.-1993]. They allow the analyst to have an overview of the application, its compo-
nents, and its complexity and to have a coarse idea of the time and budget needed to perform the
DBRE. The analysis of those graphs is aso a good way to know if the customer gives all DDL
declarations and all the sources code indispensable to perform the DBRE.

During the data structure extraction call graphs and database usage graphs can be used to discover
the general architecture of the application. This architecture helps the analyst in overall understand-
ing of the application and to know which modules need to be analyzed (modules that modify the
database) in priority.

The size and complexity of call graphs or usage graphs can be huge (several thousands of nodes and
edges). This size and complexity prevent to display (or print) such graph. To overcome this, we

Program Understanding in DBRE 155

Using program under standing in DBRE

suggest to query the graphs to retrieve pertinent information. The query can produce some statisti-
cal results such as the number of node of a given type, the number of edges of a given type, the
maximum number of edges per node, etc. Another possible result of a query is to extract a
subgraph, such as all the nodes and vertices that can be reach from a given type, etc.

Graphs are a good medium to communi cate with the customer and to generate reports.

156 Program Understanding in DBRE

ciarters CASE support

Database reverse engineering appears as a demanding activity according to several dimensions: the
size and variety of the information sources, the number and complexity of the elicitation techniques
and the complexity of the target data structures. To perform efficiently a DBRE project, the analyst
needs CA SE tools to support hiswork. A CASE tool offering arich toolset for reverse engineering
is often called a CARE (Computed-Aided Reverse Engineering) tool. Thistool can help the analyst
during all the phases of a project and must be based on a common repository that stores al the
information manipulated by the analyst (source code, schemas, etc.).

This chapter translates the characteristics of DBRE activities in CASE tool requirements and
presents our implementation of a CASE tool that includes specific DBRE-oriented features.

complete
logical schema

!
- schema
© | untrandlation
c v ©
o N
%) *§ DDL code n3 L @ conceptua
of analysis @] =] schema
& | §
§ schema
l normalization
I

complete onceptua
logical schema schema

FIGURE 108. Simplified DBRE methodology proposed by most current CARE tools.

8.1. Thelimits of current CARE tools

It is interesting to use the methodology presented at the beginning of this thesis as a reference
model against which existing methodologies can be compared, in particular, those used by the
current CARE tools. Figure 108 summarized these methodologies as follows:

Program Understanding in DBRE 157

CASE support

Data structure extraction

Most current CARE tools parse DMS-DLL schemas only (DDL code analysis). All the other
sources are ignored and must be processed manually. For instance, these tools are unable to col-
lect the multiple views of a COBOL application and to integrate them to produce the global
COBOL schema. To minimize this drawback, most CARE tools only analyze some modern
DMS-DDL such as various SQL dialects.

Data structure conceptualization

Current CARE tools focus mainly on untrandation (schema untrandation) and offer some
restructuring facilities (schema normalization). These processes often are merged and are per-
formed without any user intervention (fully automated). Therefore the analyst cannot drive the
conceptualization process and he is provided with no tools to perform any transformation to the
proposed schema. All performance-oriented constructs, as well as most non standard database
structure (see [Blaha et al.-1995] and [Premerlani et al.-1993]) are completely beyond the scope
of thesetools.

8.2. Requirements

This section states some of the most important requirements an ideal DBRE support environment (a
CARE tool) should meet. These requirements are the result of the analysis of the specific character-
istics of the DBRE process and of the experience acquired during several DBRE projects of red
size applications.

Flexibility

Observation: Reverse engineering activities differ from more standard engineering activities.
Reverse engineering a database is basically an exploratory and often unstructured activity. Some
important aspects of higher level specifications are discovered (sometimes by chance) and are
not deterministically inferred from the operational specification.

Reguirements. The tool must alow the analyst to follow flexible working patterns, including
unstructured ones. It should be methodol ogy-neutral unlike forward engineering tools. In addi-
tion, it must be highly interactive.

Extensibility

Observation: Each project is different: new problems, new languages, new DBMS, new coding
rules, etc. So each project requires specific reasoning and techniques. DBRE appears as alearn-
ing process.

Reguirements. Specific functions should be easy to develop, even for one-shot use. Existing
functions must be easily integrated in new ones.

Source multiplicity

Observation: DBRE requires a great variety of information sources: DDL, data (from files, data-
bases, spreadsheets,...), program sources code, program execution, program output, screens/
reports layout, CA SE repository, documentation (paper and computer-based), interview, domain
knowledge, etc.

Requirements: The tool must include browsing and querying interfaces for these sources. Cus-
tomizable functions for automatic and assisted specification extraction should be available for
each of them.

158 Program Understanding in DBRE

Requirements

Text analysis

Observation: DBRE requires browsing through huge amounts of text, and searching them for
specific patterns, following static execution paths and dataflows and extracting program slices.

Requirements. The CARE tool must provide sophisticated text analysis processes. The latter
should be language independent, easy to customize and to program, and tightly coupled with the
specification processing functions.

Program understanding

Observation: The code of the application is one of the mgjor sources of information, since most
implicit constraints must be implemented in the code to ensure the validity of the data.

Requirements: The analyst heavily needs program understanding tools such as dataflow analy-
sis, program dlicing. Those tools could deal with very large program, legacy languages and must
be easily customizable to other languages. The dilemma with the program understanding func-
tions is that their precision depends on their dependency on the language. A language specific
processor, such as program slicer, provides much better results than generic ones.

Name processing

Observation: Object names in the operational code are an important knowledge source. But
these names often happen to be meaningless (e.g. REC001- R018) or at least less informative
than expected (e.g. | NV- QT'Y, QOH) due to the use of strict naming conventions. Many applica-
tions are multilingual 1 so datanames may be expressed in several languages. In addition, multi-
programmer development, long live time and maintenance, often induce non consistent naming.
Names used in the programs and databases need to be used to name the objects in the physical
schema to keep it synchronized with programs. During the conceptualization phase the physical
names can be replaced by more meaningful ones.

Requirements: The tool must includes sophisticated name analysis and processing functions. It
must be also possible to keep the correspondence between the physical name of the objects and
their more meaningful version in the conceptual schema.

Links with other CASE processes

Observation: DBRE is seldom an independent activity. For instance, forward engineering
projects frequently include reverse engineering of some existing components; reverse engineer-
ing share important processes with forward engineering (e.g. conceptual normalization); reverse
engineering is a major activity in broader processes such as migration, engineering and data
administration.

Requirements: A CARE tool must offer a large set of functions, including those that pertain to
forward engineering.

Openness

Observation: There is (and probably will be) no available tool that can satisfy all corporate

needs in application engineering. In addition, companies usually already make use of one or
more CASE tools, software development environments, DBMS, 4GL .

Requirements. A CARE tool must communicate easily with the other development tools, e.g. via
querying hooks, communications with a common repository or by exchanging specifications
through a common file format (XMI [XMI - 2002], GXL [Winter - 2002], XIML [Puerta et al.-
2002]).

. For instance, Belgium commonly uses three legal languages, namely Dutch, French and German. And
English is often used by programmers as a common language.

Program Understanding in DBRE 159

CASE support

* Flexible specification model

Observation: Asin any CAD activity, reverse engineering applies on incomplete and inconsis-
tent specifications. However, one of its characteristics makes it intrinsically different from
design processes: at any time, the current specifications may include components from different
abstraction levels. For instance, a schemamay include referential constraints aswell as relation-
ship-types.

Requirements: The specification model must be wide-spectrum and provides artifacts for com-
ponents of different abstraction levels.

» Genericity
Observation: Tricks and implementation techniques specific to some data models have been
found to be used in other data models aswell (e.g. referential constraints are frequent in IMS and

CODASYL databases). Therefore, many reverse engineering reasoning and techniques are com-
mon to the different data models used by current applications

Requirements: The specification model and the basic techniques offered by the tools must be
DM S-independent, and therefore highly generic.

* Multiplicity of views
Observation: The specifications, whatever their abstraction level (e.g. physical, logical or con-
ceptual), are most often huge and complex. Only one graphical view of the schema with some
zoom-in and zoom-out is not enough to view and manipulate schemas. The analyst needs to

examine and to browse through the information in several ways, according to the nature of the
information he tries to obtain.

Reguirements. The CARE tool must provide severa ways of viewing both source texts and
abstract structures (schemas). Several different views (graphical and textual) are needed with
powerful browsing functionalities and navigation functions (e.g., going from the origin of afor-
eign key to itstarget).

* Rich transformation tool set

Observation: Actual database schemas may include constructs intended to represent conceptual
structures and constraints in non standard ways and to meet non functional requirements (perfor-
mance, distribution, modularity, access control, etc.). These constructs are obtained through
schema restructuration techniques. They are discovered during the data structure extraction
phase and need to be transformed during the data structure conceptualization phase.

Requirements: The CARE tool must provide arich set of schema transformation techniques. In
particular, this set must include operators which can undo the transformation commonly used in
practical database designs. The proposed transformations must preserve the semantics of the
schema or at least warn the anayst when this semantics has changed.

» Traceability

Observation: A DBRE project includes at |east three sets of documents: the operational descrip-
tions (e.g. DDL, source code), the logical schema and the conceptual schema. The forward and
backward mapping between these specifications must be precisely recorded. The forward map-
ping specifies how each conceptual (or logical) construct has been implemented in the opera
tional (or logical) specification, while the backward mapping indicates of which conceptual (or
logical) construct each operational (or logical) construct is an implementation.

Reguirements. The repository of the CARE tool must record all the links between the schemas at
the different levels of abstraction. More generally, the tool must ensure the traceability of the
reverse engineering processes.

160 Program Understanding in DBRE

The DB-MAIN CASE environment

e Automation
Observation: DBRE projects manipulate huge volume of information (source codes, texts) and
the analyst needs to perform the same operation many times. The manual analysisis error prone.

Requirements. The CARE tool must have powerful automation techniques. This automation can
be built-in (i.e. functions that perform several of elementary actions) or available through some
scripting function, so that the analyst can build his own tools.

8.3. The DB-MAIN CASE environment

DB-MAIN is agenera purpose database CASE and meta-CA SE environment that includes DBRE
and program understanding tools. Its main goal is to support all the database application engineer-
ing processes, ranging from database development to system evolution migration and integration.
Further detail on the whole approach can be found in [Hainaut et a.-1994].

The environment has been developed by the database engineering laboratory of the University of
Namur (LIBD), Belgium, as part of the DB-MAIN project. As far as DBRE support is concerned,
the DB-MAIN CASE tool has been designed to address as much as possible the requirements
developed in the previous section. Extensions are being developed towards federated database
methodology through the InterDB project [Thiran et a.-2000], data migration through Data Migra-
tion project [Delcroix et al.-2001] and methodological support for tempora database (TimeStamp
project [Detienne et a.-2001]). More specifically it includes the following functions, components
and capabilities:

» Classical functions to access, browse, create, update, copy, analyze and store the specifications
(schemas and texts).

» Representation of the project history: processes, schemas, views, source texts, reports, generated
programs and their relationships.

» A generic, wide-spectrum repository: the repository can store conceptual, logical and physical
schemas and texts. It can represent entity relationship and UML models. Schema objects and
text lines can be selected, marked, aligned, colored, copied and pasted.

» Semantic and technical annotations (text) can be attached to each specification object.

* Multiple views of the specifications (four hypertext and two graphical) with zoom-in and zoom-
out. Some of the views are particularly intended for very large schemas.

» A tool box of about thirty semantics-preserving transformation operators which provide a sys-
tematic way to carry out such activities as conceptual normalization, or the devel opment of opti-
mized logical and physical schemas from conceptual schema and conversely (i.e. reverse
engineering).

* The code generators generate the DDL code for such DMS as SQL, CODASYL, IMS and
COBOL. There are three built-in SQL generators and an advanced one, written in Voyager2,
generates checks, triggers and stored procedures to maintain additional constraints. XML-DTD
and XML -schema generators have also been devel oped.

 Different report generators, from the simplest one that produces the same output as the current
textual view, to amore sophisticate report in RTF with sophisticated page layout.

» Code parsers extracting physical schema from SQL, ODBC, COBOL, CODASYL, IMS DDL
and XML-DTD.

Program Understanding in DBRE 161

CASE support

» Text analysistools such as pattern matching.
» Program understanding tools such as program dicing and variable dependency graph.
» Name processing to clean, normalize, convert or translate the names of selected objects.

» A history manager which records the engineering activities of the analyst and which makes their
further replay possible.

» Import and export of specificationsin areadable textual format.

* A series of assistants, which are expert modules in specific kinds of tasks or in classes of prob-
lems and which are intended to help the analyst in frequent, tedious or complex activities. It
alows the analyst to develop scripts that automate frequent processes. Six assistants are avail-
able at present: global transformations (elementary and advanced), schema analysis, schema
integration, text analysis and reference key analysis and discovery.

» Process modeling: specific methods can be defined and enforced by the tool. A method is
defined by a MDL (Method Definition Language) script, compiled as a part of the repository,
then enacted by the method engine [Roland et a.-2000].

» Extensibility: new functions, such as specific report and code generators, DDL analyzers or
specifications checkers, can be developed in Voyager2 [Englebert-2000]. This language allows
the CA SE engineer to develop new functions, which will be seamlessly incorporated in the tool
without any modification of the tool kernel. Voyager2 is a complete 4th-generation language that
offers predicative access to the repository, easy analysis and generation of external texts, defini-
tion of recursive functions and procedures, a sophisticated list manager and direct access to the
build-in functions (as the transformations). It makes the rapid development of complex func-
tions possible.

» New properties can be dynamically added to the objects. Each type of object has built-in proper-
ties (e.g. attributes have aname, atype, alength, etc.). It is possible to add new propertiesto any
type of object of the repository. For example, it is possible to add a property (eng_name) to the
entity types that contains the name of the entity type in english.

» The behavior of the tools can be modified by the addition of pre- and post-processing functions
(astriggers written in Voyager 2) to the creation, deletion and transformation of the objects.

The remainder of this section will present in more detail the aspects and components of the DB-
MAIN tool which are directly related to DBRE activities.

8.3.1. User interface

Besides fairly standard graphical user interface, DB-MAIN offers additional formats that can be
useful for large schemas.

The tool allows the creation, modification, examination and analysis of the specifications. It must
be able to process large schemas (e.g. 500 record types with 10000 fields) and texts (e.g. beyond
100000 LOC).

It quickly appeared that more than one way of viewing schemas is necessary. For instance, a graph-
ical representation of a schemaallows an easy detection of certain structural patterns (as N-ary rela-
tionship types) and manipulation of small to medium schemas. But positioning objects of large and
complex schemas can prove difficult. It can take more than two hours to position the objects of a
schema of about 300 entity types and 300 relationship types. A textual representation is better
suited than the graphical one to analyze name correspondences and similarities and to browse

162 Program Understanding in DBRE

The DB-MAIN CASE environment

through large schemas. Thisis especially true in DBRE, where the schema can be very large and is
extracted from the DDL, without any predefined graphical positions.

DB-MAIN currently offers three different kinds of schemas (extended entity relationship, UML
class diagram and processing). The entity relationship and UML class diagrams represent data
schema in their respective model. In the graphical and textual views objects can be marked and
colored. Graphical views have zoom-in, zoom-out and alignments functions. The selected, marked
and colored objects are kept from one view to the other.

i Textual-sorted,1

1ef: CUS-HIST FURCH|
id(PITRCH): REF-FURC

QRD-CUSTOMER. cha
ORD-DETAIL: compou

[Graphical-standard/1 i Textual-extended/1 | Textual-standard,/1 -0l x
M cus) cus =
g in CUSTOMER CUS-CODE
CUS CODE o CU3-DECE
CUS-DESCR id . NAME
HAME ADDR
i ™ ADDR: char (41) [T FUNCT
EEC-DATE et FUNCT: char (10 [1
CUS-HIET id REC-DATE: chat (1l 3-HI3
PURCH[-100] L CUE-HIET: compound PURCH([O-100]
o PURCESTE PURCH[I-100): com REF-PURCH-STK
il: CUS-CODE REF-PURCH-3T TOT
are TOT: mum (5) [T id: CUS-CODE
ref: CUS-HIST PURCH[¥ REF-PURCH STE i CTI3-CODE [T] access key B Textual-compact/ =0 |
[CTTS-HIS T FURCHY: . X
FEF.IIRECH ST access key ref: CTI3-HIZT PUE

id(FURCH): REF-FI Schema Textual-con
D

ORD [T] ORD-CODE collection STOCK
in ORDERS ORD-CUSTOMER. | oofiectinn ORDERS
ﬂ | ORD-CODE: tim (100 [ORD-DETAIL collection CUSTOLER

DETAIL3[0-20]
REF-DET-37 o173

ADDE attribute of CUR CUS-DE DETAILZ[0-207: coz OFD-OTY | oD

Ccs entity type REF-DET-3TK: 1 id: OFD-CCDE ATK

CUS-CODE attribute of CTI3 ORD-OTY: ;|| g 2 ical~ I _Oolx
CUE-DESCR cotmpound attribate of CT id: ORD-CODE [T] _I_I o & _AI
CITS-HIST cottpound atteibute of CT access key ORDER| —
CUSTOMER m ref: ORD-CUSTOMER > CTUS.C1 0100 0-20

DETAILS cottpound attribute of OF access key

FUNCT attribute of CUS CUS-DE ref: ORD-DETAIL DETAILA[*]F 0-H, 0

HAME attribute of CUS CUS-DE; i DETAILS): REF-DET-STK =
[mizin} antitrr trena o . . —~

FIGURE 109. The six different extended entity-relationship views offers by DB-MAIN.

8.3.1.1. Entity relationship schema

Figure 109 presents the 6 views of an extended entity relationship schema (4 hypertext and 2 graph-
ical).

The four extended entity-relationship textual views with hyperlinks are:

» Textual-compact: sorted list of entity types, relationship types and collections.

» Textual-standard: same as the compact one with attributes, roles, groups, processing units and
is-arelations.

» Textual-extended: same as the standard one with the domain of the attributes and entity types -
relationship types cross-references.

» Textual-sorted: sorted list of al the objects (entity types, relationship types and attributes)
names.

Program Understanding in DBRE 163

CASE support

The hypertext views provide an easy way to navigate through a schema by following the roles,
foreign keys and is-arelations, i.e., going from an entity type to its neighbor relationship types and
vise-versa.

The two extended entity-relationship graphical views are:

» Graphical-compact: graphical representation of the entity-types, relationship types, roles and
collections.

» Graphical-standard: same as the compact one with the attributes, groups, processing units and
groups. It is possible to customize the views by displaying or hiding the domain of the attributes,
the attributes, the processing units and the groups.

8.3.1.2. Processing schema

Processing schemas are used to represent processes. Three kinds of nodes are provided: processing
unit, internal data objects and external data objects, as well as three kinds of relations: call, decom-
position and in-out.

A processing unit describes any processing components of an application or of an information
system. According to the level of abstraction at which the description has been developed, a
processing unit can model a task, an organization function, an activity, a procedure, a program, a
predicate, atrigger and even a mere statement.

An internal data object can be a data type, a variable, a constant or any object known by the
processing units of the schema but that is local to this schema. An internal object can be used as
input or output of processing units.

A data object used in a processing schemathat has been defined in a data schemais called an exter-
nal data object, such as entity types, attributes, collections or relationship types. For instance, a
procedure that reads CUSTOMER entities (described in a data schema) appears in a processing
schemawhere CUSTOMER is declared external.

Relations describe how a processing unit relates to other processing units and to internal and exter-
nal data objects. There are three kinds of relations.

(Ne/v Customerj (New Order) (List Orders) (Ne/v Product)

a) Decomposition relations.

NEW-ORD o » ORDER

£3 AN
CUSTOMER i READ-CUS WRITE_DET 0— ORDER detail

C

V
READ_PROD i PRODUCT

b) Call and in-out relations.

FIGURE 110. Example of the different relations in a processing schema.

164 Program Understanding in DBRE

The DB-MAIN CASE environment

A processing unit can be made up of several components which are themselves processing units
(dotted lines figure 110.a), thisrelation is called decomposition.

The call relation states that a processing unit calls, or uses services from, other processing units
(labelled "c" in figure 110.b).

A processing unit can use/read data objects and create/delete/update others, these relations are
called in-out (Iabelled "i" for input; "o" for output; "u" for update in figure 110.b). Data objects can
be internal (local to the schema) or external (defined in an other schema).

I% Textual-extended/1 = I i% Textual-stand... [[=]
Order System —jNEW-ORD =]
FINREINION [Graphical-standard/1 call READ-CUS
decomp, New Ot ORD ﬂ _I call WRITE_DET
decomp. List Ord out ORDER.
decomp. Hew Pri TE DET o— ORDER detail mD-CUS
New Customer in CITETOMER
cotnp. Order 3vs c J WWRITE _DET
Mew Order N cal REATY PROD
comp. Order 3ys ' hd out detail
List Orders 4 | . FEAD PROD
cottp, Order Sys Lﬁ Z in FRODUCT
New Product —
cottp, Order System b entity type ORDER
entitsr twene CTISTORMER T
% Textual-sorted/1 [Testual-comp... [[a]
New Order processing unit =] READ.CIS
Mew Product processing unit
. . WERITE_DET
NEW-ORD frocessing unit READ PROD
ORDEE entity type of schema process schidata -
Order 3ystem processing undt .
PRODUCT entity type of schema process schidata — Ent.ltj'r type ORDER —
BPEATT PROIT N C A i g 11t hd Eﬂtlt-}f' t-YPE CUSTOMER bl

! L7 JKIN o

FIGURE 111. The five different processing views offers by DB-MAIN.

Figure 111 presents the five views of a processing schema:

» Textual compact: sorted list of processing units and data objects (internal and external).

» Textual standard: same as compact one with the relations between processing units and data
objects.

» Textual extended: same as the standard one with rel ations cross-references.
» Textual sorted: sorted list of all the objects (processing units and data objects).

» Sandard graphical: graphic representation of the processing units and data objects with the rela-
tions.

8.3.2. DDL extractors

The DB-MAIN CASE includes DDL extractors for popular DMS, such as COBOL, IMS, CODA-
SYL, SQL, ODBC, Access and XML-DTD. Some of these extractors (COBOL, IMS, CODASYL,

Program Understanding in DBRE 165

CASE support

SQL and ODBC) are built in the CASE tool kernel and other (Access and XML-DTD) are external
modules written in Voyager2. For additiona DMS, specific extractors can be developed in
\oyager2.

These processors create an abstract schema expressing the physical concepts of the DDL text or of
the data dictionary that declares the data structures. These extractors produce one schema per DDL
analyzed or can store al the definitions in the same schema. If the extractors cannot interpret some
part of the code, such as the body of the SQL triggers, they store them in the description of the
corresponding object so that they can be analyzed by post processors.

8.3.3. Pattern matching

The simplest way to find some definite information in a program source code is to search the
program source text for some patterns or clichés. DB-MAIN pattern matching can include wildcard,
characters ranges, multiple structures, variables and can be based on other defined patterns.

For example, patterns can be defined to match any numeric constant, or the various kinds of
COBOL assignment statement or some select-from-where SQL queries.

The DB-MAIN pattern matching function allows searching text files, object names or object
descriptions for definite patterns expressed in a Pattern Definition Language (PDL). The left hand
side of the pattern (left of the’: : =") isthe name of the pattern and the right hand side is its defini-
tion and is terminated by a’; ’. The definition of the pattern can contain regular expressions (a la
grep), wildcard, character ranges, multiple structures, variables (preceded by the @symbol) and
other defined patterns. Pattern definitions cannot contain forward references, i.e,. all the patterns
used in a pattern definition must be defined before.

- 1i=][1tin] 4+,

var ::= /[g"[a-zA-Z][-a-zA-Z0-9]*";

var_1 ::= var,

var_2 ::.= var,

nmove ::= "nove" - @ar_1 - "to" - @ar_2 ;

FIGURE 112. Patterns definition for detecting COBOL assignment. ’- ' designates any non-
empty separator, 'var ' any alphanumeric string beginning with a letter (a variable
name).

As an illustration, figure 112 is the definition of the pattern nove that matches a COBOL assign-
ment. The pattern ’-’ is defined as a regular expression (/ g". . . ") which represents one or more
(+) separators (space, tabulation or newline). The pattern var, that represents a COBOL variable
name, is defined as a regular expression which matches any aphanumeric string beginning with a
letter. var _1 and var _2 are defined as var. The COBOL assignment, nove, is defined as the
string "move" followed by a non-empty separator (-), followed by a COBOL variable (var _1),
followed by a non-empty separator (-), followed by the string "to", followed by a non-empty sepa-
rator (-), followed by a COBOL variable (var _2). The matching values of var _1 and var _2 are
stored into two PDL variables named var _1 and var _2. The value of those two variables can be
used by other tools. For example, they can be passed as parameter to a \oyager 2 procedure.

166 Program Understanding in DBRE

The DB-MAIN CASE environment

The PDL variables can also be instantiated before the search takes place to reduce the search space.
For example, if we do not want to find any assignment, but only those that assign a vaue to the
variable Cus- Nane, var _2 can be instantiated to Cus- Nane before the search takes place.

Search
Pattern |move ﬂ -
Ok
URAOWE" - Eiar_1 - "TO" - Evar_2 J _
Cancel
Walue | Help
war_1
var_2
Change
Clear
R Clear all
[~ Sem. ¥ Tech. v Mame:
[~ case sensitive [~ Select all

FIGURE 113. The search tool dialog box.

The search tool (figure 113) allows to select a pattern and to instantiate the variables. The search
can take place in an external text or in a schema (name or description of the objects). This search
tool is mainly used for visual inspection: it selects the next matching string or it can select all the
matching stringsin the product (select all).

sel ect * I ::= any_but ("where");
from CUTOMER, ORDER 8§ ::= any_but(";");
wher e CUSTOVER. NAME = ' Dupont’ join ::=
and CUSTOVER. CUS- CODE “from | (@1! @2 @2! @y
= ORDER. ORD- CUST; "where" § @1 "." @il -
=- @z "." @

a) A SQL join. b) A pseudo-pattern to match a SQL join.

FIGURE 114. Example of pattern impossible to write in PDL.

The first experiments have quickly taught us that pattern-matching works fine for locally concen-
trated patterns, but can prove difficult to use for large patterns. It is not possible to write a pattern
that contains an expression that matches any string not including an expression. For example, it is
not possible to write a pattern that detects any SQL join. Figure 114.a shows a SQL join and figure
114.b shows a pseudo-pattern which would be necessary to detect if. The current pattern matching
engine does not offer any way to expressthe "any- but " expression.

A Voyager2 procedure can be attached to a pattern in such a way that each instantiation of this
pattern triggers the execution of the procedure. The procedure uses the PDL variables as input
parameters. In this way, the analyst can build powerful custom tools that perform automatically
some actions each time a pattern is detected (see annex A section A.2 for more detail).

Program Understanding in DBRE 167

CASE support

Patterns I j
add | Dekte | ¥ Diected

mave

The separator

[T Caze sensitive Help

ok |
Cancel |
_beb |

[~ Save dependency araph

I Browse |

FIGURE 115. The variable dependency graph dialog box.

move ::= "nove" - @ar_1 - "to" - @ar_2
redefine ::= @ar_1 - "redefines" - @ar_2
wite ::="wite" - @ar_2 - "front - @ar_1
if ::="if" - @ar_1 - rel_op - @ar_2

FIGURE 116. Example of patterns used to compute the variable dependency graph in a COBOL
program. Variables @ar _1 and @ar _2 define the nodes while the edges are
built from the instantiation of the patterns.

8.3.4. Variable dependency graph

The variable dependency graph (see figure 115) tool builds a graph whose nodes are the variables
of the program to be analyzed and the edges are relationship between these variables. These rela
tionships are defined by selecting PDL patterns with two variables named var _1 and var _2, the
edges may be directed and if so, they are directed from var _1 to var _2. For instance, figure 116
displays patterns that can be used to build agraph in which two nodes are linked if their correspond-
ing variables appear simultaneoudly in a single assignment statement, in aredefinition declaration,
in an indirect write statement or in comparisons.

This tool can be used to solve structure hiding problems such as the decomposition of attributes,
anonymous attributes and procedurally controlled referential constraint.

\/\

AN
N

FIGURE 117. Example of node that are directly and indirectly connected to A.

Two visualization formats of the variable dependency graph are available. The first one is contex-
tual. The analyst selects (clicks on the variable with the mouse's right button) a variable in the
source code, in the declaration or in the procedural code, then all the occurrences of variables

168 Program Understanding in DBRE

The DB-MAIN CASE environment

connected, directly or indirectly, to the selected variable are colored in the source code. The nodes,
that are connected indirectly to the selected node, are the nodes that can be reached from the
selected node by following the edges forward and the nodes that can be reached from the selected
node by following the edges backward. For example, figure 117 shows the nodes that can be
reached directly and indirectly from A, namely B, C, E, F, G Nodes | , D and Hare not part of this set.

[& order.cobH M=l 5=
24 FD CUSTOMER. =]
Z5 01 cUs,

z6 02 CUS-CODE FIC X(12).

27 0z CUS-DESCR PIC X(80). |
zs 0z CUS-HIST PIC X(1000).

aT

42 UORKING-STORAGE SECTION,

43 01 DESCRIPTION.

44 0z NAME PIC X{20).

45 0z ADDRE PIC X(40).

46 Dz FUNCT PIC %{10).

47 02z REC-DATE PIC X(10). -
124 ACCEPT REC-DATE.

125 MOVE DESCRIPTION TO CUS-DESCR.

126 PERFORN INIT-HIST.

127 URITE CUS

125 TWNWAT TN KEY DTSPTLAY MERRORT. il
1] | W

FIGURE 118. Example of variables belonging to the variable dependency graph shown in
context.

With this visualization technique the analyst can observe the variables in their context, i.e., he can
see the comments and the instructions that use the variables. But in large programs, he only has a
partial view of all the variables connected.

The second view is graphical and represents the graph itself. In this view, it is easy to observe the
cluster of variables in connection. The analyst has a global view of the dataflow of the program.
Thisview, that does not belong to the kernel of DB-MAIN, can be built by saving the graph, then by
using the processor depend. oxo to create the dependency graph as an entity-relationship schema
(see annex A section A.4.3 for detail).

8.3.5. Program dlicing

190NEW ORD. 211 | NVALI D KEY DI SPLAY "ERRCR".
191* new order i nput 216READ- CUS- CODE.

192 DI SPLAY " NEW ORDER". 217* order custoner input

193 DI SPLAY "ORDER NUMBER : " 218 DI SPLAY " CUSTOVER NUMBER : "
194 W TH NO ADVANCI NG 219 W TH NO ADVANCI NG

195 ACCEPT ORD- CODE. 220 ACCEPT CUS- CODE.

196 221 MOVE 0 TO END- FI LE.

197 MOVE 1 TO END- FI LE. 222 READ CUSTOMER | NVALI D KEY

198 PERFORM READ- CUS- CODE 223 DI SPLAY "NO SUCH CUSTOVER®
199 UNTIL END- FI LE = 0. 224 MOVE 1 TO END- FI LE

201 MOVE CUS- CODE TO ORD- CUSTOMER. 225 END- READ.
210 WRITE ORD

FIGURE 119. Example of program slice.

Program Understanding in DBRE 169

CASE support

Slicing E

Select the vanables to be used
az the zlicing criterion

ORDERS

ORD
ORD-CODE
ORD-CUSTOMER
ORD-DETAIL

Cancel

FIGURE 120. The dialog box used to select with respect to which variable the program slice
must be computed.

DB-MAIN offers a program slicing tool for COBOL programs. The user selects an instruction and
one or more variables referenced by the instruction. The program slicing tool identifies and colors
the program slice with respect to the selected instruction and the list of variables. The tool colors
the lines of the slice in the complete source code. This makes it possible to examine the dice in
context. For example, figure 119 shows a part of a program that includes the program dlice
computed with respect to line 210 and ORD- CUSTOVER, shown in bold. The context of the slice
makes it possible to analyze related information such as comments and error messages (lines 218
and 223).

To use the program dlicing, the user selects aline in the source code and uses the Assist / Text anal-
ysis/ program slicing command. The program slicing tool asks with respect to which variable the
slice must be computed (figure 120) and then colors the lines bellowing to the dice.

Functions to mark, color and copy the lines of a slice are available to extract the program slice and
to storeit in a separate file.

This program slicing tool is very useful for visual inspection of the code, but it is not adapted for
large projects with thousands of slices to compute and to analyze in hundreds of different source
codes. So there exists a "command line" (Windows and Unix) version of the program slicing that
can be used in shel scripts and run on a powerful machine. The command line has numerous
options (see annex A, section A.5) to designate the input and output files and format, the starting
lines and variables, etc.

For example, to detect data dependency the "command line" program slicing can be used to find all
the variables that are referenced in a write instruction and that received their value from a variable
defined in aread instruction, i.e., an attribute of the read entity type. To compute such slices for the
or der . cob program, the analyst can execute the following command.
slice -v -s wite -c read -a var -0 order.dep order.cob

The options of this command can be interpreted as follows. - v .computes the variable follow-up
program dlicing. -s wite computes the program slicing with respect to each write (or
rewite)instruction and itsrecord. - ¢ read checksif thereisaread (or st art) instruction in
the dice. If the slice does not contain ar ead instruction, it is not memorized. -a var option is
used to display (into the output file) the variables of ther ead and wr i t e instruction between which
thereisadataflow. - o or der . dep specifiesthat the output must be saved in the or der . dep file.

170 Program Understanding in DBRE

The DB-MAIN CASE environment

begin : 208
end : 196
origin: CUSTOVER (1-12) key CUS- CODE

current

flow : 208, 187, 196

a) Dataflow only result.

ORDERS (11-22) ORD- CUSTOVER

begi n:
end:
ori gin:

226

196

LI ST- DETAI L (1-5) REF-DET- STK

current: ORDERS (23-27) ORD DETAIL
control: STOCK (1-5) key STK-CODE

control

EXI ST- PROD (1-1)

flow 226,227,228, 245, 194, 196

b) Result with control flow.

FIGURE 121. Example of the output of the program command line program slicing tool.

208 READ CUSTOMVER | NVALI D KEY ...
187 MOVE CUS- CODE TO ORD- CUSTOVER.

196 WRITE ORD...

FIGURE 122. Fragment of the program to understand the dependency between line 208 and

196.

An extract of the or der . dep fileis shown in figure 121. The first part (figure 121.a) can be inter-
preted as the existence of aprogram slice with respect to line 196 (WRI TE ORD) that contains a read
instruction (line 208) and there is a dataflow between CUS- CODE (origin) and ORD- CUSTOVER
(current). The instructions used to detect this dataflow are given by the flow line and are displayed

infigure 122.

FD ORDERS.
01 ORD.
02 ORD- CODE PI C 9(10).
02 ORD- CUSTOMER PI C X(12).
02 ORD- DETAIL Pl C X(200).

01 LI ST- DETAIL.
02 DETAILS OCCURS 20 | NDEXED BY | ND.
03 REF- DET- STK PI C 9(5).
03 ORD-QTY PIC 9(5).
01 EXI ST-PROD PI C 9.

225
226
227
228
230
231
245

194
196

MOVE PROD- CODE TO STK- CODE.
READ STOCK | NVALI D KEY

MOVE 0 TO EXI ST- PROD.
I F EXI ST-PROD = 0
ELSE

PERFORM .
MOVE PROD- CODE

TO REF- DET- STK(| ND- DET)

MOVE LI ST- DETAI L TO ORD- DETAI L.
WRI TE ORD

FIGURE 123. Fragment of the program to understand the dependency between the line 226

and 196.

Program Understanding in DBRE 171

CASE support

FIGURE 124. The SDG of the figure 123.

The second part (figure 121.b) is more difficult to understand because fully understanding the rela-
tion between ther ead instruction (line 226) and thewr i t e instruction (line 196) requires not only
dataflow analysis but aso control flow analysis. The instructions used to detect this dependency are
displayed in figure 123. To find this dependency, the program slicing uses two control flow edges
(seefigure 124). The first one goes from line 226 to 227: ther ead (line 226) can be seen as a test,
to test if the record key is valid or not. The second one goes from line 228 to 231 to 245: theel se
part of thei f statement isa per f or m(line 231) that calls UPDATE- ORD- DETAI L in which REF-

DET- STK receives its value. The two lines beginning by control in figure 121.b give the variables
that are used in the two tests (line 226, 228). The cur r ent line gives the attribute of the ORDER
entity type that receives the value. It is not the whole attribute ORD- DETAI L but only a part of it,
from byte 28 to 32 relatively to the beginning of ORDER.

This result shows that there is a dependency between the value of STK- CODE (the primary key of
STOCK) and a part of ORDER but this is not a dataflow. The analyst has to analyze manually the
program to understand the dependency. In this example, at line 225 (not part of the dice between
line 226 and 196) STK- CODE receives its value from PROD- CODE and if STK- CODE (so PROD-

CODE) is an existing value then PROD- CODE is moved to REF- DET- STK (line 245) and REF- DET-

STKis moved to ORDER (line 194). This suggests that there is areferential constraint between STK-

CODE and REF- DET- STK.

For real size project, as in this example, the interpretation of the result of variable follow-up
program dlicing that contains control dependencies is not easy. The interpretation of variable
follow-up program slicing with only data dependency is straightforward. Most of the foreign key
can be discovered by only analyzing the variable follow-up program dicing computed with data
dependency.

172 Program Understanding in DBRE

The DB-MAIN CASE environment

8.3.6. Referential key assistant

i Search for referential/inclusion constraint

" Find candidate target E T= for the curent reference key Search | Fleset |
%' Find candidate reference keys for the current kamget E T: =
Bemovel Clear |
" Selected |1 Goto
i Create Create all
Marked | E0E = | |
@ Pim id || CLISIGNAL
 Anpid HOM Advanced...
et ADRESSE ‘—I
C Anparaup || FONCTION = Mak Al
(- NATC CRDCT ar =
Yoy P —
v | frLicu-copes =l
¥ Show attributes @ Tvpe
* Ref
L fato | ¢ RefEqu
€ [hiclusion
) e B
) Copy
) CopyEqy
s -
I" J — Close I Help |

FIGURE 125. Referential constraint assistant dialog (manager component).

Referential constraints are one of the most important structures to elicit in almost every DBRE
projects. A dedicated analyzer helps the anayst to discover potential referential constraints by the
analysis of the database schema. The referential key assistant implements the most common heuris-
tics. This assistant is divided in two components, namely, the constraint manager and the search
engine. The first one (figure 125) is the component manager; it is used to give the search strategies
and to create the referential constraints:

The target or the source of the referential constraint must be taken from alist of groups. Thislist
can be made up of all the selected groups or the marked group or all the identifiers (primary or
not) or all the schema’s groups or alist of groups given by a Voyager2 function.

The other end of the referential constraint must match a group of thislist. These matching rules
are given in the second dialog box described hereafter.

The Create button is used to create the current referential constraint.

The Create all button is used to create all the suggested referential constraints.

The Remove button is used to remove the current referential constraint from the list of suggested
referential constraints.

The Advanced button calls a Voyager2 procedure that receives all the suggested referentia con-

straints as input parameter. This procedure can be used to create the referential constraints, print
areport, query the database, etc.

Program Understanding in DBRE 173

CASE support

1 Search for referential/inclusion constraint
Find the possible reference keys whose target iz {CLI-CODEY of CLI

[T Accept attribute

[Skip existing reference key ™ Accept multivalued reference key
—CHOOSE THE TYPE OF TARGET KEY ——— ~ MAME MATCHING RULES
) Bt i) Ay) Ayl granE The name of the reference key includes
—STRUCTURE MATCHING RULES I keywod | =
[Sametotal length [Higrarchical r m e s ET mae
For each component: W Same length

Flcaneine I I vl characters of target key name

[T case sensitive

Help | Mare... | Ok I Cancel |

FIGURE 126. Referential constraint assistant dialog (search engine).

supplier
sup-id
id: sup-id
o-N detail
det-sup
@ det-prod
1-1 ref: det-sup
L det-prod
product
prod-id
id: R.supplier
prod-id

FIGURE 127. Example of a "hierarchical" referential constraint.

The matching rules (figure 123) are the following:

The type of the target of the foreign key (prim id, any id and any group).

Structure matching rules: both ends have the same total length or each component has the same
length and/or same type. The hierarchical matching rule is used when the identifier may contain
arole as in CODASYL databases. For example, in figure 127, a product is identified by the
suppl i er of thepr oduct (therole) and anumber (pr od-i d). Indet ai | , if we want to create
aforeign key that reference apr oduct , we need to reference sup- i d (det - sup) and prod-i d
(det - pr od).

Name matching rules: the name of the reference key must include a keyword, some (or al) the
characters of the target entity type name or some (or al) the characters of the target key name.
Skip existing reference key.

Accept attributes: the source of the foreign key is not a group.

Accept multivalued foreign key.

More...: the anayst can define his own matching function in Voyager2.

When all the strategy parameters are given, the first dialog box displaysthe list of possible referen-
tial constraints. To create one of these referential constraints, the analyst can select it and click on
the Create button. If he wants to create all of them, he can click on the Create all button.

174 Program Understanding in DBRE

The DB-MAIN CASE environment

8.3.7. Schema and object integration

DB-MAIN offers two integration tools. The first one integrates two schemas and relies only on the
name and type of the objects. It integrates two entity types (or relationship types) if they have the
same name and then applies the same rule for their attributes. It also produces an integration report
that contains the list of the objects integrated as well as additional information.

i Integrate two objects B

Integrate bwo zemantically identical objects [entity type, rel-type or compaound attribute] in the zame
zchema. [Choose components to integrate into STE)

% |ntegrate in the same schema

" Integrate bebween bwo schemas Slave schema IELlENT-EUMMANDEH -1 j
Slave abject &' Entity type " Reltype " Compound attribute
Master ET Slave ET

) Capy slayve ntomaste;

[CEEER—— | :
STK— ' Menge slave into master
STK-CODE FPROC-CODE)
STk-ALIBELLE FROD-MAME Create a1-1 link
STENIWEAU PROD-PRICE " Slave is-a master

<< Movel

" Master is-a slave

" Create commaon supertype

‘ ¥ Femove is-a redundancy |

5
ﬂl Swap Master with Slave |
Apply I Fesat |
4 | _’I | _PI Cloze | Help |

FIGURE 128. The integration assistant.

Schema integration also requires processors that are able to detect semantic correspondences. In the
second integration assistant (figure 128), the analyst selects two objects (in the same schema or not)
he wants to integrate. He chooses the strategy he wants to use (merge one of the objectsin the other,
create acommon super-type, link them by a one-to-one relationship type, etc.) and for each attribute
or role, he decides if it has a counterpart in the other object. This integration assistant can give very
precise results but heavily relies on the analyst’s knowledge of the application domain.

8.3.8. Schema analysis

The schema analysis assistant is dedicated to the structural analysis of schemas. It uses the concept
of submodel, defined as a restriction of the generic specification model. This restriction is
expressed by a boolean expression of elementary predicates stating which specification patterns are
valid, and which ones are forbidden. An elementary predicate can specify situations such as the
following: "entity types must have from 1 to 100 attributes’, "relationship types have from 2 to 2
(exactly 2) roles’, "entity type names are less than 18 characters long”, "names do not include
spaces', "there are no compound attributes”, "there are no access keys'. A submodel appears as a
script that can be saved and loaded. Predefined submodels are available: normalized ER, binary ER,

relational, CODASYL, etc. Customized predicates can be added via Voyager 2 functions.

Program Understanding in DBRE 175

CASE support

The schema analysis assistant offers two functions, namely check and search. Checking a schema
consist in detecting all the constructs which violate the selected submodel while the search function

detects all the constructs which comply with the selected submodel.

8.3.9. Transformation toolkit

DB-MAIN proposes a three-level transformation toolset that can be used freely, according to the
skill of the user and the complexity of the problem to be solved. These tools are neutral and generic,
in that they can be used in any database engineering process. Asfar as DBRE is concerned, they are
mainly used in data structure conceptualization processes. More precisely, the following three

levels of transformation are available.

» Elementary transformations
Transformation T is applied to selected object O.

With these tools, the user keeps full control on the schema transformation since similar situa
tions can be solved by different transformations. E.g, a multivalued attribute can be transformed
in many different ways (into an entity type by value or by instance, into alist of single attributes,
into a long single attribute, etc.). The current version of DB-MAIN offers a toolset of about 30

elementary transformations.

* Global transformations
Transformation T is applied to all the objects of a schemathat satisfy predicate P.

Global tranzsformations E
& Enltity bypes inta [Scriet
I jl j Add | lz-a into rektypes]]

Carnplex reltupes into entity types
" Reltypes itk - | Split reltypes with mult-ET roles
| = = |

Efemaie

 lz-a inta
| = (e
" Altributes into
| | =
™ Groups inta
| a| [
" Miscellaneous into
| =l |

1] | ¥]
" Generate I j Corii

orfirm

" Mame processing Ok | Cancel Help

FIGURE 129. The global transformation assistant.

176

Program Under standi

ng in DBRE

The DB-MAIN CASE environment

Advanced global transformation E
Frimitive transfarmations Script

ET_inta_RT a Add 1S&_into_RT
ET_inbo_ATT :I _I RT_into ETATT _per RT(1 M) or PROCUMIT_per_RT

ADD_TECH_ID oo |[sPOT_MULTIET ROLE
SMART_ADD_TECH_ID

IS4,_intg, AT

RT_into ET Remye |

RT nto 154 =l

Control structures Edi

OM a
ENDOM j Clear |
||

LaarP
ENDLOOP
ON..EMDON

Library Load |
Save |
Copy |

Edit library |

'y

| J i3

||- Confirnation | Ok | Cancel | Help |

FIGURE 130. The global advanced transformation assistant.

Such atransformation is carried out through a processor that allows the analyst to define T and P
independently. DB-MAIN offers two such tools. The first one, the global transformation assis-
tant (figure 129), offers a list of predefined predicates with their corresponding transformation
(transform al the "relationship entity types' into relationship types, transform al referential
constraints into relationship types, etc.). In the second one, the advanced global transformation
assistant (figure 130), the analyst select a transformation and defines a selection predicate to
express on which object the transformation must be applied.

Model-driven transfor mations.

All the constructs of a schema that do not comply with a given model are processed through a
transformation plan.

Such an operator is defined by a transformation plan, which is an agorithm comprising global
transformations, which is proved (or assumed) to make any schema comply with the model. The
DB-MAIN global transformation assistants offer scripting facilities through which the analyst
can develop his own transformation plan. Some predefined script are also provided (to transform
a conceptual schema into a relation schema, to transform a relational schema into a conceptual
schema, etc.).

8.3.10.Graph visualization

The processing schema can be used to represent call graphs, usage graphs, etc. DB-MAIN offersthe
necessary tools to manipulate (data and processing) schema and to mark and color their elements.
The analyst can add dynamic properties, stereotypes and annotations to represent the different kinds
of nodes (processing units can represent programs, procedures or modules) and edges.

Creating call graphs by hand can be very long and painful. To automate such graph creation from
the program sources code, specific extractors are needed but such extractors can be difficult to write
and need to be change for each language. To fulfil this, a Vbyager2 program (gr aph_t r . oxo) has
been developed that reads an input file, which describes the schema. 1t can be used to create any

Program Understanding in DBRE 177

CASE support

processing schemathat contains processing units, data-objects, call edges, decomposition edges and
input/output edges. Such afile can be easily created with scripting language, such as grep/awk or
perl. Thefile format is neutral (seeits description in annex A section A.6), so it can be used for any
graph and it is easily generated from any programs or other JCL scripts.

178 Program Understanding in DBRE

CHAPTER 9 CG%QUdy

This chapter presents three small case studies. These case studies are not real programs but we have
designed them to illustrate some difficulties that are meted in real projects. Thefirst two recover the
complete physical and conceptual schemas of the files used by the same COBOL program. Thefirst
one does it manually while the second one does it semi-automatically.

The first example shows the amount of work necessary to reverse engineer asmall application. The
analyst has to use the same tools several times and the tools he uses do not provide him with the
constraints he is looking for. He still has to analyze manually the source code to recover the
constraints. An advantage of this approach is that he gains an in-depth knowledge of the applica-
tion. This knowledge can allow him to retrieve some constraints such as exact cardinality of arrays.

The second example illustrates the fact that the analyst can obtain hints about specific constraints
faster. But to interpret the results of the automatic tools, he has to understand how the results were
generated. One of the limitations of the automatic approach is that not all the constraints can be
recovered thisway.

The last case study concerns a COBOL program with embedded SQL. The program offers the same
functionalities as the programs of the first two case studies, but it uses a SQL database instead of
COBOL files to store the data. This case study illustrates the difficulty to analyze programs with
embedded instructions. The analyst has to work in two phases. In the first one, he retrieves the
constraints contained in the embedded instructions. During the second phase, he analyzes the link
between the embedded code and the host language.

The last part of this chapter is devoted to a brief overview of the real case studies that we have per-
formed in companies. We do not give the code nor the database. We do not present the resolution of
the case studies themselves neither for evident confidentiality and space limitation. We present the
context of each case study: the language analyzed, the size of the system, the constraints searched
for and the results obtained.

Program Understanding in DBRE 179

Case study

9.1. COBOL DBRE, manual process

This section describes how to perform a small COBOL DBRE project manually. The expected
results of this project is to produce the complete logical schema and the conceptual schema. The
project is not performed entirely manually we use the tools offered by the DB-MAIN CASE tool
(DDL extractors, variable dependency graph, program slicing and transformation toolbox).

We have two sources of information, the source code and the data. The source code is a small (300
LOC) COBOL program that manages the customers, the products and the orders of a hypothetical

company. The data are stored into indexed COBOL files. We can access the current data to make
some tests and we can rely on the fact that the data contain no errors.

9.1.1. Project preparation

In this project, the preparation process is very simple since there is only one source code file (see
the complete source code in annex B section B.1) and the files that contain the data.

Cc

V 2\
& o, b

Cc
A/\ﬁ\q

—(NEW-CUS) (LIST—CUS) —(NEW-STK) (LIST—STK) ’
¢ ¢ ¢ ¢
y y y N y
(INIT-HIST) >(READ-CUS) >(READ-STK READ-CUS—CODE) (READ-DETAIL) >(READ-ORD)
T T
C C

v

v

/(READ-PROD-CODE) (D1SPLAY-DETAIL)
C
v

(UPDATE—ORD—DETAIL)
I

C

V
/ —UPDATE—CUS—HIST
i i Q i i 0 i

FIGURE 131. General architecture of the program, i.e. the procedure call and data usage
graph.

The procedure call graph and data usage graph (figure 131) can be used to get agenera overview of
the program and to identify the paragraphs that access the data.

