Recent advances in the practical and accurate calculation of core and valence XPS spectra of polymers: from interpretation to simulation?

Christophe BUREAU, Delano Pun Chong, Kazunaka Endo, Joseph Delhalle, Gérard Lécayon, Alain L. Le Moël

Research output: Contribution to journalArticle

Abstract

Core and valence X-ray Photoelectron Spectroscopies (XPS) are routinely used to obtain information on the chemical composition, bonding and homogeneity of polymer surfaces. In spite of their apparent conceptual simplicity, Core and Valence Electron Binding Energies (CEBEs and VEBEs) a few electron-volts (eV) or fractions of an eV apart are difficult to interpret. We present some results obtained with various recent theoretical approaches. An emphasis is made on a procedure based on the Density Functional Theory (DFT) that enables the calculation of CEBEs and VEBEs which are in remarkable agreement with experiment. The method has been tested on numerous small (3–6 atoms) to fairly large (15–25 atoms) molecules, and shows an average absolute deviation with experiment of only 0.20 eV for CEBEs and 0.30 eV for VEBEs, i.e. compatible with the resolution of the best XPS experiments carried out at the moment. Besides the quality of its predictions, the procedure takes advantage of the speed and CPU time scaling of DFT as a function of system size: it is computationally tractable, even for surprisingly large systems such as polymers, and may be an interesting accurate alternative to interpret and simulate XPS-probing on real systems. We illustrate the usefullness and pitfalls of this approach in fundamental as well as applied fields such as in the study of Polyacrylonitrile (PAN), Polytetrafluoroethylene (PTFE), Polyvinyldifluoride (PVdF) and γ-Aminopropyltriethoxysilane (γ-APS, an adhesion promoter).
Original languageEnglish
Pages (from-to)1-12
Number of pages12
JournalNuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
Volume131
Issue number1-4
DOIs
Publication statusPublished - 1997

Fingerprint

Dive into the research topics of 'Recent advances in the practical and accurate calculation of core and valence XPS spectra of polymers: from interpretation to simulation?'. Together they form a unique fingerprint.

Cite this