
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Simulation-Based Abstractions for Software Product-Line Model Checking

Cordy, Maxime; Classen, Andreas; Perrouin, Gilles; Heymans, Patrick; Schobbens, Pierre-
Yves; Legay, Axel

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Cordy, M, Classen, A, Perrouin, G, Heymans, P, Schobbens, P-Y & Legay, A 2011, Simulation-Based
Abstractions for Software Product-Line Model Checking..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Mar. 2024

https://researchportal.unamur.be/en/publications/e8862db0-7bf7-4e70-9d76-e9160d471687


Simulation-Based Abstractions for Software

Product-Line Model Checking

Maxime Cordy(1) ∗ Andreas Classen(1) † Gilles Perrouin(1)

Patrick Heymans(1)(2) Pierre-Yves Schobbens(1)

Axel Legay(3)(4)(5)

(1) University of Namur, Belgium
(2) INRIA Lille-Nord Europe, Université Lille 1
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Abstract

Software Product Line (SPL) engineering is a software engineer-
ing paradigm that exploits the commonality between similar software
products to reduce life cycle costs and time-to-market. Many SPLs
are critical and would benefit from efficient verification through model
checking. Model checking SPLs is more difficult than for single sys-
tems, since the number of different products is potentially huge. In
previous work, we introduced Featured Transition Systems (FTS), a
formal, compact representation of SPL behaviour, and provided effi-
cient algorithms to verify FTS. Yet, we still face the state explosion
problem, like any model checking-based verification. Model abstrac-
tion is the most relevant answer to state explosion. In this paper, we
define a novel simulation relation for FTS and provide an algorithm to
compute it. We extend well-known simulation preservation properties
to FTS and thus lay the theoretical foundations for abstraction-based
model checking of SPLs. We evaluate our approach by comparing the
cost of FTS-based simulation and abstraction with respect to product-
by-product methods. Our results show that FTS are a solid foundation
for simulation-based model checking of SPL.

Keywords – Model Checking, Software Product Lines, For-
mal methods, Simulation, Abstraction, Feature.
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1 Introduction

Software Product Line (SPL) engineering is an increasingly popular soft-
ware development paradigm targeting families of similar software products.
It allows to make substantial economies of scale by taking into account the
commonalities between the family members during the whole development
life cycle. The different variants of the system (called products) are identi-
fied upfront and a model of their differences and commonalities – typically a
feature diagram [1] – is created. In this context, features are atomic units of
difference that appear natural to stakeholders and technicians alike. SPL en-
gineering has become widespread in industry, including critical applications
such as automotive or avionics. These software products require solid evi-
dence that they work correctly according to their requirements and intended
properties.

Model checking [2] is a well-known technique for verifying system be-
haviour. A simple method for checking a product line consists in applying
single-system model checking algorithms [3, 4] to each individual product.
However, for an SPL with n features, up to 2n executions of those algorithms
may be needed. This enumerative approach is clearly impractical and thus
should be replaced by new verification approaches specific to product lines.

In our previous work [5–7], we addressed this problem by introducing
Featured Transition Systems (FTS) – see example in Figure 1. FTS are an
extension of transition systems that represent the behaviour of all the prod-
ucts of a given SPL in a compact structure. We also proposed FTS-specific
model checking algorithms to verify the whole SPL in a single execution.
More precisely, these algorithms model check the SPL against temporal
properties expressed either in Linear Time Logic (LTL) [8] extended with
features (fLTL) or in an extended Computation Tree Logic (CTL) [9], fCTL.
These logics can be used to express properties such as: for all products with
features f and g, a request α is always followed by a response β. Given
such a property, our algorithms can compute the features required for the
property to be satisfied, and hence the products of the SPL that do satisfy
the property. We call them FTS algorithms.

We evaluated the efficiency of the FTS algorithms through the imple-
mentation of several libraries and tools. First, we developed a Haskell library
for checking an FTS against LTL formulae [5]. We also built an extension
to the model-checker NuSMV to verify CTL formulae using the FTS algo-
rithms [6]. Recently, we developed SNIP [7], an SPL model-checking toolset
that combines the FTS algorithms with Promela, the high-level specification
language used in the well-known model-checker SPIN [10].

Early experiments have shown that the FTS model-checking approach
is more efficient than the enumerative approach. Indeed, when comparing
the two approaches implemented within our tools, we observe that FTS
algorithms generally outperform the enumerative method [5]. However, our
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experiments also have shown that there is still much room for improvement.
SPL verification theory is still at an early stage and needs to be further
improved to target industry-scale SPL verification.

Model abstraction is an optimisation that aims to simplify a model prior
to its verification [11]. Roughly speaking, an abstraction function is used
to reduce the size of a model by merging similar states. Depending on the
definition of this function, the behaviour of the model may change, that is,
new behaviours may appear, existing ones may disappear, or both. Char-
acterising the abstracted model with respect to the original one is therefore
essential since those behavioural modifications may impact on the satisfia-
bility of temporal properties. Such a characterisation is generally obtained
thanks to the definition of a simulation relation [12].

In this paper, we lay the theoretical foundations for abstraction-based
model checking of SPLs. First, we extend the definition of simulation from
transition systems to FTS and propose an algorithm that computes this
relation. We then establish which properties are preserved by the simula-
tion relation, and for which products. This is required to perform reliable
checking. Then, we define three abstractions based on the notion of simula-
tion quotient [13] that can be applied to remove redundant behaviour in an
FTS and thus reduce verification time. In addition to abstraction, simula-
tion relations have numerous applications. In particular, simulation-based
model checking is an established verification method, as LTL/CTL model
checking is. Our solution allows easier verification of properties modelled
visually (as automata) rather than logical formulae, which is more suitable
for engineers. Studying FTS simulation is thus as important as generalising
LTL/CTL model checking to FTS. We provide a concrete implementation
for computing simulation and applying abstraction to FTS. We carry out a
complexity evaluation and empirical evaluations that reveal substantial ef-
ficiency improvements over enumerative application of classical simulation.
This corroborates previous results by characterising the gain of FTS-based
simulation model checking over enumerative, TS-based, simulation model
checking.

The structure of the paper is as follows. In Section 2, we recall essential
results, theorems and properties related to the abstraction of transition sys-
tems, as well as the definition of FTS. Section 3 is focused on the definition
and the computation of the simulation relation. Section 4 defines the simula-
tion quotient as well as abstraction functions based on it. Section 5 describes
or experiments and their results. Finally, Section 6 presents related work in
the fields of SPL modelling and abstraction-based verification.
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2 Background

In this section, we first present the established concepts related to the veri-
fication and the abstraction of Transition Systems (TS). TS are a classical
behavioural model for single systems. We also briefly recall some definitions
of our previous work [5, 6] that are needed in the paper.

2.1 Single-Product Model Checking

Model checking is a well-known technique for verifying both hardware and
software against temporal properties. Basically, given the model of a sys-
tem M and a temporal property Φ, a model-checking algorithm determines
whether or not M satisfies Φ, written M |= Φ. For single systems TS are
used and are defined as follows [13].

