
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Program Understanding in Databases Reverse Engineering

Henrard, Jean; Englebert, Vincent; Hick, Jean-Marc; Roland, Didier; Hainaut, Jean-Luc

Published in:
Proceedings of DEXA'98

Publication date:
1998

Link to publication
Citation for pulished version (HARVARD):
Henrard, J, Englebert, V, Hick, J-M, Roland, D & Hainaut, J-L 1998, Program Understanding in Databases
Reverse Engineering. in Proceedings of DEXA'98. pp. 70-79.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Apr. 2024

https://researchportal.unamur.be/en/publications/a86fb0dc-cd02-4054-a87c-ceec2c4982e5

18/02/02 1

Program understanding in databases reverse
engineering

J. Henrard, V. Englebert, J-M. Hick, D. Roland, J-L. Hainaut

Institut d'Informatique, University of Namur
rue Grandgagnage, 21 - B-5000 Namur

db-main@info.fundp.ac.be

Abstract. The main argument of the paper is that database understanding (or
reverse engineering) requires sophisticated program understanding techniques,
and conversely. Database reverse engineering (DBRE) can be carried out
following a generic methodology, one of the phases of which consists in eliciting
all the implicit and untranslated data structures and constraints. Evidences of
these hidden constructs can be found by analysing how the programs use and
update the data. Hence the need for program analysis techniques such as
searching for clichés, dependency analysis, program slicing and synthetic views.
The paper explains how these techniques contribute to DBRE, and describes
DB-MAIN, a programmable and extensible CASE environment that supports
DBRE through program understanding techniques.

1. Introduction

Reverse engineering a piece of software consists, among others, in recovering or
reconstructing its functional and technical specifications, starting mainly from the
source text of the programs. Recovering these specifications is generally intended to
redocument, convert, restructure, maintain or extend legacy applications.

The problem is particularly complex with old and ill-designed applications. In this
case, not only no decent documentation (if any) can be relied on, but the lack of
systematic methodologies for designing and maintaining them have led to tricky and
obscure code. Therefore, reverse engineering has long been recognised as a complex,
painful and prone-to-failure activity, so much so that it is simply not undertaken most
of the time, leaving huge amounts of invaluable knowledge buried in the programs,
and therefore definitively lost.

In information systems, or data-oriented applications, i.e., in applications the central
component of which is a database (or a set of permanent files), it is generally
considered that the complexity can be broken down by considering that the files or
databases can be reverse engineered (almost) independently of the procedural parts,
through a process called DataBase Reverse Engineering (DBRE in short).

This proposition to split the problem in this way can be supported by the following
arguments.

18/02/02 2

• The semantic distance between the so-called conceptual specifications and the
physical implementation is most often narrower for data than for procedural parts.

• The permanent data structures are generally the most stable part of applications.
• Even in very old applications, the semantic structures that underlie the file

structures are mainly procedure-independent (though their physical structures are
highly procedure-dependent).

• Reverse engineering the procedural part of an application is much easier when the
semantic structure of the data has been elicited.
Therefore, concentrating on reverse engineering the application data components

first can be much more efficient than trying to cope with the whole application.
Even if reverse engineering the data structure is "easier" than recovering the

specification of the application as a whole, it is still a complex and long task. Many
techniques, proposed in the literature and offered by CASE tools, appear to be limited
in scope and are generally based on unrealistic assumptions about the quality and
completeness of the source data structures to be reverse engineered. For instance,
they often suppose that all the conceptual specifications have been declared into the
DDL (data description language) and the procedural code is ignored. The schema has
not been deeply restructured for performance or for any other requirements. Names
have been chosen rationally.

Those conditions cannot be assumed for most large operational databases. Since
1992, some authors have recognised that the procedural part of the application
programs is an essential source of information to retrieve data structures ([1], [4], [7]
and [8]), and that understanding some program aspects is one of the keys to fully
understand the data structures.

Program understanding is an emerging area within the software engineering field.
It is the process of acquiring knowledge about an existing, generally undocumented,
computer program. Increased knowledge enables such activities as error correction,
enhancement, reuse, documentation and reverse engineering. A variety of approaches
have been investigated to analyse programs, from straightforward textual analysis,
through increasingly more complex static approaches, to the dynamic analysis of
executing programs [9].

In this paper, we explain why program understanding can be useful to help
understand data structures as well, and how these techniques can be used in DBRE.
The paper is organised as follows. Section 2 is a synthesis of a generic DBMS-
independent DBRE methodology. Section 3 discusses the need of program
understanding in DBRE and the information we are looking for in programs. Section 4
describes the techniques used to analyse programs. Section 5 presents a DBRE CASE
tool which is intended to support most DBRE processes, including program
understanding.

