Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Towards Safer Composition
Classen, Andreas; Heymans, Patrick; Tun, Thein Than; Nuseibeh, Bashar

Published in:
Proceedings of the 31st International Conference on Software Engineering (ICSE), Companion Volume, New
Ideas and Emerging Results Track

Publication date:
2009

Document Version
Early version, also known as pre-print

Link to publication

Citation for pulished version (HARVARD):

Classen, A, Heymans, P, Tun, TT & Nuseibeh, B 2009, Towards Safer Composition. in C Harald & G Alessro
(eds), Proceedings of the 31st International Conference on Software Engineering (ICSE), Companion Volume,
New Ideas and Emerging Results Track. IEEE, pp. 227-230.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Apr. 2024

https://researchportal.unamur.be/en/publications/e7a0288e-8d5d-4115-9863-309c351e9336

In Proceedings of the 31st International Conference on Software Engineering (ICSE), Companion Volume, New Ideas and Emerging Results (NIER)
Track, Vancouver, Canada, May 16-24, 2009.

Towards Safer Composition

Andreas Classen'* Patrick Heymans'

Thein Than Tun'? Bashar Nuseibeh?

TPReCISE Research Centre, Faculty of Computer Science, University of Namur - FUNDP

5000 Namur, Belgium
{acs,phe, ttu}@info.fundp.ac.be

tCentre for Research in Computing, The Open University
Walton Hall, Milton Keynes MK7 6AA, UK

{t.t.tun,b.nuseibeh}@open.ac.uk

Abstract

Determining whether a set of features can be composed,
or safe composition, is a hard problem in software product
line engineering because the number of feature combina-
tions can be exponential. We argue that synergies between
current approaches to safe composition should be exploited
and propose a combined approach. At the heart of our pro-
posal is a merge operation that creates a behavioural de-
scription for the entire product family from a feature dia-
gram and descriptions of individual feature behaviour. As a
result, we intend to verify more efficiently safe composition
for an exponential number of feature combinations.

1 Introduction

“Having started with one problem, we must end
with one solution. So the concerns we have sepa-
rated must be recombined: having divided to con-
quer, we must then reunite to rule.” [8]

Decomposition has long been advocated as a means to
deal with the complexity of software intensive systems [1].
While decomposition allows to reduce the complexity by
breaking a big problem into small and understandable sub-
problems, it does so at the expense of later steps in the de-
velopment where the solutions to the various sub-problems
need to be composed. Composition thus becomes another
fundamental problem of software engineering. Safe com-
position [20] is the problem of deciding whether the solu-
tions to the sub-problems (such as components or aspects)
are valid with respect to a specific objective. More gen-
erally, since there may be different possible combinations
of sub-problems, checking safe composition is to determine

*FNRS Research Fellow.

whether the compositions of the solutions to sub-problems
are valid for all intended combinations. The problem is
hard, since the number of intended combinations might be
exponential for the number of sub-problems. Approaches
to decomposition that guarantee safe composition from the
start need to make assumptions about the nature of the de-
composition. Here, no such assumptions are made.

In previous work [3], we proposed a conceptual solu-
tion to the problem of safe composition. Unfortunately,
the solution, as many other solutions, is not efficient be-
cause of the exponential number of combinations it explic-
itly considers. Other solutions suffer from this same re-
striction [12, 18, 13], or tend to rely on the questionable
assumption that there is a single model encompassing all
sub-problems [6, 5]. In this paper, we identify synergies be-
tween these methods (Section 2) and propose a combined
approach, free from most existing drawbacks (Section 3).
This comes, however, at the expense of the generality of
our previous work [3] since we restrict the approach to be-
havioural properties expressed with linear or modal transi-
tion systems (Section 4).

More concretely, the different intended combinations of
solutions to sub-problems form a software product line [15]
(SPL) and are commonly represented with a feature dia-
gram [19] (FD), i.e. a decomposition hierarchy of features
that formally expresses the set of intended feature combina-
tions, the variability of the SPL. The term feature here de-
notes any type of solution to a sub-problem (a component,
an aspect, etc.). At the heart of our proposal is a behaviour-
preserving merge operation. The operation, given an FD
and behavioural descriptions for each feature, builds an
overall behavioural description, encompassing all features
and all combinations thereof. The idea is that the resulting
model incorporates both behaviour and variability so that
each property it satisfies (e.g. some safety property) is also
satisfied by all individual feature combinations.