Definition 1 A TS is a tuple (S, trans, I, AP,L) where S is a set of states,
trans ⊆ S × S is a transition relation, I ⊂ S is a set of initial states, AP
is a set of atomic propositions, and L : S → 2AP is a labelling function that
associates every states with the set of atomic propositions satisfied by this
state.

We call a behaviour of the system the sequence of atomic propositions sat-
isfied during its execution. The semantics of a TS, noted [[ts]]TS , is then its
set of behaviours, that is

[[ts]]TS = {L(s0), L(s1), . . . | s0 ∈ I ∧ (si, si+1) ∈ trans}.

Note that the definition of TS usually includes a set of actions. However,
these are not considered in this paper and consequently, they are ignored in
our definition, which thus boils down to a Kripke structure.

TS can model a software product at different abstraction levels. If a
more abstract (that is, smaller) model preserves the properties of a larger
model, it is more efficient to check properties on the abstract model. It
is therefore essential to be able to relate two models at different abstrac-
tion levels. For single systems, this information is formally captured by a
simulation relation [12].

Definition 2 Let TSi = (Si, transi, Ii, AP, Li), i ∈ {1, 2} be transition sys-
tems over AP . A simulation for (TS1, TS2) is a binary relation R ⊆ S1×S2
such that

1. ∀s1 ∈ I1 • ∃s2 ∈ I2 • (s1, s2) ∈ R and

2. ∀(s1, s2) ∈ R it holds that

(a) L1(s1) = L2(s2) and

(b) ∀s′1 ∈ Post(s1) • ∃s′2 ∈ Post(s2) • (s′1, s
′
2) ∈ R.
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where Post(s) = {s2|trans(s, s2)} denotes the set of states that can be
reached from s. Then, TS2 simulates TS1, denoted by TS1 4TS TS2 if
there exists a simulation for (TS1, TS2).

According to this definition, if TS1 is simulated by TS2, then any behaviour
of TS1 can be reproduced in TS2. We can extend this definition to couples
of states instead of couples of TSs. In this case, state s1 is simulated by
state s2 iff (s1, s2) ∈ R for some R, also noted s1 4TS s2. Intuitively,
this means that any behaviour produced from s1 can be produced from s2.
Also, 4TS is a preorder – it is reflexive and transitive [13]. Additionaly,
when TS1 4TS TS2 and TS2 4TS TS1, the two transition systems are called
simulation-equivalent, noted TS1 'TS TS2. Intuitively, this means that TS1
and TS2 model exactly the same behaviour. Since 4TS is a preorder, 'TS

is an equivalence relation [13].
The definition of simulation allows one to characterise the behaviour of

an abstract transition system t̂s with regard to an original model ts. Infor-
mally, an abstract transition system is obtained by merging states for which
a so-called abstraction function returns the same value. The abstraction
may add or remove behavioural options, depending on the chosen abstrac-
tion function. However, a relevant analysis requires to have either ts 4TS t̂s,
ts 4TS t̂s or both. If this condition is satisfied, we can show that the ab-
straction preserves the (un)satisfiability of properties of a certain type.

Indeed, there is a strong link between the simulation relation and the
properties satisfied by two TSs. In this paper, we focus on properties ex-
pressed in Linear Time Logic (LTL) [8]. However, the presented results
can also be applied to specific fragments of the Computation Tree Logic
(CTL) [9]. If a simulation relation exists between two transition systems,
we can show that an LTL formula satisfied by the simulating TS is preserved
in the simulated one [12,13].

Property 3 Let TS1 and TS2 be two transition systems without terminal
states and Φ an LTL property. Then,

TS1 4TS TS2 ⇒ (TS2 |= Φ⇒ TS1 |= Φ).

The following statement is equivalent: if TS1 does not satify Φ, neither
does TS2. Finally, if TS1 'TS TS2, then they satisfy exactly the same LTL
properties. In particular, if TS2 is an abstraction of TS1, proving that the
abstract TS verifies an LTL formula suffices to ensure that the formula holds
for TS1. Therefore, abstraction can drastically shorten the time and space
cost of verification.

2.2 Software Product Line Verification

While a TS is convenient to model the behaviour of an individual product
of an SPL, it is not suitable for concisely representing all the possible prod-
ucts. To overcome this, we defined Featured Transition Systems (FTS) [5].
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Basically, an FTS is a TS augmented with transitions labelled with feature
expressions (see Figure 1). These features are described in a feature diagram
(FD) that establishes the set of legal products [1, 14]. For this paper, it is
enough to know that the semantics of a feature diagram d defined over a
set of features N is the set of all the valid products, that is a set of sets
of features, denoted by [[d]]FD ⊆ P(N). Schobbens et al. [1] give a more
thorough and formal definition of FD.

Also, every transition of an FTS is labelled with a feature expression
that defines the products able to execute the transition. Formally, FTS are
defined as follows [5, 6].

Definition 4 An FTS is a tuple (S, trans, I, AP,L, d, γ), where

• S, trans, I, AP,L are defined as in Definition 1,

• d is a feature diagram,

• γ : trans →
(
{0, 1}|N | → {0, 1}

)
is a total function, labelling each

transition with a feature expression ∈ B(N), i.e., a Boolean function
over the set of features. By [[γ(t)]], we denote the set of products that
satisfy γ(t).

Similarly with TS, our definition of FTS does not include a set of actions.
An FTS can be seen as the merging of all the TSs of the products that

compose the SPL. Because of that, the successor operator must be redefined
in order to take into account that a state can be a successor of another one
only for a specific set of products [5].

Definition 5 The successors of s ∈ S for products px ⊆ P(N) are given by

Post(s, px) = {(s′, px′) | (s, s′) ∈ trans
∧ px′ = px ∩ [[γ(s, s′))}]].

Furthermore, any TS corresponding to a specific product can be obtained
from the FTS by applying a projection function. In simple terms, this
function removes all the transitions of the FTS whose feature expression is
not satisfied by the considered product [5].

Definition 6 The projection of an FTS fts to a product p ∈ [[d]]FD , noted
fts |p, is the TS ts = (S, trans′, I, AP, L) where trans′ = {t ∈ trans | p ∈
[[γ(t)]]}.

Because the FTS represents the behaviour of all the products, its semantics
is defined as a function that associates a product with the set of behaviours
of its projection.
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Definition 7 The semantics of an FTS fts is a function [[fts]]FTS with
domain [[d]]FD such that

∀p ∈ [[d]]FD • [[fts]]FTS (p) = [[fts |p]]TS .

Finally, in [6], we extended CTL to define a property only on a subset
of the valid products. The same extension can easily be applied to LTL.

Definition 8 An fLTL property Ψ is an expression Ψ = [χ]Φ where χ :
{0, 1}|N | → {0, 1} is a feature expression and Φ an LTL property. An FTS
fts satisfies an fLTL property [χ]Φ iff

∀p ∈ [[d]]FD ∩ [[χ]] • fts |p |= Φ.

