
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Coverage criteria for behavioural testing of software product lines

Devroey, Xavier; Perrouin, Gilles; Legay, Axel; Cordy, Maxime; Schobbens, Pierre-Yves;
Heymans, Patrick
Published in:
Proceedings of the 6th International Symposium on Leveraging Applications of Formal Methods, Verification and
Validation (ISOLA)

Publication date:
2014

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Devroey, X, Perrouin, G, Legay, A, Cordy, M, Schobbens, P-Y & Heymans, P 2014, Coverage criteria for
behavioural testing of software product lines. in Proceedings of the 6th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISOLA). vol. 8802, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
8802, Springer Verlag, pp. 336-350, 6th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation, ISoLA 2014, Imperial, Corfu, Greece, 8/10/14.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Mar. 2024

https://researchportal.unamur.be/en/publications/7f3f746d-86ec-4d50-ab0e-88c4be60b187

Coverage Criteria for Behavioural Testing of

Software Product Lines

Xavier Devroey1, Gilles Perrouin1?, Axel Legay2, Maxime Cordy1??,
Pierre-Yves Schobbens1, and Patrick Heymans1

1 PReCISE Research Center, Faculty of Computer Science,
University of Namur, Belgium

{xavier.devroey, maxime.cordy, gilles.perrouin, pierre-yves.schobbens,

patrick.heymans}@unamur.be
2 INRIA Rennes Bretagne Atlantique, France axel.legay@inria.fr

Abstract. Featured Transition Systems (FTS) is a mathematical struc-
ture to represent the behaviour of software product line in a concise way.
The combination of the well-known transition systems approach to for-
mal behavioural modelling with feature expressions was pivotal to the
design of e�cient verification approaches. Such approaches indeed avoid
to consider products’ behaviour independently, leading to often expo-
nential savings. Building on this successful structure, we lay the founda-
tions of model-based testing approach to SPLs. We define several FTS-
aware coverage criteria and report on our experience combining FTS
with usage-based testing for configurable websites.

Keywords: Coverage Criteria, Model Based Testing, Software Product
Line Engineering

1 Introduction

A Software Product Line (SPL) “is a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way” [8]. Features are thus the key to the discrimination
of SPL members by showing their commonalities and di↵erences. Such features
are commonly organized in a Feature Model (FM) [18] which represents all the
possible products of the SPL by expressing relationships and constraints between
such features.

As for any software engineering paradigm, providing e�cient Quality As-
surance (QA) (e.g. model-checking and testing) techniques is essential to SPL
engineering success. Devising an approach to SPLs QA requires to deal with
the well-known combinatorial explosion problem as the number of products to
consider for validation is growing exponentially with the number of features. In

? FNRS Postdoctoral Researcher
?? FNRS Research Fellow

Xavier Devroey
The final publication is available at link.springer.com

the worst case, no more than 270 features are needed to derive as many prod-
ucts as there are atoms in the universe. Industry reports dealing regularly with
thousands of features in their product lines [14, 2] and the Linux kernel model
is now roughly composed of 8,000 features. Thus, combinatorial explosion poses
both theoretical and practical challenges for SPL QA. Depending on the QA
approach (model checking or testing) and abstraction level (model, code) sev-
eral strategies have been designed, which can be positioned on various edges of
the product-line analysis cube [26]. Our research strives to provide generic so-
lutions at the model level, both for verification and testing. In [7, 5, 6], we have
proposed model-checking algorithms for Featured Transition Systems (FTSs), a
variability-aware extension of transition systems. Contrary to enumerating ap-
proaches that would visit the state space of each product, our algorithms exploit
the structure of the FTS in order to explore common behaviours only once. All
those model-checking results have been implemented in ProVeLines,[10] that is
a product line of model checkers for FTS.

Automated model-based testing [29] and shared execution [20] are established
testing methods that allows test reuse across a set of software. They can thus
be used to reduce the SPL testing e↵ort. Even so, the problem remains entire as
these methods still need to cover all the products. To address this issue, we pre-
viously developed ideas based on sampling and prioritization principles [25, 16].
Typical methods in this area define a coverage criterion on an FM (e.g. all the
valid couples of features must occur in at least one tested product [25, 9]) and ex-
tract configurations of interest to be validated. Combinatorial interaction testing

allows drastic reduction of the configuration space from billions to few dozens or
hundreds of products. It is possible to prioritize extracted configurations using
coverage metrics or by assigning weights to features [16, 17], eventually leading
multi-objective SPL testing [16]. This actually helps testers to scope more finely
and flexibly relevant products to test than a covering criteria alone. Yet, assign-
ing meaningful weights is cumbersome in the absence of additional information
regarding their behaviour.

