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Abstract. Data schemas are primary artefacts for the development and
maintenance of data intensive software systems. As for the application
code, one way to improve the quality of the models is to ensure that they
comply with best design practices. In this paper, we redefine the process
of schema quality evaluation as the identification of specific schema con-
structs and their comparison with best practices. We provide an overview
of a framework based on the use of semantics-preserving transformations
as a way to identify, compare and suggest improvement for the most sig-
nificant best design practices. The validation and the automation of the
framework are discussed and some clarifying examples are provided.

Keywords: Database schema, schema evaluation, schema improvement, schema
transformation.

1 Context and motivation

Modeling activities are increasingly important in software engineering. Accord-
ing to the Model Driven Engineering (MDE) paradigm, database schemas are
considered first-class artefacts. Due to the increasing cost of software design
flaws, early evaluation techniques, that are quite common in software engineer-
ing, also prove necessary in the domain of database schema design. The use of
software metrics have long been adapted to schema evaluation. They provide a
synthetic measure of the quality of a schema by comparing some of its global
characteristics to those of a set of reference schemas. The authors believe that
the next step in schema evaluation should be the precise identification of schema
defects according to a set of commonly agreed best practices that are to ensure
specific requirements such as expressiveness, maintainability, evolutivity, perfor-
mance, etc. From these defects and their scaling against best practices, it should
be possible to measure the quality of a schema and to suggest improvement.

Considering these best practices, the scope of the work described in this paper
is the evaluation and the improvement of database schemas for both existing



and under development systems. It relies on the use of semantics preserving
transformations and on the identification of schema structures that have been
defined to express specific application domain fact types. This analysis is used
for evaluating the schema by comparing its structural content to a reference
frame and the requirements of the schema context. The improvement activity
will modify the schema structure in order to increase its compliance with the
context while preserving its semantics.

In section 2, we present the conceptual background of our work, specifically
the abstraction/paradigm space, the representation of heterogeneous schemas
and the concept of schema transformation. In section 3, we define the concepts
at the basis of the framework, namely equivalence classes of constructs, best
practices, schema context and construct ranking. In section 4, we illustrate the
framework through an example of alternative representations of a common data
schema construct. In section 5, we suggest a possible application of the framework
for the evaluation and the improvement of schemas. In section 6, we provide some
hints about the limits identified so far. Section 7 shows how the framework can
alleviate the problem of quality framework validation through field case studies.
Sections 8 (Related works) and section 9 (Conclusions) are as usual.

2 Background

In this section we briefly (re)define some basic concepts and techniques that
will be used to build our framework.

2.1 Abstraction levels, modeling paradigms and semantics

Database engineering processes generally rely on a hierarchy of abstraction
levels. Currently called Model-Driven Engineering, multi-level approaches have
been described since the seventies, when the terms conceptual, logical and phys-
ical were coined by several authors in the database realm. A formal description
of the information/data structures of a database, be it in construction or in use,
is called a schema.

A schema is positioned at a certain level of abstraction, depending on the
technical detail it provides. In addition, a schema is expressed in a specification
language, based on a definite paradigm (table 1). Entity-relationship (ER) with
its many variants, UML class diagrams, relational, object-relational, XML, IMS,
standard files and even schema-less, are some of them. The database community
calls them models (e.g., the relational model), a term we will use in this paper.
There is an agreement on which abstraction level a given paradigm best fits. For
instance, the Entity-relationship model is as its best at the conceptual level while
the object-relational model should be used at the logical level. This defines a two-
dimension space in which an arbitrary schema can be located and evaluated. A



schema will be considered suitable if the constructs 1 it is made up of comply
with the usual way of doing according to the dimensions that define its position
in this space.

Table 1. A part of the abstraction/paradigm space.

Abstraction Paradigms
Conceptual Historical ER, rich ER, Merise (Individual model), EER, UML class diagrams,

OO, Bachman DS, NIAM, ORM, binary ER, etc.
Logical Relational, object-relational, OO, hierarchical, network, shallow, standard files,

XML DTD, UML class diagrams, XML Schema, binary ER, etc.
Physical Oracle, DB2, SQL Server, PostgreSQL, MySQL, COBOL files, IMS, IDS2, IDMS,

Caché, ZODB, ADO.NET, etc.