2. A generic methodology for database reverse engineering

Our database reverse engineering (DBRE) methodology [4] is divided into two major
processes (Fig. 1), namely data structure extraction and data structure

18/02/02 3

conceptualisation. Those problems correspond to recovering two different schemas
and require different concepts, reasoning and tools. In addition, these processes
grossly appear as the reverse of the physical and logical design usually admitted in
database design methodologies [2].

This methodology is generic in two ways. Its architecture and its processes are
largely DMS-independent. Secondly, it specifies what problems have to be solved,
and in which way, rather than the order in which the actions must be carried out.

logical schema

data structure
extraction

conceptual schema

data structure
conceptualisation

DMS-DLL
schema

physical
schema

programs

data

DMS-DDL text
analysis

program
analysis

data
analysis

schema
integration

DMS-DLL

schema

physical
schema

programs

data

Data Structure
extraction

logical schema

Fig. 1. Main processes of the generic DBRE methodology.

2.1 Data structure extraction

The first phase of the methodology consists in recovering the complete DMS schema,
including all the implicit and explicit structures and constraints.

Some DMS, mainly the DBMS, supply a description of the global data schema. The
problem is much more complex for standard files, for which no computerised
description of their structure exists in most cases. The analysis of the declaration
statements of each source program provides a partial view of the file and record
structures. Data records and fields declaration statements provide important but
partial information only. Hence the need for program and data analysis and for
integration techniques.

If a construct or a constraint has not been declared explicitly in the database
schema, whatever the reason, it has most of the time been translated into procedural
code sections distributed and duplicated throughout the programs. Recovering
undeclared, and therefore implicit, structure is a complex problem, for which no
deterministic methods exist so far. A careful analysis of all the information sources
(procedural sections, documentation, database content, etc.) can accumulate
evidences for those specifications.

In this generic methodology, the main processes of data structure extraction are the
following :

18/02/02 4

Select CUSTOMER assign to "cust.dat"
organisation is indexed
record key is CUS-CODE.

Select ORDER assign to "ord.dat"
organisation is indexed
record key is ORD-CODE
alternate record key is ORD-CUS
with duplicates.

...

FD CUSTOMER.
01 CUS.
CUS-CODE pic X(12).
CUS-DESC pic X(80).

FD ORDER.
01 ORD.
02 ORD-CODE PIC 9(10).
02 ORD-CUS PIC X(12).
02 ORD-DETAIL PIC X(200).

a) data structures declaration

⇓
ORD

ORD-CODE
ORD-CUS
ORD-DETAIL
id: ORD-CODE
acc: ORD-CUS

CUS
CUS-CODE
CUS-DESC
id: CUS-CODE

CUSTOMER

CUS

ORDER

ORD

b) raw logical schema

+

01 DESCRIPTION.
02 NAME PIC X(30).
02 ADDRESS PIC X(50).

move CUS-DESC
to DESCRIPTION.

...
accept CUS-CODE.
read CUSTOMER
not invalid key
move CUS-CODE
to ORD-CUS

write CUS.

c) procedural part

⇓
ORD

ORD-CODE
ORD-CUS
ORD-DETAIL
id: ORD-CODE
ref:ORD-CUS

acc

CUS
CUS-CODE
CUS-DESC

NAME
ADDRESS

id: CUS-CODE

CUSTOMER

CUS

ORDER

ORD

d) complete logical schema

⇒
1-1

0-N

place

ORDER
CODE
DETAIL
id: CODE

CUSTOMER
CODE
NAME
ADDRESS
id: CODE

e) final conceptual schema

Fig. 2. Database reverse engineering example.

• DMS-DDL text analysis: analysing the data structure declaration statements to
extract the explicit constructs and constraints, thus providing a rows logical
schema.

• Program analysis: analysing the procedural code to detect implicit data structures.
• Data analysis: analysing the data in order to detect data patterns suggesting data

structures and properties and to test hypotheses.

18/02/02 5

• Schema integration: merging the schemas obtained during the previous steps.
The final product of this phase is the complete logical schema, that includes both

explicit and implicit structures and constraints.

2.2 Data structure conceptualization

The second phase addresses the conceptual interpretation of the logical schema. It
consists for instance in detecting and transforming or discarding non-conceptual
structures, redundancies, technical optimisations and DMS-dependent constructs.
The final product of this phase is the persistent data conceptual schema of the
application. More detail can be found in [5].