In line with our preliminary vision [11], we believe that FTS are also suitable
to establish a model-based testing framework for SPLs enabling both family-
based and product-based strategies and benefiting from the experience gained
by the model-checking community. In this paper, we are currently concerned
with the definition of various coverage criteria to support FTS-based testing.
We adapt existing concepts and structural coverage criteria known for transi-
tion systems to the FTS formalism. We then report on our previous experience
[12] defining a usage-based [31] coverage approach, based on the extraction of
Discrete Time Markov Chain (DTMC) from an Apache log of an online course
management system. Behaviours of interests (selected according to a given prob-
ability interval) in the DTMC are then run on an FTS (assumed to be provided
by SPL designers), enabling the projection of associated products and features
related to those behaviours and test case generation.

Section 2 provides the background to FTS-based modelling and verification,
required to define what FTS-based testing is as well as structural and usage

VendingMachine
v

CancelPurchase
c

Beverages
b

FreeDrinks
f

Currency
cur

Soda
s

Tea
t

Euro
eur

Dollar
usd

Or

Xor

Fig. 1. Soda Vending Machine Feature Diagram [5]

coverage criteria in section 3. Section 5 concludes the paper and outlines future
directions.

2 FTSs: Background

A key concern in SPL modeling is how to represent variability. To achieve this
purpose, SPL engineers usually reason in terms of features. Relations and con-
straints between features are usually represented in a Feature Diagram (FD) [18].
For example, Fig. 1 presents the FD of a soda vending machine [6]. A common
semantics associated to a FD d (noted [[d]]) is the set of all the valid products
allowed by d.

Di↵erent formalisms may be used to model the behaviour of a system. To
allow the explicit mapping from feature to SPL behaviour, Featured Transition
Systems (FTS) [6] were proposed. FTSs are Transition Systems (TSs) where
each transition is labelled with a feature expression (i.e., a boolean expression
over features of the SPL), specifying which products can execute the transition.
Thus it is possible to determine products that are the cause of a violation or a
failed test.

Definition 1 (Featured Transition System (FTS)). Formally, an FTS is

a tuple (S,Act, trans, i, d, �), where

– S is a set of states;

– Act a set of actions;

– trans ✓ S ⇥ Act ⇥ S is the transition relation (with (s1,↵, s2) 2 trans

sometimes noted s1
↵�! s2);

– i 2 S is the initial state;

– d is a FD; and � : trans ! [[d]] ! {>,?} is a total function labelling each

transition with a boolean expression over the features, which specifies the

products that can execute the transition.

1 2 3

4

5

6

7 8 9
pay/¬f change/¬f

free / f

take / f

close/¬f

open/¬f take/¬f

cancel / creturn / c
soda / s serveSoda / s

tea / t serveTea / t

Fig. 2. Soda Vending Machine FTS [5]

Additionally, we consider the projection of an FTS onto a product p 2 [[d]]
noted fts|p, the syntactical transformation of removing all transitions labelled
with features not in p, thus resulting in the TS representing the behaviour of
this particular product (see [6]). For instance: ¬f in Fig. 2 indicates that only
products that have not the free feature may fire the pay, change, open, take

and close transitions. Thus, only those transitions will appear in their respective
projections.

We define the semantics of an FTS as a function that associates each valid
product with its set of finite and infinite traces, i.e. all the sequences of actions
starting from the initial state available, satisfying the transition relation and such
that its transitions are available to that product. According to this definition,
an FTS is indeed a behavioural model of a whole SPL. Fig. 2 presents the FTS
modeling a vending machine SPL. Without loss of generality, we consider FTSs
in which the only allowed loops go through the initial state. This is useful to
deal with finite traces in practice [12].

For instance, transition 3 pay/¬f�! 4 is labelled with the feature expression
c. This means that only the products that do have the feature Cancel (c) are
able to execute the transition. Other works on modeling software product lines
can be found, e.g., in [15, 13].