Though a paradigm is considered suitable at some, but generally not all,
abstraction levels (e.g., binary ER), we sometimes observe some cultural border
crossover when a construct of one paradigm is used at an unusual position, in
a foreign paradigm or in a non standard abstraction level. We mention three
examples. A foreign key, which typically is a relational construct, could be found
in an ER schema to avoid spaghetti-like schemas, for instance to reference DATE,
LANGUAGE or NOTE general-purpose entities from hundreds of places in the
schema. Some developers, quite familiar with XML processing tend to build
database conceptual schemas that closely resemble a collection of tree structures.
Finally, many current databases result from the straightforward migration from
an obsolete technology, so that their schemas exhibit structural idiosyncrasies
inherited from this technology.

The position of a schema construct in this space must be further refined
by considering whether the intention of the designer has been translated ad-
equately. In other terms, given a construct C, does C best expresses its in-
tended semantics? We will call this property semantic expressiveness. A simple
example will clarify the point. In modern ER models there is a wide agreement
on representing sub-categories C11, C12, . . . , C1n of a reference category C1 in
the application domain by an is-a relation between supertype C1 and subtypes
C11, C12, . . . , C1n. However, there are other ways to express these subcategories,
such as by distributing the supertype components among the subtype (down-
ward inheritance), by integrating the subtype components within the supertype
(upward inheritance) and by representing is-a relation by one-to-one relationship
types (is-a materialization). Therefore, there are often several ways to translate
the idea of sub-category, but some can be considered more expressive than oth-
ers.

To summarize, a schema is positioned at a certain level of abstraction, is
expressed in a certain paradigm and is intended to translate the intention of the

1 A construct is a distinct part of a schema considered as a whole for the purpose of the
discussion. Typically it is a data structure (entity type, foreign key, is-a relation, the
set of columns of a table, index) or a constraint. We consider in this paper constructs
whose structure can be defined formally in a generic way, that is, through a pattern.



designer. A construct C of this schema can be evaluated through three questions:
Does C naturally belong to this paradigm? Does C feel comfortable (so to speak)
at this abstraction level? Does it best translate the intention of the designer? Our
research consists in converting the answers to these questions into a fine-grained
evaluation of a schema and into opportunities for improvement.

2.2 Schema expression: the GER model

Considering the multi-dimensional framework described above, we must be able
to express non standard schemas that do not meet the ideal rule only one

paradigm at only one abstraction level. In addition, a transformation can move a
construct across abstraction levels and paradigm boundaries. Therefore, we will
base the evaluation framework on a large spectrum data model encompassing
all the abstraction levels and paradigms, namely the Generic Entity-relationship
model, GER in short [1]. The GER is an extended Entity-Relationship model
including, among others, the concepts of entity type, domain, attribute, rela-
tionship type, method, inheritance, primary and foreign keys, index, as well as
various constraints. It also serves as a generic pivot model between the major
database paradigms. In fig. 1, we illustrate the graphical notation of the GER ob-
jects used afterward. The graphical notation also supports informal notes (yellow
boxes), which will be used to provide information that is not expressed struc-
turally. For instance, a foreign key expressed informally through a note will not
be declared in SQL-DDL but will be implemented in the application code. Such
constructs are called implicit constructs [2]. For instance, in fig. 4, schema (e) in-
cludes two explicit foreign keys IdA and IdB to A, denoted by keyword ref, while
in schema (f), these attributes form implicit foreign keys, defined through two
informally noted inclusion constraints. Among both foreign key specifications,
the first one clearly is of better quality.

An operational model M , that is, a model that is actually used in the design
environment, can be described by a GER submodel, comprising a subset of the
GER constructs together with a set of assembly rules that valid schemas must
satisfy. A M-compliant schema is a GER schema that includes only constructs
allowed in M and that satisfies all the assembly rules of M.

