Roles of surface pattern morphology and sunlight incoherence on solar cell optimization

    Research output: Contribution in Book/Catalog/Report/Conference proceedingChapter


    In order to improve the light absorption efficiency of ultra-thin solar cells, front-side or/and back-side surface texturing are commonly used. This aim is to help coupling incident light into the active layer of the solar cell via light trapping. It has been shown that the morphology of the corrugation pattern has a strong influence on the solar cell efficiency (Herman et al. J Appl Phys 112(11):113107, 2012). However, most of the current optimizations consider that the cell is illuminated under coherent light. This hypothesis is not accurate since the sun is an incoherent source, with a coherence time around 3 fs (Hecht E, Optics, 4th edn. Addison- Wesley, Reading, 2001). Recently, we developed a rigorous theory allowing to take into account the effects of the temporal incoherence of light (Sarrazin et al. Opt Express 21(Suppl 4):A616–A630, 2013). Using this theory we showed that the photocurrent produced by a thin-film solar cell strongly depends on the coherence time of the incident light (Herman et al. New J Phys 16:013022, 2014). Therefore, optimal geometries found under coherent light should be reconsidered because they do not necessarily lead to maximum efficiency under incoherent light.

    Original languageEnglish
    Title of host publicationNano-Structures for Optics and Photonics: Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion
    PublisherSpringer Netherlands
    Number of pages1
    ISBN (Print)9789401791335, 9789401791328
    Publication statusPublished - 1 Jan 2015


    Dive into the research topics of 'Roles of surface pattern morphology and sunlight incoherence on solar cell optimization'. Together they form a unique fingerprint.

    Cite this