Abstract
Two series of functionalized mesoporous Ga silicates were prepared in a straightforward and sustainable one-pot procedure using different alkyl silanes. The efficacy of the adopted co-synthetic approach based on aerosol processing has been proved by 29Si solid-state NMR experiments revealing a degree of functionalization close to the theoretical value. The successful incorporation of gallium as single sites within the silica framework was confirmed via71Ga solid-state magic-angle-spinning NMR measurements. These materials were tested as catalysts for the synthesis of solketal from glycerol at low temperature and under solventless conditions. A systematic study evidenced the importance of a careful tuning of surface polarity, achievable with surface functionalization as well as with different thermal treatments. The solids functionalized with a low degree of methyl groups (5%) displayed enhanced performances compared to the non-functionalized analogues, highlighting the highly beneficial role of surface hydrophobicity as well as the importance of the careful tuning of the hydrophilic/hydrophobic balance. The best functionalized catalysts proved to be easily reusable for multiple catalytic runs. With such a high-performance catalyst in hand, we propose a process which shows a favorable E-factor, indicating that the production of solketal can be envisaged in a sustainable way.
Original language | English |
---|---|
Pages (from-to) | 354-366 |
Number of pages | 13 |
Journal | Green Chemistry |
Volume | 23 |
Issue number | 1 |
DOIs | |
Publication status | Published - 7 Jan 2021 |
Fingerprint
Dive into the research topics of 'Surface-functionalized mesoporous gallosilicate catalysts for the efficient and sustainable upgrading of glycerol to solketal'. Together they form a unique fingerprint.Equipment
-
Physical Chemistry and characterization(PC2)
Wouters, J. (Manager), Aprile, C. (Manager) & Fusaro, L. (Manager)
Technological Platform Physical Chemistry and characterizationFacility/equipment: Technological Platform