3 Simulation relation for SPL models

Since a model abstraction does not necessarily verify the same properties as
the original model, it is essential to characterise the behavioural inconsis-
tencies between the model and its abstraction. In the previous section, we
presented the simulation for TSs as a computable relation that can establish
this characterisation. However, their definition is clearly unsuitable in our
context because we are interested in abstracting SPL models rather than
models of individual systems. In this section, we thus introduce a definition
of simulation for FTS. We also propose an algorithm to compute it and we
establish a link between the latter and the preservation of fLTL formulae.

3.1 Simulation Relation for FTS

As a first step, we extend the definition of simulation to FTS. For this
purpose, we first impose the restriction that a simulation relation can only
hold between two FTS defined over the same FD. Intuitively, an FTS sim-
ulates another one iff every valid product has more behaviour in the former
FTS than in the latter. Formally, this condition can be expressed using the
simulation on TS as defined previously.

Definition 9 Let ftsi = (Si, transi, Ii, APi, Li, d, γi), i ∈ {1, 2}, be FTS
with AP1 ⊆ AP2. Then, fts1 is simulated by fts2 for products [[fts1 4FTS

fts2]] ⊆ [[d]]FD , where

[[fts1 4FTS fts2]] = {p ∈ [[d]]FD : fts1 |p 4TS fts2 |p}.

Since the semantics (fts1 4FTS fts2) is a set of products, we see it as a
feature expression. Furthermore, fts1 is completely simulated by fts2 iff
[[fts1 4FTS fts2]] = [[d]]FD .

7



Note that this definition does not consider illegal products, that is products
that are not included in [[d]]FD .

Thanks to the above definition, we can already determine for which
products an FTS simulates another. However, this would require computing
the simulation relation on TS for O(2n) couples of TS, which sums up to an
overall time complexity bounded by O(|S|4.2n) [13]. Instead, we aim to take
advantage of the compact structure of FTS, as we did for solving the model
checking problem for SPL in our previous work [5, 6]. Hence, we propose
the following alternative definition.

Definition 10 Let ftsi = (Si, transi, Ii, APi, Li, d, γi), i ∈ {1, 2}, be
featured transition systems with AP1 ⊆ AP2. A simulation for (fts1, fts2)
is a binary function R : S1 × S2 → B(N) such that

R(s1, s2) =

(L1(s1) = (L2(s2) ∩AP1)) ∧
∧
s′1

Rvia(s1 → s′1, s2)

where Rvia(s1 → s′1, s2) is given by

γ1(s1, s
′
1)⇒

∨
s′2

(R(s′1, s
′
2) ∧ γ2(s2, s′2))

with (s1, s
′
1) ∈ trans1 and (s2, s

′
2) ∈ trans2.

Then, fts1 is simulated by fts2 for products [[
∧

i1∈I1
∨

i2∈I2 RFTS (i1, i2)]] ⊆
[[d]]FD where RFTS is the largest simulation for (fts1, fts2). By largest, we
mean that for any states s1, s2 and simulation R for (fts1, fts2), we have
[[R(s1, s2)]] ⊆ [[RFTS (s1, s2)]].

This definition can be seen as a generalisation of Definition 2. Intuitively,
[[RFTS (s1, s2)]] contains only products for which s2 has more behaviour than
s1. In other words, for each product p ∈ [[RFTS (s1, s2)]] and transition
(s1, s

′
1) available for p, s2 must have at least one successor s′2 reachable by

p and such that p ∈ [[RFTS (s′1, s
′
2)]]. Similarly, [[Rvia(s1 → s′1, s2)]] contains

only products for which s2 can simulate the transitions from s1 to s′1. Let
us note that, according to our definition:

• [[RFTS (s1, s2)]] 6= ∅ implies that all atomic proposition satisfied by s1
(that is, propositions in AP1) are satisfied by s2.

• for given s1 and s′1 such that Rvia(s1, s2, s
′
1) = (px ∨ px′), it may

happen that s2 simulates a transition s1 → s′1 for products px via a
transition s2 → s′2 and for products px′ thanks to another transition
s2 → s′′2.
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State →Transition f Feature

{a} {b}
s1 s′1

{a}{b} {b}
s2s′2

f
s′′2

¬ f
f ¬ f

Figure 1: Two simulation-equivalent FTS.

To illustrate this second remark, let us consider the basic example presented
in Figure 1. We observe that RFTS (s′1, s

′
2) = f and RFTS (s′1, s

′′
2) = ¬f.

Furthermore, s2 simulates s1 for products [[f]] through transition (s2, s
′
2) and

for products [[¬f]] via transition (s2, s
′′
2). In the end, we conclude that s2

simulates s1 for all products.
As established in the following theorem, the two definitions of simulation

for FTS we have given are equivalent.

Theorem 11 Let ftsi, i ∈ {1, 2}, be FTS. Let RFTS be the largest simula-
tion for (fts1, fts2). Then, it holds that

[[fts1 4FTS fts2]] = [[RFTS (fts1, fts2)]].

Proof. First, let us remark that ∀p ∈ (fts1 4FTS fts2) • fts1 |p 4TS

fts2 |p. Thus, for each product p, according to Definition 2, there exists
a relation RTS such that ∀i1 ∈ I1 • ∃i2 ∈ I2 • RTS (i1, i2) where for all
s1, s2 ∈ S, RTS (s1, s2) is given by

(L(s1) = L(s2) ∩AP1) ∧
∀s′1 ∈ Post(s1, {p}) • ∃s′2 ∈ Post(s1, {p}) • RTS (s′1, s

′
2).

Let us suppose that for all p, RTS is the largest relation satisfying this equa-
tion.

According to Definition 10, we have that p ∈ [[
∧

i1∈I1
∨

i2∈I2 RFTS (i1, i2)]]
iff ∀i1 ∈ I1 • ∃i2 ∈ I2 • p ∈ [[RFTS (i1, i2)]]. For a product p ∈ [[RFTS (s1, s2)]],
any transition (s1, s

′
1) available to p, there is a transition (s2, s

′
2) that p can

execute such that s′2 simulates s′1 for p, that is p ∈ RFTS (s′1, s
′
2). Hence,

p ∈ [[RFTS (s1, s2)]] is equivalent to

(L(s1) = L(s2) ∩AP1) ∧
∀s′1 ∈ Post(s1, {p}) • ∃s′2 ∈ Post(s1, {p}) • p ∈ [[RFTS (s′1, s

′
2)]].
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Thus, p ∈ [[RFTS (s1, s2)]] implies that there exists a relation RTS for p.
Furthermore, since RFTS is the largest FTS-simulation for (fts1, fts2), we
also have that RTS exists for p implies that p ∈ [[RFTS (s1, s2)]].

As for TS, we can define simulation-equivalence for FTS. Intuitively,
two FTS are simulation-equivalent for products px iff they have the same
behaviour for all these products.

Definition 12 Let fts1 and fts2 be two FTSs. If [[fts1 4FTS fts2]] = px
and [[fts2 4FTS fts1]] = px′ then fts1 and fts2 are called simulation-
equivalent for products in [[fts1 'FTS fts2]] = px ∩ px′. Furthermore, they
are called completely simulation-equivalent iff [[fts1 'FTS fts2]] = [[d]].