2.3 Schema transformation

In this paper, we will address the multiplicity of representations of a given con-
cept. The most appropriate tool to study this phenomenon is the transforma-
tional framework according to which a construct C in a schema can be replaced
with another construct C’ in a way that preserves some characteristics of C.
In particularly, we are interested in semantics preserving, or reversible, trans-
formations that produce constructs C’ that model exactly the same application
domain situations as C does. A transformation is reversible iff there exists a
function g with inverse g’ such that, for each valid instance c of C, g(c) is a
valid instance of C’ and c = g’(g(c)). Provided we have at our disposal an ap-
propriate set of reversible transformation operators, a fairly large collection of



Entity Type

Atomic attribute

Multivalued attribute

Primary identifier

Is-A hierarchy (disjoint)

Subtype

Role

Binary relationship

CUSTOMER.Category in 
{A1, A2, A3, B1, B2, C}

1-1

0-N

from

D

PERSON

PID
Name
Phone[0-5]
id: PID

SUPPLIER
Account

ORDER

ONum
Date

CUSTOMER
Category

CUSTOMER.Category in 
{A1, A2, A3, B1, B2, C}

1-1

0-N

from

D

PERSON

PID
Name
Phone[0-5]
id: PID

SUPPLIER
Account

ORDER

ONum
Date

CUSTOMER
Category

Fig. 1. Sample of GER schema at the conceptual level.

constructs equivalent to C can be generated. The interested reader is referred to
reference [1] for a more detailed description of the transformational approach.

3 Definitions

When a designer expresses an application domain fact type in a schema,
s/he uses the data model construct that best fits its intention. The construct
that most, if not all, skilled designers would choose in this situation is called a
best practice 2. Best practices are defined considering the possible alternative
representations and the context in which the schema is used.

3.1 Semantic Equivalence Classes and best practices

Semantic equivalence class of a construct. We consider K, the collection
of all the constructs of the GER that are pertinent in some engineering pro-
cesses and a set of transformations T . Let us also consider a construct C from
K and all the equivalent constructs that can be derived through the reversible
transformations of T . All these constructs, together with C, form an equiva-
lence class called ec(C). Since only reversible transformations have been applied,
∀C′ ∈ ec(C), ec(C′) = ec(C). We now consider the function sec : K → (K ×2K)
which associates to each construct in K its semantic equivalence class (sec).
sec(C) is an equivalence classes in which the specific element C has been tagged.
We call C the intention of this equivalence class. sec(C) provides all the con-
structs a designer can introduce in a schema to express the semantics (the appli-
cation domain fact type) of C, hence the name semantic equivalence class or sec.

2 Intuitively, a best practice is a common practice among skilled designers.



The concept of best practice. Let us consider a structure comprising a cate-
gory A together with two of its sub-categories A1 and A2. It typically translates
into an is-a relation construct. However, under certain circumstances, other
equivalent constructs can be used instead as we have shown it in section 2.1.
If we call C the is-a relation, sec(C) includes all the constructs that express
category/sub-category structures, including C itself. C is the intention of its
semantic equivalence class. For a seasoned designer, the is-a relation is the pre-
ferred translation but others can be used instead, though with a lower preference
level. To better describe the notion of preference, we assign to each member C′ of
sec(C) a preference score expressing the extent to which an expert designer will
accept to use C′ to express the semantic of C. The higher the score, the better
C′ will be to express this semantics. The preference score can be defined by a
number or, more simply, by a partial order relation (C” < C′ if C′ is preferred
to C′′ to express the semantics of C). However, as we will discuss it later on,
the preference scoring of sec is context dependent. We will call best practices of
sec(C) the constructs with the highest preference score. It must be noted that,
depending on the context, C may not be the best practice in sec(C).

Generation of SEC. The equivalence class of a construct C can be obtained
by recursively applying the transformations of T until no new construct can be
produced. However, this naive approach can lead to a very large (and, depending
on T , possibly infinite) set of constructs of which only a small subset would be of
interest. Appropriate meta-rules are necessary to keep the process into reason-
able limits. Considering the is-a pattern, one can adopt a regularity of treatment

meta-rule according to which each sub-category of a given category must be
expressed in the same way. For example, a construct obtained by applying the
upward inheritance transformation to one sub-category and the materialization
transformation to another one would be rejected. Another example: when an en-
tity type EA results from the transformation of an attribute A, the attribute(s)
of the latter cannot be further transformed through the same transformation
(figure 2).
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Fig. 2. Infinite transformation of an attribute.

