The Multi-Satellite Environmental and Socioeconomic Predictors of Vector-Borne Diseases in African Cities: Malaria as an Example

Camille Morlighem, Celia Chaiban, Stefanos Georganos, Oscar Brousse, Jonas Van de Walle, Nicole P.M. Van Lipzig, Eleónore Wolff, Sebastien Dujardin, Catherine Linard

Research output: Contribution to journalArticlepeer-review

42 Downloads (Pure)

Abstract

Remote sensing has been used for decades to produce vector-borne disease risk maps aiming at better targeting control interventions. However, the coarse and climatic-driven nature of these maps largely hampered their use in the fight against malaria in highly heterogeneous African cities. Remote sensing now offers a large panel of data with the potential to greatly improve and refine malaria risk maps at the intra-urban scale. This research aims at testing the ability of different geospatial datasets exclusively derived from satellite sensors to predict malaria risk in two sub-Saharan African cities: Kampala (Uganda) and Dar es Salaam (Tanzania). Using random forest models, we predicted intra-urban malaria risk based on environmental and socioeconomic predictors using climatic, land cover and land use variables among others. The combination of these factors derived from different remote sensors showed the highest predictive power, particularly models including climatic, land cover and land use predictors. However, the predictive power remained quite low, which is suspected to be due to urban malaria complexity and malaria data limitations. While huge improvements have been made over the last decades in terms of remote sensing data acquisition and processing, the quantity and quality of epidemiological data are not yet sufficient to take full advantage of these improvements.

Original languageEnglish
Article number5381
JournalRemote Sensing
Volume14
Issue number21
DOIs
Publication statusPublished - 27 Oct 2022

Keywords

  • African cities
  • malaria
  • multi-satellite
  • random forest
  • vector-borne diseases

Fingerprint

Dive into the research topics of 'The Multi-Satellite Environmental and Socioeconomic Predictors of Vector-Borne Diseases in African Cities: Malaria as an Example'. Together they form a unique fingerprint.

Cite this