3.2 Computing the Simulation Relation

We proposed two equivalent definitions of the simulation relation for FTS.
While the former is more intuitive, it is cumbersome to compute for a large
SPL, i.e. with a high number of products. On the contrary, the latter
takes advantage of the compact structure of the FTS. In this subsection,
we present a method to compute the relation using this second definition.
Basically, RFTS is obtained, for all couples of states of a given FTS, by
computing the greatest fixed point of a function.

First, we need to define a partial order ≤ on the feature expressions. Let
e and e′ be two feature expressions. We say that e is included in e′, noted
e ≤ e′, iff [[e]] ⊆ [[e′]]. Using this partial order, we define that R is included
in R′, noted R ⊆ R′, iff

∀(s1, s2) • R(s1, s2) ≤ R′(s1, s2).

Then, the simulation function can be computed as the greatest fixed
point of the equations of R in Definition 10, denoted by T (R). Note that
∀R • ∀i ≥ 0 • T (R) ⊆ R. Then according to the Knaster–Tarski theorem,
RFTS can be computed as follows:

RFTS = Ri • ∀j ≥ i • Ri = Rj

with ∀s1, s2

R0(s1, s2) =

{
B([[d]]FD), L(s1) = L(s2) ∩AP1

B(∅), otherwise

Ri+1(s1, s2) = T (Ri)(s1, s2)

where for a set of products px, B(px) denotes a feature expression such that
[[B(px)]] = px.
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Thanks to this algorithm, we can compute (fts1 4FTS fts2) for any
ftsi = (Si, Acti, transi, Ii, APi, Li, d, γi). For this purpose, we apply it to
the FTS fts1 ⊕ fts2, which is defined by

fts1 ⊕ fts2 = (S1 ] S2, trans1 ∪ trans2,
I1 ∪ I2, AP1 ∪AP2, L, d, γ)

where ] denotes the disjoint union, L(s) = Li(s) iff s ∈ Si, and γ(t) = γi(t)
iff t ∈ transi. Using the value of RFTS between each initial state of fts1
and each initial state of fts2, we determine (fts1 4FTS fts2). Note that
Baier and Katoen [13] present a similar method for computing the simulation
relation between two TS.

3.3 Property Preservation

The simulation relation for TS is particularly well-known for its interesting
preservation properties [2, 12, 13]. In particular, if TS2 simulates TS1, then
any LTL property satisfied by TS2 is also satisfied by TS1. As we show in
this section, a similar results holds for FTS simulation.

First, we must define a new notion of satisfiability specific to product
lines. Indeed, the model-checking problem for SPL does more than deter-
mining the satisfiability of a formula: it requires to identify all the products
that do not satisfy the formula, hence the need of a new satisfiability rela-
tion.

Definition 13 Let fts be a FTS and Ψ = [χ]Φ an fLTL property. Then,
the F-satisfiability of Ψ by fts, noted fts |=FTS Ψ, is a feature expression
such that

[[fts |=FTS Ψ]] = {p ∈ [[d]]FD : p ∈ [[χ]]⇒ fts |p |= Φ}.

Similarly, we define the F-unsatisfiability of Ψ by fts, noted fts 6|=FTS Ψ,
as a feature expression such that

[[(fts 6|=FTS Ψ)]] = {p ∈ [[d]]FD ∩ [[χ]] : fts |p 6|= Φ}.

It has to be noted that {[[fts |=FTS Ψ]], [[fts 6|=FTS Ψ]]} is a partition of
[[d]]FD . Thanks to Definitions 9, 10, and 13, Property 3 can be generalised
to FTS, as established in the following theorem. Again, we omit the proof
and refer the reader to our technical report [15].

Theorem 14 Let ftsi = (Si, Acti, transi, Ii, AP , Li, d, γi), i ∈ {1, 2}, be
two FTS, Ψ = [χ]Φ an fLTL property, and px = [[fts1 4FTS fts2]]. Then, it
holds that

p ∈ px⇒ (p ∈ [[fts1 6|=FTS Ψ]]⇒ p ∈ [[fts2 6|=FTS Ψ]])

p ∈ px⇒ (p ∈ [[fts2 |=FTS Ψ]]⇒ p ∈ [[fts1 |=FTS Ψ]]).
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Proof. Let us assume that p ∈ [[(fts1 6|=FTS Ψ)]]∩ [[fts1 4FTS fts2]]. By
Definition 9, we have that

∀p′ ∈ [[px]] : fts1 |p′ 4TS fts2 |p′ .

Because of Property 3, we know that

fts1 |p′ 6|= Φ⇒ fts2 |p′ 6|= Φ.

Finally, by Definition 13, we obtain

p ∈ [[(fts1 6|=FTS Ψ)]]⇒ p ∈ [[(fts2 6|=FTS Ψ)]].

The second property is proven similarly.

In particular, this theorem implies that two completely simulation-equivalent
FTS have the same FTS-(un)satisfiability.

4 FTS simulation quotient

In the previous section, we defined a simulation relation for FTS and we
established the link between this relation and the F-satisfiability of an fLTL
property. Our objective is to present, through the study of simulation quo-
tient, how we can define FTS abstractions. We also make use of the preser-
vation properties (see Theorem 14) to determine how the verification of an
abstract FTS provides information about the original system.

4.1 Simulation Quotient

The first abstraction we introduce does not modify the behaviour of the
FTS to which it is applied. It merely consists in defining the simulation
quotient [13] for FTS. This form of abstraction merges states that are com-
pletely simulation-equivalent, i.e. for all products in [[d]]FD . Formally, we
define the binary relation

'd
FTS
⊆ S × S • s1 'd

FTS
s2 ⇔ RFTS (s1, s2) = [[d]]FD .

This relation is an equivalence, since 'TS is also an equivalence relation [13].
Therefore, the state space of any FTS can be partitioned into equivalence
classes under 'd

FTS
. Our first abstraction function merges states of the same

equivalence class. [s]/'d
FTS

denotes the equivalence class of s.
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The function associates an FTS fts with an abstracted FTS fts/'d
FTS

=

(S′, trans′, I ′, AP , L′, d, γ′) such that

S′ = {[s]/'d
FTS
}

trans′ = {([s]/'d
FTS

, [s′]/'d
FTS

)

| (s, s′) ∈ trans}
I ′ = {[s]/'d

FTS
| s ∈ I}

L′([s]/'d
FTS

) = L(s),

γ′(([s]/'d
FTS

, [s′]/'d
FTS

)) =
∨

s′′,s′′′

γ(s′′, s′′′)

where s′′ ∈ [s]/'d
FTS

, s′′′ ∈ [s′]/'d
FTS

, and (s′′, s′′′) ∈ trans. It thus requires

to compute first the simulation relation for every pair of states in the FTS
(see Section 3.2).

Such an abstracted FTS has exactly the same behaviour as the FTS
on which the function is applied. Indeed, we merge only states that are
simulation-equivalent for every products in [[d]]FD . Thus, the merging neither
adds nor removes any behaviour. A formal proof is given below.