3 SPL Behavioural testing using FTSs

Fig. 3 presents the classical testing process in a Model-Based Testing approach
for single systems [29]. First, the test engineer builds a test model of the Sys-
tem Under Test (SUT) from its requirements. Then, according to some selection
criteria, an abstract test suite (i.e., set of abstract test cases) is automatically
generated. For instance, if using Transitions Systems in order to model the be-
haviour of a SUT, abstract test cases will represent sequences of abstract actions

Test
Engineer

Requirements

Test
Model

Test Case
Generator

1.
models

2. provides
selection criteria

Abstract
Test Suite

Test Script
Generator

Test Scripts

3. provides
concrete mapping

System
Under Test

Test Results4. analyses

Fig. 3. Model-Based Testing general approach [29]

that should be executed on the SUT [28]. The abstract test cases are concretized
using a mapping provided by the test engineer in order to match actions (with
input values) of the system before being executed on the SUT. This execution
may be manual or automated depending on the formalism of the concrete test
cases (e.g., textual description of the operations to perform, automated scripts,
etc.). Finally, the results of the tests executions are analysed by the test engineer.

In order to e�ciently test SPLs, we propose to adopt FTSs as the formalism
to represent SPLs behaviour as the test model of a MBT approach. In [11], we
sketched a Quality Assessment (QA) framework with FTSs as the shared be-
havioural model representation for SPLs. As illustrated in figure 4, FTSs serve
as input for QA activities (roughly decomposed in Model-Checking and Test-
ing). Other processing oriented models (e.g., Markov Chain [12], LTL formula
[6]) may be joined to the FTS for specific QA activities (e.g., test case priori-
tization [12]). FTS and computation oriented models are not meant to be used
by QA engineer. They are the results of a model to model transformation from
abstracted representations of the Feature Diagram (FD), SPL behaviour, for-
mula and/or coverage criteria used by the QA activities. The framework will
o↵er a language (with abstraction and composition mechanisms), State Diagram

Variability Analysis (SDVA) based on UML state machines to model the be-
haviour of the SPL. Once the input models are transformed into a FTS and
processing oriented models, they can be used to perform model-checking and/or

FTS model

Machine
oriented
models

Machine
oriented
models

Computation
oriented
models

Model-Checking

Testing

Transformation

QA
Engineer Coverage

criteria

SDVA
model

Feature
diagram

Formula

Input Models

Fig. 4. Framework overview

testing activities (e.g., test case generation). By using a common representation
(i.e., FTSs), we believe that the testing community may benefits from the last
advances made in model-checking SPLs [6]. In [12] we present a first step in
this direction by combining statistical testing techniques with FTSs in order to
prioritize product testing.

3.1 Transition Systems MBT applied to FTSs

In order to select relevant test cases, proper coverage criteria have to be de-
fined at the SPL level. A coverage criteria is an adequacy measure to qualify
if a test objective is reached when executing a test suite on a SUT. In clas-
sical MBT approaches, when working with state-transitions models (e.g., TS),
most commonly used selection criteria are structural criteria: state, transition,
transition-pair and path coverage [22, 29]. The state/transition coverage criteria
specifies that when executing a test suite on the SUT, all the states /transitions
(resp.) of the test model are visited/fired (resp.) at least once. The transition-
pair coverage specifies that for each state, all the ingoing-outgoing transitions
pairs are fired at least once. The path coverage criteria specifies that each path
in the test model has to be executed at least once. In the following, we define the
notion of test case for a FTS, transpose the classical structural criteria, discuss
some observations and redefine the test case selection problem for FTSs.

Abstract Test Case and Test Suite An abstract test case corresponds to a
finite trace (i.e., finite sequence of actions) in the FTS.

Definition 2 (Abstract Test Case). Let fts = (S, Act, trans, i, d, �) be

an FTS, let atc = (↵1, . . . ,↵n) where ↵1, . . . ,↵n 2 Act be a finite sequence of

actions. The abstract test case atc is valid i↵ :

fts

(↵1,...,↵n)
=)

Where fts

(↵1,...,↵n)
=) is equivalent to i

(↵1,...,↵n)
=) , meaning that there exists a state

sk 2 S with sequence of transitions labelled (↵1, . . . ,↵n) from i to sk.

