
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

OpenSST based Clearing Mechanism for e-Business

Feltus, Christophe; Khadraoui, Djamel; Costa Pinto, Filipe

Published in:
Proceeding of 3rd international conference on information and communication technologies : from theory to
application (ICTTA 04), Damascus, Syria

DOI:
10.1109/ICTTA.2004.1307628

Publication date:
2004

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Feltus, C, Khadraoui, D & Costa Pinto, F 2004, OpenSST based Clearing Mechanism for e-Business. in
Proceeding of 3rd international conference on information and communication technologies : from theory to
application (ICTTA 04), Damascus, Syria. IEEE, Damascus, Syria, pp. 89-90.
https://doi.org/10.1109/ICTTA.2004.1307628

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. May. 2024

https://doi.org/10.1109/ICTTA.2004.1307628
https://researchportal.unamur.be/en/publications/179b5f91-1c5b-4c81-904f-3417502a06c9
https://doi.org/10.1109/ICTTA.2004.1307628

OpenSST based Clearing Mechanism for e-Business

Christophe FELTUS*, Djamel KHADRAOUI*, Filipe COSTA PINTO*
Centre de Recherche Public Henri Tudor, 29, av. J. F.Kennedy, L - 1855 Luxembourg – Kirchberg

Email: *{surname.name}@tudor.lu

Abstract

OpenSST is a protocol for secured electronic
transactions. This article presents an experimental
prototype of the OpenSST protocol within the framework
of electronic transactions. It will be an e-Business
architecture around which a component is graft in
charge of executing authorization requests for electronic
payments. This architecture is already deployed on an e-
Business platform (EBSME : Electronic Business for
SME’s). Most often a leased line ensure the clearing
communication support (authorization requests). In
addition to the fact of using the Internet to proceed the
banking authorizations of payment, adopting OpenSST
as the basic protocol for the transport of the
authorization of payment messages get us the following
advantages: safety, simplicity and open source.
OpenSST was developed to answer three major
requirements. The first requirement was to reach a high
security level. This security is based in term of
confidentiality, integrity, authentication and non-
repudiation. The second requirement was the needed
simplicity in software engineering, which proves to be a
significant factor for the design of information systems.
The third and the last major requirement was the ability
to accept and use existing standards in order to ensure
an easy interfacing with other solutions. To reach these
exigencies, the OpenSST protocol was build on a
standardized message format, which is composed in one
part by a message structure, and on the other part by the
operation of the protocol.

1

2

1. Introduction

The payment of electronic transactions is getting a
continuous growth for several years. Closely related to
the development of the e-commerce, the needs in
transactional security, like the digital signature on the
client side or the non-repudiation, seems to be critical

1 Open Simple Secure Transaction
2 EBSME (Electronic Business for SME’s) was developed within the
framework of an FNR (National Fund of Research) project called
ACCES-PME (Adoption de Compétences interdisciplinaires pour le
Commerce Electronique Sécurisé des PME) from the CITI – The CITI,
Innovation Center by Information Technologies- is a structure of the
Public Research Center Henri Tudor (www.tudor.lu) dedicated to the
innovation by the information systems. The CRPHT, associated with
the Luxembourg University of Applied Sciences within the framework
of the Campus of Technology of Luxembourg-Kirchberg, is entirely
centered on the technological engineering and applications.

for the use and the viability of e-business transactions
over the Internet or open networks.

Several activities are achieved in the domain of
electronic transactions. Indeed, the solutions and
protocols are mainly of two types: proprietary or Open
Source. The majority of the economical sectors3 do not
accept an opaque solution. The source code of the
solution must be auditable in order to be able to ensure
its integrity in term of security and operation.

This article is focused on the development of a
clearing mechanism based on an open source protocol
called OpenSST. It is organized as follows. The next
section presents the state of the art regarding to the
existing payment protocols and secure solutions of
electronic transactions. The third section is dedicated to
the detailed presentation of the OpenSST protocol. And
the final part describing the experimentation within the
framework of an e-Business clearing solution
architecture and more particularly for the development
of the authorization part of banking payment.

2. State of the art

In the following we will present three of the most
representative solutions of the current market in the
domain of the electronic transactions, namely: HTTP/S,
SET and ECASH.