180 Program Understanding in DBRE

COBOL DBRE, manual process

9.1.2. Data structure extraction

9.1.2.1. DDL code analysis

The COBOL DDL code is composed of two distinct parts of the program source:

* Thefile-control paragraphs of thei nput - out put section of the envi r onnent division
(lines 6-20) declare the files used as well astheir organization, their access keys and their identi-
fiers.

» The FD paragraphs of the fi | e section of the dat a division (lines 24-40) declare the record
types (called physical entity types) with their fields (physical attribute) decomposition and the
type and the length of the fields.

ORD @
ORD-CODE: num (10)
ORD-CUSTOMER: char (12)
ORD-DETAIL: char (200)

id: ORD-CODE

acc ORDERS
acc; ORD-CUSTOMER w
cus STK

CUS-CODE: char (12)

STK-CODE: num (5)

CUS-DESCR: char (80)
CUS-HIST: char (1000)

STK-NAME: char (100)
STK-LEVEL: num (5)

id: CUS-CODE
acc

id: STK-CODE
acc

FIGURE 132. The raw physical schema extracted from the COBOL program.

Figure 132 represents the raw physical schema obtained by the DB-MAIN COBOL extractor (File -
Extract - COBOL).

9.1.2.2. Physical integration

Thereisonly one raw physical schemain this project, so the physica integration is needed.

9.1.2.3. Schema refinement

During schema refinement, the physical schemais analyzed to discover hypotheses about the fine-
grained structure of entity types and attributes, finding referential constraints, finding sets behind
arrays, finding exact cardinalities of attributes and finding identifiers of multivalued attributes.
Each hypothesis will be validated through program code and data analysis. Validated hypothesis
will be added to the schema.

A. Finding the fine-grained structure of entity types and attributes

Some attributes have an unusual length, which suggests that it could be possible to find a fine-
grained structure for them.

Program Understanding in DBRE 181

Case study

Hypothesis discovery. In this example, We state that the attributes that have a length greater than
50 are good candidates to be refined. This rule concerns CUS-DESC, CUSHIST, ORD-DETAIL
and STK-NAME.

Of course the limit of 50 is completely arbitrary. Attributes longer than 50 may be atomic, such asa
name or a book title. On the other hand, attributes smaller than 50 can be compound such as a date
that is stored in a 8 character variable, that can be decomposed in day, month and year.

Hypothesisvalidation. To vaidate a decomposition hypothesis, we will use the variable depen-
dency graph computed for assignment instructions. The dependency graph (Assist - Text analysis -
Dependency) is computed for the pattern " nove" - @ar_1 - "to" - @ar_2. Asexplained
in chapter 8, section 8.3.4, DB-MAIN displays the variable dependency graph in context, that is, in
the source code.

We select one by one the "long" attributes and verify to which other variables each of them is
connected. If a "long" attribute is connected, directly or indirectly, to a variable that has a fine-
grained structure, then the hypothesisis validated and the structure of the variable is assigned to the
attribute. The analysis of the variable dependency graph shows us that:

* CUS- DESCis connected to DESCRI PTI ON and DESCRI PTI ON has the following decomposition
(line43 - 47)
01 DESCRI PTI ON.
02 NAME PI C X(20).
02 ADDR PI C X(40).
02 FUNCT PI C X(10).
02 REC- DATE PI C X(10).

e CUS- HI ST isconnected to LI ST- PURCHASE and LI ST- PURCHASE has the following decompo-
sition (line 49 - 52)
01 LI ST- PURCHASE.
02 PURCH OCCURS 100 TI MES | NDEXED BY | ND.
03 REF- PURCH STK PIC 9(5).
03 TOT PIC 9(5).
» ORD- DETAI L isconnected to LI ST- DETAI L and LI ST- DETAI L has the following decomposi-
tion (line 54 - 57)
01 LI ST-DETAIL.
02 DETAILS OCCURS 20 TI MES | NDEXED BY | ND- DET.
03 REF- DET- STK PI C 9(5).
03 ORD-QTY PIC 9(5).
» STK- NAME is not present in the graph, because this attribute does not appear in any assignment,
so we can conclude that there is no decomposition for STK- NAMVE.

182 Program Understanding in DBRE

COBOL DBRE, manual process

Cus

ORD

STK

CUS-CODE: char (12)
CUS-DESCR: compound (80)

NAME: char (20)
ADDR: char (40)
FUNCT: char (10)
REC-DATE: char (10)

ORD-CODE: num (10)
ORD-CUSTOMER: char (12)

ORD-DETAIL: compound (200)
DETAILS[20-20] array: compound (10)
REF-DET-STK: num (5)
ORD-QTY: num (5)

STK-CODE: num (5)
STK-NAME: char (100)

STK-LEVEL: num (5)

id: STK-CODE
acc

CUS-HIST: compound (1000)
PURCH[100-100] array: compound (10)
REF-PURCH-STK: num (5)

id: ORD-CODE
acc
acc: ORD-CUSTOMER

TOT: num (5)
id: CUS-CODE
acc

FIGURE 133. The schema with fine-grained structure.

Schema enhancement. The schema can be enhanced with the new decompositions of CUS-DESC,
CUS-HIST and ORD-DETAIL (figure 133).

B. Finding referential constraints

Though there are no referential constraints or relationship types between the different entity types,
we can guess that such links should exist between CUSTOMER, ORDER and STOCK.

1 S earch for referential/inclusion constraint
' Find candidate target ETs for the current reference key
-ﬁearch . Reset
% Find candidate reference keys for the curment target ET: - _I
Remove Clear
 Selected [Cus Goto
' Create Create all
Marked | E T So0E = —I —I
& Primid || CUS-DESCR
© Aryid ESB’E Advanced...
C Ay group || FNCT = e
O DEC MATE I Mark Ref
e +—
| cus:icus-cope =l
¥ Show attributes = Type
*. et
OAD Goo | ot £as
ORD-CODE - IS
ORD-CUSTOMER o e
ORD-DETAIL Inieh Zej
DETAILS 1 Capy
REF-DET-5TK
NRMLOTY = £ Copy o
| ORD:{ORD-CUSTOMER} =l Close Holp

i Search for referential/inclusion constraint
Find the possible reference keps whose target iz {CUS-CODE} of CUS

¥ Accept attribute ‘

‘ ™ Skip existing refersnce key ™ Accept muliivalued reference key

CHOOSE THE TPE OF TARGET KEY
’;: B id) il € Ayl aroup

MAME MATCHING RULES

The name of the reference key includes

™ keyp word I -

STRUCTURE MATCHING RULES
[~ Sametotallength [Hierarchical ~ Iﬁ et 6 EA BT fene
For each component: ¥ Same length
¥ Same ype I I vl characters of target key name
I caze sensitive
Help | Mare... | Ok I Cancel |

FIGURE 134. The configuration of the referential constraint assistant to discover the potential
referential constraints.

Program Understanding in DBRE 183

Case study

Hypothesis discovery. We make the assumption that the program was well designed and that some
naming conventions have been used. To discover potentia referential constraints, we analyze the
schema to find potential referential constraints that have an identifier as target, both sides have the
same type and same length and the name of the referential attribute contains the name of the target
entity type.

Thereferential constraint assistant (Assist - Referential key) can be used to discover such potential
referential constraints. The figure 134 shows the configuration of the assistant to perform this task.
The assistant suggests the following potentia referential constraints, specified by their source and
target attributes:

e CORD. ORD- CUSTOMER - CUS. CUS- CODE

e CUS. CUS- HI ST. PURCH. REF- PURCH- STK - STK. STK- CODE

* ORD. ORD- DETAI L. DETAI LS. REF- DET- STK - STK. STK- CODE
e STK. STK-LEVEL - STK STK- CODE

Hypothesisvalidation. We then use program dlicing. To validate a referential constraint, the
analyst must verify that before each (RE)WRI TE instruction of the source entity type, the referential
constraint is verified. For this, we compute the program slice with respect to the write instruction of
the entity type and the referentia attribute origin. If the slice contains an instruction that reads the
target entity type and there is a validation of the value of the referential attribute (it is an existing
value of the target identifier), then the referential constraint is assumed to be verified.

183 MOVE 1 TO END-FI LE. 203 READ- CUS- CODE.
184 PERFORM READ- CUS- CODE 204 DI SPLAY " CUSTOMER NUMBER "
UNTI L END- FI LE=O0. 205 W TH NO ADVANCI NG,

187 MOVE CUS- CODE TO ORD- CUSTOVER. 206 ACCEPT CUS- CODE.

196 WRITE ORD 207 MOVE 0 TO END-FI LE.
208 READ CUSTOVER | NVALI D KEY
209 DI SPLAY " NO SUCH CUSTOVER'
210 MOVE 1 TO END- FI LE

211 END- READ.

FIGURE 135. Program slice with respecttowri t e ORD (line 196) and ORD- CUSTOVER.

ORD.ORD-CUSTOMER - CUSCUSCODE

To validate the first referential constraint (ORD.ORD-CUSTOMER - CUSCUS-CODE), we
search al the instructions that modify ORD ((RE)WRI TE ORD). In this program there is only one
such instruction at line 196. We compute the program slice with respect to thewr i t e ORD instruc-
tion (line 196) and ORD- CUSTOVER. The program dlice is displayed in figure 135; we only display
(asin the remainder of the chapter) the line of the slice and the line with respect to which the dliceis
computed is in bold. The slice shows that the procedure READ- CUS- CCDE is executed until END-

FI LE isequal to 0 (line 184). In READ- CUS- CODE, the user is asked for a CUS- CCDE value (line
206) and the file CUSTOVER is read to check if this value of CUS- CODE exist otherwise END- FI LE
isset to 1 (line 208-211). So after the execution of READ- CUS- CODE, CUS- CODE contains a value
that exists in the file CUSTOMER. CUS- CODE is copied to ORD- CUSTOMER (line 187) and the record
iswritten into the file. This proves the existence of the referential constraint.

184 Program Understanding in DBRE

COBOL DBRE, manual process

190 SET IND-DET TO 1. 233 UPDATE- ORD- DETAI L.

191 MOVE 1 TO END-FI LE. 234 MOVE 1 TO NEXT- DET.

192 PERFORM READ- DETAI L 235 DI SPLAY " QUANTI TY ORDERED "

193 UNTIL END-FILE = 0 OR | ND- DET=21. 236 W TH NO ADVANCI NG

194 MOVE LI ST- DETAIL TO ORD- DETAI L. 237 ACCEPT ORD- QTY(I ND- DET).

196 WRI TE ORD 238 PERFORM UNTI L

213 READ- DETAI L. 239 (NEXT- DET < | ND- DET AND

214 DI SPLAY "PRODUCT CODE (0=END):". 240 REF- DET- STK(NEXT- DET) =PROD- CODE)
215 ACCEPT PROD- CODE. 241 OR I ND-DET = NEXT- DET

216 | F PROD-CODE = 0 242 ADD 1 TO NEXT- DET

217 MOVE 0 TO REF- DET- STK(| ND-DET) 243 END- PERFORM

219 MOVE 0 TO END- FI LE 244 | F IND-DET = NEXT- DET

220 ELSE 245 MOVE PROD- CODE

221 PERFORM READ- PROD- CCODE. 246 TO REF- DET- STK(| ND- DET)

223 READ- PROD- CODE. 248 SET | ND-DET UP BY 1

224 MOVE 1 TO EXI ST- PROD. 249 ELSE

225 MOVE PROD- CODE TO STK- CODE. 250 DI SPLAY "ERROR ALREADY ORDERED'.
226 READ STOCK | NVALI D KEY 271 LI ST- ORD.

227 MOVE 0 TO EXI ST- PROD. 273 CLOSE ORDERS.

228 |F EXIST-PROD = 0 275 MOVE 1 TO END- FI LE.

229 DI SPLAY "NO SUCH PRODUCT" 276 PERFORM READ- ORD UNTI L END- FI LE=0.
230 ELSE

231 PERFORM UPDATE- ORD- DETA! L.

FIGURE 136. Program slice with respecttow i t e ORD (line 196) and ORD- DETAI L.

ORD.ORD-DETAIL.DETAILSREF-DET-STK . STK.STK-CODE

To validate the foreign key (ORD.ORD-DETAIL.DETAILSREF-DET-STK - STK.STK-CODE),
once again we need to know the instruction that modifies ORD, as for the previous referential
constraint. We compute the program slice with respect towr i t e ORD (line 196) and ORD- DETAI L
(figure 136). We observe that the READ- DETAI L procedure is performed until END- FI LE equal O or
I ND- DET equa 21 (maximum number of elements of DETAI LS array plus one). In READ- DETAI L
a product code (PROD- CODE) is asked (line 215). If it is O then END- FI LE is set to 0 and the
message of line 214 saysthat "0 = end". Thismean that the user can stop to specify products when
he wants, so the cardinality of the array DETAI LS actually is[0-20]. If PROD- CODE is different of 0,
READ- PROD- CODE is performed. READ- PROD- CODE checks if PROD- CODE is an existing va ue of
STK- CODE. If it does not exist in the file STOCK, an error message isdisplayed ("no such prod-

uct ", line 229) and a new product number is asked; else UPDATE- ORD- DETAI L is performed.

| ND- DET

NEXT- DET

20
L1 T I [| | REF-DE-STK

Tsed part

FIGURE 137. The situation at any moment in the loop [238-243].

In UPDATE- ORD- DETAI L, the loop [238-243] goes through the DETAI LS array. | ND- DET is the
index of the first unused cell of DETAI LS (all the elements before | ND- DET have a value different
of 0) and NEXT- DET isthe number of the current element (see figure 137). The loop has two ending
conditions:

1. NEXT-DET < | ND- DET AND REF- DET- STK(NEXT- DET) = PROD- CODE

Program Understanding in DBRE 185

Case study

REF- DET- STK(NEXT- DET) is an element of the already filled part of DETAI LS and it is equal
to PROD- CODE (the current product), i.e., the customer tries to order a second time the same
product in the order.

2. I ND- DET = NEXT- DET

It has reached the first non used element of DETAI LS.
108 NEW CUS.

126
127

PERFORM | NI T- HI ST.
WRI TE CUS.

294 | NI T- HI ST.

295
296
297
298
299
300
301

SET IND TO 1.
PERFORM UNTIL | ND = 100
MOVE 0 TO REF- PURCH STK(| ND)
MOVE 0 TO TOT(| ND)
SET IND UP BY 1
END- PERFORM
MOVE LI ST- PURCHASE TO CUS- HI ST.

FIGURE 138. Program slice with respecttow i te CUS (line 127) and CUS- HI ST.

183
184

188
190
191
192
199
200
201
203
204
205
206
207
208
209
210
211
213
214
215
216
217
218
219
220
221
223
224
225
226
227

MOVE 1 TO END- FI LE.

PERFORM READ- CUS- CODE

UNTI L END- FI LE = 0.

MOVE CUS-HI ST TO LI ST- PURCHASE.

SET | ND-DET TO 1.

MOVE 1 TO END- FI LE.

PERFORM READ- DETAI L

MOVE LI ST- PURCHASE
TO CUS- HI ST.

REVRI TE CUS

READ- CUS- CODE.

DI SPLAY " CUSTOMER NUMBER *
W TH NO ADVANCI NG

ACCEPT CUS- CODE.

MOVE 0 TO END- FI LE.

READ CUSTOVER | NVALI D KEY
DI SPLAY " NO SUCH CUSTOMER'
MOVE 1 TO END- FI LE

END- READ.

READ- DETAI L.

DI SPLAY " PRODUCT CODE (0O=END): "

ACCEPT PROD- CODE.
| F PROD- CODE = 0
MOVE 0O
TO REF- DET- STK(| ND- DET)
MOVE 0 TO END- FI LE
ELSE
PERFORM READ- PRCD- CODE.
READ- PROD- CODE.
MOVE 1 TO EXI ST- PROD.
MOVE PROD- CODE TO STK- CODE.
READ STOCK | NVALI D KEY
MOVE 0 TO EXI ST- PROD.

228
229
230
231
233
234
238
239
240
241
242
243
244
247
248
252
253
254
255
256
257
258
259
263
264
265
266
267
268
269
289

I F EXI ST-PRCD = 0
DI SPLAY " NO SUCH PRODUCT"
ELSE
PERFORM UPDATE- ORD- DETAI L.

UPDATE- ORD- DETAI L.

MOVE 1 TO NEXT- DET.
PERFORM UNTI L
(NEXT- DET < | ND- DET AND
REF- DET- STK(NEXT- DET) =PROD- CODE)
OR | ND- DET = NEXT- DET
ADD 1 TO NEXT- DET
END- PERFORM
| F | ND- DET = NEXT- DET
PERFORM UPDATE- CUS- HI ST
SET | ND- DET UP BY 1.

UPDATE- CUS- HI ST.

SET IND TO 1.
PERFORM UNTI L
REF- PURCH STK(1 ND) = PROD- CODE
OR REF- PURCH STK(IND) = 0
OR IND = 101
SET IND UP BY 1
END- PERFORM
| F REF- PURCH STK(| ND)
= PROD- CODE

ADD ORD- QTY(| ND- DET) TO TOT(| ND)
ELSE
MOVE PROD- CODE
TO REF- PURCH STK(| ND)
MOVE ORD- QTY(| ND- DET) TO TOT(1 ND).
MOVE ORD- DETAI L TO LI ST- DETAI L

FIGURE 139. Program slice with respecttorewite CUS (line 201) and CUS- HI ST.

If the second condition is satisfied (line 244), then PROD- CODE is assigned to REF- DET-
STK(NEXT- DET) (line 245-246) and | ND- DET isincremented by one (line 248), otherwise an error
message is displayed (line 250). This means that the referentia constraint is validated. REF-DET-

186

Program Understanding in DBRE

COBOL DBRE, manual process

STK isaloca identifier of DETAILS, because the user cannot order twice the same product in the
same order. DETAILSis an array that is managed like a set, because there isno gap in the array (the
first attribute is used, then the second, then the third, etc.) and the user can order the product in the
order he wants (there is no sequencing criterion).

CUSCUSHIST.PURCH.REF-PURCH-STK . STK.STK-CODE

To validate the foreign key (CUSCUSHIST.PURCH.REF-PURCH-STK - STK.STK-CODE),
we have to compute and to analyze two program dlices, because thereisawri te CUS at line 127
andarewite CUSinstruction at line 201. We have to analyze both slices to be sure that they vali-
date the same constraints.

Figure 138 shows the program slice with respect towrite CUS (line 127) and CUS- HI ST. The
procedure| NI T- HI ST is called once and all the element of PURCH are set to 0. | NI T- HI ST initial-
izes the PURCH array and 0 is used to represent the null value. So the cardinality of the array is not
[100-100] but [0-100]. The referential constraint istrivially verified by the code fragment since the
array is empty!

Then, we compute the second program slice with respect towr i t e CUS (line 201) and CUS- HI ST
(figure 139). As in the dlice of the first referential constraint, after the execution of READ- CUS-
CODE, CUS- CODE contains a validated value. CUS- HI ST is copied into LI ST- PURCH (line 188).
The analysis of the paragraphs READ- DETAI L, READ- PROD- CODE and UPDATE- ORD- DETAI L is
the same as that performed for the second referential constraint. So, when UPDATE- CUS- HI ST is
performed (line 247) PROD- CODE contains a validated value of STK-CODE and ORD- QTY(| ND-
DET) containsthe ordered quantity of the product PROD- CODE.

| ND

1 100
[| [| | of |0 | REF- PURCH STK

#0 = used part
FIGURE 140. The situation at any moment in the loop [254-259].

The loop in UPDATE- CUS- HI ST (line 254-259) goes through the PURCH array. The unused cells of
PURCH have their REF- PURCH STK component set to 0 and | ND is the number of the current
element (see figure 140). The loop has three ending conditions:

1. REF- PURCH STK(I ND) = PROD- CODE

The loop has found the current product in the customer history (product already ordered).
2. REF- PURCH STK(IND) = 0
It has reached the first REF- PURCH STK equal to 0, i.e.; the product is not present in the cus-
tomer history (product not already ordered).
3. IND = 101
It has reached the end of the array.

ORD- QTY(| ND- DET) (the ordered quantity) is added to TOT(|1 ND) (line 265) if PROD- CODE is
aready present in the REF- PURCH- STK (at the | ND element), otherwise the first free element of the
array (1 ND) isfilled with the PROD- CODE (line 267) and ordered quantity (line 269). This validates
the referential congtraint (all the REF- PURCH STK not equal to 0 are valid values of STK- CODE)
The exact cardinality of the array is [0-100], because there can be unused elements filled with 0.

Program Understanding in DBRE 187

Case study

REF- PURCH STKisalocal identifier of LI ST- PURCH, because when the loop has found a matching
element, it stops searching, as if no other similar element could be found. With the same reasoning
asfor DETAI LS, we show that PURCH actually is a set.

145 NEW STK.
154 DI SPLAY " LEVEL "

W TH NO ADVANCI NG
155 ACCEPT STK- LEVEL.
157 VWRI TE STK

FIGURE 141. Program slice with respecttowri t e STK (line 157) and STK- LEVEL.

STK.STK-LEVEL - STK.STK-CODE

The last referential constraint to check is (STK.STK-LEVEL, STK.STK-CODE). Without any
program analysis, it can be seen that STK- LEVEL cannot be a foreign key. The matching rule is
satisfied because COBOL programmers often prefix the field name by the name of the record type
to get unique names. But to be sure, we can compute the program slice with respect towri t e STK
(line 157) and STK- LEVEL (figure 141). In the slice, we can see that STK- LEVEL value is given by
the user (line 154) and there no validation is carried out

Logical schema validation. The referential constraints and the local identifier of the multivalued
attributes can also be validated through the data analysis. To analyze the data, we write a COBOL
program that queries the file contents and produces a report.

Schema enhancement. Through the validation of the hypothesis about the referential constraints,
we have discovered three referentia constraints and several other properties about the multivalued
attributes:

» The three referential constraints are (ORD.ORD-CUSTOMER, CUS.CUS-CODE), (CUSCUS
HIST.PURCH.REF-PURCH-STK, STK.STK-CODE) and (ORD.ORD-DETAIL.DETAILS REF-
DET-STK, STK.STK-CODE).

» Theexact cardinality of DETAILSis[0-20].

* REF-DET-STK isthelocal identifier of DETAILS.

* DETAILSisaset and not an array.

» Theexact cardinality of PURCH is[0-100].

* REF-PURCH-STK isthelocal identifier of PURCH.
* PURCH isaset and not an array.

We were not looking for multivalued attributes properties, but we discovered them during the vali-
dation of the referentia constraints. Thisis called the opportunistic approach.

188 Program Understanding in DBRE

COBOL DBRE, manual process

ORD
ORD-CODE: num (10) @
ORD-CUSTOMER: char (12) W
ORD-DETAIL: compound (200)
DETAILS[0-20]: compound (10)
cus REF-DET-STK: num (5)
CUS-CODE: char (12) ORD-QTY: num (5)
CUS-DESCR: compound (80) id: ORD-CODE
NAME: char (20) acc
ADDR: char (40) ref: ORD-CUSTOMER
FUNCT: char (10) acc w
REC-DATE: char (10) — ref: ORD-DETAIL.DETAILS[*].REF-DET-STK
CUS-HIST: compound (1000) id(ORD-DETAIL.DETAILS):
PURCHI[0-100]: compound (10) REF-DET-STK
REF-PURCH-STK: num (5)
TOT: num (5) STK
d: :;S’CODE STK-CODE: num (5) @
ref: CUS-HIST.PURCH[*].REF-PURCH-STK STK-NAME: char (100) w
: . STK-LEVEL: num (5)
id(CUS-HIST.PURCH): \ =
REF-PURCH-STK 1 aS;K'CODE

FIGURE 142. The complete physical schema.

All the discovered congtraints are added to the physical schema to obtain the complete physical
schema (figure 142).

9.1.2.4. Schema cleaning

Considering that the logical schemaincludesall the constraints that must be known by the program-
mer, the logical schema of a COBOL set of filesincludes access keys and entity collections (files).

The physical schema of figure 142 is also the complete logical schema.

9.1.3. Data structure conceptualization

9.1.3.1. Preparation

This phase prepares the schema such that it contains only structures and constraints that are neces-
sary to understand the semantics of the schema.

A. Name processing

The name of the objects are the names given by the programmers (as recovered during data struc-
ture extraction), who have used some naming rules. Now the names can be changed to give more
information on the named objects:

* Remove common prefixes

A common naming conversion in COBOL consists in prefixing each attribute name by the name
(or a short name) of the entity type. Thisis useful in large programs to ensure the uniqueness of
the attribute names. Those prefixes do not give any information, so that they can be removed
(Transform - Change prefix).

Program Understanding in DBRE 189

Case study

* Meaningful name

The names of the collections are more meaningful than the corresponding entity types names, so
that the entity types hame can be replaced by the collections name.

B. Abnormal structures transformation

During the data structure extraction, some compound attributes with only one component were
created (CUSHIST and ORD-DETAIL). It is suggested to disaggregate them (Transform -
Attribute - Disaggregation) to remove unnecessary levels of decomposition.

C. Discard the physical constructs

The access keys and collections are not useful any more, and can be suppressed.

ORDER
CODE
CUSTOMER CUSTOMER
CODE DETAILS[0-20]
DESCR REF-DET-STK
NAME ORD-QTY
ADDR id: CODE
FUNCT ref: CUSTOMER
REC-DATE — ref: DETAILS[*].REF-DET-STK
PURCH[0-100] id(DETAILS):
REF-PURCH-STK REF-DET-STK
TOT
id: CODE
ref: PURCH[*] REF-PURCH-STK STOCK
id(PURCH): CODE
REF-PURCH-STK NAME
LEVEL
t{id: CODE

FIGURE 143. The prepared logical schema.

The result of these transformations gives the prepared logical schema, as displayed in figure 143.

9.1.3.2. Basic conceptualization

The de-optimization and untrand ation processes are generally interleaved, so that it can be artificial
to try to dissociate them.

A. Complex multivalued attributes

The two complex (decomposable, multivalued, with local identifier and foreign key) attributes
DETAILS and PURCH aretypical implementations of dependent entity types. This structure is used
to decrease the number of files used and the number of disk access. Thisis acommon optimization
that can be undone by the transformation of DETAILS and PURCH into entity types (Transform -
Attribute - Entity type).

190 Program Understanding in DBRE

COBOL DBRE, manual process

B. Foreign keys

Since foreign keys implement relationship types, they are transformed into relationship types
(Transform - Group - Rel-type).

CUSTOMER

CODE

DﬁiC'\ITE ORDER

-\ -
RS 0N CUSTOMER 1-1 CODE
FUNCT id: CODE
[

REC-DATE 000

id: CODE
0100 ORD_DET
i
|

11 DETAILS
PURCH ORD-QTY
TOT id: REF-DET-STK.STOCK
id: REF-PURCH-STK.STOCK ORD_DET.ORDER
117

CUS PURCUSTOMER |, , 3
REF-PURCH-STK STOCK REF-DET-STK

0-N_| CODE | ON
NAME
LEVEL
id: CODE

FIGURE 144. The raw conceptual schema.

These transformations produce the raw conceptua schema (figure 144).

9.1.3.3. Normalization

Through the normalization, the analyst tries to give the schema such qualities as readability, conci-
sion, minimality, expressiveness, typical to good conceptual schemas.

A. Relationship entity types

The entity types PURCH and DETAI LS can be perceived as playing the role of relationship types
between CUSTOVER and STOCK and between ORDER and STOCK, respectively. Those entity types
can be transformed into relationship types (Transform - Entity type - Rel-type).

B. Attribute disaggregation

The attribute DESC is composed of attributes of different domain concepts, we can decide to disag-
gregate them (Transform - Attribute - Disaggregation).

C. Name processing

Some names can be changed to be more meaningful. For example, the attribute TOT can be
changed to TOTAL; ADDR can be changed to ADDRESS, FUNCT can be changed to FUNCTION,;

Program Understanding in DBRE 191

Case study

ORD-QTY can be changed to QUANTITY; PURCH can be changed to purchase; CUSTOMER rela
tionship type can be changed to pass.

The attribute DETAILSis a plural and the habit isto use the singular. It is replaced by DETAIL.

An usual naming ruleisto use lowercase for relationship type names, uppercase for the entity type
names and capitalized for the attribute names.

CUSTOMER
Code
Name ORDER
Address O—Nl—l Code
Function id: Code
Rec-date
id: Code 0-20
0-100
\Tod_ /
O-N O-N

STOCK

Code

Name

Level

id: Code

FIGURE 145. The normalized conceptual schema.

Thefinal conceptual schemais shown in figure 145.

9.2. COBOL DBRE, (semi-)automatic process

This section shows how to recover (semi)-automatically the conceptual schema of the first case
study.

9.2.1. Data structure extraction

The DDL code analysis is the same as in the previous case study (see 9.1.2.1). The raw physical
schemaisthat of figure 132. The main difference is that we will increase the level of automation of
the schema refinement process.

9.2.1.1. Schema refinement

A. Finding the fine-grained structure of entity types and attributes
Finding the fine-grained structure of attributes can be partially automated.
In the previous case study (9.1.2.3) we had to select one by one the attributes to see if they are

connected, in the variable dependency graph, to a variable with a more precise decomposition. DB-
MAIN offers the possibilities to store the variable dependency graph as a text file. A Voyager?2

192 Program Understanding in DBRE

COBOL DBRE, (semi-)automatic process

program (depend. oxo) has been written to read this file and to produce a graphical representation
of the graph.

O-N |CUS—DESCR | |CUSCODE |
<>

1-10-N llON 110N

<>— TP QP 9 <>

\ / \ /
o N CUSHIST ORD CUSTOMER
STK-CODE

FIGURE 146. The variable dependency graph.

Since DB-MAIN has no specific view to represent a variable dependency graph, we represent it as
an entity-relationship schema, where the variables are entity type and the relations between vari-
ables are relationship types (see annex A, section A.4.3 for a complete description of
depend. oxo). The variable dependency graph obtained is displayed as in figure 146. In this
schema, the variables that represent an attribute of the raw physical schema are in bold. The
compound variables are in grey.

The analysis of this graph shows that a candidate decomposition exists for the attributes ORD-
DETAIL, CUSHIST and CUSDESCR. The analyst has to find (manually) the correct decomposi-
tion for those attributes and to refine them.

B. Finding referential constraints

To find referentia constraints, a program slice is computed for eachwri t e (or rewri t e) instruc-
tion and it is searched for ar ead instruction. When ar ead instruction is found in a slice computed
with respect toawr i t e, the dataflow is analyzed to know which attributes are in relation.

To automate this as much as possible, the command line version of the program slicing is used (see
section 8.3.5 and annex A section A.5.3 for a complete description of thistool). One of the possible
usage of the command line program slicing is the following:

slicing -v -s wite -c read -a var -o order.dep order.cob

The options of this command can be interpreted as follow. - v computes the variable follow-up
program slicing. -s write computes the program dlicing with respect to each write (or
rewite) instruction and itsrecord. - ¢ read checksif thereisaread (or st art) instruction in
thedlice. If the slice does not containsar ead instruction the sliceis not memorized. - a var option
is used to display (into the output file) the variables of the r ead and wri t e instruction between
which there is a dataflow. - o order. dep specifies that the output must be save into the
or der. dep file.

Program Understanding in DBRE 193

Case study

E READ (RE)WRI TE
©) :
w® Entity | Start- Entity | Sart-
Ling type stop | Att |Lingd type stop Att Lines
D 208 | CUSTOMER| (1-12) | cus-code| 196 | ORDERS (11-22) | ord-customer| 208,187,196
D+C |226 |STOCK (1-5) | stk-code| 196 | ORDERS (23-27)| ord-detail | 226:227,228,230,231,233,
245, 246,194,196
D+C |226 |STOCK (1-5) | stk-code| 201 | CUSTOMER | (93-97)| cus-hist 226,227,228,231,233,244,

247,252,263,264,267,268,
199, 200,201

D |208 |CUSTOMVER|(93-97) cus-hist |201 |CUSTOMVER | (93-97)| cus-hist 208,188,263,264.266,267,
268, 199,200,201

FIGURE 147. Result of the command line program slicing on or der . cob

A summary of theor der . dep fileisgiveninfigure 147. Thefirst column says if only dataflow has
been used to find the relation (vaue = D) or if control flow has also been used (value = D+C). The
second (resp. third) column gives information about the READ (resp. (RE)MWRI TE) instruction. The
first sub-column is the line number of the READ (resp. (RE)MWRI TE) instruction. The third sub-
column isthe begin and end position of the read (modified) attribute relative to the entity type of the
second column. The fourth sub-column is the name of the attribute. The last column gives the line
numbers of the instructions of the slice used to detect the relation between the two entity types.

A close look at the table shows that in the first three lines, the attribute read is always an identifier.
These three lines mean that the identifier of an entity type is read and its value influences the value
of the attribute of another entity type. Thisis astrong hint that a referential constraint exists. To be
sure, we need to analyze the program slice used to find those relations. The lines of the program
dlice are shown in the last column. They are a sub-set of the lines used in the previous case study to
find the referential constraints (figure 138, figure 139 and figure 141).

It can be noticed that the start-stop of the (RE)\WRI TE of the second and third lines do not span the
entire field (ord-detail and cus-hist). This is a hint that these fields have a meaningful
decomposition. When the dataflow goes through the elements of an array (since program dlicing
computes a static slice) program slicing does not know which index is used, so it maps al the
accesses to an array to itsfirst element. For example, if we have the following variable declaration

01 ny-array occurs 3.
02 Al pic X(3).
02 A2 pic X(5).

and if thereis the following assignation
nove X to AL(l).

Then the program slicing tool assumes the following position of the variable nmy- ar r ay are modi-
fied:

ny-array(1l-3)
To know exactly which are the referential attributes, the line used to detect the dataflow has to be

analyzed. The program slice does not only use dataflow to find these referential constraints, it also
use some control flow edgesin the SDG

194 Program Understanding in DBRE

COBOL DBRE, (semi-)automatic process

177 NEW ORD. 223 READ- PROD- CCDE.
192 PERFORM READ- DETAI L 226 READ STOCK | NVALI D KEY
193 UNTIL END-FILE = O 225 MOVE PROD- CODE TO STK- CODE.
OR | ND- DET = 21. 227 MOVE 0 TO EXI ST- PROD.
194 MOVE LI ST- DETAI L TO ORD- DETAI L. 228 I F EXI ST-PROD = 0O
196 WRI TE ORD 230 ELSE
213 READ- DETAI L. 231 PERFORM UPDATE- ORD- DETAI L.
215 ACCEPT PROD- CCDE. 233 UPDATE- ORD- DETAI L.
216 | F PROD- CCDE = O 245 MOVE PROD- CODE
220 ELSE 246 TO REF- DET- STK(| ND- DET)
221 PERFORM READ- PROD- CODE.
FIGURE 148. The code fragment used to detect the referential constraint between ORD and
STK.
177 NEW ORD. 223 READ- PRCD- CODE.
192 PERFORM READ- DETAI L 225 MOVE PROD- CODE TO STK- CODE.
199 MOVE LI ST- PURCHASE 226 READ STOCK | NVALI D KEY
200 TO CUS- HI ST. 227 MOVE O TO EXI ST- PROD.
201 REVWRI TE CUS 228 I F EXI ST-PROD = 0
213 READ- DETAI L. 231 PERFORM UPDATE- ORD- DETAI L.
215 ACCEPT PRCD- CCDE. 233 UPDATE- ORD- DETAI L.
216 | F PRCD- CCDE = O 244 I'F | ND- DET = NEXT- DET
220 ELSE 247 PERFORM UPDATE- CUS- HI ST
221 PERFORM READ- PROD- CODE. 252 UPDATE- CUS- HI ST.
263 | F REF- PURCH STK(| ND)
264 = PROD- CODE
267 MOVE PROD- CODE
268 TO REF- PURCH- STK(| ND)

FIGURE 149. The code fragment used to detect the referential constraint between CUS and
STK.

The slice used to detect the second referential constraint (ORD - STK) is displayed in figure 148.
Thelinesin italic are added to ease the understanding of the code fragment. The lines given by the
program dlicing are only those that are on the path (in the SDG) from ther ead tothe (re)wri te.
But these lines are not always enough to understand how the program works. For example, thereis
a dataflow edge between line 245 and 195 that does not belong to the same paragraph. To under-
stand this dataflow, we need to know how these two paragraphs are connected. The SDG (figure
150.a) shows that three dataflow arcs and four control flow arcs are necessary to express the rela-
tion between ther ead instruction (line 226) and thewr i t e instruction (line 196). The path aloneis
not enough to be sure that there is areferential constraint. To validate the referential constraint, we
must be sure that the value stored by thewr i t e (line 196) is the same as the value read by line 226.
To perform this, we need to add the lines 215 and 225 to find a common dataflow between the two
instructions. The common dataflow uses PROD- CODE (a working variable) that contains a valid
value of STK- CODE.

The slice used to detect the third referential constraint (CUS - STK) is displayed in figure 149.
The SDG (figure 150.b) shows that three dataflow arcs and eight control flow arcs are necessary to
express the relation between the r ead instruction (line 226) and the rewr i t e instruction (line
201). To validate the referential constraint, we must be sure that the value stored by therewrite
statement (line 201) is the same as the value read by line 226. To perform this we need to add the
lines 215 and 225 to find a common dataflow between the two instructions. The common dataflow
uses PROD- CODE (aworking variable) that contains avalid value of STK- CODE.

Program Understanding in DBRE 195

Case study

a) The SDG of code fragment of fig- b) The SDG of code fragment of

ure 148

FIGURE 150. The two SDG.

figure 149

To be able to create those two referential constraints we have to, first of all, refine CUSHIST and
ORD-DETAIL. Thisrefinement is not defined by the program slicing, but usually some hints can be
found in the fragment proposed by the program dlicing.

208

READ CUSTOVER | NVALI D KEY

188 MOVE CUS-HI ST TO LI ST- PURCHASE.

263
264
266
267
268
199
200
201

| F REF- PURCH STK(| ND)
= PROD- CODE
ELSE
MOVE PROD- CODE
TO REF- PURCH STK(| ND)
MOVE LI ST- PURCHASE
TO CUS- Hi ST.
REWRI TE CUS

FIGURE 151. The code to validate the dependency between CUS- HI ST and LI ST- PURCHASE.

The analysis of these code fragments also allows to recover the exact cardinalities, local identifiers

and set types of the arrays.

196

Program Understanding in DBRE

COBOL DBRE, (semi-)automatic process

The last line of the table of figure 147 means that CUS- HI ST is read and written. It can be noticed
that the write instruction is the same as the one used by the third line. This last line does not give
any new information except that the entity typeis read, modified and REWRI TE.

The referential constraints and the local identifiers of the multivalued attributes can also be vali-
dated through data analysis. In the manual case study, we have to write the COBOL program manu-
aly. In the automated version, there exists a Voyager2 program, that generates the COBOL
program. This Voyager2 program (gen_val i dat or. oxo) generates the COBOL program with
respect to the logical schema. The program generated can be seen in annex B, section B.2.

9.2.2. Data structure conceptualization

To automate the data structure conceptualization, we can write a transformation script that automat-
ically produces a conceptual schema. The conceptual schema produced by this script is not yet the
final conceptual schema because some transformations cannot been automated, they require human
intervention. For example, human intervention is needed to rename the objects to give more mean-
ingful names and to decide to decompose an attribute because its component represents different
domain concepts (e.g., the disaggregation of DESC).

The suggested method is to rename the objects, then to use the script and finally finish manually the
normalization of the schema.

9.2.2.1. Meaningful name

The names of the collections are more meaningful than the corresponding entity types one, so the
name of the entity types are substituted by the name of their collection.

EXTERN "aut o_concept. oxo". renove_prefi x(ATT_per _ET(2 N))
REMOVE(ALL_COLL())
REMOVE(ALL_KEY())
Dl SAGGREGATE(SUB_ATT _per _ATT(1 1))
DI SAGGREGATE(

SUB _ATT per ATT(1 N) and MAX CARD of ATT(1 1) and REF per ATT(1 N))
6. ATT_i nto_ET_I NST(

SUB_ATT_per_ATT(1 N) and MAX _CARD of _ATT(2 N) and REF_per _ATT(1 N))

7. REF_into_RT(ALL_REF())
8. ET_into_RT(ALL_ET())

a bk~ wbNh PP

FIGURE 152. A possible script to automate the conceptualization of a COBOL logical schema.

9.2.2.2. Transformation script

To automatically transform the schema, an advanced global transformation script has been created.
An advanced global transformation script is alist of transformations to be applied on the schema of
the form <transformation> (<predicate>). Each transformation has a predicate as argument, this
predicate is used to select the objects on which the transformation must be applied. Figure 152
shows a simple script to transform a COBOL logical schema into its corresponding raw conceptual
schema:

Program Understanding in DBRE 197

Case study

1. EXTERN "auto_concept.oxo".remove_prefix(ATT_per_ET(2 N))
Thisisnot abuilt-in transformation but acall to an external (Moyager 2) function. The function is
the renmove_pr ef i x function of the aut o_concept . oxo Voyager2 program. The predicate
used to select the object on which r emove_pr ef i x must be applied is ATT_per_ET(2 N), i.e.,
the entity types that have more than one attributes (between 2 and N). The function
renmove_pr ef i x removes the common prefix of the attributes of an entity type.

2. REMOVE(ALL_COLL())
The predicate ALL_COLL() selects al the collections of the schema and REMOVE() removes
all the selected objects, i.e., it removes all the collections of the schema.

3. REMOVE(ALL_KEY())
Removes all the access key.

4. DISAGGREGATE(SUB_ATT per ATT(1 1))
Disaggregates al the compound attributes that have only one component.

5. DISAGGREGATE(
SUB_ATT_per_ATT(1 N) and MAX_CARD_of ATT(1 1) and REF_per_ATT(1 N))
Disaggregates the atomic compound attributes that have a component that is the origin of aref-
erential constraint.

6. ATT into ET_INST(
SUB_ATT per_ATT(1 N) and MAX_CARD_of ATT(2 N) and REF_per_ATT(1 N))
Transforms into entity type (by instance representation) the compound multivalued attributes
that contain areferential constraint.

7. REF_into_RT(ALL_REF())
Transforms al the referential constraints into a relationship type.

8. ET into_RT(ALL_ET())
Transforms all the entity types (that can be transformed) into arelationship type.

ORDER
CODE

/ id: CODE

1-1

CUSTOMER 0-20
CUSTOMER 0-N
CODE / DET_DETAILS
DESCR ORD-QTY

NAME
ADDR
FUNCT
REC-DATE \0'100 ON
id: CODE /HIS PURCH \
TOT
oN STOCK
~_CODE
NAME
LEVEL
id. CODE

FIGURE 153. The conceptual schema obtained by the execution of the script of figure 152.

The execution of this script on the logical schema (figure 142) produces the conceptual schema
(figure 153).

198 Program Understanding in DBRE

COBOL with embedded SQL

9.2.2.3. Normalization

The normalization must be done by hand to obtain the final conceptual schema.

A. Attribute disaggregation

The attribute DESC is composed of attributes of different domain concepts. We can decide to disag-
gregate them (Transform - Attribute - Disaggregation).

B. Name processing

Some names can be changed to be more meaningful. For example:

» Therelationship type DET_DETAILS can be changed to detail.

* Therelationship type HIST_PURCH can be changed to purchase.
» The attribute TOT can be changed to TOTAL.

» Theattribute ADDR can be changed to ADDRESS.

* The attribute FUNCT can be changed to FUNCTION.

» The attribute ORD-QTY can be changed to QUANTITY.

A usual naming rule is to use lowercase for relationship type names, uppercase for the entity type
names and capitalized for the attribute names.

Thefinal conceptual schemais shown in figure 145.

9.3, COBOL with embedded SQL

This case study will recover the complete logical schema and the conceptual schema of a SQL data-
base. Thisfairly old database does not contain any explicit foreign keys. They are implicitly imple-
mented in the COBOL program that accesses the data.

This example shows how to analyze a COBOL program with embedded SQL.

9.3.1. Project preparation

This project has three sources of information:

1. The SQL-DDL script that declares the database. This text declares the entity types (tables),
attributes (columns), the identifiers (primary keys) and the access keys (indexes) but no foreign
keys. The code can be found in annex B, section B.3.

2. The COBOL program, including embedded SQL statements, that add, modify and read data of
the database. The code can be found in annex B, section B.4.

3. The populated database.

Program Understanding in DBRE 199

/X
NEW-ORD

c

D\Nﬁ
NEW-PROI?E(LI ST-TROD) LIST-ORD)
- | é

. v
READ-DETAIL READ-ORD)
C [+
Vi V
READ-PROD-CODE DISPLAY-DETAIL
Cc
Vv
UPDATE-ORD-DETAIL
C
(UPDATE-CUS-HIST)d—u—D' PURCH | -
DETAIL

FIGURE 154. The procedure call graph and the data usage graph.

CUSTOMER PURCH

CODE CUSTOMER

NAME PRODUCT

ADDR TOT

FUNCT[0-1] id: CUSTOMER

ZF%%?;E aPCRCODUCT PRODUCT
acc acc: PRODUCT %5

DETAIL PRICE

ORDERS ORDERS id: CODE

CODE PRODUCT acc

ORD_DATE ORD_QTY

CUSTOMER id: ORDERS

id: CODE PRODUCT
acc acc

acc: CUSTOMER acc: PRODUCT

FIGURE 155. The raw physical schema.

The procedure call graph and the data usage graph are displayed in figure 154. In this graph the
rounded rectangles represent the paragraphs (procedures) of the COBOL program, the "c" edges are
the perform statements, the rectangles represent the tables and "i", "0", "u" represent the input
(select), output (insert) and update (update or insert and select in the same paragraph) of atable by a
paragraph. The call graph (the name of the paragraph and the "c" edges) is produced by the DB-
MAIN program slicing tool. DB-MAIN does not offers a tool to retrieve the data usage graph, we
have to write some grep/awk scripts to extract the table’s name used into select, insert and update
SQL statementsto create the "i", "0" and "u" edges.

200 Program Understanding in DBRE

COBOL with embedded SQL

9.3.2. Data structure extraction

9.3.2.1. DDL code analysis

The SQL-DDL code (annex B, section B.4) is analyzed (File - Extract - SQL) to produce the raw
physical schema (figure 155).

9.3.2.2. Schema refinement

In this example, schemarefinement is limited to the recovery of the referential constraints.

+ Search for lefelenlial!inclusi(k constraint i Search for referential/inclusion constraint k
£ Find candidate target ETs for the cument reference key Fr=— Find the possible reference keys whose target is {CODE} of CUSTOMER
% Find candidate reference keys for the curent target ET; —I
B Clear
e —— ¥ Accept attribute
; Selected | CUSTOMER Goto " Create ol ‘l_ Skip existing reference key ™ Accept multivalued reference key
Marked | reate ieate gl
& Pim.id Ega% CHODSE THE TYPE OF TARGET KEY NAME MATCHING RULES
C amid |ADDR Advanced [ﬁ Primeid Clanyidl A sy g The name of the reference key includes
FUNCT —
" Any gioup REC_DATE I Mark Ref STRUCTURE MATCHING RULES r ey word j'
- ark Ref
Yoy [csToner oooey] -— I~ Sametotallength [Hierarchical 1% [Al =] cherastors of taget ET name
- Tupe For each component : I Same length
M ~
Shaow attributes P ¥ Same type r characters of larget key name
ORDERS Gota | RelEqu I~ case sensitive
LODE © lrlision
DORD_DATE Help More... Ok Cancel
CUSTOMER g Iric! Ecy | | I
[Eapy
£ CopyEgu
|ORDERS:{CUSTOMER} =l
— Cose | Hep |

FIGURE 156. The configuration of the referential constraint assistant to discover the potential
referential constraints.

Hypothesis discovery. The database was well designed and strict naming rules where used for
entity types and attributes. To find the potential referential constraints, the analyst analyzes the
physical schemawith the reference constraints assistant. These referential constraints should target
an identifier and the origin attribute should has the same name as the target entity type. Both sides
should have the same length and same type. Figure 156 shows the configuration of the assistant to
perform the search. It provides the following potential referential constraints:

« ORDERSCUSTOMER - CUSTOMER.CODE
* PURCH.CUSTOMER - CUSTOMER.CODE
* PURCH.PRODUCT - PRODUCT.CODE

» DETAIL.ORDERS - ORDERSCODE

* DETAIL.PRODUCT - PRODUCT.CODE

Hypothesis validation. To validate the proposed referential constraint, the analyst decides to
analyze the program source code and to analyze the data.

There are two different ways to implement a join. The first one is to write a select query that
contains a join. The second one is to implement a procedural join i.e.,, each SQL query (select,
insert or update) queries only one entity type and the link between the entity typesis done by some
COBOL code.

Program Understanding in DBRE 201

Case study

194 EXEC SQL 339 EXEC SQL

195 DECLARE CUS HI ST CURSOR FOR 340 SELECT CODE

196 SELECT P. TOT, PR NAME | NTO : PROD- CODE

197 FROM PURCH P, PRODUCT PR 341 FROM PRODUCT

198 VHERE P. PRODUCT = PR. CODE 342 END- EXEC.

199 AND P. CUSTOVER = : CUS- CODE R

200 END- EXEC. 357 EXEC SQL
358 SELECT ORD_QTY
359 FROM DETAI L
360 VWHERE ORDER = : ORD- CODE
361 AND PRODUCT = : PROD- CODE
362 END- EXEC

a) PURCH - PRODUCT join. b) DETAIL - PRODUCT join.

FIGURE 157. The two SQL joins found in the source code.

The source code contains two SQL joins (see figure 157). The analysis of these two joinsincreases
the confidence in the two referential constraints that have PRODUCT as target. These two queries
read and do not modify the data. To be sure that a constraint is present, each modification instruc-
tion must be analyzed to check if it is preceded by instructions that validate the constraint.

To analyze the procedura join with the program dlicing technique, the program must be trans-
formed to allow the construction of the SDG that represents the behavior of the COBOL instruc-
tions with the embedded SQL, as explained in 6.5. The transformed program can be found in annex
B, section 2.5. In this program each, SQL query is commented (line prefixed by * E) and is replaced
by its equivalent pseudo-instruction.

To recover the referential constraints, a program slice must be computed for each instruction that
modifies (i nsert or updat e) the data.

283 NEW ORD. 312 READ- CUS- CODE.

289 MOVE 1 TO SQLCODE. 315 ACCEPT CUS- CCDE.

290 PERFORM READ- CUS- CODE UNTI L SQLCODE =0. 316*E EXEC SQL

292*E EXEC SQL 317*E SELECT CODE

293*E I NSERT | NTO ORDERS VALUES(: ORD- CODE, 318*E I NTO : CUS- CODE

294*E SYSDATE(), : CUS- CODE) 319*E FROM CUSTOVER

295*E END- EXEC. 320*E WHERE CODE = : CUS- CODE

297 DI RECT- MAP CUS- CODE TO ORDERS- - CUSTOMVER. 321*E END- EXEC.

298 | NDI RECT- MAP ORDER- - CODE 322 DI RECT- MAP CUS- CODE TO CUSTOVER- - CODE.