This definition is similar to classical test case definitions for TS test models
[22]. However, for an FTS, it is possible to extract sequences of actions that
cannot be executed by any product of the SPL (e.g., the related transitions con-
tains mutually exclusive features). This leads us to the definition of an executable
abstract test case:

Definition 3 (Executable Abstract Test Case). Let fts = (S, Act, trans,

i, d, �) be an FTS, let atc = (↵1, . . . ,↵n) where ↵1, . . . ,↵n 2 Act represents a

sequence of actions in fts be an abstract test case. An abstract test case atc is

executable if it can be executed by at least one product of the product line:

9 p 2 [[d]] : fts|p
(↵1,...,↵n)

=)

Where fts|p
(↵1,...,↵n)

=) is equivalent to i

(↵1,...,↵n)
=) , meaning that there exists a

state sk 2 S with sequence of transitions labelled (↵1, . . . ,↵n) from i to sk in the

projection of the FTS onto p.

We make a di↵erence between abstract test case and executable abstract test
case. Contrary to executable abstract test case, an abstract test case has not to
be necessary executable by at least one product of the SPL. Since the FTS is
a model of the behaviour of the SPL, it may be interesting to use abstract test
cases which may not (according to the model) be executed by any product in
order to do mutation testing (by mutating feature expressions), security testing
(to detect undesired behaviours), etc. If this abstract test case can be executed
on a concrete implementation, it reveals a modelling issue or an implementation
error. Similarly:

Definition 4 (Executable Abstract Test Suite). An abstract test suite is a

(possibly empty) finite set of abstract test cases. An executable abstract test suite

is an abstract test suite that contains only executable abstract test cases.

An “empty” abstract test suite has no practical value, but it can be the result
of a too restrictive or inconsistent selection process. However, we keep this liberal
definition to support the definition of selection procedures in the general case.

3.2 Coverage Criteria

In order to e�ciently select abstract test cases, the test engineer has to provide
selection criteria [29]. We redefine hereafter classical structural selection criteria
as a function that, for a given FTS and an executable abstract test suite, returns
a value between 0 and 1 specifying the coverage degree of the executable abstract
test suite over the FTS (0 meaning no coverage and 1 the maximal coverage).
As for TS [29], we consider only coverage criteria for states reachable from the
initial state (a state si is reachable i↵ 9 p 2 [[d]] ^ 9↵1, . . . ,↵n 2 Act such as

fts|p
(↵1,...,↵n)

=) si). Formally :

Definition 5 (Coverage Criterion). A coverage criterion is a function cov

that associates an FTS and an abstract test suite over this FTS to a real value

in [0, 1]

Classical structural coverage criteria are defined as follow, we illustrate each
coverage criteria with test suites satisfying the criteria for the Soda Vending
Machine FTS [5] defined in figure 2 :

Definition 6 (State/All-States Coverage). The state coverage criterion re-

lates to the ratio between the states visited by the test cases pertaining to the

abstract test suite and all the states of the FTS. When the value of the function

equals to 1, the abstract test suite satisfies all-states coverage.

The all-states coverage criteria is the weakest structural coverage criteria, it
specifies that when executing the test suite, each state has to be visited at least
once. On the Soda Vending Machine, an all-states covering abstract test suite
may be:

{(pay, change, soda, serveSoda, open, take, close)
(free, tea, serveTea, take); (free, cancel, return)}

Definition 7 (Transition/All-Transitions Coverage). Transition coverage

relates to the ratio between transitions covered when running abstract test cases

on the FTS and the total number of transitions of the FTS that are executable

by at least one valid product. When this ratio equals to 1, then the abstract test

suite satisfies all-transitions coverage.

The all-transitions coverage specifies that, ideally, each transition is fired at least
once when executing the abstract test suite on the FTS. In this case, a satisfying
abstract test suite for a coverage of 1 on the Soda Vending Machine may be the
same as the one defined for the all-state coverage.

Definition 8 (Transition-Pairs/All-Transition-Pairs Coverage). The tran-

sition-pairs coverage considers adjacent transitions successively entering and

leaving a given state. As for transition coverage, only pairs that are executable

by at least one product are considered in the ratio. When the coverage function

reaches the value of 1, then the abstract test suite covers all-transition-pairs.