2 Approaches to safe composition

The safe composition problem occurs in various sub-
disciplines of software engineering, such as aspect-
oriented [10, 9], feature-oriented [20, 11, 14], component-
based [17] and model-based development [4, 18], and in
Software Product Line Engineering (SPLE) [6, 12, 5, 16].
It also occurs in the well-studied problem of feature interac-
tion management [2]. Our proposal draws on the following
approaches.

Larsen et al. [12] introduce the notion of modal I/O au-
tomaton in order to model a configurable component where
the refinements represent different configurations. Two con-
figurable components can be safely composed iff it is possi-
ble to obtain two full refinements (without modalities) of
each component’s automaton whose composition is non-
empty. Since it considers each feature as a separate en-
tity with its own automaton, then if the number of fea-
tures grows, each automation remains manageable. How-
ever, Larsen et al. do not consider how the definition of
safe composition generalises to systems consisting of an ar-
bitrary number of features.

Fischbein et al. [6] suggest using modal transition sys-
tems (MTS) to define the behaviour of the SPL, which can
be instantiated into several normal linear transition systems
(LTS). Safe composition is considered only implicitly in the
sense that if the combined behaviour of some features is an
implementation of the SPL, then the composition is safe.
Although it becomes possible to reason about the SPL as a
whole, the main difficulty lies in the fact that all possible
behaviours of the SPL need to be described upfront, and in
a single MTS.

In the context of model management, Sabetzadeh et
al. [18] present an approach for checking the consistency of
related models. Consistency checking of a number of dis-
tributed models is achieved by first merging them, and then
checking the merged model for consistency. They overcome
the need to check models in pairs. However, the number of
different combinations is still exponential.

Post et al. propose a technique called ‘lifting’, which
consists in incorporating the information about allowed
combinations (the variability) into the verifiable model it-
self [16]. They use this approach to verify the feature com-
binations that are possible with the configuration options of
the Linux kernel. If transposed to behavioural models, the
disadvantage is the same as for [6, 5], since there needs to
be one model for all configurations.

3 Towards a combined approach

The approaches introduced in the previous section all
have their respective advantages, but also significant draw-
backs. Upon closer inspection, however, one can see that

the drawbacks of one approach are almost all mitigated by
the other approaches. It thus seems that a combined ap-
proach could do away with most of those drawbacks.

Indeed, Fischbein e al.’s limited modelling scaleabil-
ity (one big model for the whole SPL) can be overcome
by combining the approaches by Larsen et al. and Sabet-
zadeh et al.. The behaviour of each feature is specified
individually with an LTS, and to check safe composition,
the individual LTSs are merged to obtain the system be-
haviour. Note that each approach addresses a different prob-
lem, makes different assumptions and uses its own formal-
ism. Hence, combining them as such might not make much
sense. However, we argue that combining their underlying
ideas is possible and represents a promising idea to resolve
our problem. For the merge, we identified four possible
strategies depending on two factors.

The first is the nature of the merge operation. One al-
ternative is that the merge produces an LTS of the sys-
tem behaviour that can be model-checked against proper-
ties expressing safe composition (the requirements of the
features), similar to [18]. Another alternative is that it pro-
duces an LTS, which by construction satisfies such proper-
ties, similar to [7]. The first option sticks more closely to
the idea of model-checking, because it is analytic in nature;
it allows to identify an issue, but does not solve it. The sec-
ond option does not explicitly identify any issues, it avoids
them by construction.

The second is the scope of the merge operation. The sim-
ple merge, illustrated in Figure 1(a), consists in merging the
behavioural descriptions for a single configuration (set of
features), which can be done with the method of Nejati et
al. [13], for instance. Since the simple merge would need
to be executed for every possible combination of features,
it still has the disadvantage that there can be an exponential
number of such combinations. The full merge, illustrated
in Figure 1(b), tries to overcome this limitation. Following
the ideas of [16], it takes the variability information into ac-
count and ‘lifts’ it into the behavioural model. The resulting
model thus describes the behaviour of the whole SPL rather
than the behaviour of a single feature combination. More
formally, when projected to the actions performed by the
features, the traces of the resulting LTS or MTS should be
the union of the traces of each feature combination’s LTS.
Basically, the complexity is moved to the analysis task.