2.1. HTTP/S

HTTP/S (HTTP on SSL/TLS) is a protocol, which
consists in securing the communication channel between
two computers. It guarantees the identity of the visited
website and the confidentiality of the transactions.
However, operating on the transport layer, and not inside
the session, doesn't make possible to check a signature
when the session is closed. So, SSL doesn't support the
signature of transactions, but only the non-repudiation of
the session itself. If the majority of the trading websites
can work without these properties, this is not the case for
other applications for which this function is of primary
importance. Except the transparency aspect on the
application level, this protocol dissociates itself by its
simplicity, performance and popularity. Nevertheless is
remains used mainly in a unilateral mechanism of
authentication. SET

SET is the product of the association of the two
largest world organizations, which deliver credit cards:
Visa and MasterCard. This protocol manages

3 financial, military or public institutions

exclusively the payment of transactions. The strong
security (confidentiality, authentication, integrity and
non-repudiation) guaranteed by SET is based on many
cryptographic techniques and algorithms such as MD5,
SHA, dual signatures, RSA and on the separation of
purchase details and the financial transaction. Therefore
the merchant can't have access to the banking data of the
customer. In the same way, the bank of the merchant
can't see the details of the progressing commercial
transaction. However SET presents the disadvantage to
be a slow and complex protocol, difficult to implement.
The price of its implementation and its rigidity makes
SET to be used for large accounts.

2.2. Ecash

Ecash is a payment system launched by DigiCash,

pioneer in the model of electronic cash. The principle of
this model rests on an order of electronic coins by a
purchaser to the Ecash bank. These coins can then be
spent in an anonymous way in online shops. A database
updated by the Ecash bank remembers the number of
coins already spent so that same coins couldn't be spent
twice. On a large scale, the Ecash model could have
weaknesses, more particularly time delays, caused by the
large number of database accesses done during the
validation of the transaction. This proprietary solution
also forces the couple salesman/purchaser to have each
one an account in the same Ecash bank.

Among the existing solutions and protocols, there is
not solution that meets at the same time all the
requirements in term of security, independence towards
supplier, availability of the source code and
independence in term of platform. The solutions
available are either cheap, easy to implement and
incomplete or complete but difficult to deploy, complex
and expensive. The analysis of this level of
completeness of the protocols and solutions puts forward
that secure transactions are based either on the transport
layer (for example the SSL/TLS or SSH protocols) or on
the message itself (for example the OpenPGP protocol).

3. OpenSST protocol

OpenSST was developed to answer three major
requirements. The first requirement was to reach a high
level of security. This security is based in term of
confidentiality, integrity, authentication and non-
repudiation. The second requirement was the needed
simplicity in software engineering, which proves to be a
significant factor for the design of information systems.
The third and the last major requirement was the ability
to accept and use existing standards in order to ensure an
easy interfacing with other solutions. To reach these
exigencies, the OpenSST protocol was build on a
standardized message format, which is composed in one
part by a message structure, and on the other part by the
operation of the protocol.

3.1. OpenSST message format

Th
and a
use.
which
and p
an en

Th
crypt
opera
This
Open

Th

the t
defin
eleme
(for e
end o
being
also
other
Contr
the "
Open

Th
"data
the t
signa
mess

3.2. O

Va
!
!
!
!
!
Th

the t
publi
proxy
the a
"Ope
<?xml version="1.0" encoding="UTF-8"?>
<opensst version=“…” xmlns=“…” …>
<encryption type=“…” …/>
<data destination=“…” …>
…
</data>
<signature type=“…” …>
…
</signature>
<tid server="…" client="…"/>
<timestamp type="…"/>
e message format of OpenSST is based on a simple
daptable structure according to the needs of the

It's presented in the form of a XML document,
 confers the characteristics of being evolutionary
ortable. The message is composed in three parts:
cryption part, a data part and a signature part.
e "encryption" element defines the used
ographic algorithm, the "padding" methods and the
ting mode as a hybrid cryptographic system or not.
element can appear 0 to N times in the same
SST message.

