User-Based Experiment Guidelines for Measuring Interpretability in Machine Learning

Research output: Contribution in Book/Catalog/Report/Conference proceedingConference contribution

10 Downloads (Pure)


With the advent of high-performance black-box models, interpretability is becoming a hot topic today in machine learning. While a lot of research is
done on interpretability, machine learning researchers do not have precise guidelines for setting up user-based experiments. This paper provides well-established guidelines from the human-computer interaction community.
Original languageEnglish
Title of host publicationEGC Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence
Place of PublicationMetz, France
Publication statusPublished - 2019


  • Machine learning
  • Interpretability
  • Guidelines

Fingerprint Dive into the research topics of 'User-Based Experiment Guidelines for Measuring Interpretability in Machine Learning'. Together they form a unique fingerprint.

Cite this