Theorem 15 Let fts be an FTS. Then, we have (fts 'FTS fts/'d
FTS

) =

[[d]]FD .

Proof. The proof consists in showing that ∀s • RFTS (s, [s]/'d
FTS

) ∧
RFTS ([s]/'d

FTS
, s) = [[d]]FD . Obviously, RFTS (s, [s]/'d

FTS
) = [[d]]FD because,

by definition of fts/'d
FTS

, any transition (s, s’) in fts is simulated for all

products by a transition ([s]/'d
FTS

, [s′]/'d
FTS

).

Then, we show that any transition ([s1]/'d
FTS

, [s′1]/'d
FTS

) is simulated

for all products by (s1, s
′
1). Indeed, ([s1]/'d

FTS
, [s′1]/'d

FTS
) exists because

(s2, s
′
2) is a transition of fts, with s2 ∈ [s1]/'d

FTS
and s′2 ∈ [s′1]/'d

FTS
. If

s1 = s2, we trivially have RFTS ([s1]/'d
FTS

, s1) = [[d]]FD . Otherwise, we

have RFTS ([s1]/'d
FTS

, s2) = [[d]]FD . Since s2 ∈ [s1]/'d
FTS

, we also have

RFTS (s2, s1) = [[d]]FD . By transitivity of the simulation relation [13], we
obtain RFTS ([s1]/'d

FTS
, s1) = [[d]]FD .

This implies that the two FTS have the same product-level (un)satisfiability
with regard to any fLTL formula.

In spite of its straightforward computation, this first abstraction function
has shown to be inefficient when it comes to actually reducing the state-
space, as we will see in Section 5. Consequently, we define more efficient
abstraction methods.
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4.2 Reachability-Aware Simulation Quotient

The second abstraction method is similar to the first one, but it takes into
account the reachability of each state when determining the equivalence
classes. It requires the computation of a function 4Rch • S×S → B(N). In
simple terms, s1 4Rch s2 gives a feature expression satisfied by the products
for which s1 and s2 simulate each other, while considering the reachability
relation associated with s1 and s2 respectively. More precisely, we define
the following:

• s2 trivially simulates s1 for products that cannot reach s1;

• s2 cannot simulate s1 for products that can reach s1 but not s2.

According to this definition, (s1 4Rch s2) is given by

Reach(s1)⇒ (Reach(s2) ∧RFTS (s1, s2))

where Reach(s) denotes a feature expression satisfied by the products that
can reach state s.

Next, we define the binary relation 'Rch⊆ S×S such that s1 'Rch s2 iff
(s1 4Rch s2)∧ (s2 4Rch s1) = [[d]]FD . Again, 'Rch is an equivalence relation.
It is obviously reflexive and symmetric. Its transitivity can be demonstrated
by first observing that

(RFTS (s1, s2) ∧RFTS (s2, s3))⇒ RFTS (s1, s3)

.

Theorem 16 s1 'Rch s2 ∧ s2 'Rch s3 ⇒ s1 'Rch s3

Proof. Let us note that s1 'Rch s2 ∧ s2 'Rch s3 is equivalent to

(¬Reach(s1) ∨ (Reach(s2) ∧RFTS (s1, s2)) ∧
(¬Reach(s2) ∨ (Reach(s3) ∧RFTS (s2, s3))

which can be written as

(¬Reach(s1) ∧ (¬Reach(s2) ∨Reach(s3) ∧RFTS (s2, s3))

∨ (Reach(s2) ∧RFTS (s1, s2) ∧Reach(s3) ∧RFTS (s2, s3))

Since

(¬Reach(s1) ∧ (¬Reach(s2) ∨Reach(s3) ∧RFTS (s2, s3))⇒ ¬Reach(s1)

and

(Reach(s2) ∧RFTS (s1, s2) ∧Reach(s3) ∧RFTS (s2, s3))

⇒ Reach(s3) ∧RFTS (s1, s3),

this expression implies s1 'Rch s3.

14



Consequently, the state space of an FTS can be partitioned into equivalent
classes under 'Rch. Using this binary relation, we define an abstraction
function that merges the states of an FTS according to their equivalence
class under 'Rch. Hence, the results of applying the function on an FTS
fts is an abstracted FTS fts/'Rch

, which is defined similarly to fts/'d
FTS

.

We can show that this abstracted FTS has exactly the same behaviours
as the original one, that is fts 'FTS fts/'Rch

. Let p ∈ [[d]]FD be a product.
If s1 'Rch s2, then p can reach either both s1 and s2 or none of them:

1. If p can be reached by both s1 and s2, it means that it has exactly
the same behavioural options in s1 and s2 by definition of 'Rch and
RFTS . Therefore, merging s1 and s2 would not add any behaviour to
p.

2. If p can reach neither s1 nor s2, then merging the two would not
actually add behaviour to p since it would not be able to reach the
resulting abstracted state anyway.

Theorem 17 Let fts be an FTS. Then, we have (fts 'FTS fts/'Rch
) =

[[d]]FD .

Proof. By definition of fts/'Rch
, we trivially have (fts 4FTS fts/'Rch

) =
[[d]]FD . Next, we show that (fts/'Rch

4FTS fts) = [[d]]FD . For this purpose,
we show that any merging does not add behaviour to fts.

Let s1 and s2 such that s1 'Rch s2. Then, they are both in the same
equivalence class. Without loss of generality, we suppose that {s1, s2} =
[s1]'Rch

and that the abstraction merges only s1 and s2. For any product p,
p can reach either both s1 and s2 or none of them, by definition of 'Rch.

If p can reach neither s1 or s2, it means that any execution trace s′0, s
′
1, . . .

of fts |p is such that s′i 6= s1 and s′i 6= s2. Consequently, because of the defi-
nition of fts/'Rch

, any execution trace s′0, s
′
1, . . . of (fts/'Rch

) |p is such that
s′i 6= [s1]'Rch

. Hence, no behaviour has been added.
If p can reach both s1 and s2, we have to show that any transition leav-

ing [s1]'Rch
is simulated for all products by a transition of either s1 or s2.

Note that in this case, we have RFTS (s1, s2) = RFTS (s2, s1) = B(d). Let s′2
such that (s2, s

′
2) is a transition of fts. Because of the merging of s1 and

s2 into [s1]'Rch
, there is a transition ([s1]'Rch

, s′2) in fts/'Rch
. Thus, for

any execution traces s′0, . . . , s1, . . . and s′′0, . . . , s2, s
′′
k, . . . in fts, there is an

execution trace s′0, . . . , [s1]'Rch
, s′′k, . . . , in fts/'Rch

. However, since s1 and
s2 are simulation equivalent and L(s1) = L([s1]'Rch

), there is an execution
trace starting from s1 that is equivalent (in terms of successive sets of satis-
fied atomic propositions) to [s1]'Rch

, s′′k, . . . , in fts/'Rch
. Consequently, fts

can reproduce any behaviour of fts/'Rch
.

