The Carlina-type diluted telescope: Stellar fringes on Deneb

H. Le Coroller, J. Dejonghe, F. Hespeels, L. Arnold, T. Andersen, P. Deram, D. Ricci, P. Berio, A. Blazit, J. M. Clausse, C. Guillaume, J. P. Meunier, X. Regal, R. Sottile

Research output: Contribution to journalArticle

9 Downloads (Pure)

Abstract

Context. The performance of interferometers has been much increased over the past ten years. But the number of observable objects is still limited by the low sensitivity and imaging capability of the current facilities. Studies have been conducted with the aim to propose a new generation of interferometers. Aims. The Carlina concept studied at the Haute-Provence Observatory consists of an optical interferometer configured as a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed co-spherical segments, a helium balloon or cables that are suspended between two mountains and/or pylons carry a gondola containing the focal optics. This concept does not require delay lines. Methods. Since 2003, we have been building a technical demonstrator of this diluted telescope. The main goals of this project were to find opto-mechanical solutions to stabilize the optics attached to cables at several tens of meters above the ground, and to characterize this diluted telescope under real conditions. In 2012, we obtained metrology fringes, and co-spherized the primary mirrors within one micron accuracy. In 2013, we tested the whole optical train: servo loop, metrology, and the focal gondola. Results. We obtained stellar fringes on Deneb in September 2013. We here present the characteristics of these observations: quality of the guiding, signal-to-noise ratio reached, and possible improvements for a future system. Conclusions. By detecting fringes on Deneb, we confirm that the entire system conceptually has worked correctly. It also proves that when the primary mirrors are aligned using the metrology system, we can directly record fringes in the focal gondola, even in blind operation. It is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or pylons. Carlina, like the Multiple Mirror Telescope (MMT) or Large Binocular Telescope (LBT), could be one of the first members of a new class of telescopes named large diluted telescopes. Its optical architecture has many advantages for future projects: Planet Formation Imager (PFI), post-ELTs, interferometer in space.

Original languageEnglish
JournalAstronomy and Astrophysics
Volume573
DOIs
Publication statusPublished - 1 Jan 2015

Fingerprint

interferometer
cable
telescopes
interferometers
pylons
mirrors
metrology
cables
cliff
signal-to-noise ratio
helium
train
optics
planet
observatory
cliffs
radio
radio telescopes
delay lines
balloons

Keywords

  • Instrumentation: high angular resolution
  • Instrumentation: interferometers
  • Telescopes

Cite this

Le Coroller, H., Dejonghe, J., Hespeels, F., Arnold, L., Andersen, T., Deram, P., ... Sottile, R. (2015). The Carlina-type diluted telescope: Stellar fringes on Deneb. Astronomy and Astrophysics, 573. https://doi.org/10.1051/0004-6361/201424623
Le Coroller, H. ; Dejonghe, J. ; Hespeels, F. ; Arnold, L. ; Andersen, T. ; Deram, P. ; Ricci, D. ; Berio, P. ; Blazit, A. ; Clausse, J. M. ; Guillaume, C. ; Meunier, J. P. ; Regal, X. ; Sottile, R. / The Carlina-type diluted telescope : Stellar fringes on Deneb. In: Astronomy and Astrophysics. 2015 ; Vol. 573.
@article{f1a347cbd1ff4e729da144ec83f72cbe,
title = "The Carlina-type diluted telescope: Stellar fringes on Deneb",
abstract = "Context. The performance of interferometers has been much increased over the past ten years. But the number of observable objects is still limited by the low sensitivity and imaging capability of the current facilities. Studies have been conducted with the aim to propose a new generation of interferometers. Aims. The Carlina concept studied at the Haute-Provence Observatory consists of an optical interferometer configured as a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed co-spherical segments, a helium balloon or cables that are suspended between two mountains and/or pylons carry a gondola containing the focal optics. This concept does not require delay lines. Methods. Since 2003, we have been building a technical demonstrator of this diluted telescope. The main goals of this project were to find opto-mechanical solutions to stabilize the optics attached to cables at several tens of meters above the ground, and to characterize this diluted telescope under real conditions. In 2012, we obtained metrology fringes, and co-spherized the primary mirrors within one micron accuracy. In 2013, we tested the whole optical train: servo loop, metrology, and the focal gondola. Results. We obtained stellar fringes on Deneb in September 2013. We here present the characteristics of these observations: quality of the guiding, signal-to-noise ratio reached, and possible improvements for a future system. Conclusions. By detecting fringes on Deneb, we confirm that the entire system conceptually has worked correctly. It also proves that when the primary mirrors are aligned using the metrology system, we can directly record fringes in the focal gondola, even in blind operation. It is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or pylons. Carlina, like the Multiple Mirror Telescope (MMT) or Large Binocular Telescope (LBT), could be one of the first members of a new class of telescopes named large diluted telescopes. Its optical architecture has many advantages for future projects: Planet Formation Imager (PFI), post-ELTs, interferometer in space.",
keywords = "Instrumentation: high angular resolution, Instrumentation: interferometers, Telescopes",
author = "{Le Coroller}, H. and J. Dejonghe and F. Hespeels and L. Arnold and T. Andersen and P. Deram and D. Ricci and P. Berio and A. Blazit and Clausse, {J. M.} and C. Guillaume and Meunier, {J. P.} and X. Regal and R. Sottile",
year = "2015",
month = "1",
day = "1",
doi = "10.1051/0004-6361/201424623",
language = "English",
volume = "573",
journal = "Astronomy and Astrophysics",
issn = "0250-6335",
publisher = "Springer India",