Figure 1: Message format of OpenSST

e "data" element contains the data transmitted by
ransaction. The various attributes of this element
e amongst other things: the encoding type of the
nt (for example: Base 64) and the message type
xample: specific data, a key generation message, an
f session message, etc.). The coding of the message
 effective in the "data" element, this element can
integrate elements such as "tid", "timestamp" or
 types according to the type of the message itself.
ary to the "encryption" and "signature" elements,

data" element cannot appear more than once in an
SST message.
e "signature" element contains the signature of the
" part. The various attributes of this element define
ype and the method of signature. The element
ture can appear 0 to N times in the same OpenSST
age.

penSST message types

rious message types are defined (figure 2), namely:
CreateSession,
KeyEnrollment,
Authentication,
DataExchange and
 KillSession.
e "CreateSession" message type aims to initialize

ransaction. Among others this message sends the
c key of the "OpenSST server" to the "OpenSST
", the creation and exchange of session keys and
uthentication of the "OpenSST server" to the

nSST proxy". The beginning of the transaction

passes by the following stages: the sending of a
message by the "proxy" to the "server" with a minimum
of data to obtain its public key4, then the generation and
transmission of a session key to the "server" by the
"proxy"56. After the transaction is initiated, all the
messages between the "proxy" and the "server" are
encrypted with the session key. The function of the
"KeyEnrollment" message is to provide to the
"OpenSST server" the public key of the customer. This
message is send only once; the first time a transaction is
done between the customer and the site proposing the
electronic payment. Considering that the customer
received by a secure way an "userid" and a "pincode"
from "server", the "proxy" generates a pair of keys and
sends to the "server" by a "KeyEnrollment" message
containing the userid, the public key and a one-time
password (OTP), which is a HMAC of the PINCODE
and the public key7. The "server" answers the "proxy" by
sending the result of the operation.

The authentication of the "proxy" must be carried out
with each opening of an OpenSST session. With this
intention, the "proxy" transmits to the server a signed
"Authentication" message containing the "userid" of the
customer. The server seeks in its database the public
key corresponding to this "userid" and checks the
signature. After this, the server communicates the result
of the authentication to the "proxy". Once the user is
duly authenticated, the "DataExchange" messages
exchanged between the "proxy" and the "server"
contains nothing else than HTTP requests and HTML
responses (major part of the cases) but can also contain
images, CSS, Javascripts, etc.... With each HTTP
request carried out by the browser, the "proxy" sends a
message to the "server" and receives in response of this a
message containing the required webpage. A request for
a simple webpage can generate several subjacent
requests to obtain the images, the style sheets, etc.

Finally the "KillSession" message type is used, as its
name indicates, to close the session. The customer sends
just an empty "KillSession" message to the "server". The

response of the "server" contains a code of success or

failure and a message to communicate the result of the
closing of the session to the proxy.

4 The "type" attribute of the "data" part is set to "sessionSetup1"
5 Session key encrypted with the public key of the "server"
6 The "type" attribute of the "data" part is set to "sessionSetup2"
7 OTP = HMAC(PINcode, PuK)

Figure 2: Stages of the attributes schematically
illustration

4. Experimentation of OpenSST

4.1. Online e-Business application

The deployment of OpenSST within the framework

of e-Business transactions is based on three key
elements, namely:
! an OpenSST proxy,
! a reverse OpenSST proxy,
! an OpenSST server.

The figure below shows these three elements in a
global architecture.

Figure 3: Global architecture of OpenSST

The transactions between these elements are

forwarded by the HTTP protocol.. The "proxy" is
installed on the browser of the customer. It intercepts the
requests carried out by the browser, converts them to the
OpenSST format and transmits them to the "reverse
proxy". The "reverse proxy", generally integrated on the
infrastructure of the tradesman, intercepts the OpenSST
messages coming from "proxy" and checks its syntax but
not its semantic to ensure that the messages are well
structured. If the message format is correct, it is
transmitted to the "server" for treatment. In the contrary
case, the "reverse proxy" transmits to the "proxy" a
HTTP message containing an error code. This can be the
case for example: a message modification by an
unauthorized person when it is send over the network, a
malformed message done by a bugged program or a
"buffer overflow" attack. The "server" receives the
OpenSST message with validated syntax, decrypts the
initial HTTP request and transmits it to the web server.
The web server doesn't notice the used security
mechanisms. The operation is completely transparent for
the customer and the tradesman

4.2. Concept of "Clearing"

There are several definitions of the "Clearing" term:
! clearing can be most simply understood as the

stage in the process after a transaction has
occurred but before a portfolio has been
completely adjusted and all payments
(settlement) have been made.

! the verification of information between the two
brokers in a securities transaction and the
subsequent settlement (delivery of certificates
in exchange for payment).