Thus, for any fLTL property Ψ, (fts |=FTS Ψ) = (fts/'Rch
|=FTS Ψ).
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4.3 Reachability-Aware Preorder-Based Abstraction

Unlike the previous ones, the last abstraction actually modifies the behaviour
of the FTS on which it is applied. Although it preserves the existing be-
haviour, it may add some. Informally, for any couple of states (s1, s2), if
(s1 4Rch s2) = [[d]]FD , then s1 is integrated into s2. By integration, we mean
that all the transitions going to s1 are redirected to s2 and s2 as well as its
outgoing transitions are discarded. Since s2 simulates s1 for any product,
we do not remove any behaviour from the FTS. However, new behavioural
options may appear for products in [[d]]FD ∩ [[¬(s2 4Rch s1)]].

Theorem 18 Let s, s′ be states of an FTS fts such that (s1 4Rch s2) =
[[d]]FD and [[¬(s2 4Rch s1)]] 6= ∅. Then, integrating s1 into s2 results in an
FTS fts′ such that (fts′ 4FTS fts) 6⊇ [[¬(s2 4Rch s1)]].
Proof. Let p ∈ [[¬(s2 4Rch s1)]]. Then, either p cannot reach s1 in fts, or
p can reach both s1 and s2 but there exists an execution trace starting from
s2 such that there is no execution trace starting from s1 that is equivalent
(with respect to the successive sets of satisfied atomic propositions).

In the former case, p has no more behaviour in fts′ than in fts, since
any execution trace of the form s′0, . . . , s

′
k, s2, . . . of fts′ already exists in fts

or is not executable by p. In the latter case, then p has more behaviour in fts′

than in fts. Indeed, let s2, s
′
0, s
′
1, . . . be an execution trace starting from s2

such that there is no equivalent execution trace starting from s1. Therefore,
for any execution trace i, . . . , s1, . . . of fts, with i being is an initial state of
fts, there is an execution trace of the form i, . . . , s2, s

′
0, s
′
1, . . . in fts′ such

that there exists no equivalent execution trace in fts.

Let us observe that this form of abstraction is not a function, since
for a given FTS it may lead to several abstracted FTS. For example, let
s1, s2, s3 be three states such that (s1 4Rch s2) = (s1 4Rch s3) = [[d]]FD ,
(s2 4Rch s3) = (s3 4Rch s2) 6= [[d]]FD and there exists no s4 such that
(s2 4Rch s4) = (s3 4Rch s4) = [[d]]FD . This implies that s1 can be integrated
into either s2 and s3, but these two will never be merged.

Instead of defining formally the set of FTS that can result from one of
these abstractions, we give an algorithm to greedily build one of its element
(see Algorithm 1). First, we register the couples of states (s1, s2) such that
(s1 4Rch s2) = [[d]]FD in a set R (line 1). Next, we keep merging states as
much as possible (lines 2-14). At each iteration, we remove an element of
R (and S′) non-deterministically (lines 3-4). Let (s1, s2) be this element.
Then, s1 is not part of S′, the state-space of the abstract FTS (line 5).
Furthermore, if s1 was an initial state, then s2 becomes an initial state of
the abstract FTS (lines 6-8). As mentioned earlier, each transition of the
form (s, s1), s 6= s1, is transformed into a transition (s, s2) and the new
transition-labelling function γ′ is modified accordingly (lines 9-13).
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Algorithm 1 Computation of the simulation function

Require: An FTS (S, trans, I, AP,L, d, γ).

Ensure: An abstract FTS f̂ ts smaller than fts and such that (fts 4FTS

f̂ ts) = [[d]]FD .
1: R← {(s1, s2) : s1 6= s2 ∧ (s1 4Rch s2) = [[d]]FD}
2: while R 6= ∅ do
3: Let (s1, s2) ∈ R
4: R← R \ {(s, s′) ∈ R | s = s1 ∨ s′ = s1}
5: S = S \ {s1}
6: if s1 ∈ I then
7: I ← (I ∪ {s2}) \ {s1}
8: end if
9: remove← {(s, s′) ∈ trans | s = s1 ∨ s′ = s1}

10: trans← (trans \ remove) ∪ {(s, s2) | s 6= s1 ∧ (s, s1) ∈ remove}
11: for all s : {(s, s1), (s, s2)} ⊆ trans do
12: γ′(s, s2)← γ(s, s1) ∨ γ(s, s2)
13: end for
14: end while
15: return (S, trans, I, AP,L, d, γ′)

5 Evaluation

This section describes a theoretical evaluation of the algorithms as well as
experiments we conducted to evaluate the time and space gain obtained
thanks to the abstraction methods.

5.1 Theoretical Evaluation

At the heart of our method is the computation of the simulation function,
as specified in Section 3.2.

Theorem 19 The time complexity of computing the simulation function is
bounded by O(|S|6.23n), where n is the number of features.

Let k be the smallest such that ∀j > k • Rk = Rj . For i < k, there is
at least one triplet (s1, s2, p) ∈ S × S × [[d]]FD such that p ∈ [[Ri+1(s1, s2)]] \
[[Ri(s1, s2)]]. Consequently, k ≤ |S|2.2n. Assume we represent each R(s1, s2)
by a Binary Decision Diagram (BDD). It is at most of sizeO(2n). Computing
Ri+1 is a conjunction or disjunction on pairs of transitions. These operations
are quadratic in the size of the BDD. Thus, each step takes |trans|2.22n ≤
|S|4.22n.

To verify if the fixed point has been reached, we must determine if, for
all (s1, s2) ∈ S × S, Ri(s1, s2) ≤ Ri+1(s1, s2). Establishing this comes to
checking ifRi(s1, s2)∧¬Ri+1(s1, s2) is unsatisfiable, which is of cost |S|2.22n.
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Def. 9 Def. 10

mbase 4FTS mext 3247.07 113.39
mext 4FTS mbase 3150.97 108.59

Total 6398.04 221.98

Table 1: Verification time of the simulation relation (in seconds)

Consequently, the overall time complexity of computing RFTS is bounded
by O(|S|6.23n). Although it is theoretically dominated by 23n, and thus in
EXPTIME, in practice |S|6 is often bigger.

5.2 Evaluation of Simulation-based Verification

To carry out these experiments, we have integrated the computation of the
simulation function as well as the three abstractions into our Haskell FTS li-
brary1, which we previously used for benchmarking our LTL model-checking
algorithms [5]. It allows us to validate our approach and to measure its ef-
ficiency when it comes to computing the simulation relation and reducing
both the state-space size of an FTS and its verification time. All bench-
marks were run on a MacBook Pro with a 2,4 GHz Core 2 Duo processor
and 4 Gb of RAM. The library was compiled using the Glasgow Haskell
Compiler2. To avoid the influence of other running processes, we repeated
each experiment 10 times.

Our evaluation considers the mine pump controller defined in [16], which
we already used in our previous work [5]. The whole system is designed as
the parallel composition of several processes (a pump, a water sensor, a
methane sensor, and a controller). The mine pump SPL has nine features
and 64 products. The FTS modelling its behaviour, noted mbase is composed
of 465 states and 1306 transitions (see [7] for a detailed description).

