TY - JOUR
T1 - Self-assembly of hierarchically mesoporous - Macroporous phosphated nanocrystalline aluminum (oxyhydr)oxide materials
AU - Yuan, Zhong Yong
AU - Ren, Tie Zhen
AU - Azioune, Ammar
AU - Pireaux, Jean Jacques
AU - Su, Bao Lian
PY - 2006/4/4
Y1 - 2006/4/4
N2 - A hierarchical structure of mesoporous - macroporous phosphated aluminum (oxyhydr)oxide (PAl) materials was prepared via a simple self-assembly process with the use of precursor aluminum secbutoxide in a mixed solution of H 3PO4 and Na2HPO4. Direct phosphation resulted in the incorporation of phosphorus into the inorganic framework of aluminum (oxyhydr)oxides by the Al-O-P bonds. The X-ray diffraction (XRD) patterns revealed that, despite slight phosphorus incorporation or phosphation, the frameworks of the as-synthesized autoclaved PAl samples remained in a crystalline phase of boehmite AlOOH-type, and their calcined products had a phase of γ-Al2O3-type. The macroporous structures are uniform, with sizes of 500-1800 nm, and the macropore walls are composed of accessible mesopores of a scaffold-like nanoparticle assembly. It is shown that the direct incorporation of phosphorus from a phosphate solution of the synthesis system can stabilize the framework of mesoporous-macroporous aluminum oxides with high surface areas and acidic properties. The present study also demonstrated that the surfactant (Brij 56) did not seem to have a direct role in the formation of macroporous structures, but significantly influenced the textural properties of the resultant PAl materials. The surface areas of surfactant-synthesized PAl exceeded 700 m2/g, which is almost two times of that of surfactantless-synthesized samples. The synthesized hierarchical PAl exhibited high thermal stability (at least 800°C), possessing surface hydroxyl groups and acid sites, which may attract much interest for practical applications, including catalysis.
AB - A hierarchical structure of mesoporous - macroporous phosphated aluminum (oxyhydr)oxide (PAl) materials was prepared via a simple self-assembly process with the use of precursor aluminum secbutoxide in a mixed solution of H 3PO4 and Na2HPO4. Direct phosphation resulted in the incorporation of phosphorus into the inorganic framework of aluminum (oxyhydr)oxides by the Al-O-P bonds. The X-ray diffraction (XRD) patterns revealed that, despite slight phosphorus incorporation or phosphation, the frameworks of the as-synthesized autoclaved PAl samples remained in a crystalline phase of boehmite AlOOH-type, and their calcined products had a phase of γ-Al2O3-type. The macroporous structures are uniform, with sizes of 500-1800 nm, and the macropore walls are composed of accessible mesopores of a scaffold-like nanoparticle assembly. It is shown that the direct incorporation of phosphorus from a phosphate solution of the synthesis system can stabilize the framework of mesoporous-macroporous aluminum oxides with high surface areas and acidic properties. The present study also demonstrated that the surfactant (Brij 56) did not seem to have a direct role in the formation of macroporous structures, but significantly influenced the textural properties of the resultant PAl materials. The surface areas of surfactant-synthesized PAl exceeded 700 m2/g, which is almost two times of that of surfactantless-synthesized samples. The synthesized hierarchical PAl exhibited high thermal stability (at least 800°C), possessing surface hydroxyl groups and acid sites, which may attract much interest for practical applications, including catalysis.
UR - http://www.scopus.com/inward/record.url?scp=33646083957&partnerID=8YFLogxK
U2 - 10.1021/cm0520160
DO - 10.1021/cm0520160
M3 - Article
AN - SCOPUS:33646083957
SN - 0897-4756
VL - 18
SP - 1753
EP - 1767
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 7
ER -