Singular value analysis of predictor matrices

Fermin S.V Bazán, Philippe Toint

    Research output: Contribution to journalArticlepeer-review

    23 Downloads (Pure)

    Abstract

    Predictor matrices arise in problems of science and engineering where one is interested in predicting future information from previous ones using linear models. The solution of such problems depends on an accurate estimate of a part of the spectrum (the signal eigenvalues) of these matrices. In this paper, singular values of predictor matrices are analysed and formulae for their computation are derived. By applying a well-known eigenvalue-singular value inequality to our results, we deduce lower and upper bounds on the modulus of signal eigenvalues. These bounds depend on the dimension of the problem and allow us to show that the magnitude of signal eigenvalues is relatively insensitive to small perturbations in the data, provided the signal is slightly damped and the dimension of the problem is large enough. The theory is illustrated by numerical examples including the analysis of a signal arising from experimental measurements.
    Original languageEnglish
    Pages (from-to)667-683
    Number of pages17
    JournalMechanical Systems and Signal Processing
    Volume15
    Issue number4
    DOIs
    Publication statusPublished - 1 Jul 2001

    Fingerprint

    Dive into the research topics of 'Singular value analysis of predictor matrices'. Together they form a unique fingerprint.

    Cite this