Fig. 2 gives a short example of a DBRE process. The files and records declarations
(2.a) are analyzed to yield the raw logical schema (2.b). This schema is refined through
the analysis of the procedural parts of the program (2.c) to produce a complete logical
schema (2.d). This schema exhibits two new constructs. It is then transformed into
the conceptual schema (2.e).

3. Why program understanding in DBRE

The data structure extraction process is often easier for true databases than for
standard files. Indeed, databases have a global schema (generally a DDL text or Data
dictionary contents) that is immediately translated into a first cut logical schema. On
the contrary, each program includes only a partial schema of standard files. At first
glance, standard files are more tightly coupled with the programs and there are more
structures and constraints buried into the programs. Unfortunately, all the standard
file tricks have been found in recent applications that use "real" databases as well.
The reasons can be numerous: to meet other requirements such as reusability,
genericity, simplicity, efficiency; poor programming practice; the application is a
straightforward translation of a file-based legacy system; etc. So, in both old and
recent data-oriented applications, many data structures and constraints are not
explicitly declared but are coded, among others, as the procedural sections of the
program. For all these reasons, one of the data structure extraction source of
information is the program text source.

The analysis of the program source is a complex and tedious task. This is due to
the fact that procedurally-coded data constructs are spread in a huge amount of
source files, and also because there is no standard way to code a definite structure or
constraint. Each programmer has his personal way(s) to express them. This also
depends on the programming language, the target DBMS, the enterprise rules, the
programmer skill, his mood, etc.

We do not need to retrieve the complete specification of the program, we are merely
looking for information that are relevant to find the undeclared structures of persistent
data. More precisely, we are looking for evidences of fields refinement and
aggregation, referential constraints and exact cardinalities, to mention only a few.

18/02/02 6

We will give some informal information on how the main implicit constructs can be
recovered through program analysis.
• Field refinement consists in associating, with a field (or a record) initially declared

atomic, a new structure comprising sub-fields. Field aggregation is the opposite
operation, according to which a collection of independent fields appear to be the
components of a compound field, or the values of a multivalued field. These two
constructions can be detected if there is a relation (assignment, comparison)
between two variables of different structures.

• A foreign key consists of a field of a record that references another record. To
detect a foreign key, we have to find evidences that each value of the source field
belongs to the value set of the key of another record.

• The cardinality of an array states, through the couple I-J, that the number of active
elements of the array is between I and J. The exact minimum cardinality (I) of an
array can be found by the analysis of the array initialization. The maximum
cardinality of an array is usually the size of the array, except if it can be found that
the last elements are never used.
Several industrial projects have proved that powerful program understanding

techniques and tools are essential to support the data structure extraction process in
realistic size database reverse-engineering projects.

4. Program understanding techniques

In this section, we will present program understanding techniques that we use during
the data structure extraction. The main techniques explained here are pattern
matching, dependency graph, program slicing and program visualisation. For each of
these techniques it will be shown how they can be applied to structure elicitation in
database reverse engineering.

4.1 Search in text sources

The simplest way to find some definite information in a program is to search the
program source text for some patterns or clichés. We use the term pattern and not just
string, as in a text editor, because a pattern describes a set of possible strings. It can
include wildcards, characters ranges, multiple structures, variables and can be based
on other defined patterns. For example, we can write a pattern that match any numeric
constant, or the various kind of COBOL assignment statements, or some select-
from-where SQL queries. The pattern matching tool can be coupled with some
external procedure that are triggered for each pattern match.

4.2 Dependency graph

The dependency graph (generalisation of dataflow diagram) is a graph where each
variable of a program is represented by a node and an arc (directed or not) represents a

18/02/02 7

direct relation (assignment, comparison, etc.) between two variables. Fig. 3.b
illustrates the dependency graph of the program fragment of Fig. 3.a. If there is a path
from variable A to variable C in the graph, then there is, in the program, a sequence of
statements such that the value of A is in relation with the value of C. The very
meaning of this relation between the variables is defined by the analyst: the structure
of one variable is included into the structure of the other one, the variables share the
same values, they denote the same real world object, etc.

 ...
MOVE A TO B
 ...
MOVE B TO C
 ...
IF (C = D)

a) Fragment of a COBOL source

A B

C D

b) The dependency graph of the fragment

Fig. 3. The dependency graph.

The dependency graph will be used to find evidences for field refinement, field
aggregation or foreign keys.

4.2 Program slicing

The slice of a program with respect to program point p and variable x consists of all
the program statements and predicates that might affect the value x at point p. This
concept was originally discussed by M. Weiser [10]. Since then, various slightly
different notions of program slices have been proposed, as well as a number of
methods to compute them.