}

Le Coroller, H, Dejonghe, J, Hespeels, F, Arnold, L, Andersen, T, Deram, P, Ricci, D, Berio, P, Blazit, A, Clausse, JM, Guillaume, C, Meunier, JP, Regal, X & Sottile, R 2015, 'The Carlina-type diluted telescope: Stellar fringes on Deneb' Astronomy and Astrophysics, vol. 573. https://doi.org/10.1051/0004-6361/201424623

The Carlina-type diluted telescope : Stellar fringes on Deneb. / Le Coroller, H.; Dejonghe, J.; Hespeels, F.; Arnold, L.; Andersen, T.; Deram, P.; Ricci, D.; Berio, P.; Blazit, A.; Clausse, J. M.; Guillaume, C.; Meunier, J. P.; Regal, X.; Sottile, R.

In: Astronomy and Astrophysics, Vol. 573, 01.01.2015.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The Carlina-type diluted telescope

T2 - Stellar fringes on Deneb

AU - Le Coroller, H.

AU - Dejonghe, J.

AU - Hespeels, F.

AU - Arnold, L.

AU - Andersen, T.

AU - Deram, P.

AU - Ricci, D.

AU - Berio, P.

AU - Blazit, A.

AU - Clausse, J. M.

AU - Guillaume, C.

AU - Meunier, J. P.

AU - Regal, X.

AU - Sottile, R.

PY - 2015/1/1

Y1 - 2015/1/1

N2 - Context. The performance of interferometers has been much increased over the past ten years. But the number of observable objects is still limited by the low sensitivity and imaging capability of the current facilities. Studies have been conducted with the aim to propose a new generation of interferometers. Aims. The Carlina concept studied at the Haute-Provence Observatory consists of an optical interferometer configured as a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed co-spherical segments, a helium balloon or cables that are suspended between two mountains and/or pylons carry a gondola containing the focal optics. This concept does not require delay lines. Methods. Since 2003, we have been building a technical demonstrator of this diluted telescope. The main goals of this project were to find opto-mechanical solutions to stabilize the optics attached to cables at several tens of meters above the ground, and to characterize this diluted telescope under real conditions. In 2012, we obtained metrology fringes, and co-spherized the primary mirrors within one micron accuracy. In 2013, we tested the whole optical train: servo loop, metrology, and the focal gondola. Results. We obtained stellar fringes on Deneb in September 2013. We here present the characteristics of these observations: quality of the guiding, signal-to-noise ratio reached, and possible improvements for a future system. Conclusions. By detecting fringes on Deneb, we confirm that the entire system conceptually has worked correctly. It also proves that when the primary mirrors are aligned using the metrology system, we can directly record fringes in the focal gondola, even in blind operation. It is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or pylons. Carlina, like the Multiple Mirror Telescope (MMT) or Large Binocular Telescope (LBT), could be one of the first members of a new class of telescopes named large diluted telescopes. Its optical architecture has many advantages for future projects: Planet Formation Imager (PFI), post-ELTs, interferometer in space.

AB - Context. The performance of interferometers has been much increased over the past ten years. But the number of observable objects is still limited by the low sensitivity and imaging capability of the current facilities. Studies have been conducted with the aim to propose a new generation of interferometers. Aims. The Carlina concept studied at the Haute-Provence Observatory consists of an optical interferometer configured as a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed co-spherical segments, a helium balloon or cables that are suspended between two mountains and/or pylons carry a gondola containing the focal optics. This concept does not require delay lines. Methods. Since 2003, we have been building a technical demonstrator of this diluted telescope. The main goals of this project were to find opto-mechanical solutions to stabilize the optics attached to cables at several tens of meters above the ground, and to characterize this diluted telescope under real conditions. In 2012, we obtained metrology fringes, and co-spherized the primary mirrors within one micron accuracy. In 2013, we tested the whole optical train: servo loop, metrology, and the focal gondola. Results. We obtained stellar fringes on Deneb in September 2013. We here present the characteristics of these observations: quality of the guiding, signal-to-noise ratio reached, and possible improvements for a future system. Conclusions. By detecting fringes on Deneb, we confirm that the entire system conceptually has worked correctly. It also proves that when the primary mirrors are aligned using the metrology system, we can directly record fringes in the focal gondola, even in blind operation. It is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or pylons. Carlina, like the Multiple Mirror Telescope (MMT) or Large Binocular Telescope (LBT), could be one of the first members of a new class of telescopes named large diluted telescopes. Its optical architecture has many advantages for future projects: Planet Formation Imager (PFI), post-ELTs, interferometer in space.

KW - Instrumentation: high angular resolution

KW - Instrumentation: interferometers

KW - Telescopes

UR - http://www.scopus.com/inward/record.url?scp=84921306680&partnerID=8YFLogxK

U2 - 10.1051/0004-6361/201424623

DO - 10.1051/0004-6361/201424623

M3 - Article

VL - 573

JO - Astronomy and Astrophysics

JF - Astronomy and Astrophysics

SN - 0250-6335

ER -