299 ORDERS- - CUSTOMVER TO SQLCODE. 323 | NDI RECT- MAP CUSTOMER- - CODE
324 TO CUSTOMVER- - CODE SQLCCDE.

325 DI RECT- MAP CUSTOMER- - CODE TO CUS- CODE.
FIGURE 158. Program slice with respect to line 298 and CRDERS- - CUSTOMVER.

There is only one query that inserts data into ORDERS (line 293). To verify that
ORDERS.CUSTOMER is the origin of a referential constraint, a program slice is computed with
respect to line 298 and ORDERS- - CUSTOMER (see figure 158). This dice shows that the value of
ORDERS- - CUSTOVER (the variable representing ORDERSCUSTOMER) is a valid value of
CUSTOMER- - CODE (the variable representing CUSTOMER.CODE the identifier of CUSTOMER).
Thus the referential constraint is validated.

202 Program Understanding in DBRE

COBOL with embedded SQL

283 NEW ORD.
287 ACCEPT ORD- CODE.

289 MOVE 1 TO SQLCODE.

290 PERFORM READ- CUS- CODE UNTI L SQLCODE=0.
292*E EXEC SQL

293*E | NSERT | NTO ORDERS VALUES(: ORD- CODE,
294*E SYSDATE(), : CUS- CODE)

295*E END- EXEC.

296 DI RECT- MAP ORD- CODE TO ORDERS- - CODE.
297 DI RECT- MAP CUS- CODE TO ORDERS- - CUSTOMER.
298 | NDI RECT- MAP ORDERS- - CODE

299 ORDERS- - CUSTOMER TO SQLCCDE.

300 | F(SQLCODE NOT = 0)

302 ELSE

303 MOVE O TO END- FI LE

304 PERFORM READ- DETAI L.

312 READ- CUS- CODE.

315 ACCEPT CUS- CODE.

316*E EXEC SQL

317*E SELECT CODE

318*E | NTO : CUS- CODE

319*E FROM CUSTOVER

320*E WHERE CODE = : CUS- CODE

321*E END- EXEC.

322 DI RECT- MAP CUS- CODE TO CUSTOMER- - CODE.
323 | NDI RECT- MAP CUSTOVER- - CODE

324 TO CUSTOVER- - CODE SQLCODE.

325 DI RECT- MAP CUSTOMER- - CODE TO CUS- CODE.
330 READ- DETAI L.

332 ACCEPT PROD- CODE.

333 | F PROD- CODE = 0

334 MOVE 1 TO END-FI LE

335 ELSE

336 PERFORM READ- PROD- CODE.

338 READ- PROD- CODE.

339*E
340*E
341*E
342*E
343*E
344
345
346
347
348
349

EXEC SQL
SELECT CODE | NTO : PROD- CODE
FROM PRODUCT
WHERE CODE = : PROD- CODE

END- EXEC.

DI RECT- VAP PROD- CODE TO PRODUCT- - CODE
| NDI RECT- MAP PRODUCT- - CODE

TO PRODUCT- - CODE SQLCODE
DI RECT- MAP PRODUCT- - CODE TO PROD- CODE
IF SQLCODE = 0

PERFORM UPDATE- ORD- DETAI L

353 UPDATE- ORD- DETAI L

357*E
358*E
359*E
360*E
361*E
362*E
363
364
365

366
367
369
370*E
371*E
372*E

373*E
374
377

378

EXEC SQL
SELECT ORD_QTY
FROM DETAI L
WHERE ORDER = : ORD- CODE
AND PRODUCT = : PROD- CODE
END- EXEC
DI RECT- MAP ORD- CODE TO DETAI L- - ORDERS
DI RECT- MAP PROD- CODE TO DETAI L- - PRODUCT
| NDI RECT- MAP DETAI L- - ORDERS
DETAI L- - PRODUCT
TO DETAI L- - ORD- QTY SQLCODE.
| F SQLCODE = 0
ELSE
EXEC SQL
I NSERT | NTO DETAI L
VALUES (: ORD- CODE,
: DET-QTV)
END- EXEC
DI RECT- MAP ORD- CODE TO DETAI L- - ORDERS
| NDI RECT- MAP DETAI L- - ORDERS
DETAI L- - PRODUCT
DETAI L- - ORD- QTY TO SQLCODE.

: PROD- CODE

FIGURE 159. Program slice with respect to line 377 and DETAI L- - ORDERS.

The query that inserts data into DETAIL is at the line 371. To validate the referential constraint
(DETAILS.ORDERS, ORDERS.CODE), the program slice with respect to line 377 and DETAI L- -
ORDERS (the variable representing DETAIL.ORDERYS) is computed (see figure 159). This dlice
showsthat thereisareferentia constraint from DETAILSORDERSto ORDERS.CODE.

Program Understanding in DBRE

203

Case study

283 NEW ORD.
287 ACCEPT ORD- CODE.

289 MOVE 1 TO SQLCODE.

290 PERFORM READ- CUS- CODE UNTI L SQLCODE =0.
292*E EXEC SQL

293*E | NSERT | NTO ORDERS VALUES(: ORD- CODE,
294*E SYSDATE(), : CUS- CODE)

295*E END- EXEC.

296 DI RECT- MAP ORD- CODE TO ORDERS- - CODE.
297 DI RECT- MAP CUS- CODE TO ORDERS- - CUSTOMER.
298 | NDI RECT- MAP ORDERS- - CODE

299 ORDERS- - CUSTOMER TO SQLCCDE.

300 | F(SQLCODE NOT = 0)

302 ELSE

303 MOVE O TO END- FI LE

304 PERFORM READ- DETAI L .

312 READ- CUS- CODE.

315 ACCEPT CUS- CODE.

316*E EXEC SQL

317*E SELECT CODE

318*E | NTO : CUS- CODE

319*E FROM CUSTOVER

320*E WHERE CODE = : CUS- CODE

321*E END- EXEC.

322 DI RECT- MAP CUS- CODE TO CUSTOVER- - CODE.
323 | NDI RECT- MAP CUSTOVER- - CODE

324 TO CUSTOVER- - CODE SQLCODE.

325 DI RECT- MAP CUSTOMER- - CODE TO CUS- CODE.
330 READ- DETAI L.

332 ACCEPT PROD- CODE.

333 | F PROD- CODE = 0

334 MOVE 1 TO END-FI LE

335 ELSE

336 PERFORM READ- PROD- CODE.

338 READ- PROD- CODE.

339*E
340*E
341*E
342*E
343*E
344
345
346
347
348
349

EXEC SQL
SELECT CODE | NTO : PROD- CODE
FROM PRODUCT
WHERE CODE = : PROD- CODE

END- EXEC.

DI RECT- VAP PROD- CODE TO PRODUCT- - CODE
| NDI RECT- MAP PRODUCT- - CODE

TO PRODUCT- - CODE SQLCODE
DI RECT- MAP PRODUCT- - CODE TO PROD- CODE
IF SQLCODE = 0

PERFORM UPDATE- ORD- DETAI L

353 UPDATE- ORD- DETAI L

357*E
358*E
359*E
360*E
361*E
362*E
363
364
365

366
367
369
370*E
371*E
372*E
373*E
815
377

378

EXEC SQL
SELECT ORD_QTY
FROM DETAI L
WHERE ORDER = : ORD- CODE
AND PRODUCT = : PROD- CODE
END- EXEC
DI RECT- MAP ORD- CODE TO DETAI L- - ORDERS
DI RECT- MAP PROD- CODE TO DETAI L- - PRODUCT
| NDI RECT- MAP DETAI L- - ORDERS
DETAI L- - PRODUCT
TO DETAI L- - ORD- QTY SQLCCDE.
| F SQLCODE = 0
ELSE
EXEC SQL
I NSERT | NTO DETAI L
VALUES(: ORD- CODE, : PROD- CODE, : DET- QTY)
END- EXEC
DI RECT- MAP PROD- CODE TO DETAI L- - PRODUCT
| NDI RECT- MAP DETAI L- - ORDERS
DETAI L- - PRODUCT
DETAI L- - ORD- QTY TO SQLCODE.

FIGURE 160. Program slice with respect to line 377 and DETAI L- - PRODUCT.

To validate the referential constraint (DETAIL.PRODUCT

—

PRODUCT.CODE), the program

dlice is computed with respect to line 377 and DETAI L- - PRODUCT (the variable representing
DETAIL.PRODUCT), as shown in figure 160. This slice shows that there is areferential constraint
from DETAIL.PRODUCT to PRODUCT.CODE.

404 EXEC SQL
405 UPDATE PURCH SET
406

407 WHERE CUSTOMER =
408 AND PRODUCT =
409 END- EXEC.

FIGURE 161. The query that updates PURCH.

TOT = (: PURCH TOT + : DET- QTY)

: CUS- CCDE
PROD- CCDE

204

Program Understanding in DBRE

COBOL with embedded SQL

338 READ- PROD- CODE.

EXEC SQL
SELECT CODE | NTO : PROD- CODE
FROM PRODUCT
WHERE CODE = : PROD- CODE
END- EXEC.
DI RECT- MAP PROD- CODE TO PRODUCT- - CODE.
| NDI RECT- MAP PRODUCT- - CODE
TO PRODUCT- - CODE SQLCODE.
DI RECT- MAP PRODUCT- - CODE TO PROD- CODE.
| F SQLCODE = 0
PERFORM UPDATE- ORD- DETAI L.

353 UPDATE- ORD- DETAI L.

PERFORM UPDATE- CUS- HI ST.

381 UPDATE- CUS- HI ST.

283 NEW ORD.
287 ACCEPT ORD- CODE. 339*E
289 MOVE 1 TO SQLCODE. 340%E
290 PERFORM READ- CUS- CODE UNTI L SQLCODE =0. 341*E
292*E EXEC SQL 342*E
293*E | NSERT | NTO ORDERS VALUES(: ORD- CODE, 343* E
294*E SYSDATE(), : CUS- CODE) 344
295*E END- EXEC. 345
296 DI RECT- MAP ORD- CODE TO ORDERS- - CODE. 346
297 DI RECT- MAP CUS- CODE TO ORDERS- - CUSTOMER. 347
298 | NDI RECT- MAP ORDERS- - CODE ORDERS- - 348
CUSTOVER 349
299 TO SQLCCDE.
300 | F(SQLCODE NOT = 0) 379
302 ELSE
303 MOVE O TO END-FI LE 382*E
304 PERFORM READ- DETAI L 383*E
312 READ- CUS- CODE. 384*E
315 ACCEPT CUS- CODE. 385*E
316*E EXEC SQL 386*E
317*E SELECT CODE 387*E
318*E | NTO : CUS- CODE 388
319*E FROV CUSTOVER 389
320*E WHERE CODE = : CUS- CODE 390
321*E END- EXEC. 391
322 DI RECT- MAP CUS- CODE TO CUSTOMER- - CODE. 393
323 | NDI RECT- MAP CUSTOVER- - CODE 394*E
324 TO CUSTOVER- - CODE SQLCODE. 395*E
325 DI RECT- MAP CUSTOMER- - CODE TO CUS- CODE. 396* E
330 READ- DETAI L. 397*E
332 ACCEPT PROD- CODE. 398
333 | F PROD- CODE = 0 401
334 MOVE 1 TO END-FI LE
335 ELSE 402
336 PERFORM READ- PROD- CODE.

EXEC SQL
SELECT TOT | NTO : PURCH TOT
FROM PURCH
WHERE CUSTOMER = : CUS- CODE
AND PRODUCT = : PROD- CODE
END- EXEC.
DI RECT- MAP CUS- CODE TO PURCH- - CUSTOMER.
DI RECT- MAP PROD- CODE TO PURCH- - PRODUCT.
| NDI RECT- MAP PURCH- - CUSTOMER
PURCH- - PRODUCT TO PURCH- - TOT SQLCODE.
| F(SQLCODE = 0)
EXEC SQL
I NSERT | NTO PURCH VALUES(: CUS- CODE,
: PROD- CODE, : DET- QTY)
END- EXEC
DI RECT- MAP CUS- CODE TO PURCH- - CUSTOVER
| NDI RECT- MAP PURCH- - CUSTOMER
PURCH- - PRODUCT
PURCH- - TOT TO SQLCODE.

FIGURE 162. Program slice with respect to line 401 and PURCH- - CUSTOVER.

Two queries modify the values of the data of PURCH, namely the insert PURCH query at line 395
and the update query at line 405. The update query (see figure 161) only modifiesthe value of TOT,
on which no constraint holds. To validate the referential constraint (PURCH.CUSTOMER,
CUSTOMER.CODE), the program dlice with respect to line 401 and PURCH- - CUSTOMER (the vari-
able representing PURCH.CUSTOMER) is computed (figure 162). This slice shows that thereis a
referential constraint from PURCH.CUSTOMER to CUSTOMER.CODE.

Program Understanding in DBRE 205

Case study

283 NEW ORD. 338 READ- PROD- CODE.

287 ACCEPT ORD- CCDE. 339*E EXEC SQL

289 MOVE 1 TO SQLCODE. 340*E SELECT CODE | NTO : PROD- CODE

290 PERFORM READ- CUS- CODE UNTI L SQLCODE =0. 341*E FROM PRODUCT

292*E EXEC SQL 342*E VWHERE CCDE = : PROD- CODE

293*E | NSERT | NTO ORDERS VALUES(: ORD- CODE, 343*E END- EXEC.

294*E SYSDATE(), : CUS- CODE) 344 DI RECT- VAP PROD- CODE TO PRODUCT- - CODE.
295*E END- EXEC. 345 | NDI RECT- MAP PRODUCT- - CODE

296 DI RECT- VAP ORD- CODE TO ORDERS- - CODE. 346 TO PRODUCT- - CODE SQLCCDE.

297 DI RECT- MAP CUS- CODE TO ORDERS- - CUSTOVER. 347 DI RECT- VAP PRODUCT- - CODE TO PRCD- CODE.
298 I NDI RECT- MAP ORDERS- - CODE 348 IF SQLCODE = 0

299 ORDERS- - CUSTOVER TO SQLCODE. 349 PERFORM UPDATE- ORD- DETAI L.

300 | F(SQLCODE NOT = 0) 353 UPDATE- ORD- DETAI L.

302 ELSE 379 PERFORM UPDATE- CUS- HI ST.

303 MOVE O TO END-FI LE 381 UPDATE- CUS- HI ST.

304 PERFORM READ- DETAI L . 382*E EXEC SQL

312 READ- CUS- CCDE. 383*E SELECT TOT | NTO : PURCH- TOT

315 ACCEPT CUS- CCDE. 384*E FROM PURCH

316*E EXEC SQL 385*E WHERE CUSTOMVER = : CUS- CODE

317*E SELECT CODE 386*E AND PRODUCT = : PROD- CODE

318*E I NTO : CUS- CODE 387*E END- EXEC.

319*E FROM CUSTOVER 389 DI RECT- MAP PRCOD- CODE TO PURCH- - PRODUCT.
320*E WHERE CODE = : CUS- CODE 390 | NDI RECT- VAP PURCH- - CUSTOVER

321*E END- EXEC. 391 PURCH- - PRODUCT TO PURCH- - TOT SQLCODE.
322 DI RECT- VAP CUS- CODE TO CUSTOMER- - CODE. 393 | F(SQLCCDE = 0)

323 READ- VAP CUSTOMER- - CODE 394*E EXEC SQL

324 TO CUSTOVER- - CODE SQLCODE. 395*E I NSERT | NTO PURCH VALUES(

325 DI RECT- VAP CUSTOVER- - CODE TO CUS- CODE. 396*E : CUS- CODE, : PROD- CODE, : DET- QTY)
330 READ- DETAI L. 397*E END- EXEC

332 ACCEPT PROD- CCDE. 399 DI RECT- MAP PROD- CODE TO PURCH- - PRODUCT
333 I F PRCD- CODE = 0 401 | NDI RECT- MAP PURCH- - CUSTOVER

334 MOVE 1 TO END-FI LE 402 PURCH- - PRODUCT PURCH- - TOT TO SQLCODE.
335 ELSE

336 PERFORM READ- PROD- CODE.

FIGURE 163. Program slice with respect to line 401 and PURCH- - PRODUCT.

To validate the referential constraint (PURCH.PRODUCT, PRODUCT.CODE), the program slice
with respect to line 401 and PURCH- - PRODUCT (the variable representing PURCH.PRODUCT) is

computed (figure 163). This slice shows that there is a referential constrai
UCT to PRODUCT.CODE.

nt from PURCH.PROD-

--- constraint from DETAIL to ORDERS --- constraint from PURCH t o CUSTOVER
sel ect count (*) sel ect count (*)

from DETAI L, ORDERS from PURCH, CUSTOVER

wher e DETAI L. ORDERS = ORDERS. CODE; wher e PURCH. CUSTOVER = CUSTOVER. CODE;
--- constraint from DETAIL to PRODUCT --- constraint from PURCH to PRODUCT
sel ect count (*) sel ect count (*)

from DETAI L, PRODUCT from PURCH, PRODUCT

wher e DETAI L. PRODUCT = PRODUCT. CODE; wher e PURCH. PRODUCT = PRODUCT. CODE;

--- constraint from ORDERS to CUSTOVER
sel ect count (*)

from ORDERS, CUSTOVER

wher e ORDERS. CUSTOVER = CUSTOVER. CODE;

FIGURE 164. SQL queries that validates the referential constraints.

206 Program Understanding in DBRE

COBOL with embedded SQL

Those five referential constraints can also be validated through data analysis. Such validation is
quite easy thanks to the power of SQL. For each constraints a query is written that counts the
number of the target entity type instances that violate the constraint. The queries that validate the
five referential constraints are shown in figure 164.

CUSTOMER PURCH
CODE CUSTOMER
NAME PRODUCT
ADDR TOT
FUNCT[0-1] id- CUSTOMER
REC_DATE PRODUCT
id: CODE acc
Pl acc ——_|/ef: CUSTOMER EEODEU cr
ref.:cRCODUCT NAME
PRICE
DETAIL id: CODE
ORDERS ace
ORDERS PRODUCT
CODE ORD_QTY
ORD_DATE id: ORDERS
CUSTOMER PRODUCT
id: CODE acc
acc ——_ | /ef: ORDERS
ref: CUSTOMER ref: PRODUCT
| acc acc

FIGURE 165. The complete physical schema.

Schema enhancement. Five referential constraints have been discovered and can be added to the
physical schemato obtain the complete physical schema of figure 165.

CUSTOMER PURCH
CODE CUSTOMER
NAME PRODUCT
ADDR ToT
FUNCT[0-1] id- CUSTOMER
REC_DATE PRODUCT
r>id: CODE k——— ref: CUSTOMER
ref: PRODUCT PRODUCT
CODE
NAME
PRICE
DETAIL id: CODE
ORDERS
ORDERS PRODUCT
CODE ORD_QTY
ORD_DATE id: ORDERS
CUSTOMER PRODUCT
id: CODE L4 |ref: ORDERS
L ref: CUSTOMER ref: PRODUCT

FIGURE 166. The complete logical schema.

9.3.2.3. Schema cleaning

The underlying database is arelationa database, so that the access keys and the collections can be
suppressed to obtain the compl ete logical schema (see figure 166).

Program Understanding in DBRE 207

Case study

CUSTOMER PURCH
CODE CUSTOMER
NAME PRODUCT
ADDRESS TOTAL
FUNCTION[O0-1] id: CUSTOMER
REC_DATE PRODUCT
>{id: CODE l+—{ref: CUSTOMER
ref: PRODUCT PRODUCT
CODE
DETAIL NAME
PRICE
ORDERS T
ORDER PRODUCT 1o
CODE QUANTITY
ORD_DATE id. ORDERS
CUSTOMER PRODUCT
id: CODE <+ ref: ORDERS
L ref: CUSTOMER ref: PRODUCT
FIGURE 167. The prepared schema.
CUSTOMER
—f&ﬁi PURCH
ADDRESS L0-N< CUSTOMER 1.1 TOTAL
FUNCTION[O-1] id. CUSTOMER.CUSTOMER
REC DATE PRODUCT.PRODUCT |-
id: CODE
: PRODUCT PRODUCT
o-N 0-N__[CODE
NAME
CUSTOMER 1 o.N—1PRICE
id. CODE

N PRODUCT 1
' 11

ORDER DETAIL /
CODE QUANTITY
Prpne —O0- ORDERS -1
ORD_DATE O-N - L id: ORDERS.ORDER
id: CODE PRODUCT_1.PRODUCT

FIGURE 168. The raw conceptual schema.
9.3.3. Data structure conceptualization

9.3.3.1. Preparation

This phase prepares the schema such that it only contains structures and constraints that are neces-
sary to understand the semantics of the schema.

This schemais already quite clean. Some names can be changed to provide more meaningful names
or to comply with some naming convention. ORDERS is a plural and usually entity types have
singular names. It is plural because ORDER is a SQL reserved word and the programmer decide to
use the plural instead. ORDERS is changed to ORDER. The attributes ADDR, FUNCT, REC-DATE,
TOT and ORD-QTY are abbreviations, they can be replaced with complete names (ADDRESS,
FUNCTION, RECORD-DATE, TOTAL, QUANTITY).The prepared schemais shown in figure 167.

208 Program Understanding in DBRE

Real DBRE projects

9.3.3.2. Basic conceptualization

During this step, all the foreign keys are transformed into relationship types (Transform - Group -
rel-type) to provide the raw conceptual schema (see figure 168).

9.3.3.3. Normalization

During the normalization, the analyst gives to the schema the quality of a conceptual schema, i.e.
readability, concision, minimality, expressiveness.

CUSTOMER
Code
Name
Address
Function[0-1] g
Rec_date 0-N
id: Code m
oN O-N PRODUCT
"~ Code
Name
N O_N/ Price
| id: Code
ORDER| o\ —\Quantity /
Code |
Ord_date
id: Code

FIGURE 169. The conceptual schema.

The normalization is the same as in the two previous case studies. The final conceptual schemais
shown in figure 169.

9.4. Real DBRE projects

In this section, we present real DBRE projects that we have carried out for companies. These
projects were very valuable because they allowed us to understand the needs of the companies and
the problems generated by the size of those projects. Moreover, they alowed us to validate our
methodology and tools.

9.4.1. COBOL

9.4.1.1. Problem statement

The system analyzed in this case study was written in COBOL with indexed filesin the late 1970’'s
to manage most of the business of a quarry company: ordering, quarry, salary, warehouse, etc. The
design of the original system was out sourced and the maintenance is supported by the only
programmer of the company. There was no written documentation and the company wondered if it
will buy a new package, maintain the existing one or develop a new system. To specify the new

Program Understanding in DBRE 209

Case study

system, they first have to know (or to document) the functionalities of the actual system. We were
asked to help them to retrieve the logical schema of the current database.

The specific problems of this project were

» Thefiles are declared in each program.

» The same physical file (on the disk) can have different logical name (FD paragraphinthefil e
section).

» There were many aggregation files, i.e., files that contain statistics and aggregate values com-
puted from other files.

9.4.1.2. Seps

In this project, we have started by the extraction of the files and records declarations. The declara
tions of each program were stored in a separate schema. The files were renamed to give them the
name of the corresponding physical schema. This was needed to avoid to have two files in two
programs that have the same name but do not correspond to the same physical file. The records
were prefixed by the name of their file. This avoids to have two records with the same name
belonging to two different files.

Next, all the schemas, one per program, were integrated in a new schema. The integration was done
with respect to the name of the objects and areport was generated. The analysis of this report shows
if two records with the same name had different structures. This step produced the integrated phys-
ical schema

To retrieve the data dependencies, dataflow program dlices were computed with respect to the

VWRI TE and REWRI TE instructions and the programmer was asked to validate the potential data
dependencies discovered by the program dlicing.

9.4.1.3. Results

Theintegrated physical schemawas produced and the project was stopped because the programmer
had no time to validate the data dependencies discovered by the program slicing.

94.1.4. Size
program database
KLOC programs files records fields
300 185 352 560 9150

9.4.1.5. Lessonslearned

This project was the first real size project we conducted. It was very useful for us from a technical
point of view, aswell as from the point of view of project management.

210 Program Understanding in DBRE

Real DBRE projects

Program understanding techniques were proved to be useful to retrieve implicit constructs. Even if
the programmer knows the application, he is not able to remember each detail and he needs some
support. This project shows that the analyst needs to master the program understanding techniques
he uses and he must be able to interpret the results produced by the tools. Otherwise he can produce
wrong schemas by an incorrect interpretation of the results.

It also highlights the necessity of tools and more precisely automatic tools to cope with the huge
volume of the source code.

This project was also very interesting on the project management side. The training and information
of the local team is a very important point for the success of such project. We spent alot of time to
explain (train) to the local team the expected results of program understanding and to "prove" that
these results are correct.

We notice that the management of the company and the programmers must support the DBRE
project. This project was more or less imposed by the management to the programmer and some-
times the programmer "didn’t have the time", he did not understand the purpose of the project, etc.

9.4.2. ADS-IDMS

9.4.2.1. Problem statement

This system is used by a car importator to manage cars and trucks ordering in the different
branches: list of the available vehicles models, list of the possible options for each model, expected
delivery date, etc.

The system is written in ADS (COBOL like) and uses an IDMS database (CODASYL). At the
origin there were six different applications, each application had its own database. These six appli-
cations were put together but the databases were not merged, gateways were written to propagate
the modification from one database to the other.

The customer wanted to migrate this system to a new client-server system with a relational data-
base. We were asked to retrieve the logical schemaand to produce a conceptual schema (without all
the redundancies).

The difficulties of this project were:

» Adapt the program slicing tool to the ADS language.

» Detect al the redundancies and the referential constraints.
» Produce a conceptua schema without the redundancies.

9.4.2.2. Seps

The first step was to extract the IDMS DDL to produce the physical schema. This step was easy
because IDM S offersasingle DDL that contains al the explicit constructs, thus we did not need the
integration step.

Program Understanding in DBRE 211

Case study

To retrieve the data dependencies (referential constraints and redundancies), it was decided to use
the dataflow program slicing with variables follow-up to produce the list of fields in relation. With
the help of an analyst of the customer the list of field couples were qualified (referential constraints
- 450, computed referential constraints - 50, redundancies - 550, business rules - 500, noise - 200).
All the referential constraints, computed referential constraints and redundancies were added to the
physical schemato produce the complete physical schema.

The physical schemawas analyzed and transformed to produce a conceptual schema.

9.4.2.3. Results

We produced the logical schema and the conceptual schema. The conceptual schema was used to
develop the new application.

94.24. Size
program physical schema conceptual schema
KLOC | modules | records sets fields | entity types |relationships| attributes
200 170 324 380 2200 96 109 1100

» Number of program slices computed: 1000
* Number of dataflows found between aget and aget or ast or e: 5000
A program slice computed w.r.t. aget or ast or e contains more that one get (5in mean!).
* Number of data dependencies (number of fields couples): 1750
* Number of data dependencies validated: 1050

i.e., the number of fields couples representing referential constraints, computed referential con-
straints, redundancies. These data dependencies have been validated by the local analysist.

» Total time: 62 days

9.4.25. Lessonslearned

This project confirms the project management issues discovered in the previous one.

Program understanding proved to be very useful. When we presented the result, for validation, to
the local programmer, he discovered or remembered relations between the data that would have
been missed without program understanding techniques.

With this project, we proved that, by spending some time developing tools instead of doing the job
manually, we can spare time and money in comparison to doing the job manually. To discover the
data dependencies between the record types, we were obliged to modify the program slicing tool
(10 days), then it took 3 daysto analyze all the sources code with the tool and 15 daysto analyze the
results produced by the tool. So it took 28 days to analyze the 5000 dataflows to discover 1050 data
dependencies.

212 Program Understanding in DBRE

Real DBRE projects

We estimate the time necessary to discover and analyze, manually, one dataflow between aget and
ast or e to 10 minutes. If we multiply this by 5000 (the number of dataflows), we obtain 120 days.
So automatic program understanding tools enabled us to save 92 days on this project.

9.4.3. Centural / SQL

9.4.3.1. Problem statement

This system is used by a municipal administration. It is composed of six independent applications,
each one used by a different service of the administration: civil status, population, taxes, etc. There
was no communication between the different applications. For example, when somebody moves, he
has to go in each service to give his new address. The municipal council has decided to set up the
concept of "unique counter" where the citizen can go to perform all the usual administrative steps.
To offer this service, the different applications must be merged.

All the applications were developed in the same language and with the same DM S: Centura, a 4GL
and arelationa database. There was no documentation of the application but the programmer who
had devel oped the applications was still there for six months. We were asked to recover the logical
schema of each application and to determine the common parts of the different databases.

Specific problems:
» Thereisno foreign key declared in the database.
* Wedon't have analyzersfor the 4GL.

9.4.3.2. Seps

The first step was to extract the DDL of each database. This step was quite easy because the SQL
used by the DMS was standard. It produced a poor physical schema with very few identifiers
declared, some indexes, no foreign keys and most of the columns were optional. This can be
explained by the history of the applications that were migrated form an older relational DBMS.

The next step was to retrieve the referential constraints. We extracted the queries embedded in the
code, but we noticed that there were very few joins in the queries. The queries were used to guess
some of the identifiers. We decided to ask the programmer to add (manually) the referential
constraints to the physical schema.

To validate the schema, queries were automatically generated. The results of the execution of the
gueries were used to correct the schema and to detect some erroneous data.

9.4.3.3. Results

The logical schema was produced as well as some assessments about the quality of the data. We
noticed that there are very few common parts in the different databases. The only common part is
the concept of "people”.

Program Understanding in DBRE 213

Case study

9.4.34. Size
program physical schema
KLOC |applications| tables columns
450 6 200 3500

9.4.3.5. Lessonslearned

For this project, we did not have program understanding tools available and we estimated that their
development was too expensive. The only program understanding technique we have tried is to
analyze the embedded SQL queries.

We were surprised to notice that there is no join implemented in the SQL queries. All thejoinswere
implemented procedurally and we were unable to discover them. This show that even if the DMS
offers powerful techniques, the programmer does not necessarily use them. In this case, it can be
explained by the history of the application. This application was trandated from a COBOL
program.

We asked the programmer to "remember" the missing referential constraints and to note them on the
database physical schema. This schema was validated with respect to the data, but we are not sure
that the programmer did not forget some of them.

9.4.4. IDEAL - Datacom-DB

9.4.4.1. Problem statement

This system is used by a company of mail order trading to manage all its business: orders, custom-
ers, invoices, advertisement, etc. The system is written in IDEAL (COBOL like) and uses a Data-
com-DB database.

The company had maintained manually the conceptual schema of the database. But over the time,
the conceptual schema had diverged from the physical database. Some modifications have been
made on the structure of the database but were no transferred to the conceptual schema. We were
asked to detect the differences between the conceptual schema and the physical schema.

Specific problems:

» Write aDatacom-DB extractor.

» Extract the conceptual schemafrom another CASE tool.
» Compare the two schemas.

9.4.4.2. Seps

We wrote a Datacom-DB extractor to be able to extract the physical schema. Next, we had written
an extractor to import the conceptual schema into DB-MAIN. The conceptual schema was trans-

214 Program Understanding in DBRE

Real DBRE projects

formed to obtain a physical version. The conceptual schema contains, as a description, the name of
the corresponding object in the database, so we were able to rename the objects of the transformed

schema

To find the differences between both schemas, a program was written to compare both schemas
based on the name of the objects. A report was produced with the differences between the schema
and sent to the company’s programmers. They were asked to solve the conflicts.

9.4.4.3. Results

A report with the differences between the physical schema and the conceptual schema was
produced. We asked the programmers to resol ve the conflicts, but they did not have timeto perform

this!
94.44. Size
program | physical schema conceptual schema
Modules | records | fields | entity types |relationships| attributes
4000 850 11500 556 812 3841

9.4.45. Lessonslearned

This project shows that even when the documentation exists, if it is maintained manually, it will be
slowly desynchronized with respect to the physical database. After some time (years) some DBRE
is necessary to resynchronize the documentation with respect to the database.

Program Understanding in DBRE

215

Case study

216 Program Understanding in DBRE

charter10 DBRE project
managemeant ISsUes

Real size reverse engineering projects taught us that reverse engineering large databases with
hundreds of programs can prove particularly difficult. Program understanding techniques are very
powerful techniques that can be used to retrieve the implicit constraints. But these techniques are
costly to use. The costs are of different types. They can be linked to the setup of the techniques and
to the implementation of the tools that enact these techniques. The costs are linked to the Iabor too
i.e. the analyst needs to master all these techniques, and therefore needs to be trained. Finaly, the
analysis of the program through program understanding techniques can take a lot of time. Even if
these techniques are powerful and precise, the analyst could not guarantee the quality of the results.
There is a risk that some constraints will not be discovered (silence) and some non-existing
constraints will be stated (noise).

Those two aspects, cost and risk, of DBRE techniques, naturally lead to take into account project
planning and management.

One of the unexpected lessons, learned with real projects, is that before the DBRE project itself can
start, the DBRE team has to explain what DBRE is and to justify it. This evangelization must be
done to convince the management but also the technical team. Management must be convinced that
the organization is really going to achieve a significant benefit in reducing costs and adding value
[Sneed-1995].

An important point in the planning of a DBRE project is to evaluate the costs of the project. This
cost evaluation consists in the estimation of the tools, the skills and the time required by the project.
It isimpossible to give general rules to evaluate the cost of a project because each project is differ-
ent and there are many factors (size, complexity, language, human factors, etc.) that influence these
costs. Reducing the costs of a project can be achieved by only recovering some of the constraints
and to make a lighter analysis. This incomplete analysis will produce a lower quality result (more
silence and noise). Moreover lower quality schemas can induce costs later if the result of the DBRE
isused as an input of another process. Another particularity of DBRE projects is that they are very
difficult to evaluate because they produce an abstract result (the conceptual schema of the database)
that can be used by other processes. The purpose of a DBRE project is to describe (document) an
existing system. The customer is unable to validate the proposed schema of the database because he
does not master the database, otherwise he does not need DBRE. The evaluation of a classical
forward project is quite "ssimple”, the customer can test the application and checks if it offers the

Program Understanding in DBRE 217

DBRE project management issues

expected functionalities. There are two ways to evaluate a DBRE project. The first one is to rede-
velop a new application using the conceptual schema and to check if the new application has the
same functionalities as the legacy one. This solution is very expensive and not always applicable.
The second way is to explain to the customer the techniques that will be used and to explain the
expected results. The customer evaluates the method instead of the resuilts.

10.1. DBRE justification

Performing DBRE just to have an up-to-date documentation of the current application is not aways
(or rarely) a sufficient argument to convince a manager to give enough resources (human and
budget) to conduct the project. DBRE is an expensive and risky operation that is not agoal by itself,
but isa step in alarger process. DBRE is performed to ease or reduce the costs of maintenance, to
regain control over the legacy system, to integrate existing systems, to migrate the legacy applica-
tions to a new hardware or software platform. Reverse engineering isin competition with the rede-
velopment of the system. Before starting a reverse engineering project, the whole process of
migration or integration that includes reverse engineering, must prove to be less risky, less expen-
sive, faster than the redevelopment of a new system. Application software systems may not have a
uniform quality standard. Some programs may become obsolete before others, some may have a
higher error rate, and others may be particularly difficult to reverse engineer. Therefore, it will not
aways be possible to judge on asystem as awhole. It is possible to decide to reverse engineer some
part of the legacy and to redevel op the other.

The strategy of just replacing the legacy applications by a new system may bring unexpected nega-
tive effects [Kl0sch-1996]. A lot of business rules have been coded into the legacy code and the
knowledge of these rules can have disappeared. Nobody still knows these rules and the only place
where they are formalized isin the source code. If anew system is devel oped, these rules need to be
re-discovered or reinvented. People are accustomed with the functionalities of the legacy system. If
the new one is too different, training may be necessary. The development of anew system isalong
task and the result is uncertain. The new system may be out of date, more expensive than expected,
it may contain errors or be less efficient than the legacy system.

A specia argument in favor of DBRE is that the data are vital to the business of the company. For
migration projects, it is easy to convince that DBRE is an obligatory step: while the application can
be written from scratch, the data need to be migrated from the old to the new system. The data are
the memory of the organization (orders, invoices, list of customers, etc.) so their structures need to
be mastered to allow a correct migration.

If the semantics of the persistent dataiswell known, then it will be easier to understand the applica-
tions that use these data. The data and the applications can be migrated almost independently. If the
database is well designed it is possible to keep the legacy database and to only migrate or rewrite
the programs.

Another argument isthat, if an organization mastersits data and is convinced of their correctness, it
may reduce its maintenance cost. If the structure of the data is well known, the maintenance team
can evaluate which part of the system is affected by a modification and does not have the "surprise”
to discover that some correct functions do not work any more after some maintenance processes.
The maintenance can aso be faster, because the maintenance team does not need to try to under-

218 Program Understanding in DBRE

Information / training

stand the existing system before to start, it just have to find the relevant information in the system
documentation.

Each interlocutor is sensitive to different arguments. Development managers and users would
prefer to have applications rebuilt from scratch, corporate managers would like to purchase a
commercia package and software maintainers usually prefer to keep things as they are [Sneed-
1995].

10.2. Information/ training

The maintenance and reverse engineering aspects of software engineering have been neglected by
software engineers, researchers, schools and universities so far. But many companies are faced with
a dilemma. On one hand, their systems are very valuable and simply replacing them may be too
expensive. On the other hand, they do not understand them anymore, because the people who have
developed the systems have left the company and the systems are becoming too expensive to main-
tain [Bennet-1995].

Companies are in the situation where they need reverse engineering and do reverse engineering
without knowing that they are doing it and without any methods nor tools.

To successfully perform areverse engineering project, a company must be aware of the difficulties
and master the methods and techniques. Or at least, it must be conscious that it is not able to
successfully perform the project and ask for external help.

Reverse engineering has been neglected by the research and academic community for different
reasons. At first ook, it does not seem very attractive to try to understand programs written many
year ago by other programmers eventually using some old fashioned language. Researchers prefer
to study new problems and use (or develop) new languages. It is easier to develop new programs
from scratch than to analyze or modify existing programs. When a new application is developed
from scratch, it is possible to decide which language to use, to setup rules on how to code the
constraints, to elaborate naming conventions, etc. But when aresearcher decides to define areverse
engineering methodology, he must take in account how the legacy was developed, in which
language. The legacy is as it is, even if the program was badly written, the language is awful, etc.
and he must understand it to recover the specification.

This explains why reverse engineering is not very popular. Companies do not know the term reverse
engineering but they are doing it. So before to start a reverse engineering project, or even to
convince a company it has to perform reverse engineering, we need to explain that reverse engi-
neering is a known process for which there exist methods and techniques. We must convince that
reverse engineering is not easy and it requires resource (budget), but it is possible.

The reverse engineer needs to make two categories of people aware of the very nature of reverse
engineering: the managers and the technical team. Reverse engineering projects are risky and they
do not add new functionalities to the applications. They increase the control on the applications,
reduce the maintenance cost and allow smoother evolution of the legacy application to new technol-
ogies. To succeed in reverse engineering projects, the support of the management is an absolute
necessity. To obtain this support, it must be made sensitive to the expected benefits. It needs to be

Program Understanding in DBRE 219

DBRE project management issues

aware of the risk and costs of such a project. Under this condition the management is less reluctant
to provide the necessary budget and to agree with programmers being assigned to the project.

The technical team (programmers, database administrators, etc.) will be the main contact point of
the reverse engineer and a very valuable source of information. To allow a good collaboration
between the reverse engineer and the local team, the local team must be convinced of the usefulness
of the process, it must be allotted enough time to spend on this project and understand what reverse
engineering is. The team must be made sensitive to the reverse engineering purpose and difficulties
just like the management, but it also must master the technical aspects of the reverse engineering to
use the same language and the same concepts as the reverse engineer.

Because reverse engineering is a quite new discipline, alot of training efforts must be done before
starting a project.

10.3. Project cost evaluation

A very important question, in rea projects, isto evaluate the costs of a DBRE project using agiven
technique. This evaluation consists in the estimation of the time, the skills and the tools required by
the project and in the planning.

Because each project is different, it isimpossible to give ageneral method to evaluate its cost. This
section will give a checklist of things that can influence the cost or need to be checked when evalu-
ating aproject.

» Szeof thelegacy system

The most obvious parameter to predict the costs of a project is the size of the legacy system.
There are many ways to measure this size (metric). A first measure isthe size of the legacy data-
base schema that can be evaluated in terms of number of entity types, collections, attributes per
entity type, but also the link between entity types (relationship types or referential constraints). It
is easy to understand that if a database has alot of entity types, its reverse engineering will take
alot of time. But if there are alot of referential constraints, it means that they have been explic-
itly declared and do not need to be recovered. So the costs will decrease.

To recover the implicit constraints, the source code is analyzed, so some measures of the legacy
code can be useful such as number LOC, function points, etc. [Mills-1988].

» Complexity of the legacy system

The costs are directly related to the complexity of the legacy system. If a program has many
function calls, go to’'s and tests, it will be more difficult to analyze than a program without go
to’s and only some test and function calls. This complexity can also be measured by some met-
rics such as the cyclomatic complexity or program knots [Mills-1988]. The complexity of aleg-
acy system can aso be evaluated by the usage of the entity types by the different modules. If an
entity type is only used by one module, the program will be easier to analyze than a program in
which amost every module accesses most entity types.

¢ |nformation sources available

If there is an up-to-date documentation, it can be a good starting point and it can save a lot of
time. On the other hand, if only the source code exists, program understanding techniques have
to be used and this can take alot of time.

220 Program Understanding in DBRE

Project cost evaluation

Organization hasits legacy system under control

The local team (the team that daily maintains the system) is very important in any DBRE
project, because it is the contact point of the DBRE team. If the local team masters its applica-
tions, it can give all the information needed (no silence) and only them (no noise), so the DBRE
team works on the right information. This can reduce the cost of the preparation process. The
local team can answer precisely al questions asked by the DBRE team. For example, if the ana-
lyst suspects areferential constraint between two attributes, he can ask the local team to validate
the hypothesis. This validation just takes a few seconds for somebody that masters the legacy
system, but it may take several minutes, if the local team is unsure, and have to check in some
documentation or in the legacy code.

Local team involvement

It is necessary that the local team participates in the project and it has to be convinced of the use-
fulness of the project. Even if it does not know each detail of the legacy application, it has a bet-
ter knowledge of the application and of its domain than the reverse engineer does. Before
starting the project it must be known if the team agrees to collaborate with the reverse engineer
and if it has the time to do so.

Availability of tools

In some projects, new tools must be developed. These initial costs needs to be compared with
the cost of performing the whole process by hand. For small projects it can be less expensive to
do it by hand than to develop new tools.

Language used

Legacy system programming language and DM S used al so influence the costs. For example, to
reverse engineering a SQL database, there is only one source of information to analyze to have
the complete physical schema. But if the legacy system uses COBOL files, the file declarations
of each program need to be analyzed. The expressiveness of the DDL is also important, since it
influences the explicit constraints that can be found. For example, during the analysis of a SQL
database, the analyst can expect that all the referential constraints are explicitly declared and
thus he does not have to perform complex program understanding to recover them.

Analyst knowledge of the programming language

To understand someone else’s code, the analyst needs to have an in-depth understanding of the
programming language. This can be problematic if the application was written in some old eso-
teric language. Quite often, those legacy languages are not taught anymore. The learning effort
of the analyst needs to be evaluated.

Explicit declaration in DMS

The explicit declarations (DM S-DDL) are the starting point of the data structure extraction. So if
alot of the constraints have been declared in the DMS, there are fewer implicit constraints that
need to be discovered in the procedural part of the application.

Quality of the code

To understand well structured code with well chosen variable names and procedure names is
easier (and faster) than to analyze some ugly code with alot of go t o’s and obscure names.
Uniformity of the conventions/ rules

If the same naming and coding conventions have been applied consistently during all the appli-
cation live cycle and by al the programmers, the code will be easier to understand than if differ-
ent conventions have been applied to each module or in the same module.

Program Understanding in DBRE 221

DBRE project management issues

* Analyst DBRE experience

Personnel quality is, according to Sneed [Sneed-1991], the most influentia factor in driving
maintenance cost. This also appliesto reverse engineering. The analyst must be familiar with the
methodology and the tools used. The comprehension of someone else’s program requires some
kind of feeling that cannot be learned in text books, but can only be acquired by experience.

e Level of detail needed

Of course, the more details are needed, the more time it will take. If only the list of the entity
types with their corresponding attributes is needed, it will only take afew hours. But to recover
all thereferential constraints and data dependencies, it will take days or months.

All these parameters are difficult to evaluate a priori, just using some metrics (as LOC, number of
tables, etc.) and the list of the DM S and programming languages. A good solution isto start with a
small representative sub-project. This project needs to be representative of the whole application.
But it also needs to be small enough to be performed in a few days. To select this sub-project, the
assistance of the local team is necessary to find a coherent sub-part of the application and represen-
tative of the coding style of the whole application. This sub-project can a so be useful to set up, with
the local team, some common language to communicate the questions, the answers and the results.

The main purpose of this sub-project is not to perform some DBRE, but to evaluate the feasibility
and difficulties of the project. At the end of this sub-project, missing tools are listed, methodology
to use is defined, the quality and weakness of the expected results are identified and some evalua-
tion of the total cost is given.

Even if the prototype was successfully completed, the extrapolation of the total costs is difficult.
During the project, unexpected difficulties can be discovered. To anticipate or minimize those plan-
ning and cost overtaking, it isimportant to plan checkpoints regularly with the local management.

Intuitively the complexity of DBRE projectsis between O(V) and O(V3), where V represents some
measure of the size of the reverse engineering project. For instance, each entity type can be seman-
tically related with any of the entity types of the schema. Therefore, each couple of entity types has
to be examined to check if one or more referential constraints exist between them. So thisleadsto a
complexity in square of the number of entity types in the database. In addition, the source code of
the programs needs to be examined to validate those constraints. So the complexity of the DBRE
projects rises with the square of the number of entity types and linearly with the number of the
LOC. This leads to a process with complexity O(VS), where V is the size of the project, i.e. some
measurement of the number of entity typesin the database and the number of LOC, the DM S used,
the complexity of the application, etc.

Fortunately, some structures require a lower complexity. For example, to refine the data structure,
only the data dependency graph (which may be linear to the program size) needs to be computed.
So the complexity is linear with respect to the number of LOC. Therefore that it can be stated that,
considered as awhole, the data reverse engineering process has a complexity O(V2).

The cost of DBRE projects is in direct relation with its complexity, so it is aso a function of the
square of V. If such a cost evaluation function is applied to very big projects, they become unfeasi-
ble. This first evaluation must be revised because there is an effect of training. At the beginning of
the project the analyst takes time to understand some aspects of the application and the more the
project progresses the faster the analyst understands new details. Asit will be explained in the next

222 Program Understanding in DBRE

Automation

section, for big projects, some processes can be automated to reduce the time spent by the analyst
analyzing the application.

10.4. Automation

DBRE principles and methodology presented so far are well understood and can be quite easily
applied to small and well structured systems. But when the methodology is applied to real size,
complex systems, the analyst is faced with a huge volume of complex information to be manipu-
lated and analyzed.

When analyzing a very small legacy system (e.g., 3 programs totaling 1000 LOC and 6 entity
types), the database schema can be drawn on a single sheet of paper (or a single computer screen)
and flip manually through the source code. This project can be easily completed in one or two days.
The analyst can discover and remember most of the application details without any tool support.

The analysis of a medium size legacy system (200 programs totaling 400000 LOC and 100 entity
types with an average of 60 attributes per entity type) requires a square meter sheet to draw the
schema and it isimpossible to flip through all the source code (more than 6000 pages). To draw the
schema, at least, drawing tools are needed to ease the layout of the schema. To work efficiently, a
CASE tool isuseful to extract the schema from the DDL and give some help to correctly display the
entity typesto minimize their overlapping. To refine the physical schemathrough the analysis of the
code, some program understanding tools are needed to help discovering the implicit constraints.

So automation is highly desirable to perform large DBRE projects within reasonable time and cost
limits. It is usually admitted that an analyst can manipulate (manually) 50000 LOC [Tilley-1998],
but real projects can be ten to hundred times this size.

The automation of the process does not mean that the complete DBRE process will be done auto-
matically without the analyst’s intervention. Instead, in most processes, the analyst is provided with
toolsthat help him in hiswork. He has to decide which tool he wants to use at agiven time and how
to interpret the results. Many of the tools are not intended to locate and find implicit constructs, but
rather contribute to the discovery of these constructs by focusing the analyst’s attention on frag-
ments of code or structural patterns or to aid the analyst to acquire a better understanding of the
application. In short, they narrow the scope of search. It is up to the analyst to decide if the
constraint that he islooking for is present or not. For example, computing a program dlice provides
asmall set of statements with ahigh density of interesting patterns according to the construct that is
searched for (typically referential constraints or attributes decomposition). This small program
segment must then be examined visually (manually) to check whether traces of the construct are
present or not.

All the steps of all the projects cannot be automated to the same degree. Different levels of automa-
tion can be enumerated: complete automation, automation with some interaction with the analyst,
report generation or restriction of the search space.

A process that is completely automated is a process for which there exists atool that takes as input
the source code, the DDL or the incomplete database schema and enriches this schema with new
constraints. The new schema contains all the constraints that the tool searches for without any inter-

Program Understanding in DBRE 223

DBRE project management issues

vention of the user. For example, the DDL extractors automate the DDL extraction. They read the
DDL code and automatically produce the corresponding structure of the schema.

Some processes can be partially automated with some interaction with the analyst. Asin the fully
automated one, the inputs are the source code, the DDL or the partial schema and the tools ask
guestions to the analyst to make some choices. For example, the dataflow diagram can automati-
cally detect the actual decomposition of an attribute. The analyst is involved in conflict resolution
(e.g., when two different decomposition patterns for the same attribute, he has to decide which one
to use).

There exist tools that generate reports so that the analyst can analyze them to detect the existence of
aconstraint. For example, areport can be generated that contains couples of attributesin relation. A
couple (a,b) means that there is a dataflow from attribute a to attribute b. If a dataflow exists
between two attributes, this means that there is a potential referentia constraint between those
attributes, or afunctional dependency or one isafunction of the other or thereis abusinessrule that
involves both of them. The analyst has to read the report to find from this list which are referentia
constraints. To perform this selection, he has to use other techniques such as his knowledge of the
domain.

Search space restriction tools are used to extract a fragment from a source of information that
contains the pertinent information in which the analyst is supposed to find evidence to prove or
disprove the existence of a constraint. Program slicing is a good example of search space restric-
tion. When a slice is computed for an instruction, x, with respect to a variable, v, only the instruc-
tionsthat influence the value of v at x are selected. So the analyst can concentrate his effort on those
lines only.

