Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions

János Pető, Tamás Ollár, Péter Vancsó, Zakhar I. Popov, Gábor Zsolt Magda, Gergely Dobrik, Chanyong Hwang, Pavel B. Sorokin, Levente Tapasztó

Research output: Contribution to journalArticlepeer-review


The chemical inertness of the defect-free basal plane confers environmental stability to MoS2 single layers, but it also limits their chemical versatility and catalytic activity. The stability of pristine MoS2 basal plane against oxidation under ambient conditions is a widely accepted assumption however, here we report single-atom-level structural investigations that reveal that oxygen atoms spontaneously incorporate into the basal plane of MoS2 single layers during ambient exposure. The use of scanning tunnelling microscopy reveals a slow oxygen-substitution reaction, during which individual sulfur atoms are replaced one by one by oxygen, giving rise to solid-solution-type 2D MoS2−xOx crystals. Oxygen substitution sites present all over the basal plane act as single-atom reaction centres, substantially increasing the catalytic activity of the entire MoS2 basal plane for the electrochemical H2 evolution reaction.

Original languageEnglish
Pages (from-to)1246-1251
Number of pages6
JournalNature Chemistry
Issue number12
Publication statusPublished - 1 Dec 2018

Fingerprint Dive into the research topics of 'Spontaneous doping of the basal plane of MoS<sub>2</sub> single layers through oxygen substitution under ambient conditions'. Together they form a unique fingerprint.

Cite this