The all-transition-pairs coverage specifies that for each state, each couple of
entering/leaving transition has to be fired at least once. On the soda vending
machine, an abstract test suite with a all-transitions-pairs coverage of 1 may be:

{(pay, change, soda, serveSoda, open, take, close); (pay, changecancel, return);
(pay, change, tea, serveTea, open, take, close); (free, soda, serveSoda, take);

(free, tea, serveTea, take); (free, cancel, return)}

Definition 9 (Path/All-Paths Coverage). Path coverage takes into account

executable paths, that is sequence of actions (↵1, . . . ,↵n) from i to i such that

9p 2 [[d]] : fts|p
(↵1,...,↵n)

=) i. If the coverage function value computing the ratio

between executable paths covered by the test cases runs on the FTS and total

executable paths in the FTS is 1, all-paths coverage has been reached.

The all-path coverage specifies that each executable path in the FTS should
be followed at least once when executing the abstract test suite on it. On the
soda vending machine, it gives an executable abstract test suite equal to the one
defined for all-transitions-pair coverage.

3.3 Test Case Product Selection

Once the test cases are selected, they have to be concretized (step 3 in Fig. 3)
in order to (i) get the implementation of the products on which the concrete
test cases will be executed and (ii) get the concrete actions to perform with
the adequate input values for each test case. This last point may be done using
existing concretization techniques once the products are selected [22, 29]. For
(i), the implementations able to execute a given abstract test case atc in a FTS
corresponds to all the products (i.e., valid configurations) of the FD ([[d]]) that
satisfy all the feature expressions associated to the transitions fired in the FTS
when executing atc :

Definition 10 (Abstract Test Case Product Selection). Given a FTS

fts = (S, Act, trans, i, d, �) and an abstract test case atc = (↵1, . . . , ↵n)
with (↵1 , . . . ,↵n) 2 Act, the set of products able to execute atc is defined as:

prod(fts, atc) = {p 2 [[d]] | fts|p
(↵1,...,↵n)

=) }

It corresponds to all the products able to execute the sequence of actions in the

abstract test case.

Similarly, for an abstract test suite, we have:

Definition 11 (Abstract Test Suite Product Selection). Given a FTS

fts = (S, Act, trans, i, d, �) and an abstract test suite ats = {atc1, . . . , atcn},
the set of products able/needed to execute ats:

prods(fts, ats) =
n[

k=1

prod(fts, atci)

Since the main interest in SPL testing is to reduce the number of products
to test, we also define the minimal set of products needed to execute an abstract
test suite.

Definition 12 (P-Minimal Abstract Test Suite Product Selection). Let

fts be an FTS and ats be an abstract test suite. A minimal set of products needed

to execute ats over fts is a minimal subset pMinProd(fts, ats) of prods(fts, ats)

such that 8atc 2 ats : 9p 2 pMinProd(fts, ats) such that fts|p
atc
=)

Test Case Minimality Since FTSs represents all the TSs of all the possi-
ble products of the SPL, it is possible that some coverage criteria may not be
completely achieved (8atc : cov(fts, ats) < 1). For instance, some states may
not be reachable during the execution of any valid product behaviour. From the
definitions here above, we derive the following properties :

Property 1 (Minimal Test Suite). An executable abstract test suite ats over a
given FTS fts = (S, Act, trans, i, d, �) is minimal w.r.t. a coverage criteria
cov i↵ @ ats0 such that ats0 is executable and #ats

0
< #ats and cov(ats0, fts) �

cov(ats, fts). In other words, an executable abstract test suite is minimal if there
exists no smaller executable abstract test suite with a better coverage.

Property 2 (P-Minimal Test Suite). An executable abstract test suite ats over a
given FTS fts = (S, Act, trans, i, d, �) is product-minimal (p-minimal) regard-
ing a coverage criteria cov i↵ @ ats0 such as ats0 is executable and (cov(ats0, fts) �
cov(ats, fts))^(# pMinProd(ats0, fts) < # pMinProd(ats, fts)). A p-minimal
executable abstract test suite for a given coverage criteria over an FTS repre-
sents the minimal set of executable abstract test cases (with the best coverage)
such as the number of products needed to execute all of them is minimal.

For instance, the abstract test suite {(pay, change, soda, serveSoda, open,
take, close); (free, tea, serveTea, take); (free, cancel, return)} is minimal
for the all-states-coverage criteria but not p-minimal since it needs at least two
di↵erent products (i.e., free and not free machines) to be executed on the FTS in
Fig. 1. A p-minimal abstract test suite satisfying the all-paths coverage could be:
{(pay, change, soda, serveSoda, open, take, close); (pay, change, tea, serveTea,
open, take, close); (pay, change, cancel, return)}. Which only needs one product
to execute the abstract test suite.