On the other hand, a Clearinghouse is a company,
which serves at the same time as a postman, which
transports the money or the values (actions or
obligations) when they change the owner, and a "notary"
of these operations, which carefully preserves the trace
for its customers in the case of dispute. Thanks to the
power of the Clearinghouses, the ownership of certain
securities can change thirty times in the same day and
travel in ten money markets. From a general point of
view the mechanism of clearing can be subdivided in
two principal levels. A schematized example of such a
system is shown in the following figure.

In the case of the electronic payments (Level 0), the
merchants carry out at the time of the purchase only
authorization of payment requests. The merchant asks
an intermediary, in this case a Clearinghouse, if the
customer has or not the necessary budget for the
purchase. During all this activity (over one working day
for example) the merchant memorizes locally the various
transactions via a backup system. Then (Level 1), the
merchant sends periodically (at the end of the day for
example) via mail (or other) a summary of all the
purchases carried out to his intermediary. The
intermediary (Clearinghouse) will carry out the money
transfers from the various customers towards the account
of the merchant.

Figure 4: General sight of a "Clearing"
architecture

Only the "Clearing" part applied to the transactions of

electronic payments will be treated in this article.
Indeed, at the time of purchase, only the authorization of
payment request is done.

This procedure proceeds in several stages. To
illustrate these stages as well as possible, let us take the
case of a person who carries out an online purchase. The
collected information about the customer by the
tradesman is send to a clearing service more precisely a
clearing member. This member will check the amount of
the purchase. If the sum doesn't exceed a certain limit,
then the authorization request is directly accepted on this
level.. If the sum of the purchase exceeds the imposed
limit, a choice must be done according to the clearing
type: national or international clearing. We are talking
about national clearing when the credit card is emitted in
the same country as where the transaction is carried out.
Than the member has the means of treating the
authorization request directly (direct bonds with the
national banks). International clearing is done when the
credit card is emitted in another country as the country
where the transaction is carried out. In this case the
clearing member that authorize the transaction request to
an international intermediary (Visa, Mastercard), which
delegate the request to the bank emit the credit card.

The verifications done by the customer bank during
an authorization request are as follows (according to the
country):
! existence of the credit card by its number,
! expiration date of the credit card,
! solvency of the client's account and checking if

the client's account is not blocked
! exceed of the imposed limit

After having carried out these various controls, the
response and the decision of the bank are emitted to the
transmitter of the authorization request.

4.3. Prototype

The CITI has developed a prototype that will carry

out part of the clearing (authorization requests) of
electronic payments done by credit cards. The
communication between the user interface and the
EBSME platform [10] and this clearing gateway will be
secured by the OpenSST protocol.

The various OpenSST modules such as the "OpenSST
proxy", the "OpenSST reverse proxy" and the
"OpenSST server" which make the prototype, will be
deployed on two levels (see figure hereafter), namely:
! on the e-commerce platform (EBSME) hosted

by an ASP8,
! on a clearing member.

4.3.1. Global architecture

The following diagram illustrates the existing

architecture of EBSME including the clearing module
needed for the use of the OpenSST protocol.

On figure 5, we can find three main parts; customers,
tradesmen and clearing services. The customers are
using a protected Internet connection (SSL in this case)

8 Application Service Provider

http://www.investorwords.com/cgi-bin/getword.cgi?584
http://www.investorwords.com/cgi-bin/getword.cgi?4446
http://www.investorwords.com/cgi-bin/getword.cgi?5046
http://www.investorwords.com/cgi-bin/getword.cgi?1386

to communicate with e-commerce application, which
uses an Internet connection secured via OpenSST
(object of our experimentation). The use of OpenSST
imposes the use of API's in relation with the EBSME
platform (OpenSST proxy) and with the platform of the
clearing member (Reverse OpenSST proxy and
OpenSST server). All the modules are written in Java. In
the same way the used encryption library "Bouncy
Castle” provider is associated within the "JCE"
framework.

4.3.2 Clearing messages: content of data part

We distinguish five principal message types to send

to the server of the clearing bank, namely:
! authorization request,
! authorization request repeat,
! authorization request response,
! authorization reversal request,
!

These message types represent only those, which are
necessary for the authorization request of payment
whose complete list appears in the ISO8583 [12]
standard. The various messages are sent in XML form in
the "data" part of the OpenSST message. In the figure 5,
we present the contents of the "data" part for the
authorization request message types for online
payments.

authorization reversal request response.