Of the four possible strategies, we decided to investigate
one that is analytical and constructs a full merge. Analyt-
ical, since a drawback of the “issue-avoiding” approach is
that its solution (i.e. the merge operation) is restricted to the
model. The model, however, is only an abstraction of the
real system, and it is not clear whether the solution found
for the model also works for the real system, nor how it
can be transposed. Also, an issue-avoiding approach will
hide issues that really need to be solved, rather than avoided.

(a) Simple merge (one configuration at a time)

—g—g—»:::@

—

?W=‘/?\o
&r

A
%

(b) Full merge (all configurations at once)

[N —

I N

I) N | I —
I —

@o@o

}
¢
DRy

<30

O—>

Figure 1. Different scopes of the merge operation.

Full merge, because we believe that such an approach will
be more efficient, a thesis that will have to be verified once
sufficient progress is made. Indeed, assuming the cost (time
and space complexity) of both merge operations to be the
same, we conjecture that checking a property on the full
merge model is less expensive than calculating the simple
merge an exponential number of times and checking the
property on each simple merge model.

4 First results and open issues

The elaboration of the approach can be broken down into
three (closely related) steps: (1) identify a suitable represen-
tation for the feature behaviour, (2) define how to merge the
behaviour descriptions of different features, (3) encode the
variability information as part of this merge operation.

We assume that the behaviour is specified with an
automata-like language, such as the aforementioned LTS or
MTS. Since the discussion is still led at a conceptual level,
we cannot already settle on a formalism. The feature be-
haviour should be defined in a way that makes it possible
to model each feature individually, since this is essential
for the approach to be scaleable. It should also be possible
to specify features whose behaviour is not necessarily a re-
finement of their parent’s behaviour (such as, for instance,
crosscutting features). At the same time, however, the way
in which the feature behaviour is expressed should allow it
to be easily merged and “variability-encoded”. We discov-
ered that the last two goals are hard to achieve at the same
time, as explained in the following paragraphs. The alterna-
tives we identified are the following.

A. Features as refinements of their parents. A feature
is an automaton with two designated states (start and end),
and when merged into its parent, expands one of its states
(in the sense of hierarchical statecharts). The advantage of

this approach is that the merging and variability-encoding
tasks become relatively simple, because the impact of the
feature is localised. Also, as a feature is self-contained, each
can be individually reasoned about. It is, however, rather
restrictive in that it does not allow to model crosscutting
features, or features that run in parallel to other features.

B. Freely-merged diagrams. A feature is an automaton or
part of an automaton, where each state is assigned a textual
ID. When merged, the IDs of states are matched against the
existing behavioural description, new states are added and
then the transitions reconnected. The connected parts of
the resulting model are interpreted as individual automata
and parallelised. The advantage of this option is its high
expressiveness. The disadvantage is that features are not
self-contained (since the IDs are universal), and cannot be
reasoned about individually. Furthermore, the variability-
encoding becomes harder, since the implications of a fea-
ture addition are not local anymore.

C. Features as transformations. A feature is a syntac-
tic graph transformation. This approach has the additional
advantage of being able to change or delete states and tran-
sitions. The disadvantages are the same as for (B).

The merging approach itself was partly defined in the
previous three paragraphs. For options (B) and (C), how-
ever, a question remains; namely whether the merge is cal-
culated bottom-up (sub-features are first merged into their
parent and then into the base), top-down (first the parent is
merged into the base, then its sub-features into the result), or
flat (features are merged in an arbitrary order). The advan-
tage of a bottom-up approach is that it limits the application
scope of a feature since a feature can only affect its parent.
However, crosscutting features can only be accommodated
in a flat approach, where they are merged last.

Finally, the most crucial part is the encoding of the vari-
ability information. It is vital that the full merge is not of

exponential size itself, i.e. the encoding of the variability
information should not be explicit, that is, it should not be
a mere juxtaposition of the simple merge models. Our pre-
liminary results indicate that one way of achieving this, is to
precede the transformation result of a feature f by a special
transition prey to a new state, that indicates that the feature
is about to be executed. From this state, there are two out-
going transitions, one doy that executes the feature and one
skipy that skips its execution. The allowed feature com-
binations can then be encoded by observer processes over
these three transitions.

In conclusion, the most promising approach appears to
be one that combines bottom-up and flat (for crosscutting
features only) algorithms based on graph transformations.
We believe that the aforementioned disadvantages of fea-
tures as transformations can be mitigated by the use of
transformation patterns (refinement, for instance, would be
one pattern), guidelines and appropriate tool support.