10.4.1.Limits of automation

A first reason why full automation cannot be reached isthat a DBRE process basically isadecision-
based activity. The discovery of referential constraints in a program source code is an example of
constraint elicitation that cannot be fully automated. For example, to discover a referential
constraint through program understanding techniques, data dependencies between the attributes of
two entity types are searched for. However data dependencies do not necessarily materialize arefer-
ential constraint. A functional dependency may hold between the two attributes (such as a price and
the price with VAT) or it can code some business rules (such as the order number is some function
of the customer number and the order date). So, though one can imagine a tool that finds data
dependencies between database attributes, the analyst still needs to qualify those dependencies to
mark the one that actually represents areferentia constraint.

Another reason for which full automation cannot be reached is that each DBRE project is different.
The sources of information, the underlying DM S and the programming language or the coding rules
can all be different and even incompatible. Designing a unique tool that will perform the complete
DBRE for any project is unredlistic. The analyst must be provided with a set of tools in which he
can select the one he needs and these tools must be configured for the current project. For example,
referential constraints can be recovered through the analysis of the length, type and names of the
attributes, entity types of the physical schema. Programmers can use different naming conventions
to name the referential attributes. The name of the referential attribute contains (or suggests) the
name of the target attribute, the name of the target entity type, or other rules that can be imagined.
In some projects there are no rules at all and the analysis of the physical schema is useless. Each

224 Program Understanding in DBRE

Automation

project requires some specific toolsto discover automatically some constraints. Another exampleis
the attribute declaration in SQL-DDL. Aswill be explained in the next section, it can be decided not
to construct such tools for economic reason and to perform the task manually.

Even for activities of the DBRE process that can be partially or completely automated, the tools
must be used with some precaution [Wilde-1990]. While tools are likely to provide better results
than unaided hand analysis, the analyst needs to understand how the tools produce the result. There
are still many cases in which tools either fail to capture some constraints (missed targets or silence)
or show constraints that do not really exist (false targets or noise). The analyst must validate the
resultsand it is his responsibility to accept or not the constraints proposed by the tools. Automation
can produce less precise results or incomplete results. The analyst must be aware of the potential
errors contained in the produced result.

STK
CLIENT ORDER STK-ID: num (5

Cli_id Customer .. ohar (1)

cliid : STK-LEVEL: num (5)
id: Cli_id d—— ref:Customer E id STK-ID

ref:STK-LEVEL

a) Referential constraint not dis- b) Referential constraint errone-
covered by the referential ously discovered by the refer-
constraint assistant. ential constraint assistant.

FIGURE 170. Example of silence and noise generated by the referential constraint assistant
that could be avoided through a manual analysis.

Even if some tools can help the analyst, the tools alone do not automatically lead to increased
productivity. Training and well defined methods are needed to get a real benefit. Data structure
extraction is a difficult and complex task that requires skilled and trained analysts who know the
languages, DM S and operating system used by the legacy system and also master DBRE methodol-
ogy, technigues and tools. Figure 170.a shows such an example; the origin attribute is Customer and
the target entity type is CLIENT, the tool does not find this constraint, which can be discovered by
manual analysis (synonym). This tool can also produce noise. For example (figure 170.b), a usua
habit of COBOL programmers is to prefix all the attributes of an entity type by the name of the
entity type (to have unigue names). If an attribute has the same type and same length as the identi-
fier of the entity type, it will be selected as a possible referential constraint.

10.4.2.Economic advantage of automation

As previously said, automation can influence the time spent (and cost) to complete a project. It is
interesting to evaluate the cost evolution depending on the project size and the level of automation.

Even in manual projects, a small part of the job can be done by some existing tools, such as DDL
extractors. The analyst masters these tools and did not need to customize them, so he can immedi-
ately be productive. Most of the job is done manually by analyzing the schema and the source code.
Small project can be done by only one analyst and he can memorized most of the details. When the
size of the project increase more tan one analyst are needed and they could not memorized all the
details. In addition to the reverse engineering work, some team management is needed. For very big
projects the manual approach can be inconceivable. The time needed to perform them are to long.

Program Understanding in DBRE 225

DBRE project management issues

For example, areverse engineering project that will last more than ten yearsis useless, which isthe
utility of such a project?

In automatic projects, where most of the work is done automatically, the initial costs can be quite
high. The specificity of the project has to be understood to select the right tools, how to use them,
how o interpret their results and to develop new ones. When the initial phase id one, the major part
of the job can be done automatically with almost no intervention of the analyst. In the automatic
approach, the manua part consists in the analysis and validation of the results produced by the
tools.

Because of the initial cost of the automatic approach, for small to medium project the manual
approach can be less expensive. But when the size of the project increases, the initial cost of the
automatic approach can be compensated by the automation of the whole process

Asan example, considering avery small application (one program of 1000 LOC and 3 entity types).
An analyst can recover the complete schema of this application manually in one or two days. For a
medium size application (200 programs of 400K LOC and 100 entity types), it is very difficult to
carry out this project manually. Each program can not be analyzed independently. To analyze this
application, the analyst has to follow the inter-program calls. If he takes only one hour to discover
each referential constraint or functional dependency and there are 1000 constraints to discover, he
will take about 40 days to complete the project. To perform this project automatically, the analyst
needs 10 days to adapt program understanding tools. Such tools will analyze all the programs in
three hours and then the analyst will validate the resultsin 10 days.

10.5. Cost Vs. quality

Cost reduction can be achieved by automation, but aso by reducing the compl eteness of the resuilts,
e.g., by deciding not to search for some kind of constraints. For example exact cardinalities of
multi-valued attributes or attribute decompositions may be ignored. The completeness can also be
reduced by accepting less precise results, with more silence and more noise. For example, finding
attribute decomposition can be done by computing the dependency graph and searching this graph
for attributes that are connected (directly or indirectly) to avariable with a more precise decomposi-
tion. When a new decomposition is found, no other verification (such as code analysis) is done and
the schema is considered refined. As explained in section 6.3 such technigues can produce errone-
ous decompositions and miss other decompositions.

Noise can easily be detected and suppressed by checking through another technique (such as data
analysis or domain knowledge). Silences are more difficult to detect.

The overall quality of the DBRE is higher if the depth of anaysis and checking is homogeneous
throughout the schemas. To ensure the homogeneous quality, the analyst needs to apply the selected
techniques and tools to all the sources of information. For example, lets assume he only analyzes
75% of the source code to recover the referential constraints. If the referential constraint validations
are homogeneously distributed in the source code, 25% of the referential constraints potentially
discovered by the analysis technique are missing. It isimpossible to know which part of the schema
is affected by the missing constraints. Are they all in the same region of the schema or are they
randomly distributed? In some favorable situations the 25% non analyzed code does not contain

226 Program Understanding in DBRE

DBRE project evaluation

any new constraints, they have all been discovered by the analysis of the 75% of the code. This situ-
ation may arise if the analyst knows the code and decides to skip some parts of the code because
these parts do not reveal new constraints.

DBRE generally isthe first step of a broader process such as re-engineering or migration. Its costs
must be evaluated on the whole process and not on each step separately. The results of the DBRE
process are the input of another process. So if these results (logical and conceptual schemas) are of
poor quality, the next process can have very high unexpected costs because its starting point is not
correct. For example, if anew function is added to an existing application using a database schema
in which some referential constraints are missing, this function can corrupt the database by adding
or modifying data that violate the referential constraint. Missing constraints leave the database
unprotected against data corruption. As a consequence, existing functions could not work anymore
because their code is relying on correct data. For example, if afunction prints a report and tries to
find the target of an undetected referential constraint, a missing target can produce unexpected
results (unexpected program termination, report with random data, etc.). Noise can also produce
errors, since spurious constraints can prevent some valid data to be added.

Fixing these errors can have very high costs. Correcting the logical schema and the conceptual
schema produced by the DBRE is only a small part of the cost. These schemas have been used to
write new functions (or applications), so that all the newly developed code must be corrected to be
in accordance with the new constraints. If the errors are detected only when the new application is
used in production (with real data) the corrupted data must be aso corrected. Sometimes the errors
can cause the failure of amigration project.

This shows the importance to find the right trade off between the DBRE cost and the quality of the
result.

10.6. DBRE project evaluation

The evaluation of the results produced by a DBRE project is a complex problem for the customer,
especially when the DBRE is an explicit process in aproject or when it is a project by itself.

Classical software engineering projects produce concrete results that are reasonably easy to evalu-
ate, i.e., some piece of software that the user can use and test to check if it meets the initial specifi-
cations, notably through standardized testing techniques. The specificity of DBRE projects is that
the final results are abstract specifications, made up of logica and conceptual schemas. The input of
a reverse engineering project, which corresponds to the forward engineering specification, is the
application itself [Henrard et al.-2000]. The customer has no deterministic means to evaluate the
results except his domain knowledge and his (partial) knowledge of the application. This knowl-
edge is partial by nature, otherwise DBRE would have been useless and thus the customer could
have recovered the logical schema by himself [Chiang et al.-1996].

Several techniques can be proposed to help the customer in assessing the quality of the results.

1. One way to convince the customer that the DBRE is complete and correct would be to use
DBRE results to migrate the application to a new database that is derived from the conceptual
schema and to check if the new application has the same behavior as the old one. This solution
requires to migrate the entire application (and thus reverse engineer) too or to write a new appli-

Program Understanding in DBRE 227

DBRE project management issues

cation. This approach does not only test the quality of the DBRE process, but also the quality of
the new application. If the behavior of the new application is not the same as the old one, it can
be due to errors in the underling database. This a posteriori approach is only realistic when the
DBRE isafirst step in amigration process and the same team carries out the whole process.

2. Another way to validate the schema a posteriori is to automatically generate a new application,
to migrate the data and to ask the users of the legacy application to test this new application.
This new application does not intend to replace the legacy application, it does not offer al its
functionality, but is smply used to validate the DBRE process. The structure of the new data-
base can be easily generated from the conceptual schema. The knowledge of the legacy database
and of the new database physical schema allows to automatically migrating the data [Henrard et
a.-2002]. The migration is afirst validation of the conceptual schema. If the data are correct in
the legacy database and they could not be migrated to the new database, it means that thereis an
error in the conceptual schema. From the conceptual schemait is possible to generate automati-
caly a graphical user interface (GUI) to access and to modify the data. Of course, it is about a
rudimentary version of the legacy application, but it could be enough for a user to access and
modify the data. Some users are asked to use this prototype to check if they could edit valid data
and if the application forbids to enter erroneous data.

3. A redlistic approach could be to agree, at the beginning of the project, on the methodology and
the tools, i.e., on the constraints that are looked for and the techniques and tools used. It is also
important to explain to the customer the strengths and the weaknesses of the chosen approach so
that he can evaluate the quality of the expected results.

The critical process with respect to the quality of DBRE and thus the most important to evaluate, is
the data structure extraction. Indeed, the quality of the conceptual schema depends mainly on the
quality of the logical schema because it is obtained by semantic preserving transformations. The
quality of the data structure extraction depends on the analyst’s skill and tools, on the quality of the
information sources but also on the constraints the anayst is looking for and on the time spent
during the analysis.

Not surprisingly, the quality of the resultsis thus an economic issue.

228 Program Understanding in DBRE

charter 2 Concluson

This thesis explores the role of program understanding techniques in database reverse engineering.
The particularity of this approach is that it combines theories from two communities, namely soft-
ware and database. Although these communities are historically distinct, but nevertheless intersect
quite often. We have combined that effort from both areas to produce aimproved database reverse
engineering framework. The database community has developed well formalized models to repre-
sent data structures and to manipulate these structures. The software engineering community offers
alarge choice of techniques and tools to analyze code, a process that has proved necessary to under-
stand data structures.

A generic DBRE methodology is presented as the reverse of forward engineering. This methodol-
ogy is divided into three processes. The project preparation process evaluates why and how the
project has to be carried out and which resources (human skills, time, budget, etc.) are needed. The
second process, data structure extraction, analyzes all available sources of information to recover
the complete logical schema of the data. This schemais the view the application programmers have
(or should have) of the database to correctly develop and maintain the programs that access or
modify the data. The last process, data structure conceptualization, transforms the logical schema
into the conceptual schema.

The data structure extraction process has been presented in detail and particularly its most impor-
tant, but also most difficult, sub-process, namely the schema refinement step. Schema refinement is
the step during which the implicit constraints are recovered. Its difficulty comes from the fact that a
wide variety of heterogeneous information sources (source code, data, user knowledge, etc.) haveto
be analyzed to recover the implicit constraints, i.e., constraints that hold in the data structure, but
have not been declared in the DDL of the DMS. Another difficulty is that there is no standard way
to express the implicit constraints. Therefore, in order to discover a constraint, the analyst first has
to discover (e.g., to guess) how the programmers usually coded it. The importance of schema
refinement can be appreciated by considering that, in most legacy databases, the largest part of the
structures and constraints are implicit, either due to the weaknesses of the DM S, or to programming
practices resorting to so-called information hiding. Therefore, recovering database physical and
logical schemas through mere DDL code parsing generally leads to a highly incomplete result,
generaly uselessfor any decent further use. For instance, extracting a conceptual schema, from this
logical schema, then generating a new relational database will provide the community with a partic-
ularly poor database as far as expressiveness and integrity are concerned.

Program Understanding in DBRE 229

Conclusion

We have presented most of the constraints that can be recovered during schema refinement, the
information sources that can be analyzed and the heuristics that are used to recover the constraints.
An application that updates data must check that the new data do not violate the constraints. There
are mainly two ways for an application to validate the data it storesin the database: either the DMS
carries out the validation and only accepts valid data or some code added to the application’s proce-
dural sections to validate the data before they are stored. In this second approach, unfortunately
very popular, theimplicit constraints are validated by source code fragments that have to be identi-
fied, through source code analysis techniques, generally called program understanding.

The assertion that program understanding is necessary to perform DBRE may be felt in contradic-
tion with the justification of DBRE in the beginning of the thesis, where we stated that program
understanding is easier when the database's structures and constraints have been elicited. There is
no real contradiction. When the source code is analyzed to recover data structure constraints, we do
not try to understand how the program works but we are only looking for code fragments that vali-
date data structure constraints. To recover these fragments, we use program understanding tech-
niques such as variable dependency graph, system dependency graph and program slicing. These
techniques have been specialized to DBRE and we have shown how they can be used to detect the
most popular constraints. Program understanding as awhole is a wider-scope discipline into which
we have, hopefully, modestly contributed by exploring one part of the application, namely the data-
base.

Real size reverse engineering projects have taught us that recovering the schemas of large databases
can prove particularly long and difficult, and therefore risky and expensive. In order to cope with
these difficulties, we have discussed some project management aspects. Because DBRE is expen-
sive and, as such, does not add new functionalities to the application?, it is important for such
projects to be supported by the company’s managers and not only by the technical team. In order to
catch the confidence of all stakeholders, we have first to explain what DBRE actually is and what
the expected results are. Indeed, the concept of DBRE (and reverse engineering in general) is not
correctly known, and often leads to unrealistic expectations. Many people practice DBRE in an
informal way, but they generally do not know about the existence of specific methodologies and
tools to support this process. Manual work is the rule, leading to poor, incomplete and frustrating
results.

To prove that DBRE is feasible and useful, we would need to evaluate a priori the cost of such a
project. This evaluation has to take in account many parameters, such as the size of the database
schema, the size of the programs, the complexity of the application, the programming language, the
DMS, etc. In order to reduce the costs of a DBRE project, some of the processes must be auto-
mated. Another way to reduce the costs of a project is to reduce its quality requirements. This
approach must be adopted with much caution, because the quality of the process can have an indi-
rect cost impact on the following processes that use the result of DBRE asinput. In atypical migra-
tion project, any error in the conceptual schemawill generally induce errorsin the new database, in
the programs and in the functionalities that will be very expensive to fix.

1. Though it does add value.

230 Program Understanding in DBRE

Contributions

11.1. Contributions

In this thesis, we have proved that program understanding techniques and tools are necessary to
perform good quality DBRE for real size projects. To achieve this objectif, we have developped a
tool supported DBRE methodol ogy.

With regard to methodology, we have particularlydevel oped the schema refinement step of the data
structure extraction process. We have proposed guidelines to carry out schema refinement as an
iterative process during which the analyst makes assumptions about a potential constraint (the
hypothesis) before validating this hypothesis. If the hypothesisis validated, the constraint is added
to the schema. This process is iterated until no new hypotheses can be formulated. We have
discussed how the analyst can decide whether the schema refinement is finished.

The starting point of the thesisis the ideathat the source code is the most compl ete and the most up-
to-date source of information to recover implicit constraints. Indeed, they must be dealt with in the
source code because, by definition, they are ignored by the DMS. One of the exceptions are the
constraints that are verified by the environment of the application (environmental properties) and
therefore need not be verified formally. The source code is up-to-date because it is the readable
expression of the programs currently running. Other sources of information, such as the documenta-
tion or CASE tools repositories, are often out-of-date due to the lack of direct link between them
and the binary code.

Thisiswhy we have decided to investigate source code analysisto refine the database schema. The
difficulty with code analysisisthat the constraint validation can be spread through the whole source
code and a given constraint is not necessarily coded in adjacent lines of code. A further difficulty
related to constraint recovery is that there is not only one manner to code a given constraint, each
programmer has his own way of coding. We have shown that, for example, there exist at least five
different waysto validate areferential constraint.

Our experience has shown that code analysis can be practiced manually for small case studies but
that medium to large projects require sophisticated tool support. In order to provide this support, we
have studied program understanding techniques and implemented them in the DB-MAIN CASE
tool. We have selected four techniques, namely pattern searching, variable dependency graph,
program slicing and system dependency graph.

The variable dependency graph is a graph in which each vertex represents a variable and (directed)
edges represent arelation between variables. The slice of a program with respect to program point p
and variable v consists of all the program statements that might affect the state of v at point p. The
system dependency graph is the internal representation of the program that is used to compute a
program slice. We have defined other ways to question this graph to obtain very precise information
about how the data are validated before being stored into the database. We have explained how
these program understanding techniques can be used to recover the most popular implicit
constraints. A major part of our work was to develop atool box that supports the complete DBRE
process. After describing the characteristics of an ideal CARE tool, we have presented our tools
implemented in DB-MAIN.

In order to validate our methodology and the tools devel oped, we have used them to reverse engi-
neer rea databasesin several companies. During those projects, we had to face problems that have
nothing to do with methodology but rather with project management. For instance, client personnel

Program Understanding in DBRE 231

Conclusion

training has proved amajor, though inexpensive, success factor. In thisway, gaining the confidence,
and therefore the collaboration of the persons who hold critical information is much easier.

The cost evaluation of such a project is crucial. We have sketched what the factors are that can
influence the costs, among them the level of the process automation.

11.2. Comparison with related work

11.2.1.Methodology

We can identify three major periods in DBRE research, according to the information sources taken
into account and to the initial assumptions on the quality of the object database.

11.2.1.1. Sructural analysis

The first DBRE methodologies that appeared in the literature intended the production of a concep-
tual schema of an existing database by analyzing the database itself only. The main information
source was the DDL code of the physical schema and in some contribution the database contents.
For additional refinement, they relied on the analyst’s domain knowledge. The quality of the fina
conceptual schema depended on the quality of the physical schema, that had to meet strong, and
therefore unrealistic, requirements.

For example, the schema had to be in 3NF ([Navathe et al.-1987], [Davis et a.-1987], [Johannes-
son-1994], etc.). Theidentifier had to be declared ([Dumpala et al.- 1983], [Casanova et al.-1983))
or the dependencies between the records had to be known ([Dumpala et a .- 1983], [Casanovaet al .-
1983]). The database could not be optimized ([Ramanathan et a.-1996]). In some proposals,
implicit foreign keys could be detected through the name of their components ([Navathe et al .-
1987], [Premerlani et al.-1993], [Chiang-1995]).

Most of these methodologies were dedicated to a specific DMS, except MeRCI ([Comyn et al.-
1996]). They only cover apart of the DBRE process.

11.2.1.2. Targeted code analysis

Two contributions only include program source code analysis to get information about the database
structures and constraints.

[Petit-1996] analyzes the (embedded) SQL queries and views to recover the foreign keys and the
functional dependencies. It isassumed that the programmer needs to use joins in the queries to navi-
gate among the data. The joins are used to refine the logical schema that will be translated into a
conceptual schema.

[Anderson-1996] analyzes COBOL source code to recover the precise structure of records (struc-
ture resolution) and uses some kind of dataflow analysis (the definition-use orders) to recover the
dependencies between the records.

232 Program Understanding in DBRE

Future work

11.2.1.3.General code analysis

The two previous works concentrate on some aspects of the source code. In this thesis, we have
increased the role of source code to make it a mgjor information source, by integrating program
understanding techniques in DBRE and more specifically program slicing and its underlying SDG.
The SDG construction is difficult and expensive but produces precise results with little silence and
noise. It produces better results than the definition-use order graph because SDG aso represents
control flow that was not taken into account.

11.2.2.Tools

Many methodologies are not tool-supported. Some of them suggest such tools ([Dumpala et al.-
1983], [Signore et a.-1994], [Ramanathan et al.-1996]). Others are accompanied by some kind of
proof-of-concept prototypes that support a part to the methodology ([Premerlani et al.-1993],
[Chiang-1995], [Jahnke-1999]). These prototypes are most often intended to validate the methodol-
ogy on case studies, few of them have been used to in a significant number of real size projects.

The main advantage of the tools we have developed is that they are integrated in the DB-MAIN
CASE tool. DB-MAIN is a general database engineering CASE tool that supports not only the
whole DBRE process, but aso the main database engineering processes. For instance, an analyst
can perform a database reengineeing project in a single environment.

DB-MAIN is a stable CASE tool that is being maintained by the Database Engineering L aboratory
for more than 10 years and has severa thousands of users. Those of its components that are dedi-
cated to DBRE will survive this thesis and will be maintained and extended in the future.

11.2.3.Validation

Thanks to the robustness and completeness of the methodology and its CASE toal, it was possible
to use them to validate the methodology on real projects in companies. It is important to note that
the latter did not intend to merely collaborate with a research laboratory, but actualy were our
client. Therefore, the results were tested in real commercial conditions.

11.3. Future work

We have already got some experience in applying our methodology and tools to small to medium
projects but we still have to validate them on larger projects (several million lines of code). In order
to do so the level of automation of our tools must be increased and their results must be more
precise to reduce the amount of work the analyst has to provide.

Some of our tools are specific to a given language such as program slicing or DDL extractors.
Others are more generic such as the variable dependency graph that is parametrized by the patterns
that define the nodes and edges of the graph in source programs. As expected, a tool that is dedi-
cated to alanguage will grasp more semantics of the programs and provide more precise informa-
tion. More research is needed to explore the way specialized tools can be devel oped more easily and

Program Understanding in DBRE 233

Conclusion

integrated into the DB-MAIN CASE tool. For example, automatically producing a program slicer
by providing the language's grammar and some hints about the semantics of the main statements
and data types should be possible.

Other PU techniques need to be analyzed and adapted to the need of DBRE to enrich the set of tools
available. These techniques can improve existing techniques to produce more precise results, with
less noise and less silence, such as dynamic program dicing. It will be, also, interesting to analyze
the usage of techniques that give other information about the programs. Type inferencing is one of
them. This technique groups the variables of a program according their values sharing / semantics.

Though it is one of the most challenging problemsin reverse engineering, result validation was only
sketched in this thesis. More investigation is needed to offer the analyst criteria to assess the extent
to which the implicit structures and constraints have been recovered. This meansin particular defin-
ing the ending criteria of the schema refinement process. Another aim of validation techniquesisto
convince the customer that the results of the DBRE process is of good quality and that they can be
used in a subsequent project such as data migration, reengineering or maintenance. We have
discussed three solutions: to carry out the complete migration, to develop a prototype to be tested
by the user or to explain the methodol ogy used and to convince the customer that it will produce (or
has produced) a good result. Other solutions have still to be investigated.

The thesis tackles only DBRE, but as mentioned earlier it is only a step in alarger process such as
data migration or reengineering. It could be interesting to study how our methodology can be
coupled with those other processes to provide a complete solution for customers. In particular, the
efforts made to understand the data structure aspects of the programs should be reused to under-
stand the programs themselves. In addition, we wrote that database reverse engineering should be a
good starting point to understand the whole application, but this assertion certainly deserves being
further developed to provide better program understanding techniques. This thesis has shown that
the database community can profit from the software engineering realm. The converse must obvi-
oudly be true, but has till to be explored: how can database structure understanding contribute to a
better understanding of data-centered application programs? Tool integration is also a major issue.
Since no single tool can cope with all the aspects of system understanding and reverse engineering,
different independent tools must have to cooperate. This leads to the problem of building adequate
ontologies and exchange formats for this engineering domain.

234 Program Understanding in DBRE

Acronyms

ACFG
AST

B2B
CARE
CASE
CFG
CORBA
DBD
DBMS
DBRE
DDL

DML
DMS
DMS-DDL
DMS-DML
ECR

EER

ERP

FMS
ODMG
OMT

0[]
ORDBMS
PDG

Augmented Control Flow Graph

Abstract syntax Tree

Business to Business

Computed Aided Reverse Engineering
Computed Aided Software Engineering

Control Flow Graph

Common Object Request Broker Architecture
IMS data description

DataBase Management System

DataBase Reverse Engineering

see DMS-DDL

see DMS-DML

Data Management System

Data Management System - Data Description Language
Data Management System - Data Manipulation Language
Entity-Category-Relationship

Extended Entity-Relationship

Enterprise Resource Planning

File Management System

Object Data Management Group

Object Modeling Technique

Object Oriented

Object Relational DataBase Management System
Procedure Dependency graph

Program Understanding in DBRE

235

Acronyms

PDL Pattern Definition Language (DB-MAIN)

PS Program Slicing

PSB IMS program specification block

PU Program Understanding

RDBMS Relational DataBase Management System

SDG System Dependency Graph

UML Unified Modeling Language

VDG Variable Dependency graph (DB-MAIN)

XML Extensible Markup Language

236 Program Understanding in DBRE

References

Agrawal et d.-1991 Agrawal H., DeMillo R.A.. Dynamic dicing in the presence of unconstrained

Aho et al.-1989

Akokaet al.-1998

Akokaet al.-1999

Alhaij et a.-2001

Anderson-1996

Ball et al.-1992

Batini et al.-1992

Batini et al.-1993

Baxter-1997

Bennet-1995

pointers. In Proc. of the ACM symposium on Testing and Verification, 1991.

Aho A., Sethi R., Ullman J.. Compilateur : Principes, Techniques et Outils.
Intereditions, 1989.

Akoka J., Comyn-Wattiau, I.: MeRCI: An Expert System for Software Reverse
Engineering. In Proc. of the 4th World Congress on Expert System, Mexico,
1998.

Akoka J.,, Comyn-Wattiau |.: Rétro-conception des Datawarehouses et des
Systémes Multidimensionnels. In Proc. of the INFORSD’99, pages 227-255,
France, 1999. INFORSID.

Alhajj R., Polat F.: Reengineering Relational Databases to Object-Oriented:
Constructing the Class Hierarchy and Migrating the Data. In Proc. of the 8th
Working Conference on Reverse Engineering (WCRE'2001), pages 335-344,
Germany. 2001, |IEEE Computer Society.

Anderson M.: Reverse Engineering of Legacy Systems. From Value-Based to
Object-Based Models. PhD thesis, EPFL, Switzerland, 1996.

Ball T. and Horwitz S.: Slicing Programs with Arbitrary Control Flow. Techni-
cal report tr1128, University of Wisconsin, 1992.
ftp://ftp.cs.wisc.edu/tech-reports/reports/92/tr1128.ps.Z.

Batini C., Ceri S., Navathe S.: Conceptual Database Design: An Entity-Rela-
tionship Approach. Benjamin/Cummings, 1992.

Batini C., Di Battista G, Santucci G.: Structuring Primitives for a Dictionary of
Entity Relationship Data Schemas. |IEEE TSE, 19(4), 1993.

Baxter |., Mehlich M.: Reverse Engineering is Reverse Forward Engineering. In
Proc. of 4th Working Conference on Reverse Engineering (WCRE'97), The
Netherlands, 1997. |IEEE computer Society Press.

Bennett K.: Legacy Systems. Coping with Success. IEEE Software, 12(1):19-
23, 1995.

Program Understanding in DBRE 237

References

Binkley et a.-1996 Binkley D., Gallagher K.B.: Program dicing, Technical report Loyola College
in Maryland, 1996.
http://www.cs.loyola.edu/~kbg/survey.ps.gz.

Blahaet d.-1995 Blaha M.R., Premerlani W.J.. Observed Idiosyncracies of Relational Database
Designs. In Proc. of the 2nd Working Conf. on Reverse Engineering
(WCRE'95), Toronto, July 1995. |EEE Computer Socity Press.

Blaha-1996 Blaha M.: A Catalog of Object Model Transformations, in Proc. of the 3rd
Working Conf. on Reverse Engineering (WCRE'96), Monterey, 1996. |EEE
computer Society Press.

Boloiset a.-1994 Bolois G, Robillard P.: Transformations in Reengineering Techniques. In Proc.
of the 4th Reengineering Forum "Reengineering in Practice”, Victoria, Canada,
1994,

Brodie et al.-1995 Brodie M.L., Stonebraker, M.: Migrating legacy systems. Gateways, Interfaces
and the incremental approach. Morgan, 1995.

Casanova et d.-1983 Casanova M.A., Amara de Sa J.E.: Designing Entity-Relationship Schemes
for Conventional Information Systems. In P.P. Chen, editor, Proc. of the Interna-
tial Conference on Entity-Relationship Approach (ER'83), pages 265-277, 1983.

Casanovaet a.-1984 CasanovaM.A., Amaral De Sa.: Mapping uninterpreted Schemesinto Entity-
Relationship diagrams: two applications to conceptual schema design. IBM J.
Res. & Develop., 28(1), 1984.

Chiang-1995 Chiang R.H.L: A Knowledge-Based System for Performing Reverse engineer-
ing of Relational Databases. Decision Support Systems, 13:295-312, 1995.

Chiang et a.-1996 Chiang R.H.L., Barron T., Storey, V.: A framework for the design and evalua-
tion of database reverse engineering methods. Data & Knowledge Engineering,
21(1) 57-77, 1996.

Chikofsky-1990 Chikofsky E.J., Cross Il J.H.: Reverse engineering and design recovery: A tax-
onomy. |EEE Software, 13, 1990.

Choi et a.-1993 Choi J.-D., Burke M., Carini P: Efficient flow-sensitive interprocedural Com-
putation of Pointer-Induced Aliases and Side Effects. In Proc. of Conference
Record of the Twentieth ACM Symposium on Principles of Programming Lan-
guages, pages 223-245, 1993.

Choi et a.-1994 Choi J.-D., Ferrante, J.. Static slicing in the presence of goto statements. ACM
Transaction of Programming Languages and Systems, 16(4), 1994.

Comyn et al.-1996 Comyn-Wattiau 1., Akoka J.: Reverse Engineering of Relational Database
Physical Schema. In Proc. of the International Entity-Relationship Conference
(ER 96), pages 372-391, Germany, 1996.

Corbi-1989 Corbi T.A.: Program Understanding: Challenge for the 1990s. IBM System Jour -
nal, 28(2), 1989.

D’Atri et a.-1984 D’Atri A., Sacca D.: Equivalence and Mapping of Database Schemes. In Proc.
of the 10th VLDB Conf., Singapore, 1984.

Davisetal. - 1985 DavisK., AroraA.K.: A Methodology for Tranglating a Conventional File Sys-
tem into an Entity-Relationship Model. In Proc. of the 4th International Confer-
ence on Entity-Relationship Approach (ER’ 85), pages 148-159. |EEE Computer

238 Program Understanding in DBRE

Society and North-Holland, 1985.

Daviset a.-1987 Davis K., Arora A.. Converting a Relational Database Model into an Entity-
Relationship Model. In Salvatore T. March, editor, Proc. of the 6th Internatial
Conference on Entity-Relationship Approach (ER'87), pages 271-285, 1987.

DeTroyer-1993 De Troyer O.: On data schema transformation. PhD Thesis, University of Til-
burg, Tilburg, The Netherlands, 1993.

Delcroix et a.-2001 Delcroix C., Thiran Ph., Hainaut J.-L.: Approche Transformationnelle de la
Réingénierie des Données. Ingénierie des Systémes d'Information (Réingénierie
des données et des documents sur le web), 6(1), 2001.

Delvaux-1996 Delvaux P.: Volume: Estimation des Volumes. Technical report, computer sci-
ence department, University of Namur, Belgium, 1996.

Detienne et a.-2001 Detienne V., Hainaut, J-L.. CASE Tool Support for Temporal Database
Design. In Proc of ER 2001, Yokohama, Japan, 2001. Springer-Verlag.

Dumpala et al.- 1983 Dumpala S.R. Arora S.K.: Schema Translation using the Entity-Relationship
Approach. In Proc. of the Internatial Conference on Entity-Relationship
Approach (ER'83), pages 337-356, 1983.

Englebert-2000 Englebert V.: Voyager 2 (version 6.0) - Reference Manual. Technical report,
Computer Science Departement, University of Namur, Belgium, 2000.

Fahrner et al.-1995 Fahrner C., Vossen G.: A survey of database design transformations based on
the Entity-Relationship model. Data Knowledge Engineering, 15(3), 1995.

Ferrante et a.-1987 Ferrante J., Ottenstein K., Warren J.: The Program Dependence Graph and its
Usein Optimization. ACM Transactions on Programming Languages and Sys-
tems, 9(3):319--349, July, 1987.

Fong et a. - 1993 Fong J., Ho M.: Knowledge-Based Approach for Abstracting Hierarchical and
Network Schema Semantics. In Proc. on the 12th International Conference on
the Entity-Relationship Approach (ER'93), USA, 1993

Garciaet a.-1995 Garcia-Solaco M., Saltor F., Castellanos M.A: Structure Based Schema Integra-
tion Methodology. In Proceedings of the 11th International Conference of
Interoperable Database Systems, |EEE CS Press, pp. 505-512, 1995

Hainaut-1981 Hainaut J.-L.: Theoretical and Practical Tools for Data Base Design. In Proc. of
the Very Large Data Bases, 7th International Conference, pages 216-224,
France, 1981. IEEE Computer Society.

Hainaut-1989 Hainaut J.-L.: A Generic Entity-Relationship Model. In Proc. of the IFIP WG
8.1 Conf. on Information System Concepts: an In-depth Analysis, 1989. North-
Holland.

Hainaut-1991 Hainaut J.-L.: Database Reverse Engineering, Models, Techniques and Strate-
gies. In Proc of the 10th Conf. on Entity-Relationship Approach (ER 91), USA,
1991.

Hainaut et al.-1993a Hainaut J.-L., Chandelon M., Tonneau C. and Joris M.: Contribution to a The-
ory of Database Reverse Engineering. In Proc. of the Working Conference on
Reverse Engineering (WCRE' 93), Baltimore, 1993. IEEE Computer Society
Press.

Program Understanding in DBRE 239

References

Hainaut et al.-1993b Hainuat J.-L., Chandelon M., Tonneau C., Joris M.: Transformational Tech-
niques for Database Reverse Engineering. In Proc. of the 12th International
Conf. on ER Approach, Arlington-Dallas, LNCS. E/R instuture and Springer-
Verlag, 1993.

Hainaut et a.-1994 Hainaut J.-L., Englebert V., Henrard J., HickJ.-M., Roland D.: Evolution of
Database Applications: The DB-MAIN Approach. In Proc. of the 13th Int.
Conf. on ER Approach (ER’ 94), Manchester, 1994. Springer-Verlag.

Hainaut et a.-1995 Hainaut J.-L., Englebert V., Henrard J., Hick J.-M., Roland D.: Requirements
for Information System Reverse Engineering Support. In Proc. of the 2nd |IEEE
Working Conf. on Reverse Engineering (WCRE’ 95), Toronto, July, 1995. IEEE
Computer Society Press.

Hainaut et al.-1996a Hainaut J.-L.: Specification Preservation in Schema Transformations: Appli-
cation to Semantics and Statistics. Data & Knowledge Engineering, Elsevier
Science, 19:99-134, 1996.

Hainaut et a.-1996b Hainaut J.-L., Roland D., Hick JM., Henrard J. and Englebert V.: Database
Reverse Engineering: from Requirements to CARE Tools. Journal of Auto-
mated Software Engineering, 3(1), 1996.

Hainaut et a.-1996¢ Hainaut J.-L., Hick J.-M., Englebert V., Henrard J., Roland D.: Understanding
Implementation of IS-A Relations. In Proc. of the 15th Conf. on ER Approach
(ER' 96), Cottbus, 1996. Springer-Verlag.

Hainaut-1997a Hainaut J.-L., Hick J-M., Henrard J., Englebert V., Roland D.: The Concept of
Foreign key in Reverse Engineering: A Pragmatic Interpretative Taxonomy.
Technical report, Computer Science Departement, University of Namur, Bel-
gium, 1997.

Hainaut et a.-1997b Hainaut J.-L., Englebert V., Hick J.-M., Henrard J., Roland D.: Knowledge
Transfer in Database Reverse Engineering - A Supporting Case Study. In Proc.
of the 4th IEEE Working Conference on Reverse Engineering (WCRE’ 97),
Amsterdam, The Netherlands, 1997. IEEE Computer Society Press.

Hainaut et a.-1997c Hainaut J.-L., Henrard J., Hick J.-M., Roland D., Englebert V.: Contribution
to the Reverse Engineering of OO Applications - Methodology and Case Study.
In Proc. of the IFIP 2.6 WC on Database Semantics (DS-7), Leysin, Switzer-
land, 1997. Chapman-Hall.

Halpin-1995 Halpin T.A., Proper H.A: Database Schema Transformation and Optimization.
In Proc. of the 14th Int. Conf. on ER/OO Modelling (ER’ 95), 1995.

Henrard et al.-1998a Henrard J., Englebert V., Hick J-M., Roland D. , Hainaut, J.-L.: Program
understanding in databases reverse engineering. In Proc. of DEXA'98, Vienna,
1998.

Henrard et a.-1998b Henrard J., Roland D., Englebert V., Hick J.-M., Hainaut J.-L.: Outils d'anal-
yse de programmes pour la rétro-conception de bases de données. In Actes du
Xéme Congres INFORS D, Montpellier, 1998.

Henrard et al.-1999 Henrard J., Hainaut J.-L., Hick J.-M., Roland D., Englebert V.: Data structure
extraction in database reverse engineering. In Proc. REIS99 Workshop (ER'99),
Springer Verlag, LNCS 1727, 1999.

Henrard et a.-2000 Henrard J., Hainaut J.-L., Hick J.-M., Roland D., Englebert, V.. From Micro-

240 Program Understanding in DBRE

Analytical Method to Mass Processing - The Economic Challenge. In Proc. of
the Workshop on Data Reverse Engineering (DRE’2000), Zurich, Switzerland,
2000.

Henrard et al.-2001 Henrard J.,, Hainaut J.-L.. Data dependency €licitation in database reverse

engineering. In Proc. of the 5th European Conference on Software Maintenance
and Reengineering (CSMR 2001), Portugal, 2001. IEEE Computer Society
Press.

Henrard et al.-2002 Henrard J., Hick, J.-M., Thiran, Ph., Hainaut, J.-L.: Strategies for Data Reengi-

Hick-2000

Hick-2001

neering. In Proc. of the 9th Working Conference on Reverse Engineering
(WCRE'02), Richmond, 2002. IEEE Computer Society Press.

Hick J-M.: DB-MAIN Project: Transformations. Technical report, Computer
Science Departement, University of Namur, Belgium, 2000.

Hick J-M.: Evolution d'Applications de Bases de Données Relationnelles:
Méthodes et Outils. PhD thesis, Computer Science Departement, University of
Namur, Belgium, 2001.

Horwitz et al.-1990 Horwitz S., Reps T., and Binkley D.: Interprocedural slicing using dependence

IBM-1998

graphs. ACM Transactions on Programming Languages and Systems, 12(1):26-
-60, January, 1990.

IBM: The Year 2000 and 2-Digit Dates: A Guide for Planning and Implementa-
tion. Technical report GC28-1251-08, 1998.

Jahnke et al.-1999 Jahnke J.-H., Wadsack J.P.: Varlet: Human-Centered Tool Support for Database

Jahnke-1999

Reengineering. In Ebert J., Kulllbach B., Lehner, F., editor, Proc. of Workshop
on Software-Reengineering, Germany, 1999.

Jahnke J.-H.: Managing Uncertainty and Inconsistency in Database Reengi-
neering Processes. PhD Thesis, University of Paderborn, Germany, 1999.

Jajodiaet a.-1983 JgodiaS., Ng P, Springsteel F.: The problem of Equivalence for Entity-Relatin-

ship Diagrams. |EEE Transaction on Software Engineering, 9(5), 1983.

Johannesson-1994 Johannesson P.: A Method for Transforming Relational Schemas into Concep-

Joris et al.-1992

K16sch-1996

K obayashi-1986

Korel et a.-1988

Landi et al.-1992

tual Schemas, in Proc. of the 10th Int. Conf. on Data Engineering, USA, pages
190-201. |EEE Computer Society, 1994.

Joris M., Van Hoe R., Hainaut J.-L., Chandelon M., Tonneau C., Bodart F. et al.
PHENIX: Methods and Tools for Database Reverse Engineering. In Proc 5th
International Conf. on Software Engineering and Applications, Toulouse, 1992.
EC2 Publish.

Klosch R.: Reverse Engineering: Why and How to Reverse Engineer Software.
In Proc. of the California Software Symposium (CSS 96), 1996.

Kobayashi |.. Lossessness and Semantic Correctness of Database Schema
Transformation: Another Look of Schema Equivalence. Information Systems,
11(1):41-59, 1986.

Korel B., Laski J.: Dynamic Program Slicing. Information Processing Letters,
29(3): 155-163, 1988.

Landi W., Ryder B.: A Safe Approximate Algorithm for Interprocedural Pointer
Aliasing. In Proc. of the 1992 ACM Conference on Programming Language

Program Understanding in DBRE 241

References

Design and Implementation, pages 235-248, SIGPLAN Notices 27(7), 1992.

Leeeta.-2000 LeeH., Yoo C.: A Form Driven Object-Oriented Reverse Engineering Method-
ology. Information Systems, 25(3):235-259, 2000.

Leintz et a.-1980 Leintz B.P, Swanson E.F.: Software maintenance Management. Addison-Wes-
ley, 1980.

Lien-1982 Lien Y.E.: On the Equivalence of Database Models. Journal of the ACM, 29(2),
1982.

Lopeset a.-2002 Lopes S., Petit J.-M., Toumani F.: Discovering interesting inclusion dependen-
cies. application to logical database tuning. Information Systems, 27:1-19, 2002.

Markowitz et a.-1990 Markowitz V.M., Makowsky J.A.: Identifying Extended Entity-Relation-
ship Object Structure in Relational Schemas. |EEE transaction on software
engineering, 16(8):777-790, 1990.

Mills-1988 Mills, E.: Software Metrics. Technical report, SEI Curriculum Module SEI-CM-
12-1.1, 1988.

Moonen - 2002 Moonen, L.: Exploring Software Systems.. PhD thesis, University of Amster-
dam, The Netherlands. 2002.

Mller-1996 Miuller H.: Understanding Software Systems Using Reverse Engineering Tech-
nologies Research and Practice. In Proc. of 18th International Conference on
Software Engineering, Berlin, Germany, 1996.

Navathe-1980 Navathe S.B.: Schema Analysis for Database Restructuring. ACM TODS, 5(2),
1980.

Navathe et al.-1987 Navathe S.B., Awong A.M.: Abstracting Relational and Hierarchical Data
with a Semantic Data Mode. In Proc. of the 6th Internatial Conference on
Entity-Relationship Approach (ER'87), pages 305-333, 1987.

Ottenstein et a.-1994 Ottenstein K.J., Ottenstein L.M.: The program dependence graph in a soft-
ware development environment. In Proc. of the ACM SIGSOFT/S GPLAN Soft-
ware Engineering Symposium on Practical Software Development
Environments, 1994.

Petit et a.-1994 Petit J-M., Kouloumdjian J., Bouliaut J-F., Toumani F.: Using Queries to
Improve Database Reverse Engineering. In Proc. of the 13th int. Conf. on ER
Approach (ER 94), Manchester, 1994. Springer-Verlag.

Petit-1996 Petit JM. Fondements pour un Processus Réaliste de Rétro-Conception de
Bases de Données Relationnelles. PhD thesis, University Lyon I, France, 1996.

Premerlani et a.-1993 Premerlani W.J., Blaha M.R.: An approach for Reverse Engineering of
Relational Databases. In Proc. of the Working Conf. on Reverse Engineering
(WCRE'93). IEEE Computer society Press, 1993.

Puertaet d.-2002 PuertaA., Eisenstein J.: XIML: A Common Representation for Interaction Data.
In Proc. of the IUI'02, San Francisco, USA, 2002.

Quilici et a.-1997 Quilici A., Woods S., Zhang Y.. New Experiments With A Constraint-Based
Approach To Program Plan Matching. In Proc. of the ourth IEEE Working Con-
ference on Reverse Engineering (WCRE’ 97), The Netherlands, 1997.

Ramanathan et a.-1996 Ramanathan S., Hodges J.: Reverse Engineering Relational Schemas to

242 Program Understanding in DBRE

Object-Oriented Schemas, techreport 960701, Department of Computer Sci-
ence, Mississippi State University, 1996.

Rauh et a.-1995 Rauh O., Stickel E.: Standard Transformations for the Normalization of ER
Schemata. In Proc. of the CAISE'95 conf., LNCS, Jyvaskyla, Finland, 1995.
Springer-Verlag.

Robbins-2002 Robbins A.: sed & awk Pocket Reference. O’ Reilly, 2002.

Roland et al.-2000 Roland D., Hainaut J.-L., Hick J.-M., Henrard J., Englebert V.: Database Engi-
neering Processes with DB-MAIN. In Proc. of the 8th European Conf. on Infor-
mation Systems (ECIS2000), Vienna, Austria, 2000.

Rosenthal et al.-1988 Rosenthal A., Reiner D.. Theoretically Sound Transformation for Practical
Database Design. In March, editor, Proc. of the 6th International Conf. on
Entity-relationship Approach (ER 98), 1988. North-Holland.

Rosenthal et a.-1994 Rosenthal A., Reiner D.: Tools and Transformations: Rigorous and Other-
wise - for Practical Database Design. ACM TODS, 19(2), 1994.

Rugaber-1995 Rugaber S.. Progran Comprehension. Technical report, Georgia Institute of
Technology, 1995.
ftp://ftp.cc.gatech.edu/pub/groups/reverse/repository/encyc.ps.

Sellink et a.-2000 Sellink A., Verhoef C.: Scaffolding for Software Renovation. In Proc. of the
Conference on Software Maintenance and Reengineering (CSMR' 2000), pages
161-172, Switzerland, 2000.

Signore et a.-1994 Signore O., Loffredo M., Gregori M., Cima M.: Using Procedural Patterns in
Abstracting Relational Schemata. In Proc. 3rd Workshop on Program Compre-

hension, 1994.

Sneed-1991 Sneed H.: Economics of Software Re-engineering. Software Maintenance and
Practice, 3:163-182, 1991.

Sneed-1995 Sneed H.: Planning the Reengineering of Legacy Systems. IEEE Software,

12(1):24-34, 1995,

Taneta.-1997 Tan Hee, Ling T.: A method for the recovery of inclusion dependencies from
data-intensive buisness programs. Information and Software Technology, 39:27-
34, 1997.

Tangorraet a.-1995 TangorraF., ChiarollaD.: A methodology for reverse engineering hierarchical
databases. Information and Software Technology, 37(4):225-231, 1995.

Thiran et a.-2000 Thiran Ph., Chougrani A., Hainaut J.-L., Hick J-M.: CASE Support for the
Development of Federated Information Systems. In Proc. of the 3rd Interna-
tional Workshop on Engineering Federated Information Systems (EFIS 2000),
Dublin, 2000.

Tilley-1996 Tilley S.: Perspectives on Legacy System Reengineering. Technical report, Car-
negie Mellon University, 1996.
http://www.sel.cmu.edu/reengineering/pubs/Isysree/lsysree.html.

Tilley-1998 Tilley S.: A reverse-engineering environment frameword. Technical report
CMU/SEI-98-TR-005, Carnegie Mellon University, 1998.
http://www.sei .cmu.edu/publications/documents/98.reports/98tr005/
98tr005abstract.html.

Program Understanding in DBRE 243

References

Tilley-1998b

Tip-1994

Tilley S.: Coming attractions in program understanding I1: Highlights of 1997
and opportunities in 1998. Technical Report CMU/SEI-98-TR-001, Carnegie
Mellon University, 1998.

Tip F.: A survey of program slicing techniques. Technica report CS-R9438,
CWI, 1994.
ftp://ftp.cwi.nl/pub/CWIreports AP/CS-R9438.ps.

van Deursen et al.-1998 van Deursen A., Kuipers T.: Rapid System Understanding: Two COBOL

Case Studies. Technical Report SEN-R9805, CWI, The Netherlands, 1998.

Vermeer et a.-1995 Vermeer M, Apers P.. Reverse Engineering of Relational Database Applica

tions. In Proc. of the Object-Oriented and Entity-Relationship Modelling
(OOER95), 1995.

von Mayrhauser et al.-1993 von Mayrhauser A., Vans M.: From Program Comprehension to Tool

Reguirements for an Industrial Environment. In Proc. of Second Workshop on
Program Comprehension, 1993.

von Mayrhauser et al.-1994 von Mayrhauser A., Vans A. M.: Program Understanding -- A Survey.

Weiser-1984
Wilde-1990

Technical Report CS-94-120, Colorado State University, Computer Science
Department, 1994.
http://www.cs.col ostate.edu/~ftppub/TechReports/1994/tr-120.pdf.

Weiser M.: Program Slicing. |EEE TSE, 10(4):352-357, 1984.

Wilde N.: Understanding program dependencies. Technical report CM-26, 1990
http://www.sei.cmu.edu/publications/documents/cms/cm.026.html.

Winans et a. - 1990 Winans J., Davis K.: Software Reverse Engineering from a Currently Existing

IMS Database to an Entity-Relationship Model, In Proceedings of the 9th Inter-
national Conference on Entity-Relationship Approach (ER'90), pages 345-360,
Switzerland, 1990.

Winter - 2002 Winter A.: GXL - Overview and Current Status. In Proc of the Int. Workshop on
Graph-Based Tools (GraBaTs), Barcelona, Spain, 2002.

XMI - 2002 OMG XML Metadata Interchange (XM1) Specification, 2002.

