Architecting software systems using model transformations and architectural frameworks

Student thesis: Doc typesDoctor of Sciences


Software systems have become essential to many human activities and have proliferated thanks to various hardware innovations such as mobile computing (laptops, personal digital assistants, mobile phones) and networks (DSL, WIFI, GSM, etc.) enabling interactions between users and computer systems in virtually any place. This situation has created both a great complexity for such distributed systems to be designed and great expectations (mainly concerned with quality, time and induced costs of the software) from the users of these systems, requiring improvements in software engineering methods in order to meet these challenges. On the one hand, Model Driven Engineering (MDE), by allowing the description of software systems through abstractions and deriving useful system artifacts, harnesses inherent complexity of software systems and reduces time-to-market via model transformations. On the other hand, software product lines foster software reuse by proposing to develop applications based on a set of common assets belonging to a particular domain. Thus, when product line assets are carefully designed, both quality and time-to-market requirements can be achieved. Development methods that have resulted from the product line paradigm generally focus on defining common and variable assets to be reused by product line members. However, they hardly address the development of applications from the product line assets in a systematic way. Furthermore, those considering it propose automated but rather inflexible approaches that unnecessarily exclude products which, although addressable by product line assets, have not been explicitly envisioned during product line definition. If in some domains - in particular, those including hardware constraints and/or critical features - it is possible to fully determine the products that are part of the software product line, in the other cases, an initial set of products can only be considered assuming that the customers’ requests will be met by this set. We believe that this assumption is false in general and this thesis examines the research question which consists in proposing a set of models and a product line development method to offer more flexibility while deriving products in order to seamlessly address customers’ requests. The domain we consider is that of web e-bartering systems. This thesis strives to propose a trade-off between automated and unsupported product derivation by providing a model-driven product line development method that allows developers to define product line members by transforming a coherent and layered set of product line models. Moreover, constraints on the possible transformations have to be specified in order to determine which products cannot be derived both for functional and technical reasons. The first part of this thesis introduces the foundational concepts of our FIDJI method. In particular, it describes the notion of architectural framework as a set of models […]
Date of Award20 Sep 2007
Original languageFrench
Awarding Institution
  • University of Namur
SupervisorPatrick HEYMANS (Supervisor), Jean-Luc HAINAUT (Jury), N. Guelfi (Co-Supervisor), Pascal Bouvry (Jury), F. VAN DER LINDEN (Jury), Jean-Marc Jézéquel (Jury) & PIERRE-YVES SCHOBBENS (Jury)

Cite this