5 Conclusion

We presented the problem of safe composition in a gen-
eral form that current literature fails to recognise: given a
set of sub-problems obtained by decomposing a complex
problem, and a set of intended combinations of solutions to
the sub-problems, are all of these combinations valid with
respect to a specific objective? After an examination of cur-
rent approaches to safe composition, it becomes clear that
none of them addresses the problem as a whole, but that
most approaches are built on complementary ideas. We thus
proposed a combined approach that is free from the initial
drawbacks, and that attempts to address the more general
safe composition problem. Preliminary results are (1) a sur-
vey and characterisation of the merge operation, that is at
the heart of our approach, as well as (2) an analysis of ways
to express feature behaviour. From there, we are able to pre-
cisely describe the shape that the merge operation should
have. In addition, this paper demonstrates that safe compo-
sition is a root problem for a number of existing approaches.
Although there is a group of loosely connected researchers
working on safe composition, it is our hope that they be-
come a cohesive community in the near future.

Acknowledgements

We thank the anonymous referees for their helpful com-
ments. This work was partially funded by the EPSRC, the
Interuniversity Attraction Poles Programme, Belgian State,
Belgian Science Policy (as part of the MoVES project), the
BNB and the FNRS. We are also grateful for the support of
our colleagues at the Open University and at the University
of Namur, in particular Germain Saval.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

G. Booch. Object-Oriented Analysis and Design with Appli-
cations. Addison-Wesley, 1993.
M. Calder, M. Kolberg, E. H. Magill, and S. Reift-

Marganiec. Feature interaction: a critical review and con-

sidered forecast. Computer Networks, 41(1):115-141, 2003.
A. Classen, P. Heymans, and P-Y. Schobbens. What’s
in a feature: A requirements engineering perspective. In
FASE’08, Held as Part of ETAPS’08, volume 4961 of LNCS,
pages 16-30. Springer, 2008.

K. Czarnecki and K. Pietroszek. Verifying feature-based
model templates against well-formedness ocl constraints. In
GPCE 06, pages 211-220. ACM Press, 2006.

A. Fantechi and S. Gnesi. Formal modeling for product fam-
ilies engineering. In SPLC 2008. IEEE CS, 2008.

D. Fischbein, S. Uchitel, and V. Braberman. A foundation

for behavioural conformance in software product line archi-
tectures. In ROSATEA ’06, ISSTA 2006 workshop, pages

39-48. ACM Press, 2006.
J.D. Hay and J. M. Atlee. Composing features and resolving

interactions. In SIGSOFT’00/FSE-8, pages 110-119. ACM
Press, 2000.

M. Jackson. Some complexities in computer-based sys-
tems and their implications for system development. Com-
pEuro’90, pages 344-351, 1990.

E. Katz and S. Katz. Incremental analysis of interference
among aspects. In Workshop on Foundations of Aspect-
Oriented Languages 2008 at AOSD 08, 2008.

S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying as-
pect advice modularly. In SIGSOFT’04/FSE-12, pages 137—
146. ACM Press, 2004.

C. Kistner and S. Apel. Type-checking software product
lines - a formal approach. In ASE’0S. IEEE CS, 2008.

K. G. Larsen, U. Nyman, and A. Wasowski. Modal i/o au-
tomata for interface and product line theories. In ESOP,
pages 64-79, 2007.

S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and
P. Zave. Matching and merging of statecharts specifications.
In ICSE’07, pages 54-64. IEEE CS, 2007.

S. Nejati, M. Sabetzadeh, M. Chechik, S. Uchitel, and
P. Zave. Towards compositional synthesis of evolving sys-
tems. In FSE 2008. ACM Press, 2008.

K. Pohl, G. Bockle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, July 2005.

H. Post and C. Sinz. Configuration lifting: Verification
meets software configuration. In ASE’0S. IEEE CS, 2008.
A. M. Roldan, E. Pimentel, and A. Brogi. Safe composition
of linda-based components. Electr. Notes Theor. Comput.
Sci., 82(6), 2003.

M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, and
M. Chechik. Consistency checking of conceptual models
via model merging. In RE’07. IEEE CS, 2007.

P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bon-
temps. Feature Diagrams: A Survey and A Formal Seman-
tics. In RE’06, pages 139-148. IEEE CS, 2006.

S. Thaker, D. S. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In GPCE 2007, pages 95-104.
ACM Press, 2007.