Young-1996 Young P: Program Comprehension. Technical report, Center for Software
Maintenance, 1996.
http://www.dur.ac.uk/~dcs3py/pages/work/Documents/

244 Program Understanding in DBRE

$& o,

W

% b7 39 3uvs”

+

MR

FUNDP

Institut d'Informatique
Rue Grandgagnage, 21
B-5000 Namur
Belgique

PROGRAM UNDERSTANDING IN

DATABASE REVERSE ENGINEERING
ANNEX

Jean HENRARD

Thesis submitted for the degree of Doctor of Science
(Computer Science Option)

Jury : Professor Jean Fichefet, Institut d’informatique, FUNDP (President)
Professor Jean-Luc Hainaut, Institut d’informatique, FUNDP (Supervisor)
Doctor Rainer Koschke, Universitét Stuttgart, Germany
Doctor Jean-Marc Petit, Université Blaise Pascal, Clermond-Ferrand, France
Professor Jean-Marie Jacquet, Institut d’informatique, FUNDP

August 2003

Program Comprehension in DBRE

17/9/2003

ANNEX A

DBRE tools user
manual

Thisannex presents the user manual of the DB-MAIN specific DBRE tools

A.1l. Pattern definition language

The pattern definition language (PDL) is used to define the patterns to be used in the search tool
(Assist - Text analysis- Search) (A.2) by aprocedure triggered by a pattern (Assist - Text analysis
- Execute) (A.3) and by the variable dependency graph (Assist - Text analysis - Dependency)
(A.4). This section describes the PDL syntax and how to load a PDL fileinto DB-MAIN.

A.1.1. The syntax

The PDL syntax is given as a BNF grammar. The non terminal element are noted by <. . . > and the
reserved symbols of the language are in bold.

<pattern>:

<pattern_name>::= <segnment >*;

<segnent >:

<term nal _seg>
<pattern_nanme>
<vari abl e>
<range>
<optional _seg>
<r epeat _seg>
<group_seg>
<choi ce_seg>
<r egul ar _expr >

<vari abl e>:

@cpat t er n_nanme>

Program Understanding in DBRE 1

The '@ symbol indicates that the segment isa variable. If a variable appearstwo timesin a
segment, then both occurrences have the same value. When a pattern is found, the value of

the variables can be known. A variable can not appear in a repetitive structure.
<range>:
range(cl-c2)
Is any character between cl1 and c2. ¢l and c2 are two characters.
<opti onal _seg>:
[<segment >]
Optional segment

<r epeat _seg>:
<segnent >*

Repetitive segment
<group_seg>:
(<segnent >*)
<choi ce_seg>:
{<segnment> | ... | <segnent>}
Any of the segment.

<regul ar _exp>:
/g"<a regul ar expressi on>"

<term nal _seg>:
"a string"
ft = tabulation; /r/n = new line

<pattern_nane>:
[A- Za- z0- 9] [A- Za- z0- 9] 0- 29

The characters that form regular expressions (<a r egul ar expr essi on>) are:

e [Xx-y]

. ?
A
e /r/n

Matches any single character.

Matches O or more copies of the preceding expression.

Matches 1 or more copies of the preceding expression.

Matches any character within the brackets, e.g.[0, 1, 2] means0 or 1 or 2.
Isanotation for acharacter range, e.g., [0- 4] means[0, 1, 2, 3, 4] .
Matches O or 1 occurrence of the previous expression.

Matches exactly the content enclosed between quotes.

Denotes the tabular.

Denotes the newline characters.

A forward reference is not allowed in a pattern definition. That means that if a pattern isused in the
definition of another pattern, that pattern must be defined before.

Program Understanding in DBRE

A.1.2. Examples
- = lg'[/rinlt]+,

The name of the patternis- , itsdefinitionis/ g"[/r/n/t]+". Thispatternisaregular expression
(/g"..."). Theregular expression [...] matches any characters within the brackets and the +
matches one or more occurrences of the preceding expression. This pattern matches at least one
"space” (space, new line or tab).

~:i=/g"[/rin/t 1*";
Almost the same as the previous one, except * matches zero or more occurrences of the preceding
expression.

var ::=/g"[a-zA-Z][-a-zA-Z0-9]*";

A COBOL variable.

var_1 ::
var_2 ::

var ;
var ;

Those two patterns are just two different names to the pattern var .
move ::= "MOWE' - @ar_1 - "TO - @ar_2 ;

This pattern matches the COBOL move instruction. It matches the characters " MOVE" , followed by
the pattern - (a mandatory space), followed by the pattern var _1 that is assigned to a variable
named var _1 (because of the @, followed by the pattern -, followed by the characters " TO',
followed by the pattern - , followed by the pattern var _2 that is assigned to the variable var _2.

A.1.3.1n DB-MAIN

T]| | T"esxconday patienfile
ot [3] 2. Edit the secondary pattern file.
Edt |2
Secondary [Cob_s. pdl 3. (_Zhanges the name of the secondary pattern
Eruwse- file.
4. Themain patternfile.
R ey Edit 5. Edits the main pattern file.
BIUWSE| :l 6. Changes the name of the main pattern file.
7. Compiles the pattern files.
Ok i LCancel | Help | P P

FIGURE 171. The load/edit pattern dialog box.

The patterns are stored into two text files, main and secondary. The secondary patterns file contains
the definitions of patterns that are the basic patterns used by other patterns. The secondary patterns
file contains for example the definition of the spaces (mandatory or not), of the variables in the
target language. On the other side, the main patterns file contains, for example, the definition of the
assignment, of the comparison.

Program Understanding in DBRE 3

To specify the patterns files to load, use the Assist - Text analysis - Load pattern command. The
Load / Edit Pattern dialog appears (figure 171). The top part of the window contains the name of
the secondary file. The button Edit (2) is used to edit the secondary file and the Browse (3) button
is used to browse the disks to find the secondary patterns file. The middle part of the window
contains the name of the main patterns file. The button Edit (5) is used to edit the main file and the
Browse (6) button is used to browse the disks to find the main patterns file.

When the Ok button is clicked, the patterns are compiled and become the patterns used by different
text analysis tools as search and variable dependency graph. If an error occurs during the compila
tion, an error message is displayed and there is no pattern available in the text analysistools.

A.2. Search for text pattern

The command Assist - Text analysis - Search is used to search for a pattern in atext file or in the
descriptions or the names of the objects of a schema. The variables of the pattern can be instantiated
before the search. When a pattern matches a string, it is possible to see the value assigned to the
variables.

A.2.1. Search for a pattern
N]| | o !ist of the patterns.

2. Thedefinition of the selected pattern.
3. Text edit used to change the value of a

Cancel variable.
4. Thelist of the variables.
Help 5. In a schema, search in the semantic

and/or technical descriptions and/or
the object’s name.

6. Start the search.

Clear [g] 7- Change the value of the current vari-
- able to the value displayed in (3).

[Sem. [Tech] Mame[5:| .

[T Case sensitve [~ Select all Llear 4l 8. Clear the current variable.

9. Clear al thevariables.

10. If checked, the search is case sensitive.

11. If checked, al the lines or the objects
that contain the pattern are selected.

g Rk

Change

:

FIGURE 172. The Search dialog box.

Assist/Text analysis/Search (<ctrl-F>) is used to search for a pattern in the Search dialog box
(figure 172). The combo box Pattern (1) contains the list of all the defined patterns. The definition
of the selected pattern appears in the text below (2) and its variables appear in the bottom list box
(4), with their values if they are instantiated. Thefirst pattern of thelist (user def) isaspecia one
that has no definition, and it is up to the user to write it in the text below, the usual PDL syntax must

4 Program Understanding in DBRE

be used. This pattern is used to look for a"one shot" pattern, that is not saved into the pattern files.
If case sengitiveis checked (10), then the search is case sensitive.

If avariable is instantiated before the search, the variable is replaced by its value. Otherwise the
variable is replaced by its definition. To instantiate a variable, selected it into the list of variables,
type its value into the Value text box (3) and then click on the Change button (7). Its new vaue
appears into the list of variables. To clear the value of the selected variable (to uninstantiate it),
click on the Clear button (8). To clear the value of all the variables (to uninstanciate all to them),
click on the Clear all button (9).

If the search take place into a schema, three check boxes appear in the bottom of the window.
Check one or all of them to specify if the search must take place into the semantic or/and technical
descriptions or/and in the name of the objects.

If the Select all button is checked, al the lines (if the search take place into atext) or all the objects
(if the search take place into a schema) that contains the pattern are selected. Otherwise only the
next line or the next object that matches the pattern is selected.

Click on the OK button to start the search.

If the search take place into atext file, it starts at the line that follows the current line, if thereisno
current line, it starts at the first one. And it goes from one line to the next until the pattern match.

If it take place into atextual view of aschema, its start at the object that follow the current one.

If it take place into a graphical view of a schema, the order of the search is unpredictable. If no
object is selected, the search take place in al the schema.

A.2.2. Search next

To search for the next occurrence of the pattern use the command Assist - Text analysis - Search
next or the <F3 > key.

A.3. Proceduretriggered by a pattern

It is possible to search for a pattern into atext or into the description of a schema and each time the
pattern matches a procedure is executed. The variables of the pattern are the parameters of the
procedure. The pattern is search until the end of the text or of the schema.

To execute a procedure when a pattern is found can be useful to automate tasks. For example, if the
views into a SQL-DDL represent subtype of table, it is possible to search for the entity types that
represent views into the schema (their definition are in the technical description of the entity types)
and for each of them create the is-arelation to connect them to their super-type (the table).

Program Understanding in DBRE 5

A.3.1.Usage

Procedure Linked to Pattern E

Pattern | move 1| = Program /2
I J II:"~E><EI‘-:1F'LESWDY.&GEHHmDve.m-:D@ Ern@ |
"MOWVE" - @var_1-"TO" - iavar_2 ;I
L = Procedure W2 Imnve
4 ¥ |

Ehangﬁr5l'| E_IearlE'l Eleargllrlf
|_ Se Tech [Case sensitivel] 7] Ok | Cancel | Help |

1. Thelist of the patterns. 9. The program.

2. Thedefinition of the selected pattern. 10. Changes the program.

3. The value of the current variable, used to 11. The procedure to be executed.
edititsvalue. 12. The description of the procedure.

4. Thelist of the variables. 13.Adds the current variable (4) as the first

5. Changes the value of the current variable parameter of the procedure (16).
4). 14.Adds the current variable (4) as the next

6. Clearsthe current variable (4). parameter of the procedure (16).

7. Clearsall the variables. 15. Removes the current parameter (16).

8. In a schema, search in the semantic and/or 16. List of the parameters of the procedure.
technical descriptions. 17.1f checked, the search is case sensitive.

FIGURE 173. The procedure triggered by a pattern dialog box.

The command Assist/Text analysis/Execute allows executing a Voyager2 procedure each time a
pattern is found.

The left side of the Procedure linked to Pattern dialog (figure 173) is the same as the Search dialog
box. Except that, if it is call from atext file there are three pseudo-variables (fil e nane, | i ne
num pattern) andif itiscall from aschemathereisapseudo-variable (pattern).Fil e naneis
instantiated with the name of the file in which the search takes place, | i ne numis the number of
the line in which start the pattern (the pattern may be on several lines) and pat t er n is the instanti-
ation of the pattern.

The right side of the dialog box contains the procedure to be executed each time the pattern on the
left side is found. The Program V2 text box (9) contains the name of the program (oxo file), the
Browse button (10) can be used to find the program. When a program is selected, the Procedure
V2 combo box (11) contains the list of procedures exported by the program. Select the procedure to
be executed.

Thelist box below the name of the procedure (16) must be filled by the variables of the pattern that
are used as parameter of the procedure. To fill thislist, select avariable in the list of the pattern’s

6 Program Understanding in DBRE

variables (4) and the click on the First (13) or Next (14) buttons. To remove a variable from the list
(16), select it and click on the Remove button (15).

Click on the OK button, then the search start at the selected line (if the search take place into a text
file) or at the current object, until the end. Each time the pattern match, the procedure is executed.

A.3.2. Example (1)

This example shows how to generate a report of all the assignment instructions found into a
COBOL program. For each move instruction, the line number of the instruction and the two vari-
ables (the origin and the target of the assignment) are printed.

The patterns used to search into the source text are the following:
- /g'[/nltlir]+";
[g"[/n/t/r]*";

var = /g"[a-zA-Z][-a-zA-Z0-9] *";

var_1 = var;

var_2 = var;

nove = "MOVE" - @ar_1 - "TO' - @ar_2 ;

The nove procedure is called to display the report, the procedure is declared export , because it
must be call from outside the voyager program.

export procedure nove(string: var_1,
string : var_2,

string : file _nane, string : line)
{
SetPrintList("","","");
print ([file_nane, ",", |line, ,
var_2, "-->" var_1, "\n"]);
}

A.3.3.Example (2)

In this example, SQL views represent sub-types of atable. The views are defined as follow

create view (.....)

as select (.......)

from <t abl e>

where <col um> = <string>;

The SQL extractor extracts views as entity types and puts the declaration of the views into the tech-
nical description of the entity type. The tables are extracted as entity types.

The purpose of the example is to create is-a relations between the super types (the tables) and their
sub-type (the views). To know to which table a view must be connected, the declaration of the view
(stored into the technical description) is search for the follow code fragment:

from <t abl e> where <col um> = <string>

Program Understanding in DBRE 7

When such a fragment is found, an is-a relation can be created between the view (the entity type
that contains the code fragment in its technical description) and the table (the entity type of name
<nane>)..

The patterns of figure 174 are used to search into the technical description are the following.

- = /g"[/n/tlr]+

string ::=/g"" .*" ",

nane ::=/g"[a-zA-ZO 9]+";

table ::= nane;

colum ::= nane;

from::= "from - @able - "where" - colum - "=" - string;

FIGURE 174. Declaration of the pattern f r om

The Voyager2 function, create is a, is called to create the is-a relation. It has one argument, the
name of the super-type (the table). It creates the is-a between the super-type and the current entity
type (the view).

export procedure create_is-a(string: table)
/* creates a is-a relation between the entity type of nane
"tabl e’ and the current entity type*/
data_object : d_obj;
schema : sch;
entity type : sub_ent;
entity_type : super_ent;

Set Pri nt Li St("","","");

sch : = Get Current Schema() ;
/* get the current schema*/
if IsVoid(sch) then {
/* if there no current schema return an error */
print("No Schema !\n");
return;

go : =Cet Current oj ect ();
[/* get the current object */
if IsVoid(go)
then {
/* if there is no current object, return an error */
print("No current object !'\n");
return;

}

if (GetType(go) <> ENTITY_TYPE)
then {
if the current object is not an entity type, return an
error */

print("The current object is not a entity type !'\n");
return;

/*

sub_ent go;

is the entity type of nane 'table */

[* ' sup_ent

sup_ent := CetFirst(DATA OBJECT[d_obj] { @CH DATA: [sch]
with ((CetType(d_obj) = ENTI TY_TYPE)
and (d_obj.nane = table))});
/[* 'l _clu is the list of cluster connected to the super

e*/

typ
I _clu := CLUSTER] cl u] { @NTI TY_CLU: [sup_ent]};
if(Length(l_clu) = 1) then
{

8 Program Understanding in DBRE

/* if the super type has a cluster, use it */

clu := GetFirst(l_clu);
el se

[* if the super type has no cluster, create it */
clu := create(CLUSTER, nane : sup_ent.nanme, total : O,
di sj oi nt 0, @NTITY_CLU : sup_ent);

}
/* connect the sub-type to the cluster */

sub_t := create(SUB_TYPE, @LU SUB : cl u,
@ENTI TY_SUB : sub_ent);
}

The usage of this pattern and of the cr eat e_i s_a procedure will beillustrate on an example. The
procedure triggered a pattern tool is used on the raw physical schema of figure 175. To ease the
understanding of the schemathe view declaration code have been represented as textual annotation.

PERSON PROFESSOR STUDENT
NAME NAME[0-1] NAME[0-1]
ADDR ADDR[0-1] ADDR[0-1]
YEAR[0-1] SALARY[0-1] YEARI[0-1]
SALARY/[0-1]

TYPE

create vi ew PROFESSOR (NAME, ADDR, SALARY) as
sel ect NAME, ADDR, SALARY from PERSON
where TYPE = 'P';
create vi ew STUDENT (NAVE, ADDR, YEAR) as
sel ect NAME, ADDR, YEAR from PERSON
where TYPE = 'S ;

FIGURE 175. The raw physical schema.
To create theis-arelation, nothing is selected into the schema and the command Assist - Text anal-

ysis - Execute is executed. from is selected as the pattern, create_i s_a. oxo as the program,
create_i s_a asthe procedure and the procedure has only one parameter (t abl e).

When the Ok button is clicked, the is-a relation is created to produce the refine schema of figure
176

PERSON
NAME
ADDR
YEAR[0-1]
SALARY[0-1]
TYPE

PAN

PROFESSOR STUDENT
NAME[0-1] NAME[0-1]
ADDR[0-1] ADDR[0-1]
SALARY[0-1] YEAR[0-1]

FIGURE 176. The Schema with the is-a relation created.

Program Understanding in DBRE

A.4. Dependency graph

The are three steps to use the dependency graph in DB-MAIN:

» Computes the dependency graph itself.
» Changes the settings of the graph visualization.
* Visualizes the graph.

A.4.1. Computesthe dependency graph

Dependency 1. List of patterns used to compute the
Fatterns I j dependency graph
| | 2. List of available patterns.
facld Deel Directed
— === e Ok | 3. Adds the current pattern (2) to the
e list of patterns used to compute the
dependency graph (1).
Cancel | 4. Remove the selected pattern from
thelist.
WS EER e) 5. If checked, the next pattern to be
[sep_cob x| I Besesensive | hen || agded is oriented (from var 1 to
¥ Save dependency araph var _2).
f=:\depend i 6. Name of the file in which the

dependency graph will be saved.
7. Opens the standard file dialog box to change the name of thefile.

8. If checked, saves the dependency graph into afile.

9. If checked, the pattern is case sensitive.

10. The pattern use to find the beginning and the end of the variables.

FIGURE 177. The variable dependency graph dialog box.

The dependency graph can be computed by the command Assist - Text analysis - Dependency
(figure 177). The relation between two variables is given by a pattern, which contains two PDL
variables (var _1 and var _2). The list box (1) contains the list of patterns used to compute the
dependency graph. To add a pattern to this list, select it into the combo box (2), check the check-
box oriented (5) the pattern must be oriented and then click on the Add button (3). To remove a
pattern from the list, select it and click on the Delete button (4).

All the patterns of the list box must have two variables named var _1 and var _2. Thelists of vari-
ables contained into var _1 and var _2 are computed using the pattern "separator” (see below) to
Separate the variables. If the arcs are oriented, they go from all the variables of var _1 to al the
variablesof var _2.

The separator (10) is a pattern that marks the beginning and the end of a variable name (the sepa-
rator). This pattern can match only one character string.

If Save dependency graph (8) is checked, the dependency graph is saved into the given file (6).
The file contains two version of the dependency graph: one that contains only the relation found

10 Program Understanding in DBRE

using the patterns and the one that is the transitive closure of the first one. The graphs are stored in
atextual format

<variable> : <list of the variables directly reachable fromthe
vari abl e>

The two graphs are separated by aline "****",

Click on OK to compute the dependency graph. It can take some time, depending on the size of the
text and of the number of patternsin the list.

A.4.2.Changethe settings

Text analysis setting HE |
— Dependency graph

- 1. Change the color in which the vari-
-~ Program slicing Cancel ables bellowing to the dependency

. Colar | = graph are colored.

— Copy
[Copy line number

k

fli

FIGURE 178. The text analysis setting dialog box.

The text analysis setting dialogue can be reach by the command Assist - Text analysis - Setting
(figure 178). Only the top part of the dialog is related to the dependency graph configuration.

The Color (1) button is used to change the color in which the dependency graph will be colored
(see later). The color used is displayed into the square on the | eft.

A.4.3.Visualization of the dependency graph

219 TLECTURE-DETAIL.

220 DISFLAY "CODE DU PRODUIT (0 =FIMN) . ".
221 ACCEPT CODE-FROD.

222 IFCODE-FROD ="0"

223 LOVE O T FIN-FICHIER

224 MOVEQ TO REF-2TOCK-DEIND-DET)

225 ELEE
226 PERFOEM LECTURE-CODE-FPROD.
237

228 LECTURE-CODE-FPROD.

229 MOVE 1 TO EEIST-FROD.

230 MOVE CODE-FROD TO 3TE-CODE.

231 READ ITOCK INVALID KEY
When the dependency graph is computed. Click with the mouse’s right button on a variable into the
text file and if this variable belong to the dependency graph then all the variables backward or

forward reachable (directly or indirectly) to this variable are colored, everywhere in the text file.

Program Understanding in DBRE 11

Select a line with the left button of the mouse and then press the <Tab> key. The next line that
contains a colored variable will be displayed in the middle of the screen.

The pattern select into the The separator combo box is use at this level to find the beginning and
the end of the variable on which you click.

A.4.4.Configuration

DB-MAIN Configuration]|
Code generators The zecondan file of patterns a
DDL extractors The main file of patterns

Default directories iU nly the vanables of the dep. araph can be colored

Inter-groups constraints The color in which the dependency araph will be colored

Logging The lines copied in the clipboard are prefized by their numb

b ethiod The file that containg the list of modules LI
i PSRPSRPY |PSR-UPY PR R PR S S P - [P | I S

Report generators R

Schema analyziz
W Only the vanables of the dep. graph can be colored ¥

Tranzformations
IJzer-defined menu
Wiew settings

Change I Claze Help

FIGURE 179. Configure the dependency graph visualization.

The normal behavior of the dependency graph, is that only the variables belonging to the depen-
dency graph are colored. It can be useful to color all the occurrences of avariable even if it does not
appear in the dependency graph.

To change the behavior of the dependency graph tool, select the command File - Configuration.
The configuration dialogue appears. Select the Text analysis item into the left list box. Then the
"Only the variables of the dependency graph can be colored” is displayed, selected it. If you want
the tool colors only the variable belong to the dependency graph, unchecked the check box and
click on the Change button. If you want that the tool colored the variables even if they do not
appear in the dependency graph check the check box and click on the Change button.

When variables that are not in the dependency graph are colored, the tool can be used to color word
that are not variable. For example, if you click on the name of a procedure, each call to the proce-
dure and its declaration are colored.

A.45.Tips

1. If the combo box containing the available patterns is empty, it means that there is no pattern
loaded or thereis asyntax error in one of the pattern. See Assist - Text analysis- Load pattern.

2. To add anew pattern or to modify an existing one, usethe Assist - text analysis- L oad pattern.

3. To check if the patterns used to compute the dependency graph are correct, use the command
Assist - Text analysis - Search to check that they are correct and that they match with the
expected instructions.

12 Program Understanding in DBRE

A.4.6.Remarks

The computation of the variable dependency graph is a syntactical process (it only uses the
patterns). The usage of the patterns to construct the dependency graph make the tool very flexible
and easily customizable to almost any language.

But the drawback is that the dependency graph is not award of the variables structure or of the
program’s control flow. This can lead to an incomplete graph as in the following example:

01 A pic x(10).

01 B. move A to B.
02 B1 pic x(5).
02 B2 pic x(5). nmove Bl to C1.
01 C
02 C1 pic x(5). nmove B2 to C2.

02 C2 pic x(5).
The dependency graph is the following:

A——»B Bl—»Cl B2—»C2

and the relation between A and Cis not present, because the graph is not awarded that B1 and B2 are
the two component of B.

A.4.7. Dependency graph visualization

A.4.7.1. Graph drawing

| ND-DET : | ND NEXT- DET STK-CODE

NEXT- DET : N

S| GNALETI QUE : CLI - SI GNAL | COPEPROT} 1.1 > 0N{ REF-STOCK-DE
CLI-SIGNAL : S| GNALETI QUE N

oL Ome o LT ENT .

COMWt CLI ENT : [SIGNALETIQUE v O-N-CLI—SIGNA

CLI - HI STORI QUE : LI ST- ACHAT ON 1t

LI ST- ACHAT : CLI - HI STORI QUE o

LI ST-DETAIL : COM DETAI L
COM DETAIL : LI ST-DETAIL N

CODE- PROD : REF- STOCK- AC o
STic o K B STH- CoDE SR, o TR
REF- STOCK- DE : [INDJo-N< 14/ IND-DET}1-1<_>0- NEXT-DET
REF- STOCK- AC :

o OB o1 troos

The depend. oxo program can be used to visualize the dependency graph. It displays it as an
entity/relationship schema, where the entity types represent variables and the relationship types
represent the arcs.

To use it, create an empty schema (as the current window) and execute depend. oxo. Give as
parameter the file generated by the computation of the dependency graph.

Program Understanding in DBRE 13

A.4.7.2. Mark graph

The mar k_dp. oxo program is used to mark the entity typesin the dependency graph that represent
entity types or attributes of the data schema. Before executing mar k_dp. oxo, make sure that de
dependency graph isin the current window. The program asks you the schemathat contains the data
schema.

A.5. Programsdlicing

A.5.1.Use of program slicing

Slicing

Select the wariables to be used
as the shcing criterion

COM
COM-CODE
COM-CLIENT
COM-DETAIL

Cancel |

FIGURE 180. Dialog box to select the variables with respect to the program slice must be
calculated.

Select the line with respect to which you want to compute the program slice, then use the command
Assist - Text analysis- Program dicing. Then adialog containing the variables referenced into the
selected instruction is displayed. Select the variable(s) for which the slice must be calculated. The
dliceis colored, if an instruction is on several lines, only thefirst oneis colored.

The first time you use the program slicing tool on a COBOL source code it can take some time
(several minutes for big programs) because it must parse the program and create the system depen-
dency graph. The next time a program slice is computed for this source code it goes faster, because
the computation of the program slice consists only into the traversing of the system dependency

graph.

During the parsing of the program, syntax error (syntax that are not understood) are displayed, but
the parsing continue. The sentence (until the next ".") where the syntax error occurs is not repre-
sented into the system dependency graph, so is ignored during the computation of a slice. So the
slice can be incompl ete because of the "syntax error”.

A.5.2.Call graph

One of the side effect of the program dlicing tool isthat it creates a processing schemathat represent
the program call graph, named fi | e_nane/ pr g. Each procedure is represented by a processing
unit named as the procedure (section or paragraph) and the perform instruction by a call relation.

14 Program Understanding in DBRE

The command Assist / Text analysis / Goto can aso be used to go from the call graph to the text
and from the text (section or paragraph) to the call graph.

A.5.3. The command line program slicing

A.5.3.1. Description

We have derived from the DB-MAIN program slicing tool a command line program slicing tool.
Thistool can be very useful to compute slices for very big programs (it can run on a Unix worksta-
tion) or to compute slice of many different programs (batch processing). It computes slices of the
<cobol _fil e>COBOL program, if no<cobol _fi | e>isgiven, then it asksfor one.

A.5.3.2. Synopsis

slicing [-d] [-f] [-s start -c condition [-e node type] [-V]]
[-a action] [-g sdg_file] [-p parse_file] -F <command_file>
[-0 output] [-i] [-P <beg> <end>] [-b <db_structure>]
[cobol file]
A.5.3.3. Option
-d Computes the slice using only data dependence arcs. By default, it uses also the
control dependence graph.
-i Doesn't include the "invalid key" branch into the SDG.
-f Computes the forward dlice, the default value is to compute the backward slice.
-g <sdg_file> Saves the SDG corresponding to the COBOL program into <sdg_file>.
-p <parse_file> Savesthe parsing tree corresponding to the COBOL program into <parse file>.
-0 <output> Displays all the messages into the file <output>, by default they are displayed to
the standard output.
-v Computes which part of the variables defined in the condition node influence
which part of the variable referenced in the start node. Need the options -s, -c
-s<start> <start> is the type of nodes with respect which the program slice will be com-

-c <condition>

-a <display>

-e <node_type>

puted. The possible values of <start> areread, wri t e, proc, nornal , t est,
| oop, goto, performor line:<l_1> ..<l_n>with| _i an integer (line
number). If no <start> is given, the user is asked for aline number.

If this option is used, only the lines of the slice that are of the given type will be
displayed. By default, al the lines are displayed. The valid value of <condi-
tion> areread,wite, proc, normal ,test,l oop, goto, perform

Defines how the result will be displayed. The valid <display> are num(only the
number of the lines will be displayed), | i ne (the complete lines will be dis-
played), num | i ne (asnum and line) and var (only the variables referenced at
the instruction will be displayed).

Stops the SDG traversing when a node of type <node_type> isreach. The valid
value of <node type> are read, wri te, proc, nornal, test, | oop, got o,
perform

Program Understanding in DBRE 15

-P <begin> <end>Marks only the lines of the dlices that are in the path between <begi n> and
<end>.

-b <db_structure> A file describing the declaration of the database used in the "SCHEMA SEC-
TI ON".

-F <command_file>Each line of the file <command_file> describe a slice (or a SDG traversal) to

compute. Each line contains some valid options, with the same syntax as the
option of sl i ci ng. Thevalid optionsare: [-f] [-s start -c condition
[-e node_type] [-V]]
[-a action] [-P <beg> <end>].For example, if <command_file> con-
tains two lines, it is equivalent to two executions of sl i ci ng with the options
of each lines. Except that if we use <commande file>, the SDG is only com-
puted one and if we use two sl i ci ng command the SDG is computed twice.
For big programs the computation of the SDG can take several hours on a pow-
erful workstation.

A.6. Creating schema

Many DBRE projects require to extract information from source code, text and represent them as a
schemainto DB-MAIN. DB-MAIN offers some built-in extractors (SQL, COBOL, etc.) and some
specific extractors (XML/DTD, RPG, etc.) have been developed in Voyager2. Those extractors are
not sufficient to solve al the specific needs of al the projects. On the other hand, it can be to expen-
siveto write, in Voyager 2, a specific extractor for a given project. To solve this problem there exist
two generic schema extractors. These extractors do not take as input a source code, but an interme-
diate text file that describe the schema. This intermediate text file can be easily generate from the
source code by some scripting language such as grep, awk, perl, etc.

The two programs can be used to create a processing schema for the first and a data schema for the
second.

A.6.1. Processing schema

The graph_tr. oxo program creates a processing schema from an input file. This program can
create processing units, data objects, call relations, decomposition relations and in-out relations.

A.6.1.1. Theinput file

To create a graph the gr aph_t r . oxo program needs a file that contains lines with the following
format:

<line_type>; <param 1>;...; <param n>
where<l i ne_t ype> ="PROC", "VAR", "CALL", "IN", "OUT", "I-O" or "DECOMP"

If <li ne_type>=="PROC" ou"VAR"

<param 1>
<param 2>

<node_t ype>
<node_nane>

16 Program Understanding in DBRE

<param 3> = <second_node_nane>
<param 4> = <node_type>
<param 5> = <descri ption>

Creates a processing unit (<l i ne_t ype> ="PROC") or adata object (<l i ne_t ype> ="VAR") of
name <node_nane> and the dynamic property S_nane and Type take respectively the value of
<second_node_nane> and <node_t ype>. The node name and its dynamic property S_nane are
both identifiers. Descri pti on isadded to the technical description of the processing unit or of the
data object. If a node with the same name or the same dynamic property S_nane exists, the new
node is not created.

If <l'i ne_type>=="CALL","DECOMP", "IN", "OUT" or "|-O"

<param 1> = <type>
<param?2> = S or P
<param 3> = <nane_1>
<param 4> = S ou P
<param 5> = <nane_2>

If <l'i ne_type>is"CALL" or "DECOMP", creates arelation call or decomposition. The relation
connect the processing unit <nane_1> to the processing unit <nane_2>. <name_1> (<nane_2>)
represents the name of a processing unit, if <par am 3> (<par am 5>) egual P and it represents the
S_nane, if <param 3> (<par am 5>) equal S. <t ype> is store in the dynamic property Type. If
the processing unit <nane_1> or <nanme_2> does not exist the relation is not created.

If <line_type>is"IN" or "OUT" or "I-0", creates a relation in-out. The relation connects the
processing unit <nane_1> to the variable <name_2>. <nanme_1> (<nane_2>) represents the name
of a processing unit (or data object), if <param 3> (<param 5>) equal P and it represents the
S nane, if <param 3> (<param 5>) equa S. If the processing unit <nanme_1> or the variable
<nane_2> does not exist the relation is not created. If there is no relation between <nane_1> and
<nane_2>, itiscreated of typeininput (<l i ne_t ype>="IN"), output (<l i ne_t ype>="0UT")
or update (<l i ne_t ype> ="1-O"). Else therelation is updated to add the new type. |.e. if it was of
type input and the <l i ne_t ype> is "OUT" or "I-O", then the type of the relation is change to
update; if it was of type output and the <l i ne_t ype>is"IN" or "I-O", then the type of the relation
is change to update; otherwise the type of the relation is not modified.

A.6.1.2. The creation of the graph

The graph_t r. oxo program adds the processing units, variables and relations described in afile
to the current processing schema.

To create a new graph:
» Open (or create) a processing schema.

» Execute the gr aph_t r. oxo program (File - Execute voyager) and give it afile of the format
described in the previous section. The file can not contain forward references.

The graph is created, but the processing units and variables are not correctly positioned. For big
schema, it can be very painful to position each aobject, on the other hand the DB-MAIN build-in
tools (auto draw) are not very useful because they are for ordinary processing schemaand our graph

Program Understanding in DBRE 17

has other graphical properties such asit is not any graph but it can be atree,... Thisiswhy we have
written a series of small voyager2 programs that help the analyst to manipulate the graph.

A.6.1.3. Data schema coloring
Thecol or _tr. oxo program colors processing units depending of their dynamic property 'Type’.

asks the user the value of the dynamic property Type and its associates color (to be chosen into a
list).

A.6.1.4. Sort graph by level

Thesort _n_tr. oxo program sorts by level the current schema according to the call relation.

A.6.1.5. Center entity types
Theg_cent er _tr. oxo program centers (horizontally) the marked (in M ar k1 mark plan) process-

ing units with respect to the processing units that can be reach through call relation (depending of
the chosen option).

A.6.1.6. Mark objects with the schema analysis

It is possible to mark or select abjects using the schema analysis assistant (Assist/Text analysis).
For example, we can select all the processing units that are not connected to other ones, etc.

A.6.1.7. Mark processing units reachable following call relations

The g_slice_tr.oxo program travels through the schema from the selected processing units
following the cal relations (the direction depends of the chosen option) and marks all the process-
ing units crossed. It isuseful to extract abranch of acall graph.

A.6.2. Data schema

The graph.oxo program creates a data schema from an input file. This program can create entity
types, relationship types (with roles), attributes.

A.6.2.1. Theinput file
To create a graph the gr aph. oxo program needs a file that contains lines with the following

format:

where<l i ne_type>="ET", "RT"

If <line_type>=="ET"

18 Program Understanding in DBRE

<param 1> = <node_type>
<param 2> = <node_nane>
<param 3> = <second_node_nane>

Creates an entity type of name <node_nane> and the dynamic property S_nane takes the value of
<second_node_nane>. The node name and its dynamic property S_nane are both identifiers. If a
node with the same name or the same dynamic property S_nane exists, the new nodeis not created.

If <l'ine_type>=="RT"

<param 1> = <node_nane>
<param 2> = S or P
<param 3> = <nane_1>
<param 4> = S or P
<param 5> = <nane_2>

Creates the relationship-type of name <node_nane> (add a suffix to have a unique name).
Connects the relationship-type to the entity type <name_1> with a 1-1 role and to the entity type
<nane_2> with a0-N role. <nanme_1> and <nane_2> are the name of the entity type if they are
preceded by P and the value of the dynamic property <S_namne> if they are preceded by S.

A.6.2.2. The creation of the graph

The gr aph. oxo program adds the processing units, variables and relations described in afile to the
current processing schema.

To create a new graph:

* Open (or create) a data schema.

» Execute the gr aph. oxo program (File - Execute voyager) and give it a file of the format
described in the previous section. The file can not contain forward references.

A.7. Search a schema for referential constraints

A.7.1. About referential constraints assistant

The referential constraints assistant proposes some popular heuristics to find and to create referen-
tial constraints.

The different heuristics are composed of two kinds of rules. The first one are the rules to find the
target and origin candidate of the referential constraints. For example, the target of the referential
constraints must be a primary identifier and the origin an access key. The second one are the criteria
to find the matching origin and target. For example, the target and the origin of the referential
constraint must have the same type and the same length.

When all those rules are defined, the referential constraints assistant propose a list of possible
foreign key (list of couples) and the analyst can chose those he wants to create.

Program Understanding in DBRE 19

Thisassistant is divided into two dialog boxes. In the first one the user can define rulesto find target
and origin and matching couples are displayed. This dialog box is aso used to create the referentia
constraints and to open the second dialog box in which the matching rules are defined.

20 Program Understanding in DBRE

A.7.2.Choosing a strategy

il Search for referentialfinclusion constraint

Matching..g Rezet 12
y o
20 — 18 EBemove 10 Clear 13
 Prim. ia Teut 1 Gata N
 Anpid Creats 11 Create all 14
Item 1 2
 Any group ([ltem 2 -
£ Selected Ibem 3 Advanced...
seete [tern 4 _l
£ Matkedjiiem 5 8 I~ Mark Ref 16
J > j T 17
[Show attibutes 4 M1
21 [Text 5_ Goto 9 " Ref
-~ " RefEqu
sy |[1on? 6 € Irkoin
-~ Item 3 Incl Equ
Selected It 4 » Eey
= Marked Item 5 € Copy Equ
I / j Cloze I Help

The entity type parent of the current target group.

The attribute of the target entity type.

The target groups (prefixed by their entity type).

If checked, the attributes are displayed.

The entity type parent of the current origin group.

The attribute of the origin entity type.

The list of the matching groups (prefixed by their entity type).
The arrow that represents the foreign key.

Opensthe dialog box to chose the matching rules.

© © N o g & OO DNH

11. Creates the selected foreign key.

12. Resets the matching rules to their default rules.

13. Show all the group couples that match the matching rules.
14. Creates all the proposed foreign keys.

16. If checked, marks the origin of the created referential constrai
17. The type of foreign key to be created.

18. Shows the target entity type into the schema.

19. Shows the origin entity type into the schema.

20. The type of the candidate target groups.

21. The type of the candidate origin groups.

10. Remove the selected foreign key from the list of the possible foreign keys.

15. Execute a Voyager 2 procedure to create the proposed foreign keys.

nt.

FIGURE 181. Referential constraint ends selection rules.

Program Understanding in DBRE

21

To use the reference constraint assistant, use the command Assist/Referential key.

The radio buttons, on the left, are used to define the target and the origin of the referentia
constraint. The different possibilities for the target are:

e Prim. id The target group must be a primary identifiers of the schema.

* Any id Thetarget group must be an identifiers of the schema.

* Any group The target group can be any group of the schema.

» Selected The target group is a selected groups of the schema.

* Marker Thetarget group is amarked groups of the schema.

And for the origin:

» Att or group The origin of the referential constraint can be any attribute (or set of attributes) or
any group.

* Any group The origin group can be any group of the schema.

» Selected The origin group is a selected groups of the schema.

* Marker The origin group is a marked groups of the schema.

If the target is Selected or Marked, then the origin could not be Selected or Marked. If the origin
is Selected or Marked, then the origin could be Selected or Marked.

The button Matching is used to set the group matching rules. The Reset comeback to the default
matching rules (each component of the group must have the same type and the same length, does
not accept attribute, does not accept multivalued reference key, no name matching rules).

The middle parts displays the proposed referential constraints. The top part contains the target and
the bottom the origin of the referential constraint.

22 Program Understanding in DBRE

A.7.3. Thematching rules

i Search for referential/inclusion constraint

[Skip existing reference key [&ccept multivalued reference key |
—MAME MATCHING RULES

The name of the reference key includes

STRUCTURE MATCHING RULES——— | [key word | v|

[T Sametotallength [Hierarchical r m elier el o el BT etivs
For each component; [Sare length
[~ Same ype I I vl characters of target key name

[T caze zensitive

Help | b are. . | Cancel |

1. Tf checked, the existing referential consiraint are not displayed, otherwise they are dis:
played followed by a"*".

2. If checked, accepts groups that contain a multivalued attribute.
3. Both group must have the same total length (the sum of the length of each components).

4. Groups can contains role. The length of the role is equal to the length of identifier of the
entity type connected to the role. This constraint is always associate with the constraint
Same total length.

5. The components of both groups must have the same length. If the groups have more than
one component, they are compared in the order, i.e. the first one with the first one, the sec
ond one with the second, and so on.

6. The component of both groups must have the same type. If the groups have more than one
component, they are compared in order

7. The name of the reference key must contains the keyword.

8. The name of the reference key must contains (some or all) the characters of the target entity
type name.

9. The name of the reference key must contains (some or all) the characters of the target iden-
tifier name.

10. The constraints on the name of the attribute of the groups (the group have only one
attribute).

11. If checked, the name matching rules are case sensitive.
12. To get some help.
13. To define a Voyager matching rule.

FIGURE 182. Matching rules dialog box.

The search criteria didog box is obtained by pressing the Matching button in the referential
constraint assistant dialog box.

Program Understanding in DBRE 23

The different criteriaare:

» Skip existing reference key: the group is not selected if the origin group is already the origin of a
reference constraint.

» Sructure matching rules: the two groups must have the same length (same total length is
checked) or each of the groups components must have the same length (same length is checked)
and/or the same type (Same type is checked) or no constraint on the structure (nothing
checked). If hierarchical is checked (Sametotal length isalso checked) and if agroup contains
arole then the length of the group is the length of the attributes of the group plus the length of
the primary identifier of the entity type connected by therole (if the role is multi-domains then it
is the maximum of the length of the primary identifier of the entity types connected by the role).

» Accept multivalued reference key (only if we are looking for the origin group): accept groups
that contain a multival ued attribute.

» Name matching rules. this rule contains three criteria on the name of the attributes. If thisrules
is used the origin group must contains only one attribute.

*Key word: the origin attribute must contains a key word. If this rule is used, the two other
name matching rules are applied on the attribute name without the key word.

*Some or al characters of the origin attribute must be included in the target entity type name.

*Some or all characters of the origin attribute must be included in the target attribute name.

For the two last rules we can choose that all the characters must be included and they must
be contiguous. If we choose some (a number, i) then the first i characters of the target
entity type or attribute name must be included in the origin attribute, but not necessary in
a continuous manner. For example: the three first characters of ABCD are included into
FABCDE and in AFBCE but not in CBADE.

scase sendgitive: if checked, the name matching rules are case sensitive.

» More: the user can gives two Voyager 2 functions, one that checks if two groups are matching
and the other that checks if an attribute matches with the target group (see "voyager matching
group procedures).

Click on Ok to accept the matching rules and to comeback the previous dialog box.

A.7.4.Createthereferential constraints

Select the type of the constraint to be created (figure 181) (17). In this version, only ref (referential
constraint) and ref equ (equality constraint) are possible. If Mark ref is checked the origin group of
the referential constraint will be marked.

Click on the Create button to create the current referential constraint. To create all the proposed
referential constraint, click on the Create all button.

The Advanced button can be used to give a Voyager2 procedure that is caled for each proposed
referential constraint. This procedure can be used to create the referentia constraint into the
schema, to print some report or any other function.

24 Program Understanding in DBRE

A.7.5.Gotothe schema

There is a Goto button at the right of the target and origin entity type. If you click on one of them,
then the corresponding entity type is displayed in the middle of the schema windows.

A.7.6.Changing the selected group

If one of the Selected radio buttons is checked, the list of group can be change by selecting other
groups in to the schema window without closing the reference constraint assistant. Just select the
groups in the schema. Then re-activate the reference constraint assistant and the list of selected
groups is updated and the matching group are also displayed, using the criteria as set before

A.7.7.Removing a group/attribute from the list of matching groups

If the matching rules found a (or more) matching group that you do not want to be in the list of
matching groups, you can remove it. To remove it, select it and click on the Remove button. It
disappear and if you click on the Create all or Advanced button, this referential constraint will not
be created.

To redisplay all the groups that have been removed from the matching groups, click on the Clear
button.

A.7.8.Voyager matching group functions

The user can write its own matching function to check if the two ends of a referential constraint
match. The function receives two input parameters, the two ends of the referential constraint. The
first one, the target of the referential constraint, is always a group, while the second, the origin, can
be a group or an attribute. the user has to write two matching functions. The first one checks if two
groups match. The second one checksif the origin attribute match with the target group. The signa
ture of the two functions are the following:

export function integer <match_group>(group: <origin_gr>,
group: <target gr>)
where

e <origi n_gr>istheorigin group of the referential constraint
* <target_gr>isthetarget group of thereferential constraint

and
export function integer <match_att gr>(attribute: <orig att>,
group: <target _gr>)
where

e <orig_att>istheorigin attribute of the referential constraint
* <target_gr>isthetarget group of the referential constraint

Program Understanding in DBRE 25

A.7.9. Example of voyager matching functions

In the name matching rules, thereistwo rulesthat check if al or some of the characters of the origin
attribute are included into the target attribute or entity type name. This example shows the voyager
functionsthat check if al or some of the characters of the origin attribute are included into the name
Two functions FK_name_i n_col | andFK _nanme_i n_col | _att arecaledthrough the more
button of the "matching rules' dialog

export function integer FK_nane_in_coll (group : org_gr,

group : targ_gr)

/* Checks that the name of the origin group’s (org_gr) attribute
contai ns the nanme of one of the target group’s (targ_gr)
col I ecti on*/

list : | _conp;
real _conponent : rc;
conponent : co
attribute : org_att;

{
/1l The list of org_gr conponent
| _conp := REAL_COVPONENT] r c]
{ REAL_COWP: COVPONENT[co] { @R _COWP: [org_gar]}};

if(Length(l _conp) <> 1) then

/[l If org_gr contains nore than one conponent
return(0);

if((GetType(CetFirst(l_conp)) <> SI_ATTRI BUTE)
and ((GetType(GetFirst(l_conp)) <> CO ATTRI BUTE))) then

/1 1f the conponent of 'org_gr’ is not an attribute
return(0);

org_att := CGetFirst(l_comp);
return(FK name_in_coll _att(org_att, targ_gr));

}

export function integer FK nane_in_coll_att(attribute : org_att,
group : targ_gr)
/* Checks that the nanme of the origin attribute (org_att) contains
the name of one of the target collections (targ gr)*/
list : | _conp;
real _conponent : rc;
conponent : co
attribute : targ_att, att;
owner _of _att : targ_owner;
entity_type : targ_et;
collection : targ_coll;
coll_et : col _et;

{
/1 The list of 'targ_gr’ conponent
| _comp : =
REAL_COMPONENTT r ¢] { REAL_COMP: COVPONENT[co] { @R_COWP: [targ_g
ri}}s

i f(Length(l _conp) <> 1) then

/[l If "targ_gr’ contains nore than one conponent
return(0);

}
if((GetType(CetFirst(l _conp)) <> S|I_ATTRI BUTE)
and ((GetType(GetFirst(l_conp)) <> CO ATTRI BUTE))) then

/1 1f the conponent of 'targ_gr’ is not an attribute
return(0);

26 Program Understanding in DBRE

}
targ_att := GetFirst(l_conp);

/1 Search the entity type containing the attribute
targ_owner :=
Cet First (OAMNER_OF _ATT[targ_owner] { ONBNER ATT: [targ_att]});
whi | e(Get Type(targ_owner) <> ENTITY_TYPE) do
{

att := targ_owner;
targ_owner :=
Get First (OMER _OF_ATT[targ_owner] { OMNER ATT: [att]});

targ_et := targ_owner;

for targ_coll in
COLLECTION[targ_col |] {COLL_COLET: COLL_ET[col _et]{@ENTI TY_CO
LET:[targ_et]}} do

i f(StrFindSubStr(org_att.name, 0, targ_coll.nane) >= 0) then

return(l);

}
return(0);

A.7.10.Voyager " Advanced" procedures

The user can write its own advanced procedure to create the referential constraint or print some
report. This procedure receives three input parameters, both ends of the referential constraint and
the type of the referential constraint. The first one, the origin of the referential constraint, can be a
group or an attribute. The second, the target, is always a group. The user has to write two proce-
dures. The voyager procedures must have the following signature.

export procedure <proc_name>(group: <origin_gr>,
group: <target_gr>, integer: <t>)

where
* <origin_gr> istheorigin group of the referential constraint

* <target_gr>isthetarget group of the referential constraint
» <t >isthetype of the referential constraint

and
export procedure <proc_name>(attribute: <origin_att>,

group: <target_gr>, integer: <t>)
where
* <origin_att>istheorigin attribute of the referential constraint
* <target_gr>isthetarget group of the referential constraint
* <t >isthetype of the referential constraint

This procedure is executed for each matching referential constraint. To select the procedure, use the
Browse button to select the ox o file and then select the procedures name in the combo box.

Program Understanding in DBRE 27

A.7.11.Example of voyager referential keys creation procedures

In fact, the "Advance procedures' rarely create the referential constraints, this is done by the built-
in function create all. Usually these procedures are used to generate reports or some validation
scripts.

In this example, SQL queries are generated to verify that the data verify the proposed referential
constraints, i.e. count the number of values of the reference attribute that are not present into the list
of the value of the target identifier. For example, if there is a proposed foreign key from A. Al to
B. B2, it generates the following query:

sel ect count (*)

fromB

where B2 not in (select Al
from Al);

When this query is executed, if the result is equal to O then the referential constraint is validated
otherwise it is not areferential constraint.

Two validation procedures are needed, val i date_sql and val i date_sql _att, that are
called through the Advance button.

export procedure validate_sql (group : gr_org, group :
gr_targ,
integer : t)

attribute : att_org, att_targ;

entity type : ent_org, ent_targ;

data_object : d_o;

real _conponent : rc;

conponent : co;

ent_org := GetFirst(DATA OBJECT[d_o] {DATA GR : [gr_org]l});
ent _targ := CGetFirst(DATA OBJECT[d_o] { DATA GR :
[gr_targ]});
att_org := CetFirst(REAL_COVPONENT] r c] { REAL_COVP:
~ COVPONENT[co] { @R _COWP : [gr_org]}});
att_targ : = CetFirst(REAL_COVPONENT] r c] { REAL_COWVP:
COVPONENT[co] { @R _COWP : [gr_targ]}});

SetPrintList("","","");
print(["select count(*)\n from",
ent _org.nane, "\nwhere ", att_org. nane,
"'not in\n (select ", att_targ.nane, "\nfrom?",

ent_targ. name, ");\n"]);

export procedure validate_sql _att(attribute : att_org,
group : gr_targ, integer : t)

attribute : att _targ, att;

data_object : ent_org, ent_targ;

data_object : d_o;

real _conponent : rc;

conponent : co;

owner _of _att : owner;

ent _targ := CGetFirst(DATA OBJECT[d_o] { DATA GR :
[gr_targ]l});

owner := GetFirst(OMER O ATT[owner] { OABNER_ATT :
[att_org]});
whi | e((Get Type(owner) <> ENTI TY_TYPE)
and (Cet Type(owner) <> REL_TYPE))
do {

28 Program Understanding in DBRE

att := owner;
owner : =GCet First(OMER O _ATT[owner] { OANER_ATT :

[att]});
ent_org := owner;

att _targ : = CetFirst(REAL_COVPONENT] r c] { REAL_COWVP:
COVPONENT[co] { @BR_COWP : [gr_targ]}});

SetPrintList("","","");
print(["select \"constraint from", ent_org.nane, "."
att_org.nane, " to ", ent_targ.name, ".",
att _targ.nane, " : \", count(*)\n from?",
ent _org. name, "\nwhere ", att_org. naneg,
"'not in\n (select ", att_targ.nane, "\nfrom",

ent_targ.name, ");\n"]);

A.8. Miscellaneous Voyager2 programs

This section describes various Voyager2 program that can be used during various DBRE projects.
Their source code and the oxo files (executable through the DB-MAIN File/Execute Voyager
command) can be found at http://www.info.fundp.ac.be/cgi-bin-dom/library.