FD CUSTOMER.
01 CUS.
 02 CUS-NUM PIC 9(3).
 02 CUS-NAME PIC X(10).
 02 CUS-ORD PIC 9(2).

OCCURS 10.
...

01 ORDER PIC 9(3).
...

1 ACCEPT CUS-NUM.
2 READ CUS KEY IS CUS-NUM.
3 MOVE 1 TO IND.
4 MOVE 0 TO ORDER.
5 PERFORM UNTIL IND=10
6 ADD CUS-ORD(IND) TO ORDER
7 ADD 1 TO IND.
8 DISPLAY CUS-NAME.
9 DISPLAY ORDER.

a) COBOL program P

FD CUSTOMER.
01 CUS.
 02 CUS-NUM PIC 9(3).
 02 CUS-NAME PIC X(10).

1 ACCEPT CUS-NUM.
2 READ CUS KEY IS CUS-NUM.
8 DISPLAY CUS-NAME.

b) Slice of P with respect to CUS-NAME
and line 8

18/02/02 8

Fig.4. Example of program slicing.

Fig. 4.a is a small COBOL program that asks for a customer number (CUS-NUM) and
displays the name of the customer (CUS-NAME) and the total amount of its order
(ORDER). Fig. 4.b shows the slice that contains all the statements that contribute to
displaying the name of the customer, that is the slice of P with respect to CUS-NAME
at line 8 .

Procedures, arbitrary control flow (Go To) and composite data types, typical to
COBOL programs, make computing program slices a fairly complicated task. Our
approach is based on the System Dependence Graph techniques developed by [6].

In DBRE, we use program slicing to reduce the scope of program analysis, either by
visual inspection, or through the use of other tools. It is mainly used to find
evidences of foreign keys, exact cardinality, local identifiers and domain constraints.
The slice must be computed with respect to a statement that uses the candidate field.
For example, a slice can be computed for an output statement and a candidate foreign
key to see if each value of the foreign key is checked to be in the value set of the
identifier of the target record.

4.3 Program representation

Program source code, even reduced through program slicing, often is too difficult to
understand because the program can be huge (thousands of pages of code), poorly
structured, based on poor naming conventions, and made up of hundreds of modules.
To help the analyst grasp the structure of a program it is useful to give him different
synthetic abstract views of it such as the call graph or the input/output dataflow of
the different modules.

There are many other visualisations of a program that can be useful to help
understand a program. The dependency graph can also be displayed as a graph. It is
why we need a tool that can easily create new kinds of graph.

5. The tools provided by DB-MAIN

Program understanding is complex and tedious. Although the process cannot be fully
automated, the analyst cannot carry it out without a powerful and flexible set of tools.
These tools must be integrated and their results recorded in a common repository. In
addition, the tools need to be easily extensible and customisable to fit the analyst's
exact needs.

DB-MAIN is a general database engineering CASE environment that offers
sophisticated reverse engineering toolsets. DB-MAIN is one of the results of a R&D
project started in 1993 by the database team of the computer science department of the
University of Namur (Belgium). Its purpose is to help the analyst in the design,
reverse engineering, migration, maintenance and evolution of databases.

18/02/02 9

DB-MAIN offers the usual CASE functions, such as the database schema creation,
management, visualisation, validation, transformation, and code and report generation.
It also includes a programming language (Voyager2) that can manipulate the objects
of the repository and allows the user to develop its own functions. More details can
be found in [3] and [5].

DB-MAIN also offers some functions that are specific to DBRE. The extractors
extract automatically the data structures declared into a source text. Extractors read the
declaration part of the source text and create corresponding abstractions in the
repository. The foreign key assistant is used to find the possible foreign keys of a
schema. Giving a group of fields, that is the origin (or the target) of a foreign key, it
searches a schema for all the groups of fields that can be the target (or the origin) of
the first group. The search is based on a combination of matching criteria such as the
group type, the length, the type and matching rules of the name of the fields.

Other reverse engineering functions use program understanding processors.
A pattern matching engine searches a source text for a definite pattern. Patterns

are defined into a pattern description language (PDL), they can use the definition of
other patterns and contain variables. Those variables can be used as parameters of a
procedure to be executed for each pattern instance.

var ::= /g"[a-zA-Z0-9]*[a-zA-Z][-a-zA-Z0-9]*";
var_1 ::= var;
var_2 ::= var;
move ::= "MOVE" - @var_1 - "TO" - @var_2 ;

Fig. 5. The COBOL move pattern definition.