3.2 Context and best practices

The context of a schema S under evaluation is the external conditions that de-
fines its intended use. S has been designed for the abstraction level A, according



to the paradigm P and to meet design criterion D 3. We call (A, P, D) the con-

text of S. Given a construct C that can appear in schema S, a scoring function
is assigned to sec(C) for a given context.

Any model M is a point in the abstraction/paradigm space illustrated in
table 1 (e.g., (conceptual, ”binaryER”), (logical, ”SQL3”)). The members of
sec(C) comply with the GER, but, being independent of any abstraction level
and paradigm, they may not all comply with M . So, we introduce the concept
of projection of a set of constructs on a model. Let us consider KM ⊆ K and
model M , such that KM is the set of constructs that are valid in M . KM is the
projection of K on M . The projection can be applied to semantic equivalence
classes. We note secM (C) the subset of constructs in sec that are M-compliant,
i.e., secM (C) = sec(C) ∩ KM .

Now, we classify the members of secM (C), (∀C ∈ KM ) according to the
evaluation criterion D. We assign (in a way that will be discussed later) each
member of secM (C) an order number, or, best, a numeric score in the range
[0− 1]. The first member(s) being the most appropriate according to D and the
last one(s) the worst one(s). As we have said above, the intention can be, but
need not be, the first member. For instance, in the sec of a foreign key at the
conceptual level, the one-to-many relationship type will probably be assigned
the highest score for D = Expressivity. Figure 3 describes a simple sec of
unnormalized relation R for the SQL2 logical model. Considering access time
optimization criterion, schema (c) can be assigned the highest score, since it is
optimized for R∗S join while being easy to implement through a (non minimal)
foreign key 4. It is followed by schema (a), itself followed by schema (b). Of
course, the Normalization criterion would have yielded quite different scores.

Considering construct C, the bestpractice for C in a given context (A, P, D)
is the member (or members) of sec(C) with the highest score.

(a) (c)(b)

B -> C

R
A
B
C
id: A

B -> C

R
A
B
C
id: A

R(B) ⊆ S(B)

S
B
C
id: B

R
A
B
id: A

R(B) ⊆ S(B)

S
B
C
id: B

R
A
B
id: A

R(B,C) ⊆ S(B,C)

S
B
C
id: B

R
A
B
C
id: A

Fig. 3. (a)Relational schema with functional dependency. (b) Normalized schema. (c)
Optimized schema.

3 For simplicity, we consider that a schema is to meet one design criterion only.
4 This pattern is known as the Elementary Key Normal Form.



4 Illustration

In this section, we illustrate the concepts of semantic equivalence class and
schema context.

Figure 4 represents eight typical constructs that translate the category/sub-
category structure where subcategories are pairwise disjoint. In these subschemas,
AttX stands for a set of attributes of the entity type X ; AttX[0-1] means that
all these attributes are optional; tag id in the 3rd compartment declared a
primary key; coex means that the attributes must all be null or all not null;
exact-1 means that exactly one attribute must be not null; ref declared a for-
eign key. Since constructs (b) to (h) can be derived from construct (a) through
semantics-preserving transformations, this set can be considered the sec of any
of its members, in particular (a). The constructs (b), (c) and (d) are com-
mon alternative representations of is−a relations that are obtained respectively
with the materialization, downward inheritance and upward inheritance trans-
formations. (e) and (f) are derived from (b). In (e), the primary/foreign keys
translate the relationship types of (b). In (f), the foreign keys are not declared
but the referential constraints are expressed informally. (g) and (h) are obtained
by the transformation of (d). In ER-like models, (b) will be considered the most
expressive construct.

Let us now project this set of constructs on some point in the (A,P) space,
namely: conceptual extended entity-relationship, logical IMS, logical relational
(SQL2) and logical object-relational (SQL3). In table 2, we indicate the results of
the projections on these four models. For convenience, we consider that models
EER, SQL2 and SQL3 each include a language or a mechanism (OCL-like, check,
triggers) to express coex and exact-1 constraints.

Table 2. Suitability of the structures of fig. 4 in 4 projections.