A.8.1.Foreign key analysis

program: eval_fk.oxo

This program displays all the referential constraint of the current schema and says if the origin and
the target have the same length.

A .8.2.lexical

program: lexical.oxo

A.8.2.1. Principle

A lexicon is aconsistent set of names, each one being assigned to one object of the schema.

The objects affected by this program are: the schema, the entity types, the relationship types, the
attributes, the roles and the collections.

A.8.2.2. Usage

The program offers two choice: copy the name of the objects of the current schema into the lexicon
or to use the names stored into the lexicon to rename the objects of the current schema.

Program Understanding in DBRE 29

The first choice displays the existing lexicons and asks if we want to change an existing lexicon or
to create anew one. If anew oneis created, its nameis asked.

The second option displays the existing lexicons. Chose one of them to use it to rename the objects
of the schema.

A.8.2.3. I mplementation

The schema has a dynamic property "l i st _I ex" (string and multivalued) that contains the list of
the name of the existing lexicons in this schema. The objects (schema, entity types, relationship
types, attributes, roles and collections) have a dynamic property "l exi con™ (string and multival-
ued) that contains the object’s name for the different lexicons. The ith element of the dynamic prop-
erty "l exi con" of an object is the name according to the lexicon that has the ith element of
"l'i st _| ex" ashame.

A.8.3. Compute the physical length

Program: log_phys.oxo

This program compute the physical length (in byte) of each simple attribute, the physical length is
stored into the dynamic property 'phys_I en’.

The physical length of an attribute may differ from one DBMS to the other. To allow the use of this
tool for an DBMS, some parametrization of the tranglation rule from the logical length into the
physical one are needed [Delvaux-1996]. This transformation is expressed through a formula that
associate to each type of data a function that specify how to compute the corresponding physical
length.

This function can be express as "for data type X, there is a set of couple composed of arange and a
linear function to useif the logical length of the attribute is inside this range”.

Figure 183 show an example of such tranglation rules.

boolean :if | in[0..N] then| bits
date: if 1in[0..N] then 12 bits
char: if1in[0..N] then 8 bits+ | * 8 hits
integer : if [in[0..2] then 8 bits
if 1in[3..4] then 16 bits
if 1in[5..9] then 32 bits
if in[10..N] then| * 4 bits
float: if 1in[0..N] then 4 bytes
varchar : if | in [0..64] then 1 byte + | * 1 bytes

FIGURE 183. An transformation rules example.

Figure 184 table gives the physical length value computed with those formulas.

30 Program Understanding in DBRE

Type Logical size Physical size

boolean 7 7 bits

date n. a 12 bits

char 25 208 bits
integer 6 32 bits

integer 9 32 hits

integer 25 100 bits
varchar 64 65 bytes
varchar 65 67 bytes

FIGURE 184. Translation example from logical to physical length.

The syntax of the tranglation rules are the following:

<valid text> ::= "begin physinfo" <type for>* "end physinfo"

<type for> ::= "type" <att _type> "{" <rule>* "}" ";"

<att _type> ::= "numeric" | "char" | "boolean" | "date" | "varchar"

“float"

<rule> ::= <un_rule>| <co rule>| <lin_rule>

<un_rule> ::= "unit :" <unit>";"

<si_rule> ::=<lin_rule>| <cst_rule>

<cst _rule> ::= "constant :" <integer>";"

<lin_rule>::="linear :" <integer>";"

<co rule> ::= <cst_rule> "level :" "[" <integer> .. <integer> "]"
"{" <si_rule> "}" ";"

<unit> ::= "bit" | "byte" | "word"

<integer> ::= <digit>*

<digit> ::="0" | "a" | "2" | "3* | "4" | "5" | "6" | "7" | "8 | "9"

A byte contains 8 bits and the word contains 32 bits. The value "n" represent the infinity and the
following restrictions apply:

It could not have any overlay in the range of a given type.
Thereis only one unity per type.

Figure 185 gives the formulafor the previous example.

Program Understanding in DBRE 31

begi n physinfo type char { type nuneric {

constant : 1; unit : bit;
type bool ean { linear : 1; level : [0..2] {
unit : bit; }; constant : 8;
linear : 1; };
}; type varchar { level : [3..4] {
constant : 1; constant : 16;
type float { | evel : [0..64] { };
constant : 4; linear : 1; level : [5..9] {
}; }; constant : 32;
| evel : [65..n] { };
type date { constant : 1; level : [10..n] {
unit : bit; linear : 1; linear : 4;
constant : 12; }; };
I it IE

end physi nfo
FIGURE 185. The formula for the figure 183 example.

A.8.4. Objectsposition

Program: pos.oxo

This program has two options :

1. It copiesthe graphical positions of entity type, relationship type, role, processing unit, collection
into the meta-properties 'pos_x’, 'pos_y’.

2. It copies the meta-properties ‘pos_x’ and ‘pos_y’ as the graphical positions of entity type, rela-
tionship type, role, processing unit, collection.

This program can be useful to store the graphical position if the object to allow the analyst to came

back to previous positions. Or it can be used to change the position in the meta-properties (manually
or through a program) and then apply those position modification.

A.8.5.Report generation

A.85.1 RTF

Program: rtf.oxo

This program generates a report in RTF describing the current schema. This report use style sheet,
so the user can easily customize the report’s presentation by modifying the style sheet.

32 Program Understanding in DBRE

A.8.6.SQL Validation queries generation

Program: validate_sgl.oxo
This program generates SQL queries to validate the current schema (verifies if the constraints are

not violated by the data). It validates the foreign keys, the identifier, the 'not null’ and computed
foreign keys (the 'where' clause must be in the technical description of the origin group).

A.8.7.COBOL validation programs gener ation

Program: val_fk_cobol.oxo

This program generates a COBOL program the validate each foreign key of the current schema: for
each foreign key it count the number of data that violated it and the number of origin records.

A.8.8. Referential key assistant complements

The referential key assistant offers two possibilities to extend it through Voyager2 procedures and
functions. The first one is the one associated with the M or e button of the search dialog box. This
allows the user to add its own functions to check if two groups (or a group and an attribute match.
The other one alows to declare creation (or generation) procedure through the Advanced button.
Those procedures receive the origin (group or attribute) and the target (group) of a potential foreign
key, so they can create them or generate some reports.

A.8.8.1. Matching functions

A. Foreign key contains the name of the target collection

Program: fk_coll.oxo
Those functions (FK_nane_i n_col | and FK_name_i n_col | _at t) verify that the name of the

origin attribute (the origin group is composed of only one attribute) contains the name of the collec-
tion that contains the target entity type.

A.8.8.2. Generation procedures

A. Generate the validation SQL queries
Program: fk_sqgl.oxo

Those procedures generate for each proposed foreign key a query that count the number of row of
the origin table that violate the foreign key.

Program Understanding in DBRE 33

E2 sel ect count (*)
El B1: num (5) from E2
Al: char (5) B2: char (5) f
A2: char (20) BT where B2 not in
id: AL l+—{ref:B2 (select Al fromEl);

FIGURE 186. A foreign key and the validation query.

For example, if the proposed foreign key is the one display in figure 186.a then the procedure will
generate the figure 186.b query. If the result of the execution of the query is0, then all the rows of B
respect the foreign key.

B. Generate a report of all the proposed foreign keys
Program: fk_report.oxo

Those procedures generate for each proposed foreign key a report giving the foreign key and the
length and type of each of its components.

For example, if the proposed foreign key is the one displayed in figure 186.a, then the procedures
will generate the following report

#FK#: E2. (E2. B2) - - >E1. (E1. Al)
E2. B2 char (5)
El. A1 char (5)

C. Creation of the accepted foreign keys
Program: create fk.oxo

The purpose of the previous report is to allow the analyst to analyze it to validate the proposed
foreign keys. When he has validate the foreign keys, the create fk.oxo program can be used to read
the report and to create the valid foreign keys.

In the previous report, each foreign key description is prefixed by the characters "#FK#". If the
analyst does not want to create a foreign key, he change the prefix and create fk.oxo will only
create the foreign keys with the original prefix.

34 Program Understanding in DBRE

Source code

ANNEX B

B.1. Order.cob

'dNOO (5)6 O Id dANOD -101 TO

"(5)6 D 1d 3Q00 AOHd 10
‘"6 O Id Aodd -1S IX3 10
‘6 JId 1IV13A-aN3 TO

‘6 JId 3714-AN3 TO
X Jld IDIOHD TO

"(5)6 D1d AID Q4O €0
"(5)6 D Id MIS-13a-434 €0
‘130 AN | A9 A3IX3AN |
SaN 1L 0Z SINOO0 S1Iv13a 2o
1 W13 -1S 17 T0

"(5)6 D1d 10L €0
"(5)6
D Id M1S HoHNd 439 €0
‘AN | A9 d3IXION |
S3N 1L 00T SHNO00 HOYUNd 20
"ISYHOHNd -1S 1T T0

"(0T)X OI1d 31vA O3 20
"(0T)X OI1d 1ONN4 20
“(0v)X OI1d ¥aav 2o
"(0Z)X OI1d IAWN 20

NO 11d MOS3a T0

NO 1103S ZOVHOLS -ON DRI

"(5)6 D 1d TIAITIIS 20
(00T)X O Id IAWN IS 20
"(5)6 2 1d 3A00 MIS 20
MIS 10
MOOLS a4

"(00Z)X O1d 1 IV13a Q40 20

"(ZT)X O Id ¥3NOLSNO @0 20

S9
¥9
€9
29
19
09
6G
8G
LS
99

SS9
vS
€§
¢S

TS

0S
6
8v
Ly
9¥
174
144
19474
474
144
oy
6€
8¢
LE
9¢€
g€
ve
€e

"(0T)6 O Id 3IA00 @D 20
‘ad0 10
'SY3IA0 a4

"(000T)X D1d 1S H-SNO 20
"(08)X O Id ¥0S3A -SNO 20
"(ZT)X 2 1d 3000 -SNO 20

‘SO 10

HINOLSNO dd

NO 1103S 3114

NO IS IA I V1vd

3d00 YIS S | A Q4003
O INWNAQ S| 30N SS300V
d3aX3AN | S 1 NO ILVZ INVOHO
«1va MOOLS . OL NO ISSV
MOOLS 103713S
'SALVO 1'ldNd
HL1 M d3NOLSNO G0
S| A Q4003d FLVNYALTV
3000 Q0 S | A3 @HOO03d
O INWNAQ S| 30N SS300V
d3aX3AN | S 1 NO ILVZ INVOHO
«1Vad "3AH0 .« OL NO ISSV
SY30H0 1O3T13S
3d00 -SNO S | A 003
O INWNAQ S| 30N SS300V
d3aX3AN | S'1 NO ILVZ INVOHO
w1V H3INOLSNO .« OL NO ISSV
H3INOLSNO 1O3T13S
"I041NOO 371 14
NO [1103S 1Nd1NO -1NdN |
NO IS IN Id IN3ANOY IANF
‘G40 O A | NWWID0Hd
NO IS IA 1A NO I1VO 14 1IN3A |

[43
T€
(015
6¢
8¢
Lc
9¢
14
ve
€¢
éc
1¢
0¢
6T
8T

LT

91
ST
VT
€T
[

1T
0T

A NM<IT IO O~

35

Program Understanding in DBRE

MO01S O -1 NI
MO0LS IS0TO

“w SYMO0LS O IS IT. AVIdS Id

MIS -1S 11

10" LAVIAS 1A AT d I'TVAN |
ALS L N

1AATTMALS 1d300V
ON [ONVAQY ON HL M
- 1TAA3T. AVIdS 1A

‘GAVN LS 14300V
ON [ONVAQY ON HL M
- INVN .. AVIAS A

'3d00 YIS 14300V

ON [ONVAQY ON HL M
- d39ANN 1ONAdodd « AVTIdS [d
“AI00LS MAN . AVIdS 1A

M1S MaN

1S H-SNO AVIdS (d
d0S3d -SNO AVIdS 1d
3A00 -SNO AV1dS Id
aN3 LY 1ON
3714AN3 OL 0 INON ANT LV
IXaN d93NOLSNO avad

‘'SNO -Avad

(0 = 37T14-aN3I) TI1INN
SNO -av3ay NHO43d
3714-aN3 OL T IAON
HINOLSND O - | NI
HINOLSND IS0

Y91
€91
91
191
091
6ST
84T
LST
94T
GqT

VST
€471
[Ac))

TGT
0ST
671
8v1
LYT
i
SvT
124"
eVl
44"
T
or1
6€T
8ET
LET
9€T

GET
VET
€eT
(49"

“WSHINOLSNO
S3Aa JLS IT. AVIdS |d

‘SNO -1S 171

=0 -EM
AVIdS [d A3M A I'IVAN |
SNO AL W
1S H -1 IN | WHO343d
Hos=d
-SNO O1 NO I1d MHOSs3a 3NN
31va 034 14300V
ON IONVAQVY ON HL M
- 31va. AVIdS |d
"1IONNd 14300V
ON IONVAQY ON HL M

« HINOLSNO 40 "1ONNH W AVIdS 1A

©aav 14300V
ON IONVAQY ON HL M
« -HINOLSNO 40 JAav . AVIdS 1d
IANVN 14300V
ON IONVAQY ON HL M
- d3NOLSNO NA IAYN . AVIdS 1d

3A00 -SNO 14320V

ON IONVAQY ON HL M
«¢ 3A00 "3INOLSNO .« AVIdS 1A
“u - d3NOLSNO MAN . AYIAS |d

'SNO M3N

MOOLS IS0
'SYIAH0 30O
HINOLSNO ISOTO

ON 10710

‘4O -1S 1771 INJO493d
9 =30 I0HO 41

TET
0€T
6ZT

8¢T
LCT
9¢T

T4
174"

1A
ect
2T
0cT
6TT
81T
LTT
91T
Q1T
Vit
€11
AN
T1T
oTT
60T
80T
L0T
90T
SOT
0T
€0T
¢0T
TOT
00T

MIS -1S 1T WHO493d
G =3O I0HO 41

'SNO -1S 1T WHO493d
¥ =30 0HO 41

‘40 MAIN NHOHd43d
€ =30 0HO 41

YIS MIN NHO4H43d
¢ =30 0HO 41

'SNO MAIN NHOHd43d
T =301OHO 41
30 IOHO 14300V
"WdN3 0. AVIAS 1A

“uSHIAH0 40 IS 1T 9. AVIAS 1A
SWSHMO0LS 40 IS 1T S AVIAS 1A

“.SHINOLSNO
40 1S I7 v. AVIdS Id
“d3Ad0 MAN €. AVIdS 1d
"00LS MAN 2. AVIdS 1d
SWIFNOLSNO MAN T AVIAS 1A
'SS3004d

MOOLS O -1 NI

'SY3AH0 O - | N30

HINOLSNO O -1 NI0
‘1IN

NNd dO01S
ON ISOT10 WHO4d43d
‘0 = IDIOHD 1 I1INN
SS300Hd NHO443d
"L IN | WHO4d43d
N WA
NO IS IA 1A FdNA30Hd

‘66 O Id 13A-1XaN 10
‘dNOD (§)6 D1d ALD TO

66
86
L6
96
S6
v6
€6
6
16
06
68
88
L8
98

a8
¥8
€8
28
18
08
6.
8.
L
9.
S/
V.
€L

L
1.
0L
69
89
L9
99

Program Understanding in DBRE

36

T A9 dN AN | 13S
TOT = AN | ¥O
@N 1)M1S HOoHNd -439 H0
3000
@N 1)M1S HoHNd -439
7 1INN WHO3d
‘'TOL AN 13S

0 =

d0dd =

1S H -SNO -31vddn

eESE € o)
AQVIATY HoHd3 . AVdS Id
ESRE
T A9 dn 13A-AN| 13S
1S H -SNO -31vAdN WHO-43d
(130 aN I M1S -13a 439 Ol
3000 aodd 3NN
130-1XaN = 13aaN| 41
NHOZH3d -aN3
130 -1XaN o1 T aav
130-1XaN = 13a AN | ¥
(3aoo aodd =
(130 -1XaN MLS -13a -439 aNv
13a-aN1 > 130 -1X3aN)
7 1INN WHO3d
(130 ON 1)ALO Q0 14300V
ON IONVAQY ON HL M
. - Q3Y3AQH0 AL IINVIO . AVIdS [
‘130 -1XaN OL T 3IAON

1 IV13d 040 -31vddn

"1 V134 090 -31vddN INJO493d
ESEE!

«10NA0dd HONS ON . AVIdS Id
0 =dodd-1s X3 41

‘dodd -1S IXd O1 0 3INON
AN A I'IVAN | XO01S avid

8G¢
LS¢
96¢

qG¢
1414
€6¢
¢s¢e
T6¢

0S¢
6v¢
8¢
Lve
9r¢e
av¢e
1444
eve
cve
Tve

ove
6€¢
8€¢
LEC
9€¢
Gec
1474
€ec
(434
T€C
(01574
6¢¢
8¢¢
Lcc
9¢¢

'3A00 XIS Ol 3d00 Adodd 3INON
‘dodd -1S X3 OL T 3IAON
3000 -d0dd dvad

"3000 -A0dd -Avad WHO343d
ESRE
3714-ON3 OL 0 IAON
(130 -aN 1)M1S-13a 434 oL
0 IAN
0 = 3000 Aodd 4 |
3000 -A0Yd 14300V
. (@N3=0)
3000 1ONA0dd . AV1dS Id
1 V13a -avad

‘av3yd anNd
ATI4AN3I OL T INON
HFNOLSNO HONS ON . AV'IdS Id
A A I'IVAN | §3NOLSNO avad
dT14-AN3 O1L 0 INON
3d00 SN0 1d320V
ON IONVAQY ON HL M
w - dFGANN 93NOLSNO W AVTIdS 1A
3d00 -SNO Av3d
“WSNO JoYY3 W AVIAS 1A
AN A I'IVAN |
SNO 31 W3
1S H-SNO Ol
ASYHOANd -1S 1T IAON

S.A0"Hd . AVIAS 1d
AN A I'IVAN |
0 Il [N

1 Iv13d G0 Ol
1 Iv13d -1S 117 INON

gcc
vee
€cc
¢cc
Tcc
0¢c
61¢
81¢
L1¢
91¢
q1¢

14%4
€1¢
[AY4
T1¢
0T¢
60¢
80¢
L0¢
90¢
g0c¢
¥0¢
€0c¢

¢0¢
T0¢
00c¢
66T
86T

L6T
96T
G671

V6T

'T¢ = 13dAN | &0
0 = 37I1dAN3 111NN
1 IV13d Av3d WH04d3d
dTI4-AN3 OL T INON
‘TOL 13dAN | 13S

‘ASYHOUNd -1S 11T Ol
1S H-SnNO 3INON
'H3INOLSNO Q0 OL
3ac0 -SNO NN
INVN AVIdS 1A
NO I1d [80s=d
Ol ¥0S3d -sno INON
‘0 = JT14AN3 111NN
3A00 -SNO -Avad WHO493d
dTI4-AN3 OL T INON

3000 00 14300V
ON IONVAQY ON HL M
w - dFGNNN 93040 . AVTIdS 1A
©d3040 MAN . AVTIdS [d
‘40 MAN

T1IIAIT LS AVIAS 1A
IAWYN HLS AVIdS [d
3A00 HILS AVIdS (d
aNg LV ION
AT7I14-AN3 OL 0 IAON AN3 1V
IX3aN MOO1S av3ad
AMIS av3ad

‘0 = JT14AN3 111NN
M1S Av3d WJO443d
dTI4AN3 OL T INON

€671
¢6T
16T
06T
68T

88T

8T
98T

8T

8T
€8T
8T
18T
08T
6.1
8.1
LLT
9.1
ST
IZA"
LT
LT
T.T
047
69T
8971

L9T
9971
9971

37

Program Understanding in DBRE

‘T A9 dn 13a-aN | 13S
(130 aN 1)ALD Q40 AVdS 1d
(130 aN 1)M1S -13a -43d

AVdS [d

ESRE
7 W13aaNI OL 0 IAN

0 = (13a-aN IMIS-13a 43 4|
L 1xX3
7IW13aaNI OL 0 IAN

TZg = 13aaN1I 41

"1 W13a -AV1dS [d

‘1S H -SND Ol
3SVHOHNd -1S 17 IAN
INHOSM3d -aN3
T A9 dn AN | 13S
@ 1)1o1L oL 0 3INON
@N 1 M1S HodNd -439 OL
0 INON
00T = AN | 111NN INOS3d
‘TOL AN 13S
‘IS H-LIN I

1 IV13d -AV1dS 1d WHO493d
1IVI3AAN3 OL T 3INON
TOL 13dAN | 13S

(AR
TT€

0T€
60€
80¢€
L0€
90¢€
G0€
v0€
€0¢€
¢0€

TO€E
00€
66¢
86¢

L6¢
96¢
G6¢
v6¢
€6¢
26¢
T6¢
06¢

1IvV13d-1S 17 Ol
1 Iv13a G0 INON
« 1 V130 Q40 . AVIdS |d
HINOLSNO A0 AVIdS (d
ON IONVAQY ON H1 M
« INOLSNO A0 .« AVIdS Id
3A00 G40 AVIdS (d
ON IONVAQY ON H1 M
« 3000 @40 . AVIdS [d
aNg LV ION
3714-AN3 OL 0 INON AN3 1V
IX3IN SH3AH0 avad

‘40 avad

‘0 = JT14AN3 111NN
Q40 av3d NHO443d
aTI4AN3 OL T INON
'SY3AH0 O - | N30
'SYIAH0 A0 TO
"w SHIAHO O 1S I AVIAS Id

‘0 -1S 11

"@1)1o01 oL
(130 aN 1)ALD a0 IAON
@N 1M1S HodNd -439 OL
3Q00 -a0dd 3IAN

3sT13
@~ 1)1oL
oL (13a-aN 1)HALD a0 aav
3000 A0dd =
@N IM1LS HodNd 43 4 |
1 1X3
MOT343N0
AOLS H : 843 . AVdS Id
TOT = AN 41

NHO443d AN

68¢
88¢
18¢
98¢
G8¢
¥8¢
€8¢
28¢
18¢
08¢
6.2
8.¢
Ll¢c

9/.¢
G/lc
|2X4
€Le
clec
1.2
012

69¢
89¢
19¢
99¢

G9¢
¥9¢
€9¢
29¢

T9¢
09¢
6S¢

Program Understanding in DBRE

38

B.2. Validation program (automatically generated)

HOHH3 -INNOO OL 0 IAN
V101 -INNOO OL 0 IAN
"S3Ad M4 OL
. {3a00
IS } M1S< - - PILS HOUNd -434 } :Sno . IAON
" 18 1 -5ND HOIHO WHOH3d
N WA
NO IS IA 1A 3INAI00d

"(00T)X OId 2S3a M4 TO
"(5)6 D1d TWIOL-INNOD TO
"(5)6 D Id "O¥Y3 -INNOD TO

‘6 OI1d 37114-AN3 TO

NO 1103S TOVHOLS -ON D-HOW

"(5)6 DI1d 101 ¥0
"(§)6 D1d MIS HOHNd -434 0
HOYNd AN | A9 AIX3QN |
SaN 1L 00T SHNO00 HOYNd €0
IS H-SNO 20
"(0T)X OI1d 3Lva-O3d €0
"(0T)X OI1d 1ONNd €0
"(0V)X OI1d ¥aav €0
"(0Z)X OI1d 3IAWN €0
HOS3a -SNO 20
"(ZT)X OI1d 3A00-SNO 20
‘SO 10
HINOLSNO a4
()6 DI1d ALD Q4O 0
"(5)6 D1d MIS-13d-434 +0
'STIVL3A AN | A9 AIX3IQN |
SaN 1L 02 SINOO0 ST IV13a €0
1 IV13a a0 20
"(ZT)X OI1d ¥3INOLSNO Q40 20
"(0T)6 OI1d 3A0D Q4O 20
‘a0 10

1.
0L
69

89
L9
99
g9
¥9
€9
29
19
09
69
89
LS
99
gS
12°]
€9
A
1S
0S
6V
8V
LY
1%
1%
4%
147
A%
14%
ov
6¢
8¢
LE

'SHIQHO a4
"(5)6 O1d TIAITIIS 20
"(00T)X OId 3IAWN IS 20
"(5)6 O1d 3A0O MIS 20

MIS T0

MOOLS a4

NO 1103S 3114

NO IS IA I V1va

3A00 -SNO S 1| AN Q4003

O WYNAQ S| 3A0ON SSFO0V

d3aX3AAN I S 1 NO ILVZ INVOHO
HFNOLSNO .« OL NO ISSV dINOLSNO 103 T3S

'S31VO 1I'dNd HL M
HINOLSNO G40 S | AN 003 JLVNIILTV
3000 Q40 S | A3 QH003d
O WYNAQ S| 3A0ON SSIO0V
d3aX3AAN I S 1 NO ILVZ INvOHO
wSHIAHO . OL NO ISSV SHIAH0 103713S

3A00 HLS S| AN Q4003
O WWYNAQ S| 3A0ON SSFO0V
d3aX3AAN I S 1 NO ILVZ INVOHO
SO0LS W OL NO ISSY MOO1S 103713S
“I041INOO -3 14
NO 1153S 1Nd1MO -1NdN |
NO IS IA 1A INIANOY IANT

"1ed 1sAyd Q| AVHD0Hd
NO IS IA I NO ILVO 14 1IN3Ad |

0X0 "]0q02 Y) [en Ag paieauab we ibo id
p le JusH uear loy 1ny

Sy 8T LT '€00C-1-6 : ®1ed

x X kX

Ocd NMTITOHOMNMNVDOODOANMNMITLOMN~NOVMDO AdAANMIT L O
A A A A A A A A AN NN NNNNANNNOOOOOO®M

ANMJITON OO0

39

Program Understanding in DBRE

IX3N SH30H0 avad ovT "398 1-5N0 -O4Yv1 av3ad 90T

" 19 1 -0H0 avad 6ET S0T
8€T " 18 1-8MD -OdV.L -avay WHO343d ¥0T
‘0 = 3714-AN3 TI1INN 81 -QHO -Av3ad INHO3d LET an3a LV 1ON €0T
3714-AN3 OL T IAON 9¢T 3714 -ONI OL 0 IAON AN3T 1V 20T
'SYIAQHO INdN | N3O GET 1XaN 43NOLSND avad 10T
" 18 100 HO3IHD vET " 19 1-5MD avad 00T
€eT 66
HOHYA -INNOD OL T IAON AIM A ITVAN | ZET ‘0 = 3714-AN3 TIINN 48 1-SNO -Ava NHOSd3d 86
Y3INOLSNO avad T€T 3714-aN3 OL T IAON L6
‘3000 -SNO 0L ¥3IANOLSND Q40 IAON 0€T "INOLSND INdN | N3O 96
V101 -INNOO OL T aav 62T BEPESe R o= Ne) G6
HINOLSND -0 Q0 94V -avad 8z1 6
12T HOUHYT -INNOD W :SHOEHA 40 YIGANNN . AVdS Id €6
HINOLSND G0 Q0 -OdVL -Av3d WHO43d 921 "WIOL
an3a L1v 10N TAl -INNOD . SQHOOTY 40 YIGANN TVIOL. AVdS Id 26
3714-ONI OL 0 IAON AN3 1V veT "0S3A M4 AVIdS [d 16
1XaN SY3QH0 avad SrAl "1M0d3d -AV1dS 1d 06
HINOLSND -GHO -0 avad AN 68
12T NNY dO1S 88
0 = /8
3714 ANT 17 1INN HFAOLSND -GH0 G0 Avad INHOd3d 0zT "1M0d3Y -AV1dS 1a IWHO343d 98
3714-AON3 OL T IAON 6TT HOHY3 -INNOO OL 0 IAON G8
'SYFAQHO INdN | N3O 8TT V101 -INNOO OL 0 IAON 8
HINOLSND -GHO GO HMO3HO LTT "DS3d M4 OL €8
91T . {3000 YIS } MIS<--PILS -13d 439 } \a40 . IAN Z8
‘T A9 dnN HOYNd AN | 13S GTT " 18 1 -0H0 HOIHD IWHOH3d 18
HOHYA -INNOD OL T IAON AIM A ITVAN | ans 08
MOOLS avad eTT "1M0d3Y -AV1dS 1a IWHO343d 6.
'3A00 MLS OL (HOMNd AN 1)MLS HOdNd -43d IAN ZTT HOHY3 -INNOO OL 0 IAON 8/
V101 -INNOD OL T aav TTT V101 -INNOO OL 0 IAON Ll
AVEAY -439 -SNO OdvVL avad 01T "DS3d M4 OL 9/
60T . {3A00 -SND } :SND< - - 4IAN0LSND G0 } a0 . IAON G
"TOT = HOYNd HINOLSND -GHO QO HMOFHO INHOd3d vl
AN | 17 1INN AVEY -434 -SNO -9dvL -avay INOS93d 80T €/l

‘T OL HOdNd AN | 13S L0T "140d34 -AVIdS 1A WHO3d3d L

Program Understanding in DBRE

40

‘T A9 dn STNV1IIAAN | 13S
'HOHH3 -INNOO OL T INON A3X d I'IVAN |
MOO1S av3ad
3000 -M1S 0L (S7IV13d AN I MLS -13d -43d 3IAN
V101 -INNOO Ol T aav
AVERY -43d 040 Odv1 -av3d

‘T0T = S1Iv1=d
AN 1 T IINN AVEEY -434 QYO -0V 1L -Av3d WHO3d3d
‘TOL STNV1IIAAN | 13S
"9 1090 -O4v1 -av3ad

"9 1 010 -O4dv 1 -Av3d INJO443d
aN3 LY 1ON
3714-AN3 OL 0 INON ANT LV

99T
qqT
121"
€qT
A
19T
0sT
6vT
8yl

LYT
vt
Syl
124"
evl
crT
154"

41

Program Understanding in DBRE

SOL-DDL code

B.3.

- (1oNaodd) HodNd uo
HOHNdED Xapul 81eald

- (43N0LSND) SY3aHD uo
SHIQHOE X8pu | 81es o

- (1oNaoydd) 1 1vl3a uo
7 IVIEQEO Xapul aleald

‘(3a00) A9y Asau 1id

“1Inu jou (g)d 1Jaunu 30 Md

“IInu 1ou (00T)JIeYyd IANWN

“1nu 1ou (g)o 1Jaunu 340D
) 10NA0Hd @ |ge1 81ea .o

'((MaNOLSND ‘aodd) A9y Atew 1id
“1mnu 1ou (g)orJaunu 101
“IInu jou (G)9 Hiaunu 1oNaoHd
“1nu jou (ZT)Jeyd Y3INOLISNO

) HOYNd @ |ge 1 @1e8 o

:((@ao0) Kex Aumuiud

“1nu jou (ZT)Jeyd Y3NOLISNO

“1nu jou (8)Jeyd J1va Q4O

“I'Inu 10u (QT)O lJaunu 340D
) SYIAYO ° [gel @1eaJd

‘((sy3a0 ‘aodd) A8y Ausau 1id
“1Inu jou (§)d Hiaunu ALD QO
“1nu jou (G)d 1Jaunu [ONACYd
“1Inu jou (0T)9 HJaunu SYIAQHO

) 1IvVL3a @ |ge) 9@1eald

‘(3a00) Aey Asau1id
“1nu jou (0T)JIeyd 31va O3
(0T) yeyd LONNS
“IInu 1ou (0%)leyo yaav
“1inu 1ou (0g)Jeys IAWN
“IInu jou (ZT)JIeyods 3a00

) ¥43AOLSND @ |gqel 81eald

Program Understanding in DBRE

42

B.4. Embedded code

Z =3O 0H 41
'SNO M3N INHOH3d
T =300H 41
30 OHO 14300V
".AN3 0. AVdS (@
"SI0 0 IS 1T 9. AVIdS I
".S10Naodd 40 1S 17 S. AV1dS I
".SHIANOLSND 20 IS 1T . AVIdS Id
" HIAHO MAN €. AVTAS (@
.1OoNAodd MaN Z. AVdS i
" HINOLSNO MAN T. AVAS (@
'SSI00Md
"D3X3 AN3
AWSSYd : A9 a3 I4 1IN3A | IAVNEISN © LOANNOD
S 03x3

‘AASSVd 14300V

QHONSSVd « AVIdS A

IAVNGISN 13O0V

AAVNGISN . AVIdAS 1A
‘1IN

ON IONVAQY ON HL M .

ON IONVAQY ON HL M .

NNd dO1S
‘0 = 0 I0HO 1T IINN SS30Hd INHOA93d
"L IN | NHO443d

N WA

NO IS IA 1d FINA3O0Hd

"(5)6 O I1d 30D A0dd TO
‘6 O1d 3714-aN3 TO
X Old 3D OHO TO

"D3IX3 AN NO 1103S IV 103a aNg 1OS 03x3
"(0Z)XX o d awssvd 10
"(0Z)XX o d IJAVNEISN TO

cL
1.
0L
69
89
L9
99
g9
¥9
€9
29
19
09
69
89
LS
99
gS
¥S
€9
A
1S
0Ss
6V
8V
LY
1%
1%
4%
147
A%
14%
ov
6¢
8¢
LE

"(5)6 O1d AIO-13a 20

"(5)6 O1d @odd -13d 20

"(ZT)X O1d 1SnNO-13a 20
1 v13a 1O

"(5)6 D1d 101 HodNd 20

"(5)6 O 1d @odd HodNd 20

"(ZT)X D 1d 1SNO HodNd 20
HOYNd TO

"(5)6 O1d IO ™A 20

"(00T)X O Id INVN a0dd 20

"(5)6 O 1d 300 A0dd 20
‘aodd TO

(2T)X O Id ¥3NOLSND G0 20
"(0T)6 O 1d 30D QO 20
‘T TO

“(0T)X D I1d 31vAd D34 -SNO 20

(0T)X D 1d 1ONN4-SNO 20

(07)X D Id ¥aav -sno 2o

"(0Z)X D1d INWN -SNO 20

"(ZT)X D 1d 3A00 -SNO 20
‘SO 10

*03X3 AN3 NO 1103S Idv103a N pIg VS 03x3

"D3X3 AN VOVHO 3IANTON | OS 23x3
(VOvd0) ealy wwop 8 oe0 8yl ul Adop
D3X3 -ANT VOOS IANTON | S 23x3
(vO1OS) ealy wwod PS 8yl u1 Adop

NO [LO3S OVHOLS ON DOV

NO IS IANId V1vd
‘G40 -0 d I AWVHO0Hd
NO IS IA 1A NO I1VO 14 1IN3A |

9¢€
1
14>

Ocd NMTITOHOMNMNVMODOANMILWHOMN~NONO O AN M
A A A A A A A A AN NNNNNNNNNOOO®M

ANMJITON OO0

43

Program Understanding in DBRE

dd 10Na0dd ‘d HOodNd INOYd
INWN ¥d ‘101 'd 103T13S
HO4 ¥MOSHNO 1S H SNO 3dv103d
1S 23x3
‘AHOLS H-SNO -dS |d

"AHOLS H -SNO -dS 1A WHO443d
J1vA O34 -SNO 1ONN4 -SND AV1dS 1
¥aav -snd AV1dS 1
IAWN -SNO FA0D -SNO AVIdS [
3714-AN3 OL T IAON
(0 = 3a00VS)4 |
"D3X3 aN3
JIVA O34 -SNO - “LONNE -SNO -
VAAVY -SNO : ‘IAWN -SNO ¢ ‘IA00 -SMD : OIN |
1SN0 11V HO134
S 03x3
'SNO -avad

(T = 3714-aN3) 1I1INN SNO Avad NHOd3d
'3714-AN3 OL 0 IAN

(0 = 3a00VS)4 |

"D3X3 aN3

1SNO™ 11V N3O

S 03x3

"D3X3 aN3
3A00 A9 Y30
H3INOLSNO INOHA
JIVa O34 IONNd ¥aav ‘SAWN ‘3a00 103713S
HO4 HOSHNO 1SN0 11V v 10=a

S 03x3

".SYANOLSND IHL 40 SIS IT. AVIdS I

'SNO -1S 11

S.A0"H3 . AVIdS 1d
ESRE!
O3aX3 AN

T
SvT
124"
eVt
A4
T
ovT
6€T
8ET
LET
9€T
GET
VET
€eT
¢eT
TET
0€T
6¢T
8¢T
L2T
9¢T
ST
174"
€cT
A4
1T
0cT
61T
81T
LTT
91T
STT
Vit
€T
AN
T1T
0TT

1 WAOD
DS 233
(0 = 3a00MS)4 |

O3X3 AN3
@Lva-03d-sno: ‘1ONN4 -SNO':
¥aav -SNO © ‘GAVN -SNO ¢ 'Ia00 -SNO 1) SANTVA
HINOLSNO OIN | 143SN |
1S 23x3

‘31vA 034 -SNO 14300V
ON ONVAQY ON HLM . © 31va. AVIdS |d
"IONN4 -SNO 14300V
ON IONVAQVY ON HL M
- d3INOLSNO 40 NO ILONNd W AVTIdS Id
{aav -snd 1d300v
ON IONVAQY ON HL M
- dINOLSNO 40 SS3HAAV .« AVIdS Id
ANWN -SNO 13O0V
ON IONVAQVY ON HL M
- d3INOLSNO NA IAWN . AVIdS |d

'3A00 -SNO 1Ld320V
ON IONVAQY ON HL M
«¢ 3A00 "3INOLSNO .« AVIdS Id
" s "d3NOLSNO MAN L AVTIAS 1A
'SNO M3N

‘40 -1S 11 INJO493d
9 =30 I0HO 41

‘dodd -1S 17 WHO4d3d
G =30 0HO 41

'SNO -1S 171 INJO493d
¥ =30 0OHO 41

‘G40 M3IN INHO443d
€ =30 0HO 41

‘dodd MAaN INJO493d

60T
80T
L0T
90T
SOT
0T
€0T
40}
T0T
00T
66
86
L6
96
S6
148)
€6
6
16
06
68
88
L8
98
a8
¥8
€8
Z8
18
08
6.
8.
L
9.
S/
V.
€L

Program Understanding in DBRE

3A00 GO0 1d3D0V
ON ONVAQY ON HL M
¢ d39ANN 93090 .« AVYTIdS |d
©d30H0 MAN . AVTIdS 1A
‘G40 MaN

IO Idd -a0dd AVdS [
INWN -00dd AVdS [
3000 -a0dd AVdS [
(0 = 3a00VS)4 |
"D3X3 AN3
‘3A00 A0Yd - OIN |
aodd 11V HO134
S 03x3
‘aodd -avayd

30 Idd A0dd © IANWN Q04d -

‘0 = 1ON 30000S 1 IINN dodd -avay WHOd3d

"D3X3 aN3
aodd 11V N3do
S 03x3
"D3X3 aN3
3000 A9 H3IQHO
10Naodd Wod4
I ™A IAWN F3A00 103 T1ES
HO4 HOSHNO aodd 11V v 103a
S 03x3
", S1ONAodd 40 IS I7. AVIdS [
‘aodd -1S 11

140893 . AVIdS I
3S13
O3X3 -aN3
1 WANOD
S 03x3
(0 = 3a00VS)4 |

8T¢
LT¢
9T¢
ST¢
v1c
€T¢
A4
11¢
0T¢
60¢
80¢
L0¢
90¢
S0¢
¥0c
€0¢
A4
T10¢
00¢
66T
86T
L6T
96T
S6T
141"
€671
¢6T
16T
06T
68T
88T
8T
98T
8T
8T
€8T

"D3X3 aN3
(30 1Md aoud -
‘300 A0dd 1) SANTVA
10Naoyd OIN | 1H3SN |
S 03x3

"FAVYN -AOdd -

30 ™|d 1d3O0V
ON ONVAQY ON HLM . & T3A3T. AVIdS Id
‘INWYN -d0dd 1d300V
ON ONVAQY ON HLM . @ FAYN. AVIdS Id

‘300 Ad0Yd 14300V

ON IONVAQY ON HL M
« - J3GANN 1ONAOHd « AVIdS 1A
~.10Nadodd MaN . AV'1dS |d

‘acdd MaN

101 HOdNd IANWN -A0dd AVdS [
(0 = 3a00VS)4 |
"D3X3 AN3
‘101 HOdNd - OIN |
1S H sno HOo134
S 03x3

JAVYN -dOYd -

‘ALOLS H-dS 1d

(0 = 10N 3A00MS) TIINN AHOLS H -dS 1d IWHO43d
"L IVIOL 10$Naodd . AV1dS 1d
"D3X3 aN3
1S H SNO N3do
S 03x3
"D3X3 aN3

3000 -SNO = H3INOLSMO 'd ANV
3000 Ud = 10NAoHd 'd IH3IHW

8T
18T
08T
6.1
8.1
LLT
9.1
ST
17"
LT
LT
T.T
04T
69T
8971
L9T
9971
9971
122"
€971
9T
19T
09T
69T
89T
LST
99T
9qT
121"
€qT
A
19T
0sT
6vT
8yl
LYT

45

Program Understanding in DBRE

Ad39300 AQVIH TV

1S H -SNO -31vddn

1S H -SNO -31vadN NHO443d
O3aX3 AN

‘3000 00dd @ ‘300 QY0 1) SANTVA
7 IV13d OIN | 143SN |
1S 23x3
ESRE!

- dodd3 . AVIdS 1d
0 = 30000S 4|

O3aX3 AN
3A00 d0dd - = 10Ndodd ANV

3A00 GO - = d3AH0 FHTFHN

1 Iv13a Nod4

AlO Q40 103713S
1S 03x3
‘AlD -13a 14300V

ON IONVAQVY ON HL M
1 34340 AL IINVNO . AVdS Id
1 IV13d 040 -31vddn

".10NAddd HONS ON . AVIdS Id
ESQE!
1 V134 040 -31vAdN WHO443d
0 = 3000S 4|
‘O3X3 AN3
3A00 d0dd - = 3A00 FHTFHN
10Ndodd Nod4
3A00 dO0dd - OIN | 3d00 153713S
1S 03x3
'3A00 d0dd av3ad

3A00 d0dd -Avad INJO443d
ESRE!
ATI4ANI OL T INON

06¢
68¢
88¢
18¢
98¢
G8¢
8¢
€8¢
28¢
18¢
08¢
6.2
8.¢
Llc
9/.¢
G/l¢
|2X4
€Le
clec
1.2
012
69¢
89¢
19¢
99¢
G9¢
¥9¢
€9¢
29¢
T9¢
09¢
6S9¢
8G¢
LSG¢
9G6¢
ler4

(3ao00 -sno -

0 = 3000 Addd 4|

‘3A00 d0dd 14300V

(@3 = 0) 3000 1oNAoYd . AVdS Id
1 IV13d av3ad

~,M3INOLSND HONS ON . AVdS Id
(0 = 1ON 3A00S)4 |
"03X3 aN3
3000 -SNO ¢ = 3A0D IHIHN
HINOLSND OIS
3000 -SNO : OIN |
3000 103713S
DS 033
‘3000 -SND L4300V
ON IONVAQY ON HL M
D ¥3GANNN ¥3A0LSND . AVIdS [a
‘3000 -SND -av3ay

O3X3 AN3
1 INACO
1S 203x3

T = 3714-aN3 11NN
7 V13 -avad NOSd3d
3714-ANI OL 0 IAN
3s13
HO83 . AVdS a
(0 = 1ON 3A00S)4 |
"03X3 aN3
‘J1VASAS

‘3000 QYO :) SANTVA SYIAHO OIN | IM3SN |

1S 03x3
ANWN -SNO AV'1dS |d

‘0 = 3A00OS T IINN 3A00 -SNO -avay INHO=43d

'3Q000S OL T IANN

14314
€46¢
[AST4
1S6¢
0S¢
6v¢
8v¢
Ly
9ve
Sve
vve
eve
ve
Tve
ove
6€¢C
8E¢
LEC
9€¢
514
124
€ee
cee
1€
0€c
6¢¢
8¢¢
L2¢
9¢¢
5144
vee
€ce
céc
Tce
0ce
6T¢

Program Understanding in DBRE

46

"AlO -13a IAWN A0dd AV1dS 1d
"D3X3 aN3
INWN AQ0Hd © ‘A1O-130 : OIN |
43a Q40 HO134
S 03x3
"1 IV13d -AV1dS 1

‘0 = 1ON 3a00DS 111NN
7 IV13d -AV1dS 1d WHO4H3d
IANVN AOdd . AVIdS Id
23x3 -aN3
Q40 1TV NI
S 03x3
23X3 -aN3
3000 'd = 10Ndodd 'd aNv
3000 QYO = Y30 ‘A IHTIHWN
d 10naodd ‘d 1 Iv13a nod4d
INWN d ‘ALO Q40 ‘A 103713S
HO4 HOSHNO 430 QYO v 103a
S 03x3
. 1IV13a Q40 . AVIdS 1
HINOLSNO QO AVdS [
ON IDNVAQY ON HL M
. JINOLSNO Q0 . AV1dS I
3000 G0 AVIdS I
ON IDNVAQY ON HL M
. 3A00 G40 . AVdS [
3714-aN3 OL T IAON
(0 = 3a00VS)4 |
"D3X3 AN3
HINOLSNO G0 © ‘300 G40 - OIN |

WAL TINVNO

6S€
8G¢€
LSE
9G€
9G€
vS€
€G¢€
A1
1S€
0Ss€
6v€
8v¢€
LYE
9ve
Sve
vve
eve
A%
Tve
ove
6E€
8E€
LEE
9€€
GEE
4%
€ee
A%
1€€
0€e
6¢€
8¢¢€
L2€

QO 1V HOL34
VS 033
Q40 -av3ad

T = 3714-AN3 T 1INN Q4O -Avad IWHO4d3d
3714-aN3 OL 0 IAON
"D3X3 aN3

Q40 1TV NI
S 03x3
"D3X3 AN3

3000 A9 H3IQHO

SHIQHO oM

d3INOLSNO ‘3a0O 1Oo313S

HO4 HOSHNO QYO 1V vV T103A
S 03x3
", SYIAHO 40 IS I7. AVIdS I

‘A0 -1S 11

"D3X3 AN3
3000 -A0dd : = 10NAodd ANV
3000 -SNO = H3INOLSND JFHTHN

A1O-13a: + 101 HodNd :) = 101

13S HONYd 31vadn
S 03x3
3S13
O3x3 -aN3

(A1O-13a : '3a00 a0Yd :

‘3A00 -SNO 1)SANTVA HOHNd OLIN | 1H3SN |
S 03x3
(0 = 3a00VS)4 |
"D3X3 aN3
3000 -A0dd : = 10NAoHd ANV

3000 -SNO = HINOLSND JFHTHWN

HOYNd INOY4

101 HodNd : OIN | 101 123713S

S 03x3

9¢¢e
Gce
144>
€ce
A4
1ce
0ce
6T€
8T¢€
LTE
9T€
ST€
V1€
€T€
AR
T1€
0T€
60€
80¢€
L0€E
90¢€
S0€
¥0€
€0¢€
A0}
T10€
00€
66¢
86¢
L6¢
96¢
S6¢
v6¢
€6¢
¢6¢
T6¢

47

Program Understanding in DBRE

Modified embedded code

2.5.