Fig. 5 shows the definition of the move pattern, this pattern will match with the
simplest form of COBOL assignments. The PDL variables are prefixed with the '@'
character and the '-' name denotes a pattern (inter-token separators) defined in a
secondary library.

DB-MAIN offers a variable dependency graph tool. The user defines the relations
between variables as a list of patterns. Each pattern must contain exactly two
variables and the instances of those variables are the nodes of the graph. For example,
if the pattern move (Fig. 6) is given then the arcs of the dependency graph will
represent variables connected by a assignment statement. The dependency graph
itself is displayed in context: the user selects a variable, then all the occurrences of
this variable, and of all the variables connected to it in the dependency graph are
coloured into the source text, both in the declaration and in the procedural sections.
Though a graphical presentation could be thought to be more elegant and more
abstract, the experience has taught us that the source code itself gives much lateral
information, such as comments, layout and surrounding statements.

The program slicing tool computes the program slice with respect to the selected
line of the source text and one of the variables, or component thereof, referenced at
that line. When the slice is computed its statements are coloured, so that it can be
examined in context. For example, some lines that do not belong to the slice (e.g.,
comments or error messages) may give some additional hints to understand the slice.

18/02/02 10

If needed, the slice can be transformed into a new program to be processed by other
analyzers.

6. Conclusion

Though the software engineering and database/IS communities most often live on
different planets, experience proves that many real world problems cannot be solved
without combining the concepts, techniques and reasonings belonging to each of
them. Anyway, an information system mainly comprises a database and a collection of
programs. Therefore, understanding these programs needs a deep understanding of
the semantics of the database, while recovering this semantics cannot ignore what the
programs are intended to do on/with the contents of the database.

One of the major objectives of the DB-MAIN project is the methodological and tool
support for database reverse engineering processes. We have quickly learned that we
needed powerful program analysis reasoning and their supporting tools, such as those
that have been developed in the program understanding realm. We integrated these
reasoning in a highly generic DBRE methodology, while we developed specific
analyzers to include in the DB-MAIN CASE tool.

One of the great lessons we painfully learned is that they are no two similar DBRE
projects. Hence the need for easily programmable, extensible and customizable tools.
The DB-MAIN (meta-)CASE tool is now a mature environment that offers powerful
program understanding tools dedicated, among others, to database reverse
engineering, as well as sophisticated features to extend its repository and its
functions. DB-MAIN has been developed in C++ for MS-Windows workstations. An
education version is available at no charge for non-profit institutions
(http://www.info.fundp.ac.be/~dbm).

References

1. Anderson, M.: Reverse Engineering of Legacy Systems: From Valued-Based to Object-Based
Models, PhD thesis, Lausanne, EPFL (1997)

2. Batini, C., Ceri, S. and Navathe, S.B.: Conceptual Database Design - An Entity-Relationship
Approach, Benjamin/Cummings (1992).

3. Englebert, V., Henrard J., Hick, J.-M., Roland, D. and Hainaut, J.-L.: DB-MAIN: un Atelier
d'Ingénierie de Bases de Données, in 11 Journée BD Avancées, Nancy (1995).

4. Hainaut, J.-L., Chandelon, M., Tonneau, C. and Joris M.: Contribution to a Theory of
Database Reverse Engineering, in Proc. of the IEEE Working Conf. on Reverse Engineering,
Baltimore, May 1993, IEEE Computer Society Press (1993).

5. Hainaut, J.-L, Roland, D., Hick J-M., Henrard, J. and Englebert, V.: Database Reverse
Engineering: from Requirements to CARE Tools, Journal of Automated Software
Engineering, 3(1) (1996).

6. Horwitz, S., Reps, T. and Binkley, D. Interprocedural Slicing using Dependence Graphs,
ACM Trans. on Programming Languages and Systems 12(1), Jan. 1990, 26-60 (1990).

18/02/02 11

7. Joris, M., Van Hoe, R., Hainaut, J.-L., Chandelon, M., Tonneau, C. and Bodart, F. et al.:
PHENIX: Methods and Tools for Database Reverse Engineering, in Proc 5th Int. Conf. on
Sofwazre Engieering and Applications. Toulouse, EC2 Publish (1992).

8. Petit, J.-M., Kouloumdjian, J., Bouliaut, J.-F. and Toumani, F.: Using Queries to Improve
Database Reverse Engineering, in Proc of the 13th Int. Conf. on ER Approach, Manchester.
Springer-Verlag (1994).

9. Rugaber S. Program Comprehension. Technical report, College of Computing, Georgia
Institute of Technology (1995).

10.Weiser, M.: Program Slicing, IEEE TSE, 10, 352-357 (1984).