(a) (b) (c) (d) (e) (f) (g) (h)
Conceptual EER X X X X - X X X
Logical IMS - X X - - X - X
Logical Relational - - X - X X X X
Logical Object-relational X - X - X X X X

One can observe that nearly all structures of the sec are compatible with the
EER model. The only exception is the foreign key. The IMS model is the most
restrictive, as it imposes a strongly constrained tree-like structure between entity
types (called segment types in IMS vocabulary). The relational model accepts
five constructs. Its restrictions come from unsupported object types: relationship
types, is-a relations and complex attributes. Finally the object-relational model
is able to represent all sec constructs but relationship types and compound
attributes.

We can classify the constructs of the four sec resulting from these projections
according to a fitness criterion combining expressivity (specially for EER) and
ease of implementation (specially for logical models). The goal of such ranking
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Fig. 4. SEC representing the category/subcategory with a partition constraint.

is to associate a score to the constructs, that will help for the evaluation of
the schema and in the choice between alternatives. There are different ways
to determine the scores. Among them, we are turning toward the collection of
expert opinions. It aims at placing the structure on a quality scale. We apply the
fitness criterion after a projection on the logical relational model. As a rough
guide, we place the remaining structures in a 5 grades ordinal scale (very bad,
bad, average, good and very good) as follow: (h) < (f) < (c) < (g) < (e).
Obviously, the quality rating can be based on a numerical scale, in order to
provide a more precise classification.

5 Framework application

An important issue in software engineering is the evaluation of the quality of a
system. Software metrics have long been the favourite techniques to evaluate this
quality. Though they are not always easy to interpret, metrics are easy to com-
pute and they provide an immediate quantitative result [3–5]. However, when
applied to database schemas, they are generally based on counting atomic ob-



jects such as entity types, tables, attributes, etc. independently of their intended
meaning.

The approach described in this paper makes it possible to integrate seman-
tic aspects in qualitative and quantitative evaluations. A qualitative evaluation
requires a classification based of a simple order relation among the members of
each sec. Such classification is easy to achieve. However it will neither provide
a global score for the schema quality, nor allow one to quantify the difference
between two schemas. It allows one to identify construct instances, that are not
a best practice and that can be improved, together with the possible changes.
The quantitative evaluation requires a classification based on a more or less pre-
cise numeric scale. The grading will obviously require more effort from experts.
Though defining metrics, their computation and their interpretation are beyond
the scope of this paper, we will suggest two metrics to develop quantitative
evaluations based on this framework.

The first suggested metrics is the Individual sec evaluation. It computes
the average quality score of a schema S for a particular sec, defined by its
intention I. We note sec(I) the semantic equivalence class, M the model of S

and D the criterion according to which secM (I) has been classified. The metrics
is defined as follows:

IndividualScoresecM
(S, I) =

∑
c∈secM (I) ]{inst(c,S)}×scoreD(c)

∑
c∈secM (I) ]{inst(c,S)}

where inst(c, S) is the set of all instances of the construct c in the schema S and
scoreD(c) is the score of c according to criterion D.

The second metric is the Global sec evaluation. It evaluates the average
score of a schema in a particular context using the sec of the most significant
constructs of M . We note II the set of these significant constructs. We associated
a weight to each construct I (and its corresponding sec) in order to define their
importance. We define normalized weights weight(I) in the range [0− 1] so that
their sum is equal to 1. The metric is defined as:

GlobalScoreM (S) =
∑

I∈II weight(I) × IndividualScoresec(M)
(S, I)

The evaluation of the schema through the identification of deviations from
best practices naturally leads to its improvement according to a definite criterion
D. The improvement process takes into account the classification of the sec of the
most significant constructs (II) in order to maximize the schema quality. Though
the specification of a complete improvement method is beyond the objective
of this paper, we will sketch a tentative heuristics: for a specific I ∈ II, we
transform each instance of I into the instance of secM (I) that has the highest
score. Figure 5, represents the sec of is-a relation expressions of fig. 4 projected
on the SQL2 model, that is, secSQL2(Cis−a). Edges represent standard reversible
transformations, acting as improvement paths, and scores translate numerically
from 1 to 5 the very bad to very good scale of section 4. In some cases, the
improvement path uses transformations that lead out of secM . In this case, the
transformation chain has to form a path that goes back in the projected sec

(e.g., transform (c) into (e)).



a b

d

h
[1]

SEC category/
subcategory

Logical Relational
projection

f
[2]

c
[3]

g
[4]

e
[5]

Fig. 5. Transformation associated to a semantic equivalence class.