X Old IDIOHD TO

"D3IX3 -AN3 NO 1103S Jdv103d aN3 10S 03x3 E

“(02)X O Id awssvd 10
“(02)X O Id IAVNGISN TO

"(5)6 D1d AlD-13a 20

"(5)6 O 1d AoYd -13a 20

"(ZT)X O1d 1SnO-13a 20
1v13a TO

"(5)6 D 1d 101 HodNd 20

"(§)6 O 1d Aodd Hodnd 20

“(ZT)X O I1d 1SND HodNd 20
HOdNd TO

"(§)6 D1d 3O Md A0dd 20

(00T)X O Id IAWN -d04dd 20

"(5)6 O Id 3000 A0Hd 20
‘aodd 1O

"(ZT)X O Id ¥3INOLSNO Q40 20
(0T)6 O Id 3A00 Q40 20
‘a0 10

(0T)X O Id 3Lva O34 -SNO 20

(0T)X OI1d 1ONN4-SnNO 20

(0¥)X O Id ¥aav -sno zZo

"(0Z)X 2I1d INWN -SO 20

"(ZT)X 21d 3A00 -SMO 20
‘SO 1O

"(5)6 D1d ANLM TO

"(G)6 O Id 30 Md - -10Na0dd
(00T)X O Id IAWN - -10NA0dd

L
1.
0L
69
89
L9
99
=1¢)
¥9
€9
29
19
09
6S
89
LS
99
qS
¥S
€9
Zs
TS
0s
6V
8V
Ly
1%
1%
144
147
A%
144
ov
6€
8¢
LE

()6 O 1d 3Q00 - -10NA0Ydd
10Ndodd -avLl 10

"(5)6 D1d 101 - HodNd

"(5)6 O 1d 1oNAoHd - HodNd

(2T)X O Id ¥3aINOLSNO - HOdNd
HOdNd -avLl 10

(2T)X O Id ¥3INOLSND - -SY3a0

"(8)X O Id ILVA -QHO - -SYIQH0

"(0T)6 D Id 30O - -SHIQO
'SYIQW0 -avL TO

"(5)6 D1d ALD QHO --1 V1A
"(§)6 2 1d 1OoNdoyd - -1 Iv13a
“(0T)6 O Id SY3QHO0 - -1 Iv13a

"1 v13a -avl TO

“(0T)X O Id 31va -03d - -43INOLSNO
“(0T)X O Id 1ONN4 - -¥43aN0LSNO
(0¥)X O Id ¥aav - -"Y3INoLSNO
“(02)X O Id JAWN - "3INOLSNO
"(2T)X O Id 3000 - ™3INOLSNO
‘H3INOLSNO -gvl TO
"D3IX3 -ANT NO 1103S 3dv103d N B3g 1S 03x3 E

"(6)6 O1d IAOOS 10

D3AX3-ANT YOVH0 JANTON | 1OS 03ax3 I«
(VOO0) ealy wuoy 8 oD 8yl ul Adop «
0AXA-ANT YOS IANTON T 1S 03x3 I«
(VOS) ealy wuo) DS 8yl ul Adop «
NO 1103S TOVHOLS -ON DRI

NO IS IAN A V1vd
‘G40 -0 d | AWVHD0Hd
NO IS IA I NO I1VO 14 1IN3A |

9€
1
14>
€¢
A
1€
(01
6¢
8¢
LZ
9¢
G¢
ve
€¢
A4
T¢
0¢
6T
8T
LT
9T
ST
VT
€T

O - N
—

A NMJT O ON~S0O,

48

Program Understanding in DBRE

Modified embedded code

'300001S OL JLva -03d - HINOLSNO
10NN - -H3INOLSNO {¥dadv - -43N0LSNO
FAYN - -H3ANOLSNO 3AOO - -HINOLSNO dWiN -103d AN |

31vA 034 - -”HINOLSNO OL F1vA -O3d -SNO dWiN -1O3d 1d

"1ONNH - HIANOLSNO OL LONNH -SNO dWiA -1034d 1d
Haav - -43N0LSNO OL ddav -sno dviN -1034 1d
‘AAWN - -H3ANOLSNO OL IAWN -SNO dWiA -1034 |d
3d00 - -Y3INOLSNO OL 3AOO -SNO dWiA -1034 Id

O3X3 AN
31va-o3d-sno: ‘1ONNd -SNO :

¥aav -sno : ‘IAWN -SNO ¢ ‘3A00 -SNO) SANTVA

dINOLSND OIN | 1H3ASN |
VS 033

31vA O34 -SNO 14300V
ON ONVAQY ON HLM . © 31vd. AVIdS |d
"1IONN4 -SNO 14300V
ON IONVAQY ON HL M
- d3NOLSNO 40 NO ILONN4 W AVTIdS Id
daav -snd 1d3doov
ON IONVAQY ON HL M
S d3aNOLSNO 40 SS3HAAV . AV7IdS 1d
‘ANWN -SNO 1d3D0V
ON IONVAQY ON HL W
- d3aNOLSNO NA IAWN . AVIdS 1d

'3A00 -SNO 1d320V

ON IONVAQY ON HL WM
«¢ 3A0O0 JINOLSNO « AVIdAS Id
"u s dINOLSNO MAN W AVIAS 1A

dx
dx

dx
dx

'SNO M3N

‘40 -1S 11 INJO4H3d
9 =30 0HO 41
‘dodd -1S 11T WHO4d3d

124"
evl
A4
154"
ovT
6ET
8¢ET
LET
9€T
SET
VET
€eT
ceT
TET
0€T
6¢T
8¢T1
L2T
9¢T
T
124"
e€ct
cct
12T
0ct
61T
8TT
LTT
91T
STT
Vit
€1t
AN
T1T
OTT
60T

G =30 0HO 41

'SNO -1S 11 INJO493d
¥ =30 10HO 41

‘G40 M3IN INHO4d3d
€ =30 0HO 41

‘dodd MaN INJO493d
¢ = 3D OHD 41

"'SNO M3IN NHO443d
T =3010HO d1I
30 IOHO 14300V
“WdN3 0. AVIdS Id
“.SH3AH0 0 IS 1T 9. AVIAS |d
“.S10NAd0Hd 40 1S 1T G AVIdS Id
“WSHINOLSNO O IS 1T Fu AVIAS Id
“.d3A40 MAN €. AVTIAS 1A
“.10NAodd M3IN 2. AV1dS 1d
SAIINOLSNO MAN T AVIAS 1A

'SS3004d

"DAX3 -ANI EM
AWSSVYd : A9 @3 14 IIN3A | IAVYNEISN : LO3ANNOD EM
VS 033 EP

‘AASSVd 14300V

QHOWSSVYd . AVIdS 1A

ANYNGISN 1d3O0V

AANYNEISN . AVTIAS 1A
‘1IN

ON IONVAQY ON HL M .

ON IONVAQY ON HL M .

NNd dO1S
‘0 = D0 I0HO 1 IINN SS320Hd INHO4H3d
"L IN | NHO443d

N WA

NO IS IA Id FINAd30Hd

"(5)6 D 1d 3400 A0Hd TO
‘6 O1d 3714-aN3 TO

80T
L0T
90T
S0T
142"
€0T
40))
10T
00T
66
86
L6
96
S6
v6
€6
c6
16
06
68
88
L8
98
g8
¥8
€8
¢8
18
08
6.
8.
LL
9.
S/
VL
€L

49

Program Understanding in DBRE

HINOLSND - HOHNd dWA 103 AN |
"D3X3 aN3 EP
JAWN 0Hd ‘101 HOHNd : OIN | EM
1S H SNO HO134 EM
S 03x3 EM

"AHOLS H -dS 1a

(0 = ION 3a00DS) 1IINN AHOLS H -dS Id NJO3-3d
"W IV10L 10Ndodd . AV1dS 1d

"3A00 TS OL HINOLSND - HOUNd dWA -103 ION |
HINOLSNO - HOENd OL FA0D -SND dWiA -103d [
"D3X3 aN3 EP
1S IH SNO N3O EM

1S 03x3 E

O3X3 AN3 EF

3A00 -SNO - = Y3ANOLSNO 'd ANV 3
3A00 ¥d = 10Ndodd 'd Fd3HWN\ E
dd 10Naodd ‘d HOdNd INOYd E
INWN ¥d ‘101 'd 103713S E

HO4 ¥MOSHNO 1S H SNO 3dv103d E

1S 0aIX3 I«
‘AHOLS H-SNO -dS |d

"AHOLS H -SNO -dS 1d INHO3d
31vA 034 -SNO LONNH -SNO AVdS Id
¥aav -sno AVdS Id
IAWN -SNO 3A0D -SNO AV1dS [a
I7I4-ANT OL T IAN

(0 = 3a00VS)4 |

31vA 034 -SNO O1 31vA 03 - -H3INOLSNO dWiN -103d 1d
"1ONN4 -SNO OL 10NN - -H3INOLSNO dWiA -103d 1d
Haav -snNO Ol ddav - "J3aNoLSNO dviN -103d |d

9T¢
ST¢
v1c
€T1¢
(A4
T1¢
0T¢
60¢
80¢
L0¢
90¢
or4
144
€0¢
coc
T0Z
00¢
66T
86T
L6T
96T
S6T
V6T
€6T
¢6T
T6T
06T
68T
88T
.81
98T
G8T
8T
€8T
8T
18T

AANVN -SNO OL FAWN - HINOLSNO dWiA -103d |d

3A00 -SNO Ol 3d00 - ™HINOLSNO dWiA -103d |d
'3A0010S

31vA 039 - -{INOLSNO LONNS - -43INOLSNO

Jaav - -{43INOLSNO IAWN - -HINOLSND
3A00 - HINOLSNO OL w. dWA -1O3H ION |
"D3X3 aN3 EP
JIVA O3 -SNO - “LONNE -SNO - EF
VAAV -SNO : ‘IAVN -SNO ¢ ‘IA00 -SMD : OIN | EP
1SN0 11V HO134 EP
S 03x3 EM
'SNO -avad
(T = 3714-aN3) TI1INN SNO -Av3d INHOAY3d
3714AN3 OL 0 IAN
(0 = 3a00VS)4 |
"3A00 TS OL . dWA -1O34 AN |
"D3X3 aN3 EP
1SN0 11V N3O EP
S 03x3 EM
"D3X3 aN3 EP
3A00 A9 Y30 EP
H3INOLSNO INOHA EF
31va O34 ‘1ONN4d
"aav IAWN ‘3ao0 103T13S EP
HO4 HOSHNO 1SN0 11V v 10=a EF
S 03x3 EF
",.SHYINOLSND TFHL 40 SIS IT7. AVIdS I
'SNO -1S 11
140893 . AVIdS 1
3S13
23x3 -aN3 EM
1 IWANOD EF
S 03x3 EM

(0 = 3a00VS)4 |

08T
6.7
8.7
LLT
9.7
ST
VT
€LT
¢lLT
TLT
0T
69T
89T
197
99T
GoT
voT
€97
29T
T9T
09T
69T
89T
LST
94T
qqT
121"
€qT
4]
19T
0sT
6vT
81T
YT
T
SvT

Program Understanding in DBRE

50

Modified embedded code

‘0 = 3a00OS 1I1INN 3400 -SNO -Avay WHO343d 88¢
'3A00VS OL T INON 182

98¢

3000 Q4O LdI00V g8¢

ON IDNVAQY ON HL M ¥8¢

. HIGANN Y30 . AVAS [€8¢

1, 43040 MaN . AVdS 1 282

‘40 MIN T82Z

08¢

30 Idd -a0dd AVdS [6.2

INWN -008d AVdS [8.¢

3000 -a0dd AVdS [112

(0 = 3a00VS)4 | 9.2

30 Idd -00dd OL1 3D Md -a0¥d - -1oNdodd dviA -103d [a S.2
"IAVN 00Hd OL IAWN - -10NA0dd dWiA -103d 1d v.2
"3A00 A0Yd OL 3A0O - -10NAodd dWA -103d 1d €L2
'3A00 VS IO Md a0¥dd - -1oNaoHd 2.z

IAWN - -10NA0Yd A0 - -1ONA0Hd OL .. dWA -103Y ION | 1.2
"D3X3 aN3 I« 0.2

30 Md Q0Yd : ‘IAVN Q0dd : ‘3A00 d0Yd : OIN | I« 692
aodd 11V HO134 I« 892

S 03x3 I« 292

‘aodd avad 992

592

‘0 = 1ON 3A00OS T IINN aodd -avay WHO343d ¥9¢
'3A00VS OL w. dWA -103Y [ON | €9¢

"D3X3 AN3 I« 292

aodd 11V N3O I« 192

S 03x3 I« 092

"D3X3 AN3 I« 6SC

3A00 A9 H3IQHO 3« 8SC

10$Naodd Wod4 I« LSC

I ™A IAVN 3A00 103T1ES I« 952

HO4 HOSHNO aodd 11V v 103a I« GSC

S 03x3 I« ¥S5C

", S1ONAodd 40 1S I7. AVIdS [€62

‘aodd -1S 11

140893 . AVIdS 1

3S13

23x3 -aN3

1 WANOD

S 03x3

(0 = 3a00VS)4 |
'3A00 S 0L 30 Md a0¥d - -1oNaoxdd

IAWN - -10NA0Hd 3A0D - -10NA0dd dWA -103 1N |

Lo

30 [dd Ad0dd - -10Ndodd O1 30 ™d d0dd dWA -103d 1d

"IAWN - -10NA0Hd OL IAVN A0dd dWiA 1034 1
"3A00 - -10NA0dd OL1 3A00 A0dd dWiA -103d Id
"D3X3 AN3
(30 1d aoud -
‘300 A0dd 1) SIANTVA
10NaoYd OIN | 1H3ASN |
S 03x3

‘FAWN -0 -

W W ow o

30 dd A0dd 1d300V
ON ONVAQY ON HLM . & T3A3T. AVIdS Id

‘INWYN d0Hd 14300V
ON ONVAQY ON HLM . @ FAYN. AVIdS Id
'3A00 Ad0Yd 14300V
ON IONVAQY ON HL M
« - J3GANN 1ONAOHd « AVIdS 1A
~.10NAdocdd M3aN . AV'1dS |d
‘dodd MaN

101 HOHUNd IANWN A0dd AVdS Id
(0 = 3a00VS)4 |
"IAWN A0dd OL IAWN - -10NAd0dd dWiA -1O03d 1d
101 HOHNd OL 101 - +HOodNd dWA -103d Id
"3A00TOS IAWN - -10NA0Hd 101 - HOdNd OL

A4
16¢
0S¢
6v¢

x 87¢
x LV
x 9¥¢

144
vve
eve
e
Tve
ove

x 6EC
x 8€C
x LEC
x» 9€¢
x G€C

vee
€ee
A4
1€¢
0€¢
6¢¢
8¢¢
Léc
9¢¢
gcc
vece
€ce
¢éc
T1c¢
0ce
6T¢
8T¢
LT¢

51

Program Understanding in DBRE

SYIAHO - -1 IV13Ad OL FA0D QO dWiA -1034 1
23x3 -aN3 EP

3000 d0dd : = 10Naodd ANV EM

300 QO : = YIQHO FHTIHN EM

7 IV13a Wod4 EM

AlD @40 1037138 EM

1S 03x3 E
‘AlD -13a 14300V
ON IONVAQV ON HL M
1 3¥3AH0 AL IINVNO . AVdS Id
1 V134 040 -31vddn

".10NAddd HONS ON . AVIdS Id
ESRE!
1 IV13d 040 -31vAdN WHO443d
0 = 30000S 4|
3d00 d04d OL 3A00 - -109Ndddd dWiA -1034 |d
'3Q00TOS 300 - -10NA0Hd Ol
3A00 - -10NACHd dWiA -1934 IAON |
3A00 - -10NA0dd Ol 3d00 A0dd dWA -1034 |d

‘O3X3 AN3 E

3A00 d0dd - = 3A00 FHTFHN E
10Ndodd No4d4 E

3A00 dO0dd - OIN | 3000 153713Ss E

1S 203x3 E
3A00 d0dd av3ad

3A00 d0dd Avad INJO443d
ESQE!
3714-AN3 OL T INON
0 = 3000 Ad4d 4|
3A00 Ad0dd 14300V
(@3 = 0) 3000 1oNAoYd . AVdS Id
1 Iv13d avad

“IINOLSNO HONS ON . AVTIdS 1d

09¢€
6S€
8G¢€
LSGE
9G¢€
GG¢e
vS€
€G6¢€
A%
1S€
0s€e
6v¢€
8v¢€
LYE
9ve
Sve
vve
eve
A%
Tve
ove
6€E€
8€€
LEE
9€€
GEE
vEE
€ee
(A%
T€E
0oce
6¢¢€
8¢¢
L2€
9¢e
Gce

(0 = 1ON 3a00DS)4 |

3A00 -SNO Ol 3d00 - ™HINOLSNO dWiA -103d |d
'3A00OS 3000 - -HINOLSNO Ol
3d00 - HIANOLSNO dWA -103d IAN |
3A00 - -{43NOLSNO OL 3AO0O -SNO dWiA -103d |d
O3X3 AN3
3d00 -SNO - = 3A00 FHFHWN
HINOLSNO oY
3d00 -SNO - OIN |
3d00 153713S
1S 03x3
'3A00 -SNO 1Ld320V
ON IONVAQVY ON HL M
- d3aNNN 93A0LSNO W AVTIdS 1d

E

EF
EF

E

'3A0O -SNO Advad

O3X3 AN3
1 INACO
1S 03x3

T = 3714-aN3 1I1INN

7 V13 -av3d WOSd3d

3714-ANI OL 0 IAN
3s13

083 . AVdS a
(0 = 1ON 3A00S)4 |

‘300 DS OL

YINOLSND - -{IAHO 3A0D - HIQHO dWiN -1O3 IaN |
HINOLSND - {IAH0 OL IA0D -SNO dWA -103d Id
3000 - ¥3QH0 OL 3A0D G40 dWA -103d Id

03X3 N3
(3aco sno ;- ()ALVASAS
‘3Q00 GO 1) SINTVA SH3QHO OIN | 1H3SN |
VS 033

ANWN -SNO AV'1dS |d

ER
E
EF

E
E

144>
€ce
(A4
Tce
0ce
6T€
8T¢€
LTE
9T€
ST€
V1€
€T€
AR
TT1€
0T€
60€
80¢€
L0€
90¢€
S0€
¥0€
€0¢€
A0}
T0€
00¢€
66¢
86¢
L6¢
96¢
S6¢
144
€6¢
c¢6¢
T6¢
06¢
68¢

Program Understanding in DBRE

52

Modified embedded code

HINOLSNO GO © ‘300 G40 - OIN | I« CEY

a40” 1V HO134 I« TEY

S 03x3 I« 0V

Q40 avad 62¥

8z

‘T = 3714-AN3 711NN QHO -Avad WHO4d3d VXA
3714-aN3 OL 0 IAON 9z

JA00OS OL . dWA -1O3M AN | A%

"D3X3 aN3 I« vev

Q40 1TV NI I« €2V

S 03x3 I« 22V

"D3X3 AN3 EPR YA

3000 A9 H3IQHO I« 02¥

SHIAQHO oM I« 6TV

d3INOLSNO ‘FA0D 103T13S I« 8TY

HO4 HOSHNO QY0 1V v 103a EPWAR

S 03x3 I« 9TV

", SHIAHO 40 1S I17. AVIdS I STy

QO -1S 17T vIv

€Ty

'3A00 VS 0L 10NaoYd - HOHNd ZTy
HINOLSNO - HOUNd 101 - HOdNd dWiAl -LO3 AN | TT¥
aodd - HodNd Ol 300 -a0dd dWiA -103d [a (0)8%
HINOLSNO - HOUNd OL FA0D -SNO dWiA -103d [60¥
101 - HOdNd OL dAL AA dWA -103d [80¥
AlD-13a + 101 HOodNd = dAL A TFINdAOD L0V
"D3X3 AN3 I« 90%

3000 d0dd - = 10Naodd ANV I« GO¥

3a00 -SNO = YIAOLSNO FHIHN I« YOV

A1 -13a: + 101 +HodNd :) = 101 I« €0V
13S HOdNd 31vadn I« 20V

S 03x3 I« TOV

3S13 00¥%

Ja00 S OL 101 - HOodNd 66¢€

aodd - HOUNd "INOLSND - HOHNd dWiAl -103 (AN | 86¢
101 - HodNd OL AL1O -13a dWA -103d I L6€

aodd - HodNd OL1 3A0O -a0dd dWiA -103d [
HINOLSNO - HOUNd OL FA0D -SNO dWiA -103d [
23X3 -aN3
(A1D-13a: ‘300 -aoYd -
‘3A00 -SNO 1)SANTVA HOYNd OLIN | 1H3SN |
S 03x3
(0 = 3a00VS)4 |
101 HOdNd OL 101 - HOdNd dWA -103 Id
"3A00 VS 101 - HOdNd Ol
aodd - HodNd ¥INOLSND - HOHNd dWiAl -103 (AN |
‘aodd - HOdNd OL1 3A00 -A0dd dWiA -103d [
HINOLSNO - HOUNd OL FA0D -SNO dWiA -103d [

"D3X3 AN3
3000 -A0dd : = 10NAoHd ANV
3000 -SNO = HINOLSND JFHTHN
HOYNd INOY4
101 HodNd : OIN | 101 103713S
S 03x3

1S H -SNO -31vdd

1S H -SNO -31vadn WHO43d
"JA00 VS OL AlD Q40 - -1 Iv13a
aodd - -1 IV13a SHIAHO - -1 IV13A dviA -103Y (AN |
"AlO Q4O - -1 IV13Ad OL AlD -13a dwA -103d Id
‘aodd - -1 IV13a OL 3a00 d0dd dwA -103 Id
'SYIAHO - -1 IVL3Ad OL IA00 G0 dWiA -103d I
O3X3 -aN3
‘300 Q4O 1) SANTVA
71V13A OIN | 1H3SN |
S 03x3
313
S Hodd3 . AVIdS I
0 = 3a000S 4|
"JA00 VS ALO QO - -1 IV13a Ol
10Na0Yd - -1 IV13d SYIAHO - -1 IV13a dviA 103 AN |
10Naodd - -1 IV13a OL1 3a00 -aodd dviA -103d [

(A1O -13a : ‘3000 a0Yd :

Ad3930450 AQVH TV

W W

W w W

96¢€
S6€

x V6€E
x €6€
x C6E
x T6E

06€
68€
88€
L8€
98€
G8€

dx ¥8€
dx €8
dx ¢8€
dx
3
3
N

18€

» 08€
x 61€

8.€
LLE
9/.€
S.€
v.€
€LE
(AR
T.€

x» 0LE
x 69€
x 89€
x L9€

99¢€
G9¢€
¥9€
€9¢€
c9¢€
T19€

53

Program Understanding in DBRE

AlD QHO - -7 IV13A OL SY3IAQH0 - -1 IW13Ad dWiA -1O3d AN | 89%
"D3X3 aN3 I« L9V

IAWN -00dd © ‘ALO -130 : OIN | I« 99Y

43a Q40 HO134 I« SOV

S 03x3 EPR17

1 IVLIA-AVIdS I €97

Z97
‘0 = 1ON JA00OS 7T IINN 9%

7 IV13A -AVdS 1a NHO443d 09%

WAL TINVNO INWVN aodd . AV1dS Id 6GY

JA0OOS OL SHIAHO - -1 IV13A dWiA -1D3d AN | 8GY

SHIQHO - -1 IV13A OL 3A0D Q0 dWA -103d [LSV

23x3 -aN3 I« 9G¥

Q40" 1V N30 I« SS¥

S 03x3 I« ¥SY

23x3 -aN3 I« €SV

3000 'd = 10Naodd ‘A ANV I« 2SY

3000 G0 : = H3AHO 'd IFHIHN I« ISP

d 10naodd ‘d 1 Iv13a Wod4d I« 0S¥

IAWN d ‘AlD Q40 ‘a4 103 73S I« 67Y

HO4 HOSHNO 430 QYO v 103a I« 8hY

S 03x3 EPWA%ZY

. 1IV13a Q0. AV1dS Id 9ty

HINOLSNO Q0 AVdS (A Sty

ON IDNVAQY ON HL M Va%a%

. JINOLSNO Q0 . AVIdS (A 7474

3000 -GH0 AVIdS I vy

ON IDNVAQY ON HL M 18%4%

. 3A00 Q0 . AVIdS 1 (0}74%

3714-aN3 OL T IAON 6EY

(0 = 3a00VS)4 | 8cy

HINOLSNO -0 OL HANOLSND - -HIQRHO dWN -103d I LEY

‘AlD -13a IAWN A0dd AV1dS 1 Zly "3A00 QYO OL1 3A00 - -{3AH0 dWA -103d I 9ey

IAWN -00dd OL FAWN - -10NA0dd dWiA -103 [TLY "FA00 S HANOLSND - -HIQRO Gev
AlD -13ad OL ALD Q4O - -1 IW13A dWA -103d [(VA% 3000 - {30 OL . dWA -1O3M AN | 4%

3000VS IAWN - -10NA0Hd 697 ‘O3X3 AN3 dx €EV

Program Understanding in DBRE

ANNEX C Jrange Data
Sructures/ real cae
dudies

This annex describes physicals data structures found in real programs (case studies). One of the
big question about these physical structures is how to represent them in the DB-MAIN CASE tool
and how to transform them into conceptual structures. Many of these data structures do not match to
classical (academic) data structures.

For each example, the source code is given with its corresponding physical schema and the physical
schema is transformed to obtain a more conceptual schema.

C.1. Chained lists

Files: imppc.cob, accpc.cob, leccle.cob, lecper.cob

This example shows the implementation of a double chained list using arelative COBOL file.

C.1.1.COBOL

The declaration of the three COBOL filesare givenin figure 187. Only the declaration of thefilesis
given and not the complete source code (more than 1400 LOC), some fragments of the code are
presented to explain constraints discovery.

Program Understanding in DBRE 55

SELECT PERCLE ASSI GN TO " PERCLE. RAN'
ORGANI ZATI ON | S RELATI VE

ACCESS MCDE |'S DYNAM C

RELATI VE KEY | S RELKEY- PERCLE

FI LE STATUS | S FSTATCUL.

SELECT CLES ASSI GN TO " CLES. RvS"

ORGANI ZATI ON | S | NDEXED

ACCESS MCDE |'S DYNAM C

RECORD KEY | S NUMCLE- CLE

ALTERNATE RECORD KEY | S EMPLAC- CLE

ALTERNATE RECORD KEY | S SUI TE- CLE 01
W TH DUPLI CATES

FI LE STATUS | S FSTATCUL.

FD PERCLE LABEL RECORD STANDARD.
01 ART- PERCLE

02 MATR- PERCLE PI C X(4).
02 NUMCLE- PERCLE PI C X(10).
02 NOVBRE- PERCLE PIC 9(4).
02 PO NT- SU VANT- PER- PERCLEPI C 9(7) .

02

02
02

PO NT- PRECEDENT- PER- PERCLE

PIC 9(7).

PO NT- SUI VANT- CLE- PERCLEPI C 9(7).
PO NT- PRECEDENT- CLE- PERCLE

ART- 1- PERCLE.

02

FI LLER

PIC 9(7).

PI C X(32).

02 1ER- LI BRE- LOG QUE- PERCLEPI C 9(7).
02 1ER- LI BRE- PHYS| QUE- PERCLE

SELECT PERSO ASSI GN TO " PERSO. RMVB" PIC 9(7).
ORGANI ZATI ON | S | NDEXED FD CLES LABEL RECORD STANDARD.
ACCESS MODE |'S DYNAM C 01 ART- CLES.
RECORD KEY |'S MATR- PER 02 NUMCLE- CLE Pl C X(10).
ALTERNATE RECORD KEY | S ALTKEY1- PER 02 EMPLAC- CLE Pl C X(9).
FI LE STATUS | S FSTATCUL. 02 PO NT- ANCl EN- PERCLE- CLEPI C 9(7) .
02 PO NT- RECENT- PERCLE- CLEPI C 9(7).
FD PERSO LABEL RECORD STANDARD.
01 ART- PERSO
02 MATR- PER Pl C X(4).
02 NOW PER Pl C X(30).
02 ALTKEY1-FI CH ER Pl C X(10).
02 PO NT- ANCl EN- PERCLE- PERPI C 9(7) .
02 PO NT- RECENT- PERCLE- PERPI C 9(7) .

FIGURE 187. The data structure declaration.

ree

ART-PERCLE
ART-1-PERCLE

ART-1-PERCLE

RELKEY-PERCLE
FILLER

1ER-LIBRE-LOGIQUE-PERCLE
1ER-LIBRE-PHY SIQUE-PERCLE

id: RELKEY-PERCLE

ART-CLES ART-PERCLE
NUMCLE-CLE RELKEY-PERCLE
EMPLAC-CLE MATR-PERCLE

ART-PERSO

ART-PERSO

POINT-ANCIEN-PERCLE-CLE[0-1]
POINT-RECENT-PERCLE-CLE[0-1]

id: NUMCLE-CLE
acc

id: EMPLAC-CLE
acc

NUMCLE-PERCLE
POINT-SUIVANT-PER-PERCLE[0-1]
POINT-PRECEDENT-PER-PERCLE[0-1]
POINT-SUIVANT-CLE-PERCLE[0-1]
POINT-PRECEDENT-CLE-PERCLE[0-1]

MATR-PER

NOM-PER

ALTKEY1-PER
POINT-ANCIEN-PERCLE-PER[0-1]
POINT-RECENT-PERCL E-PER[0-1]

id: RELKEY-PERCLE

FIGURE 188. The raw physical schema.

id: MATR-PER
acc

id': ALTKEY1-PER
acc

56

Program Understanding in DBRE

C.1.2. Thecomplete physical schema

PERCLE is a 'relative’ file, so during the DDL code analysis, a technical attribute (RELKEY-
PERCLE) is added to the entity types of PERCLE (ART- 1- PERCLE and ART- PERCLE) to materiaize
the relative key. Each record can be access directly, giving the record number. RELKEY- PERCLE is
theidentifier of the entity type.

This example shows the implementation of two double chained lists between ART- CLES and ART-
PERSO. These chained list are implemented by the two entity types of the collection PERCLE. A
double chained list isalist that can be go through forward and backward. For example, the double
chained list that has ART- CLES as origin is alist that from an occurrence of ART- CLES t o al the
occurrences of ART- PERSOthat are connected can be reach sequentialy from thefirst one of thelist
or starting from the last one.

The analysis of ART- 1- PERCLE usage shows that the only occurrence of this entity typesisthe first
record of PERCLE and all the other are to type ART- PERCLE. The attribute 1ER- LI BRE- LOG QUE-

PERCLE is the record number of the first unused (free) record of PERCLE, al the unused records are
chained (using PO NT- SUI VANT- PER- PERCLE). A referential constraint is created form 1ER-

LI BRE- LOG QUE- PERCLE to ART- PERCLE. RELKEY- PERCLE. 1ER- LI BRE- PHYSI QUE- PERCLE
is the number of the record that follow the last record of the file. If there is no free record into the
filethen 1ER- LI BRE- LOG QUE- WD and 1ER- LI BRE- PHYSI QUE- WO have the same value.

Program Understanding in DBRE 57

CREATI ON- LI EN. Fill ART-PERCLE-WO (D)
Creates the double chained lists between MOVE MATR- PER TO MATR- PERCLE

ART-PERSO and ART-CLES (A) OF ART- PERCLE- WO
| E PO NT- RECENT- PERCLE-PER = 0 MOVE NUMCLE- CLE TO NUMCLE- PERCLE
MOVE 0 TO POl NT- PRECEDENT- PER- PERCLE OF OF ART- PERCLE- WO
ART- PERCLE- WD MOVE 1 TO
MOVE 1ER- LI BRE- LOG QUE- WD TO POl NT- NOVBRE- PERCLE OF ART- PERCLE- WO
ANCI EN- PERCLE- PER MOVE 0 TO PO NT- SU VANT- PER- PERCLE
ELSE OF ART- PERCLE- WO.
MOVE PO NT- RECENT- PERCLE- PER TO MOVE 0 TO PO NT- SU VANT- CLE- PERCLE
PO NT- PRECEDENT- PER- PERCLE OF ART- PERCLE- WO
OF ART- PERCLE- WO Sorage of ART-PERCLE-WO (E)
RELKEY- PERCLE MOVE 1ER- LI BRE- LOG QUE- WD TO
READ PERCLE RELKEY- PERCLE.
MOVE 1ER- LI BRE- LOG QUE- WD TO MOVE CORRESPONDI NG ART- PERCLE- WD TO
PO NT- SUI VANT- PER- PERCLE ART- PERCLE- LI .
OF ART- PERCLE | F 1ER- LI BRE- LOG QUE- WD
REWR TE ART- PERCLE. = 1ER- LI BRE- PHYSI QUE- WD
Update ART-CLE (B) MOVE CORRESPONDI NG ART- PERCLE- WO TO
| F POl NT- RECENT- PERCLE- CLE = 0 ART- PERCLE
MOVE O TO PO NT- PRECEDENT- CLE- PERCLE VRl TE ART- PERCLE
OF ART- PERCLE- WO ADD 1 TO 1ER- LI BRE- LOd QUE- WO
MOVE 1ER- LI BRE- LOG QUE- WD TO 1ER- LI BRE- PHYSI QUE- WO
PO NT- ANCI EN- PERCLE- CLE ELSE
ELSE READ PERCLE
MOVE PO NT- RECENT- PERCLE- CLE TO MOVE PO NT- SUl VANT- PER- PERCLE
PO NT- PRECEDENT- CLE- PERCLE OF ART- PERCLE TO
OF ART- PERCLE- VWO 1ER- LI BRE- LOd QUE- WO
RELKEY- PERCLE MOVE CORRESPONDI NG ART- PERCLE- WO TO
READ PERCLE ART- PERCLE
MOVE 1ER- LI BRE- LOG QUE- WD TO REWRI TE ART- PERCLE.
PO NT- SUI VANT- CLE- PERCLE Update of ART-PERCLE-1 (F)
OF ART- PERCLE MOVE SPACES TO ART- PERCLE.
REWRI TE ART- PERCLE. MOVE 1ER- LI BRE- LOG QUE-WD TO

Update the pointersto the last record into 1ER- LI BRE- LOG QUE- PERCLE.
ART-PERSO and ART-CLE (C) MOVE 1ER- LI BRE- PHYSI QUE- WD TO

MOVE 1ER- LI BRE- LOG QUE- WO TO 1ER- LI BRE- PHYS| QUE- PERCLE.
PO NT- RECENT- PERCLE- PER MOVE 1 TO RELKEY- PERCLE.
POl NT- RECENT- PERCLE- CLE. REVRI TE ART- PERCLE- 1.

FIGURE 189. Fragment of code that add a new record in PERCLE.

The code of figure 189 shows the fragment of code that is used to add a new element into the lists
that connect ART- CLES with ART- PERSO. ART- CLES and ART- PERSO contain valid value for
which all constraints validations have been done. These records will be stored after the double
chained lists have been created.

Thefirst part of the code (A) connects ART- PERSOto the list. | F PO NT- RECENT- PERCLE- PER
= 0, ART- PERSOIs not yet connected to a ligt, it is the first time ART- PER is connected to ART-
CLES (0 represent the null value). Otherwise, the last element of the list is read and the pointer to
the next element of the list (the one that will be added) is updated. The second part of the code (B)
updates the connection to ART- CLES.

The (C) code fragment update the pointer to the last element of the list (the one that will be added).

58 Program Understanding in DBRE

The (D) code fragment fills the new ART- PERCLE- WO record. MATR- PERCLE and NUMCLE-
PERCLE contains reference to ART- PERSO and ART- CLES respectively. PO NT- SUI VANT- PER-
PERCLE and POl NT- SUI VANT- CLE- PERCLE have the default value O that represent anull value.

In (E) fragment ART- PERCLE is stored. If no free record are available (1ER- LI BRE- LOG QUE-
PERCLE = 1ER- LI BRE- PHYSI QUE- PERCLE) the record is wrote at the end of the file, otherwise
thefirst free record is rewrote.

The last fragment (F) updates the ART- PERCLE- 1 record that contains the number of the first free
record.

This code analysis can be summarized as follow.

Each element of ART- CLES is connected to a (optional) double chained list of elements of ART-
PERCLE:

e PO NT- ANCI EN- PERCLE- CLE references the first element of the optional list (this is why its
cardinality is set to [0-1]).

* PO NT- RECENT- PERCLE- CLE references the last element of the optional list (this is why its
cardinality is set to [0-1]).

* PO NT- SUI VANT- CLE- PERCLE pointsto the next element in the list, except for the last element
of thelist whereit isequal to O (thisiswhy its cardinality is set to [0-1]).

* PO NT- PRECEDENT- CLE- PERCLE pointsto the previous element in the list, except for the first
element of thelist whereitisequal to O (thisiswhy its cardinality is set to [0-1]).

ART-CLES ART-PERCLE

/ \n
N\

. POl NT- PRECEDENT- CLE- PERCLE
| |POlNT- RECENT- PERCLE- CLE
POl NT- ANCI EN- PERCLE- CLE

FIGURE 190. Example of the double chained list referenced by ART- CLES.

Figure 190 represents an example of such double chained list. Each record of ART- CLES is option-
ally connected to the first and last element of the list. Each record of ART- PERCLE has a pointer to
the previous element of the list (except the first one), a pointer to the next element of the list (except
the last one) and a pointer to the ART- CLES record.

Program Understanding in DBRE 59

There exist additional constraints about this chained list, to express some notations need to be
defined:

Ox O ART-CLES, point-ancien-percle-cle(x)
= {y O ART-PERCLE|x.POINT-ANCIEN-PERCLE-CLE.POINT-SUIVANT-CLE-PERCLE..... -y

(between 0 and n time POINT-SUIVANT-CLE-PERCLE foreign key)}
and
Ox O ART-CLES, point-recent-percle-cle(x)
= {y O ART-PERCLE|x.POINT-RECENT-PERCLE-CLE.POINT-PRECEDENT-CLE-PERCLE..... - y
(between 0 and n time POINT-PRECEDENT-CLE-PERCLE foreign key)}

The additional constraints are:
(Ox O ART-CLES)point-ancien-percle-cle(x) = point-recent-percle-cle(x)

and
(Oy O ART-PERCLE,Ox O ART-CLES) |y O point-ancien-percle-cle(x)

For the second list, each element of ART- PERSO can be connected to a double chained list of
element of ART- PERCLE:

* PO NT- ANCI EN- PERCLE- PER references the first element of the optional list (this is why its
cardinality is set to [0-1]).

* PO NT- RECENT- PERCLE- PER references the last element of the optional list (this is why its
cardinality is set to [0-1]).

e PQA NT- SU VANT- PER- PERCLE points to the next element in the list, except for the last element
of thelist whereit isequal to O (thisiswhy its cardinality is set to [0-1]).

* PO NT- PRECEDENT- PER- PERCLE points to the previous element in the list, except for the first
element of the list whereit is equal to O (thisiswhy its cardinality is set to [0-1]).

With the additional constraints:
(Ox O ART-PERSO) point-ancien-percle-per(x) = point-recent-percle-per(x)

and
(Oy O ART-PERCLE,Ox 0 ART-PERSO) |y O point-ancien-percle-per(x)

60 Program Understanding in DBRE

e

ART-1-PERCLE
ART-PERCLE

ART-1-PERCLE
RELKEY-PERCLE
FILLER
1ER-LIBRE-LOGIQUE-PERCLE
1ER-LIBRE-PHY SIQUE-PERCLE
id: RELKEY-PERCLE
r ref: 1ER-LIBRE-LOGIQUE-PERCLE

ART-PERCLE

ART-CLES

NUMCLE-CLE
EMPLAC-CLE
POINT-ANCIEN-PERCLE-CLE[0-1]
POINT-RECENT-PERCLE-CLE[0-1]

id: NUMCLE-CLE

acc
id': EMPLAC-CLE

acc
ref: POINT-ANCIEN-PERCLE-CLE
ref: POINT-RECENT-PERCLE-CLE
coex: POINT-ANCIEN-PERCLE-CLE

RELKEY-PERCLE

MATR-PERCLE

NUMCLE-PERCLE
POINT-SUIVANT-PER-PERCLE[0-1]
POINT-PRECEDENT-PER-PERCLE[0-1]
POINT-SUIVANT-CLE-PERCLE[0-1]
POINT-PRECEDENT-CLE-PERCLE[0-1]

ART-PERSO

ART-PERSO

id: RELKEY-PERCLE

id': MATR-PERCLE
NUMCLE-PERCLE

ref: POINT-PRECEDENT-CLE-PERCLE

ref: POINT-PRECEDENT-PER-PERCLE

ref: POINT-SUIVANT-CLE-PERCLE

ref: POINT-SUIVANT-PER-PERCLE

ref: NUMCLE-PERCLE

MATR-PER

NOM-PER

ALTKEY1-PER
POINT-ANCIEN-PERCLE-PER[0-1]
POINT-RECENT-PERCLE-PER[0-1]

id: MATR-PER

acc
id': ALTKEY1-PER

acc
ref: POINT-ANCIEN-PERCLE-PER
ref: POINT-RECENT-PERCLE-PER
coex: POINT-ANCIEN-PERCLE-PER

POINT-RECENT-PERCLE-CLE ref: MATR-PERCLE POINT-RECENT-PERCLE-PER

FIGURE 191. The complete logical schema.

C.1.3. Data structure conceptualization

C.1.3.1. Schema preparation

During the schema preparation, all the physical constructs can be removed and objects renamed:

ART- 1- PERCLE is an entity type that is only used to store some technical information, position
of thefirst free record and the number of the last record of the file, thusit can be removed with-
out any lost of semantic.

The two double chained lists are only used to access the data and are redundant with the referen-
tial constraints that go from ART- PERCLE from ART-PERCLE to ART- CLES and to ART- PERSO.
So the attributes used to represent those lists can be removed.

RELKEY- PERCLE is atechnical attribute that was added during the data structure extraction to
materialize the record number and it has no semantic. It can be removed.

The entity types can be renamed as the collections that have more meaningful names.

The suffix of the attribute names can be removed, it is an usual COBOL program trick to prefix
(in English) or to suffix (in French) attribute names to have unique name.

The access keys and the collections can be removed.

The schema of figure 192 isthe prepared schema.

Program Understanding in DBRE 61

PERCLE
MATR PERSO
CLES NUMCLE MATR
NUMCLE id MATR NOM
EMPLAC NUMCLE ALTKEY1
id: NUMCLE j¢——{ref: NUMCLE id: MATR
id': EMPLAC ref: MATR —/D id': ALTKEY1

FIGURE 192. The prepared schema.

C.1.3.2. Untrandlation and de-optimization

Obvioudly the two referential constraints can be transformed into relationship types.

C.1.3.3. Conceptualization

e
NUMCLE w
EMPLAC —O—O—N— ALTKEY1
id: NUMCLE /

id’: EMPLAC id: MATR
: id: ALTKEY1

FIGURE 193. The conceptual schema.

The conceptualization of this small schemais simple, the only thing to do, isto transform the entity
type PERCLE into arelationship type.

Thefinal conceptual schemais displayed in figure 193.

C.2. Hierarchical foreign key

File: xclpc4.txt (carloc)

This example shows the usage of a hierarchical referential constraint in a COBOL/IDMS applica-
tion. The IDM S database declaration and its corresponding physical schemaare givenin figure 194.

62 Program Understanding in DBRE

RECORD NAME | S XCLRC002

LOCATI ON MODE IS VI A XCLSC001- G002 SET.

02 CD02- KEY3.
03 C002- TYPE PI C X(6).
03 CD02- KEY1 Pl C X(10).

02 CD02- GARNI TURE PIC X(4).

RECORD NAME | S XCLRC004
LOCATI ON MODE |'S CALC USI NG (C004- KEY)
DUPLI CATES ARE NOT ALLOWED.

02 CD04- KEY PI C X(6).

RECORD NAME | S XCLRCOO7

LOCATI ON MODE |'S VI A XCLSC004- G007 SET.

02 CD07- KEY PI C X(5).
02 ©007- DESCR Pl C X(80).
02 ©007- ACTIF Pl C X.

SET NAME | S XCLSC004- C007
OMER | S XCLRC004
MEMBER | S XCLRCO07 LI NKED TO OMNER
MANDATORY AUTOMVATI C
KEY 1S (0007- KEY ASCENDI NG)
DUPLI CATES ARE NOT ALLOWED.

FIGURE 194. The database declaration and its raw physical schema.

C.2.1. Source code

OBTAI N CURRENT XCLRC002.

MOVE C002- TYPE TO CO04- KEY.
OBTAI N CALC XCLRCO004.

| F DB- REC- NOT- FOUND

ELSE

XCLRC002

C002-KEY
C002-TYPE
C002-GARNITURE

id: C002-KEY

XCLRCO004
C004-KEY
id: CO04-KEY

0-N

XCLSC004-C007

1-1

XCLRCO07

C007-KEY
C007-DESCR
C007-ACTIF

id: XCLSC004-C007.XCLRC004
C007-KEY

Reads the current XCLRCO002 record.

Reads the XCLRCO004 record.

MOVE C002- GARNI TURE TO C007- CAPI TONNAGE
OBTAI N XCLRC007 W THI N XCLSC004- C007 USI NG C007- CAPI TONNAGE
Reads the XCLRCO007 record that is connected to the current

XCLRCO004 through the XCLSC004-C007 set.

| F DB- REC- NOT- FOUND

ELSE

MOVE CO007- DESCR TO MRC4- AUSST- DESCR

END- | F.
END- | F.

FIGURE 195. The procedural fragment.

Figure 195 is a procedural fragment that implement the hierarchical referential constraint usage in

COBOL/IDMS.

C.2.2. Thecompletelogical schema

The analysis of the first three lines of the fragment show a trivia referential constraint between

C002- TYPE and XCLRC004.

Program Understanding in DBRE

63

The analysis of the reminder of the code shows that another attribute of XCLRC002 (C002- GARNI -
TURE) is used to fill the record key of XCLRC007 (C007- KEY), in fact thisis not redly the identi-
fier, which is the role through XCLRC004 and C007- KEY. But we have aready find a referential
constraint from C002- TYPE to XCLRC004, so we discovered a second referential constraint from
(C002- TYPE, C002- GARNI TURE) to the identifier of XCLRC007. Thisis a hierarchical referential
constraint because the target of the referential constraint contains arole.

Thelogical schemais displayed in figure 196.

XCLRCO004
XCLRC002 CO04-KEY
C002-KEY id: CO04-KEY
C002-TYPE 0-N
C002-GARNITURE
G COOZ-KEY XCLSC004-C007
ref: CO02-TY PE 1-1
ref: C002-TY PE
XCLRCO007
C002-GARNITURE CO07-KEY
CO007-DESCR
C007-ACTIF
id: XCLSC004-C007.X CLRC004
CO007-KEY

FIGURE 196. The complete logical schema.

C.2.3. Conceptualization

To conceptualize this schema, we have to transform the referential constraints. First of al we can
notice that the first referential constraint (C002- TYPE, C004- KEY) is redundant with the second
one, so it can be suppressed.

The second one can be transformed into a relationship type (not accepted by DB-MAIN!).

The conceptual schemais shown in figure 197.

XCLRCO004
CO004-KEY
id: CO04-KEY
XCLRC002

CO002-KEY ON
C002-TYPE X CLSC004-C007
C002-GARNITURE |4)
id: CO02-KEY < i 2

Garniture on XCLRCO07

1co07-KEY

CO007-DESCR

CO07-ACTIF

id: XCLSC004-C007.X CLRC004
C007-KEY

FIGURE 197. The conceptual schema.

64 Program Understanding in DBRE

C.3. Computed referential constraint (1)

File: XSNPS12.TXT

This example presents the implementation of a computed referential constraint. To find the refer-
enced record, the vaue to the reference attribute is used as the input parameters of a function. In
this example, the function is a translation table.

C.3.1. TheDDL analysis

RECORD NAME | S XDDRDO02
LOCATI ON MODE |'S VI A XDDSI X01- D002 SET.

02 D002- NR PI C X(6).
02 D002- US| NE Pl C X(15).
02 D002- DEALER Pl C X(04) .

0-N SYSTEM 0-N

RECORD NAME | 'S XSNRS007 | |

LOCATI ON MODE IS VI A XSNSI X08- SO07 SET. XDDSIX01-D002 X SNSIX08-S007
02 S007- KEY. -
03 S007-P-L PI C X. | L
03 S007- DEALER PI C X(04). 11 XSNRS007
02 S007- DENOM PI C X(15). | ey
02 S007- TEL Pl C X(15). XDDRD002 S007-DEALER
. DO02-NR S007-DENOM
SET NAME | S XDDSI X01- D002 D002-USINE S007-TEL
OWNER | S SYSTEM POOZ-DEALER id: XSNSIX08-S007.SY STEM
MEMBER | S XDDRDOO2 ... KEY IS (D002- NR). o DIOZNR S00TKEY
SET NAME |'S XSNSI X08- S007

OMER | S SYSTEM

MEMBER | S XSNRS007 MANDATORY AUTQOVATI C
KEY | S (S007- KEY ASCENDI NG

DUPLI CATES ARE NOT ALLOWED.

FIGURE 198. DDL declaration and the corresponding raw physical schema.

This example uses an IDMS database. The DDL and its corresponding raw physical schema are
givenin figure 198. IDM S databases are hierarchical database, i.e. the programmer can declare set,
some kind of relationship type. In an IDMS database there exists a specia entity type, named
SYSTEM to which correspond exactly one record. Its main usage is to be the owner of some sets to
support sort or access keys. Thistrick is necessary because the only manner to declare sorted access
key in IDMS isto declare them into a set. So if arecord isthe member of no sets and the program-
mer wants to declare an access key, he hasto create a set that have this entity type as a member and
SYSTEMas the owner and then to declare the access key on the set.

Program Understanding in DBRE 65

C.3.2. The schema refinement

OBTAI N XDDRD002 W THI N XDDSI X06- D002 USI NG D002- NR.
| F DB- REC- NOT- FOUND THEN
MOVE ' NOTFOUND' TO WR03- CURRENT
GO TO END- PAR
| F DO02-USI NE = ' TRUCK THEN
MOVE ' P TO S007-P-L
ELSE
MOVE ' L' TO S007-P-L.
MOVE DO02- DEALER TO S007- DEALER.
OBTAI N XSNRS007 W THI N XSNSI X08- S007 USI NG S007- KEY.

FIGURE 199. Procedural fragment.

The analysis of the procedura fragment (figure 199) shows that D002- DEALER is copied into
S007- DEALER (part to the identifier) and that there exist a function (trandation table) between
D002- USI NE and S007- P- L (the second part of the identifier). SO07- P- L contains the value P or
L depending of the value of D002- USI NE. So thisisafunction that is used to compute the values of
the identifier of XSNRS007 according to the value of two attributes of XDDRD002. Thisis caled a
computed referential constraint.

Figure 200 represents the complete logical schema with the computed foreign key.

O-N SYSTEM 0-N
XDDSIX01-D002 XSNSIX08-S007

1-1

11 XSNRS007
XDDRD002 S007-KEY
DDO02-NR S007-P-L
DO002-USINE S007-DEALER
DO002-DEALER S007-DENOM
id. DDOO2-NR S007-TEL
acc id. XSNSIX08-S007.SY STEM
ofk: DO02USINE | 4> SO07-KEY
DO002-DEALER acc

FIGURE 200. The complete logical schema.

C.3.3. The conceptualization

The first step of the conceptualization (preparation) is to remove the physical constructs. In this
example, the entity type SYSTEM and its relationship types can be removed because they are only
used to implement IDM S access key. The access keys can also be removed.

The computed referential constraint can be transformed into a relationship type, but D002- USI NE
could not be suppressed and a constraint has to be added to express the relation between D002-
USI NE and S007- P- L (see [Hainaut-19974]).

The conceptual schemais shown in figure 201.

66 Program Understanding in DBRE

XSNRS007
XDDRD002 S007-P-L
S007-DEALER

DO0Z-NR
D002 USINE -1-1-@0—1\1- S007-DENOM

DO TR S007-TEL
a : id: S007-PL

S007-DEALER

Od O XDDRD002

d.R.S007-P-L = Pif d.D002-USINE = 'TRUCK’
L otherwise

FIGURE 201. The conceptual schema.

C.4. Computed referential constraint (2) - Y2K

File: XDDPD8D.TXT

This is a typica year 2000 example, where a windowing solution has been implemented. This
example use COBOL/IDMS.

C.4.1. TheDDL analysis

RECORD NAME | S XDDRDO022
LOCATI ON MODE | S VI A XDDSD002- D022 SET.

02 D022- DELI VERY- DT.

03 D022- DELI VERY- AA Pl C XX. XDDRD022 XDDRDO10
03 D022- DELI VERY- MM Pl C XX. DO10-KEY 1
03 D022- DELI VERY-JJ Pl C XX. D022-DELIVERY-DT D010-CE
RECORD NAME | S XDDRDO10 D022-DELIVERY-AA D010-AAMMIJ
LOCATI ON MODE | S CALC USI NG (D010- KEY1) D D ey M o,
DUPLI CATES ARE NOT ALLOWED. D010-1J
02 DO010- KEY1. DO10-TYPE
03 D010- CE Pl C XX. id: DO10-KEY1
03 D010- AAMMIJ. acc
05 D010- AA Pl C XX.
05 D010- MM Pl C XX.
05 D010-JJ Pl C XX.
02 D010- TYPE PI C X

FIGURE 202. DDL declaration and its corresponding raw physical schema.