When designing an abstract test suite using a coverage criteria, the most
interesting product to select in order to execute this abstract test suite is the
one who will achieve the best coverage using this abstract test suite. We define
here the p-coverage as the coverage reached by the execution of an executable
abstract test suite for a given product and p-coverage upper bound as the product
which will be able to execute the subset of an abstract test suite with the best
coverage.

Definition 13 (P-Coverage). Let ats be an abstract test suite over fts, a

given FTS, and a covering criteria cov(ats, fts). Given a product p 2 prod(ats, fts)
and atsp ✓ ats the set of all abstract test cases of ats executable by p. The p-

coverage is the coverage reached when executing atsp :

p� coverage = cov(fts, atsp).

Equipped with this notion of product coverage by a subset of the test suites, we
may look for the product(s) that optimize(s) a given coverage function.

Definition 14 (P-Coverage Upper Bound). Given an executable abstract

test suite ats over a given FTS fts = (S, Act, trans, i, d, �) and a cover-

ing criteria cov(ats, fts). Given a product p 2 prod(ats, fts) and atsp ✓ ats

Abstract Test Set Selection

Minimize

Maximize

...

Usage Coverage

All-Paths coverage

All-Transition-Pairs coverage

All-Transitions coverage

All-States coverage

of Products

of Abstract Test Cases

Or

Fig. 5. Abstract Test Suite Selection problem

the abstract test suite executable by p. The product p will be the p-cov upper

bound i↵ @ ats0p ⇢ ats executable by p

0 2 prod(ats, fts) such as cov(ats0p, fts) >
cov(atsp, fts).

For instance, the p-all-transition-pairs upper bounds products are :

– {V endingMachine, CancelPurchase, Beverage, Soda, Tea, Currency,

Euro}
– {V endingMachine, CancelPurchase, Beverage, Soda, Tea, Currency,

Dollar}

Each one with a all-transition-pairs coverage of 68.75%. It means that concretiz-
ing the abstract test suite derived to achieve a all-transition-pairs coverage using
one of those products and executing the concretized test cases on the selected
product will achieve a all-transition-pairs coverage of 68.75% for the behaviour

of the SPL.

3.4 SPL Test Case Selection

As illustrated in Fig. 5, the abstract test case selection problem may be formu-
lated as an optimisation problem. In its most simple expression, the considered
selection criteria has to be maximised and either the size of the executable ab-
stract test suite (minimal test suite) or the number of product needed to execute
the test suite (p-minimal test suite) has to be minimized. Of course, in reality
we expect more complex situations where a finer grained objective function will
be designed. For instance by adding weights to features in the FD [16] and/or
transitions [1] in the FTS and try to minimize the total cost of the test suite.

Adding weight to transitions is a classical approach developed in statistical
testing where weight (between 0 and 1) represents the probability of a transition

DTMC

FTS FTS'

Finite
Traces

1. Trace
Selection

2. Filtering
and FTS'
Building

3. Product
Prioritization

Model Checking

Test Cases Generation

Valid
Finite

Traces
Test-Cases Execution

Fig. 6. Test-Case Prioritization process [12]

to be fired. In our previous work [12], we apply this idea to product lines in order
to prioritize behaviours and products to test. In the following section, we define
one more additional coverage criteria: the Usage Coverage, specifying that the
selected abstract test suite should cover the most or least common behaviours
of the SPL.

3.5 Usage Coverage Criteria

In [12], FTSs are combined to a Deterministic Timed Markov Chain (DTMC) in
order to select and prioritize SPL behaviours to assess. The result of the process
is a FTS’ representing a subset of the original FTS that has to be assessed (using
testing and/or model checking) in priority. The complete process is presented in
figure 6. First, traces are selected in the DTMC according to their probability
to happen (step 1), e.g., probability between a lower and upper bound, most
probable traces, etc. A trace represents a sequence of actions in the DTMC.
Since the DTMC does not have any notion of features (which allows us to use
existing statistical testing tools like MeTeLo [1]), the selected traces have to
be filtered using the FTS to ensure they can be performed by at least one
valid product (step 2). By pruning the FTS and keeping only transitions fired
when executing selected traces, we get a FTS’, representing a (priority) subset
of the original FTS. Optionally, in step 3, valid traces, and FTS’ are used to
generate valid configurations (i.e., products) which have to be tested in priority.
We assessed the feasibility of this process on an existing system (see section 4 of
[12]), the local Claroline instance at the University of Namur (an online course
management system) using a 5Go Apache access log to build the DTMC, a FTS
with 107 states and 11236 transitions and a feature digram with 44 features. In
this first version, we run a depth first search algorithm 4 times in order to get
behaviours with probability between [10�4; 1], [10�5; 1], [10�6; 1] and [10�7; 1].
The average probabilities of the traces selected in the DTMC and the size of the
generated FTS’ are presented in Tab. 1.