In the remainder of this section, we apply this approach on a small schema.
In fig. 6, we represent 2 equivalent EER schemas. We identify in schema (a)
two significant constructs which, considering the expressiveness criterion, are
of poor quality (they have a low quality score in their respective sec). The
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been discontinued. Its sec contains, among others, a representation based on
an is-a relation, suggesting that the attribute represents a specific category of
product. We note CAtt the attribute construct and Cisa its is-a alternative. The
construct comprising entity types DETAIL, DET_ORD and DET_PRO, together with
their relationship types, is a complex but valid expression of a single many-to-
many relationship type very common in some legacy IMS databases. We note
CRTs this complex construct and CMM the many-to-many relationship type.
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Fig. 6. Evaluation and improvement of a conceptual EER schema.

For the purpose of the example, we consider the same 1 to 5 coarse-grained
classification as above. The classification assigns the score 2 to CAtt and 5 to
Cisa. CRTs receives the score 1, while CMM gets a 5. Cisa and CMM are the
only constructs in their sec with the maximum score. These scores allow to
compute the IndividualScore metric. The results are trivial since they correspond
to the score of the only construct of the sec present in the schema. As a rough
guide, we assign CAtt and CRTs respectively scores 0.4 and 0.6. The results are
the following: GlobalScore(EER,expressiveness)(a) = 0.4 × 2 + 0.6 × 1 = 1.4 and
GlobalScore(EER,expressiveness)(b) = 0.4× 5+0.6× 5 = 5. The expressiveness of
(a) tends to be very bad while the score of (b) is maximum. The improvement
process transforms (a) into (b).



6 Limits

The framework described in this paper is under evaluation through a collec-
tion of case studies. Though is is too early to draw definitive conclusions and to
specify precisely its application domain, we have identified some issues that will
be addressed in the near future. We will mention two of them.

Interactions are possible between the constructs of two distinct sec. We dis-
tinguish two types of interactions. In the first one, a construct appears in different
SEC. In this case, an in-depth analysis has to be done in order to determine the
very purpose of the structure. This can be performed using reverse engineering
methods, and particularly the conceptualization step, through which the seman-
tics of a technical construct is elicited. This implies that the identification of
some sec construct instances may not be fully automated and requires human
intervention. This problem is illustrated in the Fig. 7, where the 1-to-1 rela-
tionship type can be involved in an category/subcategory relation, a relation
between two different concepts (employee-car) or a concept fragmentation.
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Fig. 7. Relations between constructs of different semantic equivalence classes.

The second type of interactions concerns structures that have a common part
or structures included in others. We use the structure (a) in the fig. 4 in order
to illustrate the problem. The attribute AttsA can be transformed into an entity
type independently of entity type A and the is-a relation. Such transformation
is used to extract a concept included in an other. The construct involved in this
transformation should only take into account entity type A and its internal com-
ponents (excluding the is-a relation) and is included in (a). As in the previous
case, such problems may require some interactions with a designer.

As a second example of challenge already identified, it appears that ad-
dressing several criteria may lead to a conflicting situation. For example, the
minimality criterion may contradict "expressivity". Normalization versus opti-

mization is another popular example.



7 Validation of the framework

The validation and tuning of an evaluation framework is such a complex, costly
and time-consuming task that it is seldom carried out according to standard
validation methodologies. Ideally, one should collect dozens of real schemas of
realistic size, that is, including at least 40-50 entity types or tables, and submit
them to dozens of experts in data modeling who are asked to evaluate them
according to various quality criteria such as expressivity, readability (for differ-
ent stakeholders), maintainability, evolvability, time/space performance, DBMS-
independence, etc. Considering that good experts are both scarce and very busy,
proceeding in this way is quite unrealistic. As a consequence, many proposals are
tested on closed systems comprising a teacher in IS design together with his/her
students, a procedure sometimes considered unreliable.

The framework described in this paper makes it possible to lower the cost of
the validation process.

