Species-function relationships shape ecological properties of the human gut microbiome

Sara Vieira-Silva, Gwen Falony, Youssef Darzi, Gipsi Lima-Mendez, Roberto Garcia Yunta, Shujiro Okuda, Doris Vandeputte, Mireia Valles-Colomer, Falk Hildebrand, Samuel Chaffron, Jeroen Raes

Research output: Contribution to journalArticlepeer-review


Despite recent progress, the organization and ecological properties of the intestinal microbial ecosystem remain under-investigated. Here, using a manually curated metabolic module framework for (meta-)genomic data analysis, we studied species-function relationships in gut microbial genomes and microbiomes. Half of gut-associated species were found to be generalists regarding overall substrate preference, but we observed significant genus-level metabolic diversification linked to bacterial life strategies. Within each genus, metabolic consistency varied significantly, being low in Firmicutes genera and higher in Bacteroides. Differentiation of fermentable substrate degradation potential contributed to metagenomic functional repertoire variation between individuals, with different enterotypes showing distinct saccharolytic/proteolytic/lipolytic profiles. Finally, we found that module-derived functional redundancy was reduced in the low-richness Bacteroides enterotype, potentially indicating a decreased resilience to perturbation, in line with its frequent association to dysbiosis. These results provide insights into the complex structure of gut microbiome-encoded metabolic properties and emphasize the importance of functional and ecological assessment of gut microbiome variation in clinical studies.

Original languageEnglish
Article number16088
JournalNature Microbiology
Issue number8
Publication statusPublished - 13 Jun 2016
Externally publishedYes


Dive into the research topics of 'Species-function relationships shape ecological properties of the human gut microbiome'. Together they form a unique fingerprint.

Cite this