Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial

M. Sarrazin, I. Septembre, A. Hendrickx, N. Reckinger, L. Dellieu, G. Fleury, C. Seassal, R. Mazurczyk, S. Faniel, S. Devouge, M. Voue, O. Deparis

Research output: Contribution to journalArticlepeer-review

8 Downloads (Pure)

Abstract

Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie-Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of "quantum"superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted with all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes, while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe that these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing.

Original languageEnglish
Article number0021541
Number of pages10
JournalJournal of Applied Physics
Volume128
Issue number20
DOIs
Publication statusPublished - 28 Nov 2020

Keywords

  • cond-mat.mes-hall
  • cond-mat.mtrl-sci

Fingerprint

Dive into the research topics of 'Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial'. Together they form a unique fingerprint.

Cite this