1. First, the framework relies on the concept of sec, the generation of which
can be, to a large extent, automated. However, the ordering of their mem-
bers must be performed by experts. We can formulate two observations. (1)
Though K can be an infinite set of patterns (depending on T), practice has
shown that only a subset of about 20 constructs is sufficient to built most
real schemas. (2) This provides us with about 20 sec, most of them com-
prising from 5 to 10 members. Ordering these sets of constructs is much
easier and more deterministic than evaluating complete schemas. According
to a first experiment involving four high level industrial experts5, assigning
value scores to one sec according to one criterion (e.g. expressiveness) takes
about 15 minutes and the results show very little variation among experts.
Processing the most useful sec for one major criterion requires less than one
day per expert, so that the complete parametrization of the framework can
be performed in a matter of one or two weeks.

2. Evaluating a schema according to a set of ordered sec is an automatic task.
Identifying constructs and their intention depends on the (still unknown)
quality of the schema, so that a conceptualization step may be necessary.
This process is automatic to a large extent6.

3. It remains to check the validity of the framework. Here, relying on teach-
ers and students makes sense. (Last year) students form a realistic sample
of designers of various skills, ranging from desperately inapt to experienced
and ingenious. On the other hand, teachers are expected to be expert in
evaluating the quality of medium size schemas. Therefore, comparing and
aligning academic and automated evaluations allow the tuning of the eval-
uation framework. These validation and alignment processes still are under
investigation.

5 from the ReveR company, specialized in database reengineering.
6 the DB-MAIN CASE tool we have been developing since 1993 includes pro-

grammable assistants that support this process.



8 Related Work

In the context of data schemas, very few authors seem to have explored
the use of reversible transformations to deal with schema quality. Among them,
Codd proposed the concept of relational normalization [6]. The normalization
process relies on the use of transformations in order to eliminate problematic
functional dependencies. Compared with our framework, it deals with a no re-

dundancies criterion. An early synthesis of the existing normal forms was pro-
posed by Kent [7]. Another proposal was made by Assenova and Johanesson [8],
who used reversible transformations to increase the understandability of the
conceptual models, a criterion they decomposed into smaller quality criteria. In
their work, a qualitative quality indicator is associated to transformations for
each criterion. In our framework, we choose to relate the quality to the struc-
ture itself and develop more precise indicators. Burton and Weber [9] realized
a study on the use of attributes in relationship types and its impact on schema
clarity. Their observations were based on equivalent schemas. A similar work was
carried out by Gemino and Wand [10] on the use of mandatory properties and
subtypes on ER schemas. Both proposals deal with schema quality and propose
solutions to increase it, but none highlights the use of reversible transformations.
Outside the context of data schemas, Bouhours et al. proposal focuses on the
transformation of software architecture according to quality requirements [11].
Their transformations consist in applying design patterns that best satisfy the
requirements (another name for design criteria). Finally, Kurtev [12] uses the
concept of transformation space for dealing with schema quality. Such space
represents a transformation by its initial and resulting structures and allows to
link it with quality indicator. However, studied objects are atomic, while we
consider semantically richer constructs.

9 Conclusion

The framework described in this paper intends to improve the precision and
the automation of the evaluation of a database schema according to a definite
criterion. Built on the transformational paradigm, it provides a sound and rig-
orous basis to develop evaluation strategies (including metrics-based ones) and
improvement techniques. In particular, it makes explicit and implements the idea
that a designer chooses, among a collection of candidate constructs (semantic
equivalence class), which best fits its intention, that is, the fact type from the
application domain. A defect in a schema occurs when this choice does not prove
to be optimal. The framework makes it possible to identify this collection and
the best choice, called best practice.

The framework also shows the importance of the three components of the
context of a schema: the level of abstraction, the paradigm (that both form the
data model) and the design criterion.



At the present time, we are parameterizing and validating the framework
through practical case studies and with the help of a community of expert
designers. We intend to compare the results of our framework with synthetic
metrics-based approaches. In addition, we are developing a tool, built on the
DB-MAIN platform, to identify significant patterns in a schema, to associate
with each of them a quality score according to a definite criterion and to suggest
improvement transformations.
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