 Figure 5: Diagram of the architecture of EBSME

<datadestination="http://clearing_server" encoding="base64"
 type="e-transaction">
<msg> 0100 </msg>
<002> <!-- Primary Account Number --> </002>
<003> <!-- Processing Code --> </003>
<004> <!-- Amount of the transaction --> </004>
<007> <!-- Transmission Date/Time --> </007>
<011> <!-- System Trace Audit Number --> </011>
<012> <!-- Time, Local transaction --> </012>
<013> <!-- Date, Local transaction --> </013>
<014> <!-- Date, Expiration --> </014>
<018> <!-- Merchant category code --> </018>
<019> <!-- Acquiring Institution country code --></019>
<022> <!-- POS entry mode --> </022>
<025> <!-- POS condition mode --> </025>
<035> <!-- Track 2 Data --> </035>
<037> <!-- Retrieval Reference Number --> </037>

<041> <!-- CATI --> </041>
<042> <!-- CAIC --> </042>
<049> <!-- Currency Code of the Transaction --> </049>
</data>

Explanation of the various tags:

msg: Allows determining the message type
002: Usually named PAN, it's a variable number with a
maximum of 19 digits (usually 14 or 16 digits) retrieved
from magnetic cards. This number allows determining
the emitter of the credit card and the account of the
cardholder. This number also contains a "check digit"
which makes it possible to check the validity of the
account from cardholder.
003: Defines the transaction type to carry out.
004: The real amount of the transaction in the local
currency.
007: Date/Time of the transmitted transaction. Format:
MMDDhhmmss
011: The "System Trace Audit number" is a number
between 000001 and 999999 that is generated by the
point of sales(POS) and which remains the same during
all the transaction (messages 0100, 0101 et 0110). The
0400 message has always a different STAN number,
which is incremented after each transaction.
012: Local transaction time. Format: hhmmss
013: Local transaction date. Format: MMDD
014: Expiration date of the credit card. This value is
retrieved from magnetic card. Format: YYMM
018: Merchant category code.
019: Code that identifies the country of the purchaser.
For further details are available in the ISO3166 standard.
022: Allows knowing how the credit card was used
(with or without pin-code).
025: Allows knowing how the transaction was carried
out (presence of the customer…).
035: Contains the information from the track no.2 of the
magnetic tape of the credit card.
037: It contains a unique number generated by the point
of sales (POS), which makes it possible to identify a
transaction. This value used in the 0100 and 0400
messages. This number is composed of two digits, which
identify the company, four digits, which identify the
used terminal, and six digits that correspond to STAN
number.
041: Contains a value, which identifies the used
terminal. A "company code" (two digits), the terminal
identifier (four digits) and the identifier of the used
device (two digits) compose this value
042: CAIC = Card acceptor terminal identification. It's a
unique code that identifies the terminal where the credit
card was introduced.
049: Indicate the monetary currency used for the
transaction.
The various encryption algorithms and supported
signatures within the framework of this experimentation
and the OpenSST prototype are gathered in the sections
below

4.3.2 Clearing messages: content of encryption part

This table is used to determine the argument "type" of
the element "encryption" of the OpenSST message. The
argument "type" is made up in the following way:

[SESSIONTYPE]-[ENCRYPTIONTYPE]-
[ENCRYPTIONMODE]-[PADDINGMODE]-

[PADDINGSESSION]-[PADDINGCRYPTION]-
[LENGHT]

ENCRYPTIONTYPE ID PADDING ID

Null 0 Null 0
DES 1 Zero 1
IDEA 2 PCKS#1 (1.5) 2
3DES 3 PCKS#5

(RFC1423)
3

RC5 4 ISO 9796 #1 4
CAST 5 ISO 9796 #2 5
BLOWFISH 6 ISO 9796 #3 6
TWOFISH 7 PCKS#1 – OAEP 7
AES 8 IEEE OAEP 8
 ISO 10126 9
ENCRYPTIONMODE ANSI X9.23 10
Null 0
ECB 1 SESSIONTYPE
CBC 2 Null 0
CFB 3 Per-shared key 1
OFB 4 DSS 2
NOFB 5 RSA 3
STREAM 6

4.3.2 Clearing messages: content of signature part

This table is used to determine the argument "type" of
the element "signature" of the OpenSST message. The
argument "type" is made up in the following way:

[SIGNATURETYPE]-[HASHTYPE]-

[SIGENCRYPTIONTYPE]-[ENCRYPTIONMODE]-
[PADDING]-[LENGHT]

SIGNATURETYPE ID PADDING ID

Null 0 Null 0
Public key 1 Zero 1
 PCKS#1 (1.5) 2
HASHTYPE PCKS#5 (RFC1423) 3
Null 0 ISO 9796 #1 4
MD5 1 ISO 9796 #2 5
SHA1 2 ISO 9796 #3 6
 PCKS#1 – OAEP 7
ENCRYPTIONMODE ID IEEE OAEP 8
Null 0 ISO 10126 9
ECB 1 ANSI X9.23 10
CBC 2

CFB 3 SIGENCRYPTION
TYPE

OFB 4
NOFB 5 Null 0
STREAM 6 DSS 1
 RSA 2

5. Conclusions

The analysis of the existent protocols and solutions
for secure electronic transactions puts forward that it
doesn't exist a solution which offers all at the same time,
a high level of security, an insurance for perennial
systems, the possibility to audit the code and a malleable
message format.

As a consequence of what was mentioned above, a
partnership of companies9 developed the OpenSST
protocol. This protocol answers three major
requirements that are:
! a high level of security in term of

confidentiality, integrity, authentication and
non-repudiation,

! the simplicity compared to software
engineering,

! and the ability to accept and use existing
standards.

Experiments carried out and presented in this article
show that the OpenSST protocol can be applied even to
domains, which require a strong robustness and speed
like the clearing domain. OpenSST robustness and the
quality of its development will make complementary
researches and implementations in various future
projects in order to adapt it to the needs of secured
information technology.
6. References

[1] T. Dierks, C. Allen, “The TLS Protocol version 1.0”,
Internet Engineering Task Force, January 1999.

[2] A. Dulaunoy, T. Fruru et S. Stormacq, “OpenSST
Message Format”, Internet Drafts, December 2002.

[3] S. Stormacq, “OpenSST Message Type: HTTP
proxy”, Internet Drafts, December 2002.

[4] Proposed : A. Dulaunoy, S. Stormacq, “OpenSST :
Open Simple Secure Transaction : Une approche de
réduction de la complexité pour les transactions
électroniques”, January 2003.

[5] Ph. Oechslin, Quelques notions de cryptographie,
http://lasecwww.eppfl.ch/securitereseaux/files/s1_07.pdf

[6] M. Pablos Martin, T. Pinxteren, P. Robert, Sécurité
du commerce électronique,

9 Aubay Luxembourg SA, Conostix SA and the CRP
Henri Tudor

http://www.cetrel.lu/
http://www.iso.ch/
http://www.iso.ch/
http://www.iso.ch/
http://www.foo.be/current/opensst/

http://www.tele.ucl.ac.be/ELEC2920/2000/E-
Commerce/secu_et_e-commerce.html

[7] D. O’Mahony, M. Peirce, H. Tewari, Electronic
Payment Systems for E-Commerce, second edition,
Artech House, 2001.

[8] http://www.opensst.org/

[9] Alexandre Dulaunoy, Sébastien Stormacq -
OpenSST : “Open Simple Secure Transaction, Une
approche de réduction de la complexité pour les
transactions électroniques”. SAR 2003, 30 July – June
2003. Marrakech, Maroc.

[10] Djamel Khadraoui, Eric Dubois, “B2B eContract
Solution for Teleservices”. International Conference on
Intelligent Agents, WEB Technologies and Internet
Commerce – IAWTIC’2003, 12-14 February 2003, page
185.

[11] CEntre de TRansferts Electroniques:
http://www.cetrel.lu

[12] International Organization for Standardization:
http://www.iso.ch

[13] Alexandre Dulaunoy, Sebastien Stormacq, 2002.
“OpenSST: Open Simply Secure Transaction”. URL:
http://www.foo.be/current/opensst/

[14] Alexandre Dulaunoy, April 2002. “A XML Schema
for the OpenSST message format”. Internal Conostix
document.

[15] Robert L. Ziegler, Linux Sécurité, CampusPress,
France, 2000

[16] Damel Khadraoui, “OpenSST - Basic clearing
mechanism for online web applications”, LinuxDays,
Luxembourg, 2003.

	Figure 3: Global architecture of OpenSST
	PADDING
	SIGNATURETYPE
	ID
	PADDING
	ID

