Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes

Jozef Mravec, Stjepan K. Kračun, Maja G. Rydahl, BjøRge Westereng, Fabien Miart, Mads H. Clausen, Jonatan U. Fangel, Mathilde Daugaard, Pierre Van Cutsem, Henrik H. De Fine Licht, Herman Höfte, Frederikke G. Malinovsky, David S. Domozych, William G T Willats

Research output: Contribution to journalArticlepeer-review

154 Downloads (Pure)

Abstract

Polysaccharides are major components of extracellular matrices and are often extensively modified post-synthetically to suit local requirements and developmental programmes. However, our current understanding of the spatiotemporal dynamics and functional significance of these modifications is limited by a lack of suitable molecular tools. Here, we report the development of a novel non-immunological approach for producing highly selective reciprocal oligosaccharide-based probes for chitosan (the product of chitin deacetylation) and for demethylesterified homogalacturonan. Specific reciprocal binding is mediated by the unique stereochemical arrangement of oppositely charged amino and carboxy groups. Conjugation of oligosaccharides to fluorophores or gold nanoparticles enables direct and rapid imaging of homogalacturonan and chitosan with unprecedented precision in diverse plant, fungal and animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons.

Original languageEnglish
Pages (from-to)4841-4850
Number of pages10
JournalDevelopment (Cambridge)
Volume141
Issue number24
DOIs
Publication statusPublished - 2014

Keywords

  • Arabidopsis
  • Carbohydrate microarrays
  • Cell wall
  • Exoskeletons
  • Fluorescence imaging
  • Polysaccharides
  • Root cap

Fingerprint Dive into the research topics of 'Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes'. Together they form a unique fingerprint.

Cite this