In Section 3, we introduced two methods for computing the simulation
relation for two FTS. The former is based on an enumerative approach and
determine, for given fts1 and fts2, and each product p, if fts1 |p 4TS fts2 |p.
The latter makes use of the compact structure of FTS and is based on
the computation of a fixed point, as stated in Subsection 3.2. Our first
experiments evaluate the practical efficiency of both methods.

The evaluation considers the minepump system, mbase, as well as an
extension of it. Basically, we extended the behavioural options of some of
the products by making them able to execute additional transitions. This
results in an extended model, noted mext. Then, we measured the time
needed by both methods to compute mbase 4FTS mext and mext 4FTS mbase.
Benchmarks results are shown in Table 1.

1http://info.fundp.ac.be/~acs/fts/implementations/haskell-library/
2http://www.haskell.org/ghc/

18



We observe that the algorithm based on Definition 10 is far more efficient
than the one that enumerates the products and computes the TS-simulation
of their projection. In spite of having a worse theoretical time complex-
ity, it is 28.82 times faster than the enumerative algorithm. Note that the
execution time of the enumerative algorithm includes the time needed for
determining the projection of each product, which amounts to about 20%
of the whole execution time.

5.3 Evaluation of Temporal Property Verification

Enumerative method

Formula mbase m'
TS

m4
TS

#1 31.23 7 40.42 7 39.70 7

#2 9.79 X 19.58 X 19.75 X
#3 134.71 7 178.52 7 175.11 7

#4 8.38 X 17.2 X 17.97 X
#5 19.18 X 32.22 X 33.51 7

#6 27.57 7 37.94 7 36.69 7

#7 9.44 X 19.37 X 20.26 X
#8 46.19 7 64.48 7 62.22 7

#9 11.39 7 24.58 7 25.64 7

#10 8.78 X 19.54 X 19.25 X
Total 306.66 453.85 450.1

FTS algorithms

Formula mbase m'Rch
m4

FTS

#1 13.08 7 13.46 7 12.07 7

#2 0.81 X 2.15 X 1.94 X
#3 97.91 7 92.37 7 82.23 7

#4 0.96 X 2.31 X 2.01 X
#5 1.26 X 2.56 X 2.29 7

#6 10.10 7 10.89 7 9.91 7

#7 0.41 X 1.79 X 1.62 X
#8 7.2 7 7.7 7 6.80 7

#9 0.65 7 2.02 7 1.79 7

#10 0.49 X 1.86 X 1.67 X
Total 132.87 137.11 122.33

Table 2: Verification time of ten LTL formulae (in seconds)

Our second evaluation benchmarks the time needed for model checking
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abstractions combined with either the enumerative approach or FTS algo-
rithms. The objective of the following experiments is to determine which
abstraction method is more efficient. For the former method, we evaluate the
verification time by enumerating all the products and computing their pro-
jection on (1) the original model, (2) its TS-simulation quotient m'

TS
[13],

and (3) the model m4
TS

, obtained by integrating a state s1 into another s2
iff s1 4TS s2.

Also, we apply the aforementioned abstractions to obtain three abstract
FTS m'

FTS
, m'Rch

, and m4
FTS

respectively. For the latter, when a state
can be integrated into more than one state, our choice is based on the
lexicographic order. For example, if we have s1 4FTS s2 = s1 4FTS s3 =
B(d) then we integrate s1 into s2 rather than in s3.

For each FTS, we first compute the number of states and transitions in
order to determine to what extent a given abstraction reduces the size of
the original FTS. We observe that the abstraction based on the equivalence
classes under 'FTS yields no reduction at all. Its merging condition is too
restrictive in the context of product lines. Since an FTS models the be-
haviour of O(2n) products, it is very unlikely that two states have exactly
the same behavioural options for all those products.

Taking into account the reachability already allows to merge states, al-
though only a few of them. The state-space size is thus reduced to 459
states and 1284 transitions. Finally, the third abstraction yields a reduction
of about 9% (423 states and 1192 transitions). Although these are the best
results in terms of state-space reduction, we must keep in mind that, like
every efficient state-space reduction method, it augments the behaviour of
the FTS. Hence, we may find false negatives, i.e. products that violate a
given property in the abstract FTS but not in the original one.

In order to evaluate the impact of the state-space reduction on the veri-
fication time, we model-checked the seven models against ten different prop-
erties expressed in LTL, such as those defined in [17] and [5]. The results
are shown in Table 2. For every formula and every model, we give the time
needed to verify the model against the formula. We also describe if the
formula is verified by every legal product (X) or not (7). The verification
time of every property includes the computation time of the abstractions,
which represents about 10% of the overall verification time, in both cases.
This overhead could be partially avoided if the abstractions are computed
once and for all. We do not present the verification times for m'

FTS
. Since

it has as many states and transitions as mbase, any difference would be the
result of random variations independent of the verification process.

Let us first discuss the results for the enumerative and FTS approaches
separately. When summing up all the times related to the enumerative
approach, we observe that the overhead due to the computation of both the
abstractions based on TS-simulation quotient (m'

TS
) and preorder (m4

TS
)

is significant. Because of that, the verification times of m'
TS

and m4
TS
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are respectively 48% and 47% higher than the model-checking time of mbase

using the enumerative method. Furthermore, false negatives appeared when
checking m4

TS
against formula #5. This formula is supposed to be satisfied

by all products, but one of them violates it in m4
TS

due to the addition of
behaviour.

Applying abstraction to FTS yields better results. The abstraction under
'Rch increases the checking time of mbase with FTS by 3%. This verification
time decreases by 8% when m4

FTS
is model-checked. However, it has to

be noted that false negatives were found for formula #5. If we compare
these results with the ones of the enumerative methods, we conclude that
the FTS-based approaches outperform the enumerative ones. Furthermore,
applying abstraction to an FTS can reduce its verification cost. On the
contrary, combining an enumerative method with an abstraction function is
inefficient.

Although abstraction clearly permits to reduce the verification of an
FTS, we are aware that the gain is not significant. This illustrates the dif-
ficulty to find a good abstraction for FTS, a formalism that models the
behaviours of a potentially large number of systems. A good abstraction
should either add behaviour or remove some, but not both. Otherwise, we
would not be able to infer any property of the system using the verifica-
tion results of its abstract counterpart, since a property may be violated
by an additional behaviour or satisfied thanks to the removal of an existing
one. Therefore, it is particularly difficult to find a state merging condition
that both satisfies this requirement and makes a significant reduction. In
particular, the purpose of simulation quotient is to eliminate redundancy,
not to produce coarse abstractions. More research is required to find ways
to design efficient abstraction functions and to finely evaluate their mer-
its with respect to verification performance and false negatives induced by
them. The current abstractions are applied directly on the FTS itself. The
most successful applications of abstraction, like partial-order reduction and
statement merging, make use of additional information like parallelism and
variables scope. These information are not found in such a fundamental
formalism, but instead in high-level languages.