The DDL code and its corresponding raw physical schema are displayed in figure 202. It can be
noticed in the physical schema that in XDDRD022 the date contains only ayear (D022- DELI VERY-
AA) coded in two characters and the date in XDDRDO10 has a century attribute (D010- CE) of two
characters and ayear attribute (D010- AA) of two characters.

Program Understanding in DBRE 67

C.4.2. The schema refinement

OBTAI N FI RST XDDRD022
W THI N XDDSD002- D022.
MOVE DO22- DELI VERY- AA TO D010- AA.
MOVE DO22- DELI VERY- MM TO D010- MM
MOVE DO022- DELI VERY-JJ TO D010-JJ.
| F D010- AA > ' 90’ THEN
MOVE 19 TO D010- CE
ELSE
MOVE 20 TO D010- CE.
OBTAI N XDDRDO10 W THI N XDDSI X13- D010
USI NG D010- KEY1.

FIGURE 203. Procedural Fragment.

The analysis of the procedural code fragment (figure 203) shows that D022- DELI VERY- AA (- MM
-JJ) iscopied into D010- AA (- MM - JJ) and D010- CE is set to 19 or 20 according to the vaue of
D010- AA (the implementation of the windowing algorithm with a cutoff year set to 1990 [IBM-
1999)).

This can be represented into the logical schema (figure 204) by a computed referential constraint.

XDDRDO010
DO10-TYPE
DO010-KEY1
XDDRDO022 D010-CE
D010-AAMMJJ
D022-DELIVERY-DT DO010-AA
D022-DELIVERY-AA D010-MM
D022-DELIVERY-MM D010-1J
D022-DELIVERY-1J id: DO10-KEY1
cfk: D022-DELIVERY-DT] acc

FIGURE 204. The complete logical schema.

C.4.2.1. The conceptualization

After the suppression of the access key (preparation), the computed referential constraint is trans-
formed into a relationship type. A constraints is added to express that XDDRD022 is connected to
XDDRD010 with a date comprise between 1st January 1991 and 31th December 2090.

The conceptual schemais shown in figure 205.

68 Program Understanding in DBRE

XDDRDO022

Od O XDDRD022
d.Delivery.DO10-CE = 19 if DO10-AA > 90

20 otherwise

FIGURE 205. The conceptual schema.

XDDRDO010

11 Dy >-01]

DO010-KEY1
DO10-TYPE
D010-CE
D010-AAMMJ]

DO010-AA
D010-MM
D010-1J

id: D010-KEY1

C.5. Computed referential constraint (3)

File: XDDPD8D.TXT

This is an example of one of the ssimplest computed referential constraint, where the function
concatenate a constant to the referential attribute.

C.5.1. TheDDL analysis

RECORD NAME | S XDCRDCO1

LOCATI ON MODE | S VI A XDCSDCOO- DC1A SET.

02 ...
02 DCQO1- USI NE.

03 DCO1- USI NE1

03 DCO1- USI NE2- 6
RECORD NAME | S XTLRTO000

PIC X
Pl C X(06) .

| OCATI ON MODE IS CALC USI NG (TOO0O- KEY)
DUPLI CATES ARE NOT ALLOWED,

02 TOOO- KEY.
03 TO00- TRUCK
03 TOO0O0- USI NE
02 TOO0O- TXT

FIGURE 206. DDL declaration and its corresponding raw physical schema.

Pl C X(15).
PI C X(08).
PI C X(80).

XTLRTO000

XDCRDCO1

DCO1-USINE
DCO01-USINE1
DCO01-USINE2-6

TOO0O-KEY
TO00-TRUCK
TOO0O-USINE

TOOO-TXT

id: TOOO-KEY

acc

The DDL code and its corresponding raw physical schema are shown in figure 206.

C.5.2. The schema refinement

OBTAI N CURRENT XDCRDQO1.
MOVE * VEH NEUFS'

TO TO0O- TRUCK.

MOVE DCO1- USI NE2-6 TO TOO0O- USI NE.
OBTAI N CALC XTLRTO0O0O.

FIGURE 207. Procedural Fragment.

Program Understanding in DBRE

69

Through the analysis of the procedural fragment (figure 207), it can be noticed that DCO1- USI NE2-
6 is copied into TOOO- USI NE and TO00- TRUCK is set to a constant (' VEH NEUFS'). TO00- TRUCK
and TO0O0- USI NE are the identifier, so thisis acomputed referential constraint.

The complete logical schemais shown in figure 208.

XTLRT000
XDCRDCO1 TOOKEY
DCO1-USINE T000-TRUCK
TO00-USINE
DCO1-USINE1L
DCO1-USINE2-6 T000-TXT
ofk DCOI-USINE. DCOI-USINEZ6 |— ¢ & ZCOCOO'KEY

FIGURE 208. The complete logical schema.

C.5.3. The conceptualization

After the suppression of the access keys (preparation), the computed referential constraint is trans-
formed into arelationship type. A constraint is added to express that al the XTLRTOO connected to
XDCRDCO01 through R must have T0O00- TRUCK =’VEH NEUFS'.

Figure 209 displays the conceptual schema.

XTLRT000
XDCRDCO1 TO00-KEY
TO00-TRUCK
DCoLUSINE | T E < > ON T000-USINE
DCO1-USINEL TO0O-TXT
id: TO0O-KEY

Od O XDCRDCO1
d.R.TOOO-TRUCK = 'VEH-NEUFS

FIGURE 209. The conceptual schema.

C.6. Createatemporary file

File: budgetO4.chl, line 841

In this example, atemporary file is created to sort afile, the record key of the temporary fileis the
sort criteria.

C.6.1.COBOL

Figure 210 shows the declaration of the files.

Figure 211 shows the fragment of the procedural code that copies the origina file into the tempo-
rary one and use it to print a sorted report.

70 Program Understanding in DBRE

SELECT BUDTSEC ASSI GN TO DI SK, BUDTSECXXFD BUDTSEC LABEL RECORD OM TTED.

ORGANI ZATI ON | S | NDEXED * BUDTSEC TABLE DES SECTI ONS EXI STANTES
ACCESS MCDE |'S DYNAM C 01 BUDTSECREC.
FI LE STATUS | S FI LSTAT 03 BUDTSKEY.
RECORD KEY | S BUDTSKEY. 05 BUDTSNR PI C X(05).
SELECT BUDTREP ASSI GN TO DI SK, BUDTREPXX 03 BUDTSLI B Pl C X(30).
ORGANI ZATI ON | S | NDEXED FD BUDTREP LABEL RECORD OM TTED.
ACCESS MCDE | S DYNAM C * TABLE DE REPARTI TI ON DES SECTI ONS
FI LE STATUS | S FI LSTAT 01 ANTREPREC.
RECORD KEY | S ANTRKEY. 03 ANTRKEY.
SELECT BUDRPA ASS|I GN TO DI SK, BUDRPAXX 05 ANTRNR PI C X(05).
ORGANI ZATI ON | S | NDEXED 03 R- ANTRREST.
ACCESS MCDE | S DYNAM C 05 ATRI ND Pl C X(04).
FI LE STATUS | S FI LSTAT 05 ATRORD PI C 9(03).
RECORD KEY | S ORDRPAKEY. FD BUDRPA LABEL RECORD OM TTED.

* ORDRE DE REPARTI TI ON ANALYTI QUE
01 ORDRPAREC.

03 ORDRPAKEY Pl C X(03).
03 ORDRPANUM Pl C X(05).
FIGURE 210. The files and records declaration.
MJ BUDRPA SECTI ON. G0 TO M- EX.
M- 01. M- 05.
OPEN | NPUT BUDRPA. DUDRPA contains the fields ATRORD,
IF FILSTAT = "94" ANTRNR sorted by ARTRORD while

CLOSE BUDRPA

BSE BUDTREP was ordered on ANTRNR.

OPEN | NPUT BUDRPA.
DI SPLAY "ORDRE DE REPARTI TION ".
Dl SPLAY " "
MOVE SPACES TO ORDRPAKEY.
START BUDRPA KEY > ORDRPAKEY
Select thefirst record.
I NVALI D KEY GO TO M- EX.
M- 06.
READ BUDRPA NEXT AT END
Reads the next record.
READ BUDTREP NEXT AT END GRS [BUBREA €0 O
CLCSE BUDRPA GO TO M- 05. MOVE ORDRPANUM TO BUDTSNR
Reads the next record. Fillsthe record key.
MOVE ATRORD TO ORDRPAKEY. READ BUDTSEC | NVALI D KEY

If the file BUDRPA exist, deleteit.
CLOSE BUDRPA
DELETE FI LE BUDRPA.
M- 02.
OPEN | - O BUDRPA.
MOVE SPACES TO ANTRNR.
START BUDTREP KEY > ANTRKEY
Positions on the first record.
| NVALI D KEY GO TO MJ- EX.
M- 03.

MOVE ANTRNR TO ORDRPANUM Reads the target record.
Fills ORDRPAREC. MOVE SPACES TO BUDTSLI B.
VRl TE ORDRPAREC | NVALI D KEY DI SPLAY ORDRPAKEY, " ", ORDRPANUM
GO TO Mi- 04. BUDTSLI B.
GO TO MI-03. Prints an ordered report.
M- 04. GO TO M- 06.
CLOSE BUDRPA. M- EX.

EXIT.
FIGURE 211. Procedural fragment.

Program Understanding in DBRE 71

C.6.2. The complete logical schema

The file BUDRPA is atemporary file, because at the beginning of the fragment it isdeleted if it exists

BUDTSECREC

BUDTSKEY

BUDTSNR
BUDTSLIB

id: BUDTSKEY

ORDRPAREC
ORDRPAKEY
ORDRPANUM
id: ORDRPAKEY

ANTREPREC

ANTRKEY
ANTRNR

R-ANTRREST
ATRIND
ATRORD

rd acc id: ANTRKEY
id’: ORDRPANUM acc
rd N id': R-ANTRREST.ATRORD

acc <™ ref: ORDRPANUM

: ANTRKEY.ANTRNR

BUDTSECREC

FIGURE 212. The complete logical schema.

(figure 211, paragraph MJ- 01).

Paragraph MJ- 02 set the current record of BUDTREP to the first one. MJ- 03 copies for each record
of BUDTREP the value of ATRORD into ORDRPAKEY (the identifier) and ANTRNR into ORDRPANUM
ORDRPAREC is acopy of ANTREPREC, two r d constraints are added. ANTRKEY is an identifier, soits
copy (ORDRPANUM is also an (secondary) identifier. ORDRPAKEY is an identifier and a copy of

BUDRPA
ORDRPAREC

ATRORD, S0 ATRORD is also an (secondary) identifier;

Through the analysis of paragraph MJ- 06, it can be discovered that there is areferential constraint

from ORDRPANUMto BUDTSKEY (BUDTSNR).

The complete logical schemais displayed in figure 212.

C.6.3. The conceptualization

BUDTREP
ANTREPREC

ANTREPREC
ANTRNR
R-ANTRREST
ATRIND

BUDTSECREC ATRORD
BUDTSNR
BUDTSLIB id: ANTRNR
<}/_ ref
id: BUDTSNR id': R-ANTRREST.ATRORD

FIGURE 213. The prepared logical schema.

BUDTSECREC

ANTREPREC

BUDTSNR
BUDTSLIB

o TR i

id: BUDTSNR

R-ANTRREST
ATRIND
ATRORD

id: R-ANTRREST.ATRORD

FIGURE 214. The conceptual schema.

72

Program Understanding in DBRE

The first step is to prepare the schema, i.e. remove all the unnecessary physical constructs. In this
schema, al the access keys and the collections are removed. Some compound attributes
(BUDTSKEY, ANTRKEY) have only one component, so they can be disaggregated.

ORDRPAREC is a copy of ANTREPREC, so it can be integrated into ANTREPREC. The result of this
first step is shown in figure 213.

Now referential constraint is transformed into a relationship type. The referential constraint is
between two identifiers, so the relationship type is a one-to-one relationship type. The conceptual
schemais displayed in figure 214.

C.7. COBOL
SELECT SCTRAV ASSI GN TO DI SK, BESTS5 03 SCT- REST.
ORGANI ZATI ON | S | NDEXED 05 SCTTAB.
ACCESS MCDE | S DYNAM C 07 SCTLAM OCCURS 102 TI MES
FI LE STATUS | S FI LSTAT PI C X(08).
ALTERNATE RECORD KEY | S 05 SCTETA PI C X(01).
SCT-BLO W TH DUPLI CATES 05 SCTLON PIC 9(03).
RECORD KEY | S SCTKEYN. 05 SCTLAR PIC 9(03).
SELECT SCM_AM ASSI GN TO DI SK, BEST7 05 SCTHAU PI C 9(03).
ORGANI ZATI ON | S | NDEXED 05 SCTTAG PI C 9(02).
ACCESS MCDE | S DYNAM C 05 SCTTSC PI C 9(02).
FI LE STATUS | S FI LSTAT 05 SCTMAJ PIC 9(01).

RECORD KEY | S SCMKEYN.
FD SCM_LAM LABEL RECORD OM TTED.

FD SCTRAV LABEL RECORD OM TTED. 01 SCMLANMREC.
01 SCTRAVREC. 03 SCVKEYN.
03 SCTKEYN. 05 SCVARM PI C 9(02).
05 SCTARM PI C 9(02). 05 SCMPCS PI C 9(03).
05 SCTCHA PI C 9(04). 05 SCMSCI PI C X(08).
05 SCTBLO PIC 9(04). 03 SCM REST.
05 SCTCLE REDEFI NES SCTBLOPI C X(04). 05 SCMMV2 Pl C S9(9) V99 COWP.
05 SCVHAU Pl C S9(9) V99 COWP.

FIGURE 215. The files declaration.

Program Understanding in DBRE 73

SC10- 02. Compute the aggregate

Read the next record ADD M2LAM TO SCMWR.

READ SCTRAV NEXT AT END COVPUTE SCVHAU = SCVHAU+(SCTHAU / 100) .
STOP RUN. REWRI TE SCMLAMREC | NVALI D KEY
IF SCTMAJ = 1 If the record does not exist
If the record has already been integrated GO TO LAME-11.
into the statistics, skipit GO TO LAME- 02.
GO TO SC10- 02. LAME- 11.
Compute some intermediate values ~ VWRI TE SCMLAVREC | NVALI D KEY
COVPUTE B = SCTTAG + 1. MOVE "| NVALI D WRI TE SCUPAB" TO FOUT1
COMPUTE LH = SCTLON * SCTHAU. MOVE SCUKEY TO FQUT2
COVPUTE M2LAM ROUNDED = LH / 10000. g‘ng '-QENSCRFOUT
Fill the record key LANE. 02 ‘
MOVE SCTARM TO SCMARM ' . . .
MOVE SCTLAMB) TO SOVEC . Marks the daily record as integrated into
NMOVE B TO SCMPCS. the monthly statistics
Access to the monthly record WOYS & Y SCllhad
READ SCMLAM | NVALI D KEY REWRI TE SCTRAVREC | NVALI D KEY
3 G B o STOP RUN.
If the record does not exist fill it with 60 T6 SCL0. 02,
default value

MOVE LOW VALUES TO SCM REST.

FIGURE 216. The procedural part.

Figure 215 shows the declarations of the two files. SCTRAV is the daily production and SCM_LAMis
the monthly production statistics.

Figure 216 shows the procedural fragment used to compute the monthly statistics from the daily
production data.

74

Program Understanding in DBRE

C.7.1. Thecompletelogical schema

SCMKEYN SCTKEYN
SCMPOS SCTCHA
SCMSCI SCTBLO

SCM-REST SCT-REST
SCMM2 SCTTAB
SCMHAU SCTLAM[102-102] array

id: SCMKEYN SCTETA

acc SCTLON

Agg: SCM-REST.SCMM2 SCTLAR

Agg: SCM-REST.SCMHAU SCTHAU

SCTTAG

SCTTSC

SCTMAJ
id: SCTKEYN

cfk: SCT-REST.SCTTAB.SCTLAM[*]
SCT-REST.SCTTAG
SCTKEYN.SCTARM
SCT-REST.SCTMAJ
: SCT-REST.SCTLON
SCT-REST.SCTHAU
SCT-REST.SCTMAJ
: SCT-REST.SCTHAU
SCT-REST.SCTMAJ
acc: SCTKEYN.SCTBLO

FIGURE 217. The complete logical schema.

The DDL code analysisistrivial, it produces two collections, two entity types with attributes, iden-
tifiers and access keys.

The procedural fragment is more difficult to interpret in spite of ssmplicity of the algorithm. The
genera algorithm is a big loop that reads each record of SCTRAVREC and performs the following
actions:

» Thevaue of the primary key of SCMLAMREC is computed.

» The corresponding record of SCMLAMREC is read or set to default value if it does not exist.
» The aggregate attributes of SCMLAMREC are updated.

* SCMLAMREC iswritten back to thefile;

» Therecord SCTRAVREC is marked as read.

The tricky part of the fragment is that the record key of SCMLAMREC is not filled with the value of
some attributes of SCTRAVREC, but a function of those attributes. SCTTAG is used as an index to
access an element of SCTLAM This is represented by a computed referential constraint that is only
trueif SCTMAJ = 1. The computed referential constraint can be expressed as follow:

e SCVARM = SCTARM
e SCWMPCS = SCTTAG + 1
e SCMBClI = SCTLAM SCTTAG + 1)

The values of SCMVR2 and SCVHAU are an aggregation of the values of the attribute of SCTRAVREC.
These aggregations can be seen as business rules. These rules are stored in the description of the
groups and can be expressed as follow:

e SCMVR = sun(SCTLON * SCTHAU / 10000)

Program Understanding in DBRE 75

« SCVHAU = sum(SCTHAU / 100)

The complete logical schemaisdisplayed in figure 217.

C.7.2. Conceptualization

The conceptualization of the schema is very easy, because SCMLAMREC is only the aggregation of
the value of SCTRAVRE. So in the conceptual schema, SCMLAVREC can be removed. SCTMAJ can
also be removed because it is only used to mark the records that have aready been aggregate to
SCMLAMREC.

C.8. History
File: b15.cob, line 2673, c10.cob

In this example, the file CREREK contains for each invoice the different payments. This file is
updated with the records of afile (HULP) that contains the different financial operations.

76 Program Understanding in DBRE

C.8.1.COBOL

SELECT HULP ASSI GN TO DI SK, BEST8 FD CREREK
ORGANI ZATI ON | S | NDEXED LABEL RECORD OM TTED.
ACCESS MODE |'S DYNAM C 01 CREREC.
FILE STATUS IS FILSTAT 03 CREREKKEY.

RECORD KEY | S HULPKEY. 05 CRKLANT Pl C X(5).
SELECT CREREK ASSI GN TO DI SK, BEST1 05 CRDOKNR Pl C X(5).
ORGANI ZATI ON | S | NDEXED 05 CRVOLG Pl C 99.

ACCESS MODE |'S DYNAM C 03 CRPER
RECORD KEY |'S CREREKKEY. 05 CRIAAR Pl C 99.
05 CRVAAND Pl C 99.
FD HULP LABEL RECORD OM TTED. 03 CRDATDOK.
01 HULPREC. 05 CRDATJAAR Pl C 99.
03 HULPKEY. 05 CRDATMAAND Pl C 99.
05 HULPORG PIC 9(4). 05 CRDATDAG Pl C 99.
05 HULPDAT. 03 CROVBDOK Pl C X(25).
07 HULPDAA PI C 99. 03 CRVERVD.
07 HULPDWM PI C 99. 05 CRVERVJAAR Pl C 99.
07 HULPDJJ PI C 99. 05 CRVERVMAAND Pl C 99.
05 HULPI EC PIC 9(5). 05 CRVERVDAG Pl C 99.
03 HULPSCHERM 03 CRDEBCRE PI C X.
05 HULPDC PIC X. 03 CRBEDR Pl C S9(9) V99.
05 HULPREKALG 03 CRAANZ PIC X.
07 HGEN6OU? PI C 999. 03 CRDATBET.
07 HGENRES PI C X(086). 05 CRDATBETJAAR Pl C 99.
05 HULPREKAN. 05 CRDATBETMAAND Pl C 99.
07 HANALCF PI C X(05). 05 CRDATBETDAG Pl C 99.
07 HANALRES PI C X(04). 03 CRSYMBP PIC X.
05 HULPDOK PIC 9(5). 03 CRBETAALD PI C S9(9) V99 val ue
05 HULPOVS PI C X(25). 0.
03 HULPRDAT. 03 CESCOVPTE Pl C S9(9) V99 val ue
05 HULPRDAA PI C 99. 0.
05 HULPRDVM PI C 99. 03 CFC PI C X.
05 HULPRDJJ PI C 99. 03 CRPI ECP Pl C 9(5).
03 HULPBF PI C S9(11) COMP.
03 HULPSYMB PIC X.

FIGURE 218. Files and records declaration.

ACCEPT CRDATDAG.
ACCEPT CRDATMAAND.
ACCEPT CRDATJAAR.
ACCEPT CRKLANT.
ACCEPT CRBEDR

MOVE NRNU TO CRDOKNR.

MOVE 0 TO CRVOLG
MOVE 0 TO CRBETAALD CRBETAALD- EUR
WRI TE CREREC | NVALI D KEY

MOVE "I NVALI D WRI TE CREREK" TO FT1
MOVE CREREKKEY TO FT2
GO TO STOPS.

I F CESCOMPTE NOT = O

MOVE CESCOVPTE TO CRBETAALD

MOVE CRDATDOK TO CRDATBET

MOVE "G' TO CRSYMBP

MOVE CRDOKNR TO CRPI ECP

REVWRI TE CREREC | NVALI D KEY
G0 TO STOPS.

FIGURE 219. Procedural code (creation of the customer in credit).

Program Understanding in DBRE 77

MOVE BHULPI EC TO HULPI EC.
MOVE BHULPORG TO HULPCRG
MOVE BHULPDAT TO HULPDAT.
START HULP KEY >= HULPKEY | NVALI D KEY
GO TO | 13.
111.
READ HULP NEXT AT END
GO TO | 13.
I F HGEN6QU7 = 440
PERFORM UPI MPFRS THRU FI NI MPFRS.
GO TO 111
UPI MPFRS.
*UPD FI CH ER CREREK: | MPAYES CREDI TEURS.
MOVE HANALCF TO CRKLANT.
MOVE HULPDOK TO CRDOKNR
MOVE 0 TO CRVOLG
I F HULPDOXK = 0
GO TO CREI NC.

ELSE
MOVE HULPBF
MOVE 0O

TO CRBEDR
TO CRBETAALD
MOVE SPACES TO CRSYMBP
MOVE 0 TO CRPI ECP.
MOVE HULPDAA TO CRIAAR.
MOVE PP TO CRMAAND.
MOVE HULPDAT TO CRDATDCOK CRVERVD.
MOVE HULPOVS TO CROVSDCK.
MOVE HULPDC TO CRDEBCRE.
MOVE 0 TO CESCOMPTE.
| F CRDOKNR=ZERCE
MOVE SPACE TO CFC.
VWRI TE CREREC | NVALI D KEY
DI SPLAY "I NVALI D WRI TE CREREK! "
STOP RUN.
| F CRAANZ = "A"
PERFORM SOLDEFR THRU FI NSOLDEFRS.

START CREREK KEY=CREREKKEY | NVALI D KEY GO TO FI NI MPFRS.

DI SPLAY "1 NVALI D START CREREK"
STOP RUN.
READCREREK.

READ CREREK NEXT AT END
GOTO UPCREREK.

MOVE CRVOLG TO BCRVOLG

| F CRBETAALD > 0
GO TO DEJAPAI .

MOVE HULPBF TO CRBETAALD.

MOVE HULPSYMB TO CRSYMBP.

MOVE HULPDAT TO CRDATBET.

MOVE HULPI EC TO CRPI ECP.

IF HULPDC = "C' AND CFC = "0"
MULTI PLY -1 BY CRBETAALD.

IF HULPDC = "D' AND CFC = "1"
MULTI PLY -1 BY CRBETAALD.

COWUTE SOLDE = CRBEDR - CRBETAALD.

IF SOLDE = 0
MOVE "A" TO CRAANZ.

REWRI TE CREREC | NVALI D KEY
DI SPLAY "1 NVALI D REWRI TE CREREK"
G0 TO STOPS.

GO TO FI NI MPFRS.

ECRI CREREC.

I F HULPDC = "D"
MOVE HULPDAT TO CRDATBET
MOVE HULPBF TO CRBETAALD
MOVE HULPSYMB TO CRSYMBP
MOVE HULPI EC TO CRPI ECP
MOVE 0 TO CRBEDR

FIGURE 220. The procedural code.

DEJAPAI .
MOVE CRBEDR TO TDOC
SUBTRACT CRBETAALD FROM TDCC.
I F HULPBF = TDOC
ADD 1 TO CRVOLG
MOVE " A" TO CRAANZ
GO TO ECRI CREREC.
LECI MPC.
READ CREREK NEXT AT END
GOTO UPCREREK.
| F CRKLANT NOT=
GOTO UPCREREK.
| F CRDOKNR NOT=
GOTO UPCREREK.
MOVE CRVOLG TO BCRVOLG
SUBTRACT CRBETAALD FROM TDCC.
| F TDOC = HULPBF
ADD 1 TO CRVOLG
MOVE " A" TO CRAANZ
GO TO ECRI CREREC.
GO TO LECI MPC.
UPCREREK.
MOVE HANALCF TO CRKLANT.
MOVE HULPDOK TO CRDOKNR.
COWUTE CRVOLG = BCRVOLG + 1.
I F HULPBF = TDCOC
MOVE " A" TO CRAANZ.
GO TO ECRI CREREC.
FI NI MPFRS.
EXI T.

HANAL CF

HULPDOK

For this example, in addition the usual files and records declaration (figure 218), there is two proce-
dural fragments. The first one (figure 219) is the creation of an entry for an invoice (new invoice),
al the data are given interactively by the user. The second fragment (figure 220) reads, from afile,
the different payment carried out and adds the corresponding records to the file.

78

Program Understanding in DBRE

Thisis also an example of a multi language development, some comments are in French (I MPAYES
CREDI TEURS = customer in credit unpaid), the variable names are mostly in Dutch (CRKLANT =
CrCustomer or CRDOKNR = CrDokumentNumber = CrDocumentNumber) and some error messages
arein English (I NVALI D START CREREK). Thisisatypical example of the Belgian way of doing,
so the analyst needs to have at least some notion of the three languages and during the conceptual -
ization all the names need to be trandlate in the same language.

C.8.2. The complete logical schema

The first fragment (figure 219) does not tell us any information about potential constraints, except
that it tests the value of CESCOMPTE and if its valueis different than 0, it is copied into CRBETAALD.

The second one (figure 220) is a complex fragment to analyze. In paragraph | 11, thisfragment only
uses the record for which HGEN6OU7 = 440. The record key is constructed from two attributes of
HUL PREC (HANAL CF and HULPDCOK) and a constant (0).

In paragraph READCREREK, the record with the computed record key isread, if it does not exist (AT
END) then a new record is added (paragraph UPCREREK). If the record exists and nothing has yet
been paid (CRBETAALD = 0) the record is updated according to the value of HULPREC. If everything
ispaid (CRBEDR - CRBETAALD = 0) then CRAANZ isset to ' A.

If something has already been paid (CRBETAALD > 0) then DEJAPAI is executed. In paragraph
DEJAPAI , TDOC receives the value of CREBEDR (the amount of the invoice) and CRBETAALDT
(amount already paid) is subtracted. So TDOC contains the reminder of the invoice to be paid. If
TDOC = HULPBF (the amount paid) then one is added to CRVOLG CRAANZ is set to 'A and the para-
graph ECRI CREREC is executed (arecord is written into the file). Otherwise, the next record is read
(LECI MPC) until the end of the file is reached, or the next record does not belong to the same
customer (CRKLANT) or does not belong to the same document (CRDOKNR), then UPCREREK is
executed. For each new record, CRBETAALD is subtracted from TDOC, but CRBEDR is not used any
more. SO we can state that CRBEDR is optiona and is only used for the first record of a couple
CRKLANT, CRDOKNR.

Paragraph UPCREREK fills CRKLANT and CRDOKNR with the current customer number and document
number and CRVOLD with the previous valued (BCRVOLG) plus one and then it executes
ECRI CREREC.

In paragraph ECRI CREREC, the new record is filled with the value of HULPREC and the default
values and it is written into the file. This can suggest that some attributes are optional (CRBEDR,
CRBETAALD, CRSYMBP, CRPI ECP, CESCOMPTE). If we look closer, we can notice that CRBETALD,
CRSYMBP and CRPI ECP all have a value or none of them have a value, so we add a coexistence
constraints between them.

Program Understanding in DBRE 79

CRKLANT | CRDOKNR | CRVOLD | CRDEBCRE CRBEDR CRBETAALD | CRAANZ
K 1 D 1 0 C bedr (not 0) | bet O aanz_0
K 1 D1 1 D 0 bet_1 aanz_1
K1 D1 n D 0 bet n aanz_n
K2 D2

FIGURE 221. Example of the value of CREREK.

Figure 221 shows an example of the value of CREREK. We can express the relation between
CRBEDR, CRBETAALD and CRAANZ for the records with the same CRKLNAT, CRDOKNR as follow:

if (bedr - (bet 0+ ...+bet n))=0 thenaanz n="A" andaanz i =" “ O(0<i<n).
otherwiseaanz_i="" O(0<i<n).

It is very difficult (or impossible) to formalize this in the logical schema, we have discovered a
business rule that express how CREREK is constructed and constraints about the structures of the
data.

We define BALANCE|, , as follow™:

Ok 0 CRKLANT, Od 0 CRDOKNR and n = max(v| Carecord identified by (k, d, v))

BALANCE|k’d = CRDEBCRE|k’ 40~ Z CRBETAALD\k’ dv

0<isn

The complete logical schemaisthe one displayed in figure 222 with the following constraints:
if BALANCE|, , =0 then CRAANZ|, .= "A" and CRAANZ| . =" " 00<i<n
otherwise CRAANZ|, . =" " 00<is<n
CRDEBCRE|, 4 ,#0 and CRDEBCRE|, , , = 0 Ov<0
CESCOMPTE|, 4, =0 00>V
if CESCOMPTE|, , ,#0 then CRBETAALD|, , , = CESCOMPTE|, ,

For all record of HULPREC with HGEN6 QU7 = 440 then it exists v such that
CREBETTALD |, naLcr HuLPDOK, v = HULPBF and CRDATBET |, naLcrHuLPDOK, v = HULPDAT and

1. ATT| ,, =thevalueof the attribute ATT of entity type CREREK isidentified by CRKLANT=k,
CRDOKNR=d and CRVOLD=v.

80 Program Understanding in DBRE

CREREC HULPREC
CREREKKEY HULPKEY
CRKLANT HULPORG
CRDOKNR HULPDAT
CRVOLG HULPDAA
CRPER HULPDMM
CRIAAR HULPDJJ
CRMAAND HULPIEC
CRDATDOK HULPSCHERM
CRDATJAAR HULPDC
CRDATMAAND HULPREKALG
CRDATDAG HGEN60OU7
CROMSDOK HGENRES
CRVERVD HULPREKAN
CRVERVJAAR HANALCF
CRVERVMAAND HANALRES
CRVERVDAG HULPDOK
CRDEBCRE HULPOMS
CRBEDR[0-1] HULPBF
CRAANZ HULPSYMB
CRDATBET[0-1] id: HULPKEY
CRDATBETJAAR acc
CRDATBETMAAND
CRDATBETDAG
CRSYMBP[0-1]
CRBETAALDI[0-1]
CESCOMPTE[0-1]
CFC
CRPIECP[0-1]
id. CREREKKEY
acc
coex: CRDATBET
CRSYMBP
CRBETAALD
CRPIECP

FIGURE 222. The complete logical schema.

C.8.3. Conceptualization

The conceptualization of this schemais not trivial because all the constraints are not expressed in
the logical schema and some of those constraints are business rules. So the conceptualization is
more an interpretation of the constraints than their transformation.

Our proposed solution is to divided the CREREC record into two entity types, one to represent the
initial invoice, CREREC; and the otherone the different payments, VOLG (see figure 223). The
attribute CRAANZ can be suppressed because it can be derived, it is used to mark when the entire
invoice has been paid. If CESCOVWPTE is different from 0, we did not copy it into CRBETAALD.

We can create a sub-type of HULPREC to materialize the entity type that have HGEN6OU7 equal to
440 (see figure 223). We can create a referential constraint from (HANALCF, HULPDOK) to
(CRKLANT, CRDOKNR).

The entity type VOLGis redundant with the entity type HGEN6OU7=440, SO we can suppressiit.

Program Understanding in DBRE 81

The referential constraint can be transformed into a relationship type. The final conceptual schema
is shown in figure 224.

CREREC HULPREC
CRKLANT HULPKEY
CRDOKNR HULPORG
CRPER HULPDAT

CRIAAR HULPDAA
CRMAAND HULPDMM
CRDATDOK HULPDX
CRDATJAAR HULPIEC
CRDATMAAND HULPSCHERM
CRDATDAG HULPDC
CROMSDOK HULPREKALG
CRVERVD HGEN6OU7
CRVERVJAAR HGENRES
CRVERVMAAND HULPREKAN
CRVERVDAG HANALCF
CRDEBCRE HANALRES
CRBEDR HULPDOK
CESCOMPTE[0-1] HULPOMS
CFC HULPBF
id: CRKLANT HULPSYMB
CRDOKNR id: HULPKEY
oN
HGEN6OU7=440 A
11 ref: HULPREC.HUL PSCHERM.HUL PREKAN.HANALCF
VOLG HUL PREC.HULPSCHERM.HULPDOK
CRVOLG
CRAANZ
CRPIECP
CRDATBET
CRDATBETJAAR
CRDATBETMAAND
CRDATBETDAG
CRSYMBP
CRBETAALD

FIGURE 223. The raw conceptual schema.

CREREC
CRKLANT
CRDOKNR
CRPER

CRIAAR
CRMAAND
CRDATDOK
CRDATJAAR
CRDATMAAND
CRDATDAG
CROMSDOK
CRVERVD
CRVERVJAAR
CRVERVMAAND
CRVERVDAG
CRDEBCRE
CRBEDR
CESCOMPTE[0-1]
CFC
id. CRKLANT
CRDOKNR

0-N

1-1

HGEN60OU7=440

FIGURE 224. The conceptual schema.

HULPREC

HULPKEY

HULPORG
HULPDAT
HULPDAA
HULPDMM
HULPDJJ
HULPIEC
HULPSCHERM
HULPDC
HULPREKALG
HGENG6OU7
HGENRES
HULPREKAN
HANALCF
HANALRES
HULPDOK
HULPOMS
HULPBF
HULPSYMB

id: HULPKEY

HGENGOU7 <> 440

82

Program Understanding in DBRE

C.9. Technical file

File: c10.cob

In this example, one of the files contains technical information. Data that are not part of the domain
of the application. In this example, the technical file contains the last number assigned to an identi-

fier.

C.9.1.COBOL

SELECT TABF ASSI GN TO DI SK, BEST6
ORGANI ZATI ON | S | NDEXED
ACCESS MODE | S DYNAM C
FI LE STATUS | S FI LSTAT
RECORD KEY | S TABFKEY.
SELECT CREREK ASSI GN TO DI SK, BEST1
ORGANI ZATI ON | S | NDEXED
ACCESS MODE | S DYNAM C
RECORD KEY | S CREREKKEY.

FD TABF.
01 TABFREC.
03 TABFKEY.

05 TABFNR Pl C XXX

05 TABFCLE PIC X(7).
03 NOLX PIC 9(5).
03 NO2X PIC 9(5).
03 NOBX PIC 9(5).
FD CREREK.
01 CREREC.
03 CREREKKEY.
05 CRKLANT PIC X(5).
05 CRDOKNR PI C X(5).
05 CRVOLG Pl C 99.
03 CRPER

FIGURE 225. The collections and entity types declarations.

MOVE "06 C101" TO TABFKEY.

READ TABF LOCK | NVALI D KEY
STOP RUN.

I F FI LSTAT NOT = "00"
STOP RUN.

MOVE NCBX TO NRNU.

ADD 1 TO NRNU ON SI ZE
ERROR MOVE 0 TO NRNU.

I F NRNU > NO2X OR NRNU < NOLX
MOVE NOLX TO NRNU.

MOVE NRNU TO NGBX.

REWRI TE TABFREC | NVALI D KEY
STOP RUN.

FIGURE 226. The procedural fragment.

I F FI LSTAT NOT = " 00"
STOP RUN.
UNLOCK TABF RECORDS.

Rk Sk S R O Rk O kO kS

* ECRI TURE DANS LE FI CH ER CREREK- -
R R S O O S S
ACCEPT CRKLANT.
MOVE NRNU TO CRDOKNR.
MOVE 0 TO CRVOLG

VWRI TE CREREC | NVALI D KEY
MOVE "I NVALI D WRI TE CREREK" TO FT1
GO TO STOPS.

The code fragment of figure 225 represents the declaration of the two collections and entity types
and the code fragment of figure 226 the procedural code fragment. The analysis of the collections
and entity types declarations produces the raw physical schema.

Program Understanding in DBRE 83

TABFREC

TABFREC CREREC
TABFKEY CREREKKEY

TABFNR CRKLANT

TABFCLE CRDOKNR
NO1X CRVOLG
NO2X CRPER

NO3X .

- id: CREREKKEY
id: TABFKEY acc

acc

FIGURE 227. The complete physical schema.

3.9.2. Complete physical schema

The analysis of the procedural code (figure 226) shows that the identifier of TABFREC is a constant
and the value of NOLX, NO2X and NO3X are used to compute the new value of CRDOKNR (a part of
the identifier of CREREC). The value used for CRDOKNR replace the value of NGBX in TABFREC.
Thisanalysis can beinterpreted as TABFREC is atechnical entity type that does not contains appli-

cation domain data. Thisentity type noted as technical through the stereotype <<tech>>. Figure 227
is the complete physical schema.

3.9.3. Conceptual schema

The conceptualization of this schema consist in removing the physical construct (collections and
access keys) and in removing the technical entity type (TABFREC).

The final conceptual schemais presented in figure 228.

CREREC
CREREKKEY
CRKLANT
CRDOKNR
CRVOLG
CRPER

id: CREREKKEY

FIGURE 228. The conceptual schema.

C.10. Isain QL

In this example, we have SQL views that represent sub-type of a table. The views are define as
follow

create view (.....)
as select (.......)

84 Program Understanding in DBRE

from <t abl e>)
where <colum> = <string>;

During the conceptualization, we would like to create an is-a relation between the table and al its
views.

C.10.1.The complete logical schema

Create a new project and extract (File/Extract SQL) the filei s- a. sql . The result of the extrac-
tion isthe figure 229. It contains three entity types (Person, Professor, Sudents).

PERSON PROFESSOR STUDENT
NAME NAME[0-1] NAME[0-1]
ADDR ADDR[0-1] ADDR[0-1]
YEARI[0-1] SALARY[0-1] YEAR[0-1]
SALARY/[0-1]

TYPE

FIGURE 229. The raw physical schema.

The SQL extractor extracts views as entity types and puts the definition of the views into the techni-
cal description of the entity type. The tables are extracted as entity types.

So all we have to do isto find the entity types that have a technical description that contains

from <t abl e> where <col um> = <string>
and to create an is-a relation between this entity type and the entity type of name <table>.

The patterns used to search into the technical description are the following.
- = 1g"[/In/tlr]+

string ::=/g"". ;

nane ::= /g"[a-zA-ZO 9] +";

tabl e ::= nane;

colum ::= nane;

from::= "from - @able - "where" - colum - "=" - string;

The V2 function caled to create the is-arelation is the following. The procedure is declared export,
because it must be call from outside the voyager program.

export procedure create is-a(string: table)
/* creates a is-a relation between the entity type of nane
"table’ and the current entity type*/

data_object : d_obj;

schema : sch;

entity type : sub_ent;

entity type : super_ent;

SetPrintList("","","");

sch : = Get Current Schema() ;
[* get the current schema*/
i f 1sVoid(sch) then {
[* if there no current schena return an error */
print("No Schema !\ n");
return;

}

Program Understanding in DBRE 85

go :=Get Current Obj ect ();
/* get the current object */
i f |sVoid(go)
then {
/[* if there is no current object, return an error */
print("No current object !'\n");

return;
}
i f (GetType(go) <> ENTITY_TYPE)
then {
/* if the current object is not an entity type, return an error
*/

print("The current object is not a entity type !\n");
return;

sub_ent := go;

/* "sup_ent’ is the entity type of nane 'table */
sup_ent := CetFirst(DATA OBJECT[d_obj] { @CH_DATA: [sch]
with ((GetType(d_obj) = ENTITY_TYPE)
and (d_obj.nanme = table))});

/* 'l _clu is the list of cluster connected to the super type*/
| clu := CLUSTER[cl u] { @&NTI TY_CLU: [sup_ent]};

i f(Length(l _clu) = 1) then

[* if the super type has a cluster, use it */
clu := GetFirst(l _clu);
}

el se

/* if the super type has no cluster, create it */
clu : = create(CLUSTER, nanme : sup_ent.nanme, total : O,
disjoint : 0, @NTITY _CLU : sup_ent);
}

/* connect the sub-type to the cluster */
sub t := create(SUB TYPE, @LU SUB : clu,
@NTI TY_SUB : sub_ent);
}

Now to create the is-a relation select the compact view (to reduce the space research), select the
schema and execute the command Assist - Text analysis - Execute.

Click on the OK button. The is-arelations are created (figure 230).

PERSON
NAME
ADDR
YEAR[0-1]
SALARY/[0-1]
TYPE
PROFESSOR [~ N STUDENT
NAME[0-1] NAME[0-1]
ADDR[0-1] ADDRI[0-1]
SALARY[0-1] YEAR[0-1]

FIGURE 230. The complete logical schema.

86 Program Understanding in DBRE

C.10.2.Conceptualization

To conceptualize this schema, we have to remove attributes from the super type or the sub-type,
according to they are common to both sub-type or not. The result of this conceptualization is the

schema of figure 231.

PERSON

NAME
ADDR
TYPE

PROFESSOR

SALARY

FIGURE 231. The conceptual schema.

STUDENT

YEAR

Program Understanding in DBRE

87

88

Program Understanding in DBRE

	Acknowledgements
	Abstract
	Table of Contents
	CHAPTER 1 Introduction
	1.1. General introduction
	1.2. Scope and motivation of the thesis
	1.3. The thesis
	1.4. State of the art
	1.4.1. Relational DMS
	1.4.2. Hierarchical/network DMS
	1.4.3. Standard files DMS
	1.4.4. Generic methods
	1.4.5. Others
	1.4.6. Summary

	1.5. Outline of the thesis

	CHAPTER 2 Data schema specification
	2.1. Introduction
	2.2. A wide-spectrum specification model
	2.2.1. Conceptual specifications
	2.2.2. Logical specifications
	2.2.3. Physical specifications
	2.2.4. Different levels of abstraction and different paradigms

	2.3. DMS-specific data structure specification
	2.3.1. The relational model
	2.3.2. The network model
	2.3.3. The standard file model
	2.3.4. Other constructs

	2.4. Schema transformation

	CHAPTER 3 A generic methodology for database reverse engineering
	3.1. Database reverse engineering is the reverse of forward engineering
	3.2. The DBRE methodology
	3.3. Data structure extraction
	3.3.1. DDL code analysis
	3.3.2. Physical integration
	3.3.3. Schema refinement
	3.3.4. Schema cleaning

	3.4. Data structure conceptualization
	3.4.1. Preparation
	3.4.2. Basic conceptualization
	3.4.3. Conceptual normalization
	3.4.4. The data structure conceptualization transformations

	3.5. Example

	CHAPTER 4 Data structure extraction
	4.1. Introduction
	4.2. The methodology
	4.2.1. DDL code analysis
	4.2.2. Physical schema integration
	4.2.3. Schema refinement
	4.2.4. Schema cleaning

	4.3. Explicit/implicit constructs
	4.4. Implicit structures and constraints
	4.5. The information sources
	4.6. Elicitation techniques
	4.7. The conflicts
	4.8. Refinement methodology
	4.8.1. The refinement methodology
	4.8.2. Hypothesis validation
	4.8.3. How to decide that refinement is completed
	4.8.4. Refinement strategy
	4.8.5. Heuristics usage
	4.8.6. Application to foreign key elicitation

	CHAPTER 5 Program understanding in database reverse engineering
	5.1. Program understanding
	5.2. Program understanding in database reverse engineering
	5.3. Program understanding difficulties
	5.4. Program understanding techniques in DBRE

	CHAPTER 6 Program understanding techniques
	6.1. Introduction
	6.2. Pattern matching
	6.3. Variable dependency graph
	6.4. Program slicing
	6.4.1. Program slicing state of the art
	6.4.2. Program dependency graph
	6.4.3. The system dependency graph
	6.4.4. Interprocedural slicing
	6.4.5. Arbitrary control flow
	6.4.6. SDG construction

	6.5. The program slicing for embedded code
	6.5.1. Select
	6.5.2. Insert
	6.5.3. Delete
	6.5.4. Update
	6.5.5. Cursor

	6.6. Other SDG analysis / usage
	6.7. Type inference
	6.8. Graphical visualization of the program

	CHAPTER 7 Using program understanding in DBRE
	7.1. Fine-grained structure, attributes aggregation, anonymous attributes
	7.1.1. Variable dependency graph
	7.1.2. System dependency graph

	7.2. Meaningful names
	7.2.1. Variable dependency graph
	7.2.2. System dependency graph

	7.3. Referential constraints and data dependencies
	7.3.1. Variable dependency graph
	7.3.2. System dependency graph

	7.4. Array set type, exact cardinality and attribute identifier
	7.5. Identifier
	7.6. Restricted domain
	7.7. Embedded SQL
	7.8. Graphical visualization

	CHAPTER 8 CASE support
	8.1. The limits of current CARE tools
	8.2. Requirements
	8.3. The DB-MAIN CASE environment
	8.3.1. User interface
	8.3.2. DDL extractors
	8.3.3. Pattern matching
	8.3.4. Variable dependency graph
	8.3.5. Program slicing
	8.3.6. Referential key assistant
	8.3.7. Schema and object integration
	8.3.8. Schema analysis
	8.3.9. Transformation toolkit
	8.3.10. Graph visualization

	CHAPTER 9 Case study
	9.1. COBOL DBRE, manual process
	9.1.1. Project preparation
	9.1.2. Data structure extraction
	9.1.3. Data structure conceptualization

	9.2. COBOL DBRE, (semi-)automatic process
	9.2.1. Data structure extraction
	9.2.2. Data structure conceptualization

	9.3. COBOL with embedded SQL
	9.3.1. Project preparation
	9.3.2. Data structure extraction
	9.3.3. Data structure conceptualization

	9.4. Real DBRE projects
	9.4.1. COBOL
	9.4.2. ADS - IDMS
	9.4.3. Centural / SQL
	9.4.4. IDEAL - Datacom-DB

	CHAPTER 10 DBRE project management issues
	10.1. DBRE justification
	10.2. Information / training
	10.3. Project cost evaluation
	10.4. Automation
	10.4.1. Limits of automation
	10.4.2. Economic advantage of automation

	10.5. Cost Vs. quality
	10.6. DBRE project evaluation

	CHAPTER 11 Conclusion
	11.1. Contributions
	11.2. Comparison with related work
	11.2.1. Methodology
	11.2.2. Tools
	11.2.3. Validation

	11.3. Future work

	Acronyms
	References
	ANNEX A DBRE tools user manual
	A.1. Pattern definition language
	A.1.1. The syntax
	A.1.2. Examples
	A.1.3. In DB-MAIN

	A.2. Search for text pattern
	A.2.1. Search for a pattern
	A.2.2. Search next

	A.3. Procedure triggered by a pattern
	A.3.1. Usage
	A.3.2. Example (1)
	A.3.3. Example (2)

	A.4. Dependency graph
	A.4.1. Computes the dependency graph
	A.4.2. Change the settings
	A.4.3. Visualization of the dependency graph
	A.4.4. Configuration
	A.4.5. Tips
	A.4.6. Remarks
	A.4.7. Dependency graph visualization

	A.5. Program slicing
	A.5.1. Use of program slicing
	A.5.2. Call graph
	A.5.3. The command line program slicing

	A.6. Creating schema
	A.6.1. Processing schema
	A.6.2. Data schema

	A.7. Search a schema for referential constraints
	A.7.1. About referential constraints assistant
	A.7.2. Choosing a strategy
	A.7.3. The matching rules
	A.7.4. Create the referential constraints
	A.7.5. Go to the schema
	A.7.6. Changing the selected group
	A.7.7. Removing a group/attribute from the list of matching groups
	A.7.8. Voyager matching group functions
	A.7.9. Example of voyager matching functions
	A.7.10. Voyager "Advanced" procedures
	A.7.11. Example of voyager referential keys creation procedures

	A.8. Miscellaneous Voyager2 programs
	A.8.1. Foreign key analysis
	A.8.2. lexical
	A.8.3. Compute the physical length
	A.8.4. Objects position
	A.8.5. Report generation
	A.8.6. SQL Validation queries generation
	A.8.7. COBOL validation programs generation
	A.8.8. Referential key assistant complements

	ANNEX B Source code
	B.1. Order.cob
	B.2. Validation program (automatically generated)
	B.3. SQL-DDL code
	B.4. Embedded code
	2.5. Modified embedded code

	ANNEX C Strange Data Structures / real case studies
	C.1. Chained lists
	C.1.1. COBOL
	C.1.2. The complete physical schema
	C.1.3. Data structure conceptualization

	C.2. Hierarchical foreign key
	C.2.1. Source code
	C.2.2. The complete logical schema
	C.2.3. Conceptualization

	C.3. Computed referential constraint (1)
	C.3.1. The DDL analysis
	C.3.2. The schema refinement
	C.3.3. The conceptualization

	C.4. Computed referential constraint (2) - Y2K
	C.4.1. The DDL analysis
	C.4.2. The schema refinement

	C.5. Computed referential constraint (3)
	C.5.1. The DDL analysis
	C.5.2. The schema refinement
	C.5.3. The conceptualization

	C.6. Create a temporary file
	C.6.1. COBOL
	C.6.2. The complete logical schema
	C.6.3. The conceptualization

	C.7. COBOL
	C.7.1. The complete logical schema
	C.7.2. Conceptualization

	C.8. History
	C.8.1. COBOL
	C.8.2. The complete logical schema
	C.8.3. Conceptualization

	C.9. Technical file
	C.9.1. COBOL
	3.9.2. Complete physical schema
	3.9.3. Conceptual schema

	C.10. Is-a in SQL
	C.10.1. The complete logical schema
	C.10.2. Conceptualization