We intend to combine the usage coverage criteria with other structural cov-
erage criteria in order to asses the behaviour of a SPL. The classical scenario we
imagine would be:

1. The test engineer select the lowest or highest probable usage of the system
based on a DTMC and build a FTS’ (using [12]), prioritized subset of the

Table 1. Claroline Feasability Assessment Results [12]

Proba. interval Traces avg. proba. � # FTS’ states # FTS’ transitions
[10�4; 1] 2, 06E�3 1, 39E�2 16 66
[10�5; 1] 3, 36E�4 5, 46E�3 36 224
[10�6; 1] 5, 26E�5 2, 12E�3 50 442
[10�7; 1] 8, 10E�6 8, 18E�4 69 844

original FTS. We did not make any assumption on how the usage model
is build. In the experiment presented in [12], the usage model was obtain
from actual usage of the system using an Apache log. It could also be done
manually by a system expert who will tag the transitions in the DTMC with
probabilities based on its own knowledge of the system [27].

2. The test engineer select a minimal or p-minimal (executable or not) abstract
test suite in the FTS’ using a structural coverage criteria.

3. The test engineer concretize this abstract test suite and execute it on one
product of the SPL.

4 Related Work

Other strategies to perform SPLs testing have been proposed. One of those con-
siders incremental testing in the SPL context [30, 24, 21]. For example, Lochau
et al. [21] proposed a model-based approach that shifts from one product to
another by applying“deltas” to statemachine models. These deltas enable auto-
matic reuse/adaptation of test model and derivation of retest obligations. Oster
et al. [24] extend combinatorial interaction testing with the possibility to spec-
ify a predefined set of products in the configuration suite to be tested. There
are also approaches focused on the SPL code by building variability-aware in-
terpreters for various languages [19]. Based on symbolic execution techniques
such interpreters are able to run a very large set of products with respect to
one given test case [23]. In [4], Cichos et al. use the notion of 150% test model
(i.e., a test model of the behaviour of a product line) and test goal to derive test
cases for a product line but do not redefine coverage criteria at the SPL level.
In [3], Beohar et al. propose to adapt the ioco framework proposed by Tretmans
[28] to FTSs. Contrary to this approach, we do not seek exhaustive testing of
an implementation but rather to select relevant abstract test cases based on the
criteria provided by the test engineer.

5 Conclusion & Perspectives

In this paper, we have established the preliminary foundations to support SPL
testing using FTS by defining dedicated testing concepts and providing several
coverage criteria to support test generation. Next steps naturally include the
design of strategies that realize the extraction of behaviours based on such cri-
teria. Experience and optimisation realised for model-checking algorithms will

be key to the design of e�cient and scalable FTS traversals. We also plan to
devise an FTS-aware random test generation strategy (e.g. systematically pro-
ducing random executable abstract test cases). Finally, we also plan to combine
such criteria with each other and with test case selection based on temporal
properties. Our approach will be integrated with the ProVeLines family of SPL
model-checkers [10].

References

1. ALL4TEC: MaTeLo, http://www.all4tec.net/index.php/en/

model-based-testing (last visit 31/01/2014)
2. Astesana, J.M., Cosserat, L., Fargier, H.: Constraint-based vehicle configuration:

A case study. In: Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE In-
ternational Conference on. vol. 1, pp. 68–75 (Oct 2010)

3. Beohar, H., Mousavi, M.R.: Spinal Test Suites for Software Product Lines. ArXiv
e-prints (2014)

4. Cichos, H., Oster, S., Lochau, M., Schürr, A.: Model-based Coverage-driven Test
Suite Generation for Software Product Lines. pp. 425–439. MODELS ’11, Springer
(2011)

5. Classen, A.: Modelling and Model Checking Variability-Intensive Systems. Ph.D.
thesis, PReCISE Research Center, Faculty of Computer Science, University of Na-
mur (FUNDP) (2011)

6. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured Transition Systems : Foundations for Verifying Variability-Intensive Sys-
tems and their Application to LTL Model Checking. TSE PP(99), 1–22 (2013)

7. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: e�cient verification of temporal properties in software product
lines. In: ICSE’10. pp. 335–344. ACM (2010)

8. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Ad-
dison Wesley, Reading, MA, USA (2001)

9. Cohen, M., Dwyer, M., Shi, J.: Interaction testing of highly-configurable systems
in the presence of constraints. In: ISSTA ’07. pp. 129–139 (2007)

10. Cordy, M., Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Provelines: A
product-line of verifiers for software product lines. In: SPLC ’13 Workshops. pp.
141–146. ACM (2013)

11. Devroey, X., Cordy, M., Perrouin, G., Kang, E.Y., Schobbens, P.Y., Heymans, P.,
Legay, A., Baudry, B.: A vision for behavioural model-driven validation of software
product lines. In: ISoLA ’12. LNCS, vol. 7609, pp. 208–222. Springer (2012)

12. Devroey, X., Perrouin, G., Cordy, M., Schobbens, P.Y., Legay, A., Heymans, P.:
Towards statistical prioritization for software product lines testing. pp. 10:1–10:7.
VaMoS ’14, ACM (2013)

13. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: SPLC
’08. pp. 193–202 (2008)

14. Flores, R., Krueger, C., Clements, P.: Mega-scale product line engineering at gen-
eral motors. pp. 259–268. SPLC ’12, ACM (2012)

15. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: FMOODS ’08. pp. 113–131. Springer (2008)

16. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L.: Multi-objective
test generation for software product lines. pp. 62–71. SPLC ’13, ACM (2013)

17. Johansen, M.F., Haugen, Ø., Fleurey, F., Eldegard, A.G., Syversen, T.: Generat-
ing better partial covering arrays by modeling weights on sub-product lines. In:
MoDELS ’12. pp. 269–284 (2012)

18. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Spencer Peterson, A.: Feature-
Oriented domain analysis (FODA) feasibility study. Tech. rep., Soft. Eng. Inst.,
Carnegie Mellon Univ. (1990)

19. Kästner, C., von Rhein, A., Erdweg, S., Pusch, J., Apel, S., Rendel, T., Ostermann,
K.: Toward variability-aware testing. pp. 1–8. FOSD ’12, ACM (2012)

20. Kim, C.H.P., Khurshid, S., Batory, D.S.: Shared execution for e�ciently testing
product lines. In: ISSRE ’12. pp. 221–230 (2012)

21. Lochau, M., Schaefer, I., Kamischke, J., Lity, S.: Incremental model-based testing
of delta-oriented software product lines. In: Brucker, A., Julliand, J. (eds.) Tests
and Proofs. LNCS, vol. 7305, pp. 67–82. Springer (2012)

22. Mathur, A.P.: Foundations of software testing. Pearson Education (2008)
23. Nguyen, H.V., Kästner, C., Nguyen, T.N.: Exploring variability-aware execution

for testing plugin-based web applications. ICSE ’14, IEEE (2014)
24. Oster, S., Markert, F., Ritter, P.: Automated incremental pairwise testing of

software product lines. In: Software Product Lines: Going Beyond. pp. 196–210.
Springer (2010)

25. Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., Traon, Y.L.: Pairwise testing
for software product lines: comparison of two approaches. Software Quality Journal
20(3-4), 605–643 (2012)

26. von Rhein, A., Apel, S., Kästner, C., Thüm, T., Schaefer, I.: The pla model: on
the combination of product-line analyses. p. 14. VaMoS ’13, ACM (2013)

27. Samih, H.: Relating Variability Modeling and Model-Based Testing for Software
Product Lines Testing. In: Weise, C., Nielsen, B. (eds.) Proceedings of the ICTSS
2012 Ph.D. Workshop. pp. 18–22. Aalborg University, Department of Computer
Science, Aalborg, Denmark (2012)

28. Tretmans, J.: Model based testing with labelled transition systems. Formal meth-
ods and testing pp. 1–38 (2008)

29. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann (2007)

30. Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. Software Engineering, IEEE Transactions on 36(3), 309–322 (2010)

31. Whittaker, J.A., Thomason, M.G.: A markov chain model for statistical software
testing. TSE 20(10), 812–824 (1994)