Nevertheless, it is interesting to observe that the most important speedups
occur during the verification of the most time-consuming properties. This
indicates that abstraction can play a role in improving the scalability of SPL
verification. Naturally, this early indication needs to be confirmed by fur-
ther experiments. These results combined with previous experiments [5–7]
confirm that FTS is a viable approach for verifying variability-intensive sys-
tems.
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5.4 Threats to Validity

Several threats to the validity of our conclusions have to be pointed out.
First, our evaluation is solely based on one case. Other systems of different
size and variability should be considered in order to analyse how the different
approaches scale with the number of features and the size of the state-space.

This case study has been implemented in Haskell, a programming lan-
guage that makes use of the so-called lazy evaluation. It means that a value
is computed only when it is needed. Although this evaluation method may
have influenced our results, the conclusions would certainly remain valid if
we used another programming language.

The comparison between the enumerative methods and the FTS algo-
rithms is based on the verification of all the products. However, when a
property (or a simulation relation) is required to hold for the whole SPL, we
could stop the checking process as soon as a bad product is found. Even so,
this comes to the standard model checking problem, and we are interested
in identifying all the products that violate a property.

Also, we obtain the verification times related to the enumerative methods
by summing up the verification times for each product individually. In
practice, it is very unlikely that those products are verified sequentially,
without taking advantage of multi-threading and parallel verification.

Finally, independent processes running during the experiments might
have influenced the results. However, each experiment has been repeated
10 times. This way, the impact of those random variations is drastically
reduced.

6 Related work

This section briefly describes relevant work related to modelling and verifi-
cation of SPL behaviour.

Fischbein et al. propose Modal Transition Systems (MTS) to model
the behaviour of SPLs [18]. An MTS is a TS where transitions are either
mandatory or optional. The mandatory transitions are available to all prod-
ucts whereas optional ones are specific. Although model checking an MTS
determines if a property is satisfied by all or only a subset of the products,
it does not keep track of the decisions made at variation points and it lacks
the notion of feature. Therefore, it cannot pinpoint exactly the products
that violate the property. Asirelli et al. [19] associate MTS with the MHML
temporal logic [20] to express constraints on features . Still, since they do
not have an explicit notion of feature in the MTS, they suffer from the same
limitations.

Sassolas et al. [21] propose a method to identify inconsistencies between
several MTS based on traces comparison and a simulation relation. The
inconsistencies are characterised as µ-calculus formulae. Unlike ours, their
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approach is not specific to SPL and cannot be used to identify products that
cause inconsistencies.

Instead of MTS, Larsen et al. apply I/O automata to SPL modelling [22].
In particular, they define an SPL as the composition of subfamily modelled
with an I/O automata. However, they do not address SPL verification.

Lauenroth et al. define a CTL model-checking algorithm for automata
labelled with features [23]. There are two significant differences between
their work and ours. First, they do not allow to label transitions with
any arbitrary boolean expressions. Second, the time complexity of their
algorithms are exponential in the state-space size and they have not applied
state-space reduction techniques.

Ghezzi and Molzam Sharifloo verify non-functional properties (reliabil-
ity, energy consumption, . . . ) in SPLs with probabilistic model-checking [24].
Their work is complementary to ours but does not rely on a formal model.
Transposing our approach to probabilistic model checking is a promising
research perspective.

Cassez et al. [25] make use of the simulation relation for alternating-
time temporal logic (ATL) to prove the non-interaction of features in reac-
tive systems. They establish syntactic conditions for a feature to preserve
properties. Similarly, Fisler et al. [26], Krishnamurthi et al. [27] and Li
et al. [28] introduce an approach for compositional model-checking of col-
laborations, aspects and features. Both the base system (i.e. the system
without features) and the features are modelled as a finite state machine
(FSM). Enabling the feature means attaching its FSM to the one of the
base system. They propose algorithms that derive preservation constraints
which, if satisfied by the feature FSM, ensure that a given CTL formula
verified in the base system is also satisfied when the feature is enabled. One
limitation is that their features only add transitions and states. In the same
vein, Liu et al. [29] propose an alternate algorithm to derive the preser-
vation constraints. Transposed to FTS, these ideas could open a way for
compositional verification of SPL.

7 Conclusion

In this paper, we focused on providing theoretical foundations and empir-
ical evidence to apply simulation-based model checking to SPLs. First,
we defined a simulation relation for FTS, a formalism meant to model the
behaviour of all the products of a SPL. Simulation relations add a signifi-
cant milestone to SPL verification theory, being at the center of advanced
behavioural analyses, such as abstraction, behavioural comparison, compo-
sitional reasoning, and more. The second contribution is the study of simu-
lation quotients for FTS, which results in several simulation-based abstrac-
tion methods. The third contribution is the evaluation of these abstractions
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for SPL model checking. The main conclusion of our experiments is that
the combination of abstraction with the enumerative approach is inefficient.
This corroborates the claims we made in earlier work that SPL model check-
ing should be based on FTS. However, our experiments also suggest that the
application of abstraction to FTS model checking only yields marginal effi-
ciency gains. To obtain more substantial improvements, our approach should
be extended with other abstraction methods. Counter-example guided ab-
straction refinement (CEGAR) [30] looks particularly promising: a coarse
abstraction is rapidly and automatically computed and is then refined iter-
atively using the false negatives found during verification.

As other future work, we plan to integrate our results in an SPL model-
checking tool equipped with a high-level specification language, viz. SNIP [7].
This would allow us to apply other forms of abstraction, (e.g., partial-order
reduction [2, 10, 13] and statement merging [10]), and to evaluate them on
larger models, including industrial cases. However, it requires to extend def-
initions such as stutter equivalence [13,31] to variability-intensive models.

Apart from abstraction, there are many other uses of the simulation func-
tion we have defined. For instance, simulation-based verification allows one
to verify properties modelled as automata. There are also SPL-specific uses
of our theory. For instance, we can formally characterise the behavioural
impact of features in an SPL. Let f be a feature, fts[f ] (resp. fts[¬f ]) the
FTS modelling the behaviour of the products that have (resp. do not have)
f . Then, (fts[¬f ] 4FTS fts

[f ]) gives the products for which f does not re-
move existing behavioural options. Inter-SPL comparison is also possible. If
we consider two SPLs having an equal set of legal products, the behavioural
inconsistencies between them can be highlighted and presented in the form
of an automata (viz. an FTS). A similar approach for modal transition
systems is studied by Sassolas et al. [21].

Moreover, we plan to investigate the use of the simulation for composi-
tional reasoning and verification of variability-intensive systems. Simulation
relations are already at the core of existing research on compositional veri-
fication, in particular for discrete and hybrid systems [32]. Applying similar
methods to verify behavioural variability models compositionally is an ex-
citing but difficult challenge, considering the numerous possible interactions
between features.

Finally, we will extend the above results as well as our previous work
on FTS to the modelling and verification of variability-intensive real-time
systems. Analysing the behaviour of such systems requires (1) the definition
of models that combine FTS with timed automata, (2) the development
of model checking algorithms for verifying time-critical properties on these
models, and (3) the definition of timed simulation for FTS augmented with
real-time. More generally, this work is part of a larger project that aims to
extend the theory, methodologies and tools for the behavioural modelling
and verification of SPL.
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