Probing modified gravity with atom-interferometry: A numerical approach

Research output: Contribution to journalArticle

1 Downloads (Pure)

Abstract

Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows one to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to 1 order of magnitude. In the thin-shell regime, results are found to be in good agreement with the analytical estimations, when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncertainties, by doing the experiment at several key positions inside the vacuum chamber. For the chameleon potential V(ϕ)=Λ4+α/ϕα and a coupling function A(ϕ)=exp(ϕ/M), one finds M≳7×1016  GeV, independently of the power-law index. For V(ϕ)=Λ4(1+Λ/ϕ), one finds M≳1014  GeV. A sensitivity of a∼10−11  m/s2 would probe the model up to the Planck scale. Finally, a proposal for a second experimental setup, in a vacuum room, is presented. In this case, Planckian values of M could be probed provided that a∼10−10  m/s2, a limit reachable by future experiments. Our method can easily be extended to constrain other models with a screening mechanism, such as symmetron, dilaton and f(R) theories.
Original languageEnglish
Article number104036
Number of pages13
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume93
Issue number10
DOIs
Publication statusPublished - 19 May 2016

Fingerprint

vacuum chambers
interferometry
gravitation
atoms
Klein-Gordon equation
probes
profiles
rooms
proposals
screening
chambers
scalars
vacuum
sensitivity
predictions

Cite this

@article{ca681ff1afe7461aa8b46838232ab1c8,
title = "Probing modified gravity with atom-interferometry: A numerical approach",
abstract = "Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows one to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to 1 order of magnitude. In the thin-shell regime, results are found to be in good agreement with the analytical estimations, when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncertainties, by doing the experiment at several key positions inside the vacuum chamber. For the chameleon potential V(ϕ)=Λ4+α/ϕα and a coupling function A(ϕ)=exp(ϕ/M), one finds M≳7×1016  GeV, independently of the power-law index. For V(ϕ)=Λ4(1+Λ/ϕ), one finds M≳1014  GeV. A sensitivity of a∼10−11  m/s2 would probe the model up to the Planck scale. Finally, a proposal for a second experimental setup, in a vacuum room, is presented. In this case, Planckian values of M could be probed provided that a∼10−10  m/s2, a limit reachable by future experiments. Our method can easily be extended to constrain other models with a screening mechanism, such as symmetron, dilaton and f(R) theories.",
author = "Sandrine Schlogel and Andr{\'e} Fuzfa and S{\'e}bastien Clesse",
year = "2016",
month = "5",
day = "19",
doi = "10.1103/PhysRevD.93.104036",
language = "English",
volume = "93",
journal = "Physical Review D - Particles, Fields, Gravitation and Cosmology",
issn = "1550-7998",
publisher = "American Physical Society",
number = "10",

}

TY - JOUR

T1 - Probing modified gravity with atom-interferometry

T2 - A numerical approach

AU - Schlogel, Sandrine

AU - Fuzfa, André

AU - Clesse, Sébastien

PY - 2016/5/19

Y1 - 2016/5/19

N2 - Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows one to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to 1 order of magnitude. In the thin-shell regime, results are found to be in good agreement with the analytical estimations, when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncertainties, by doing the experiment at several key positions inside the vacuum chamber. For the chameleon potential V(ϕ)=Λ4+α/ϕα and a coupling function A(ϕ)=exp(ϕ/M), one finds M≳7×1016  GeV, independently of the power-law index. For V(ϕ)=Λ4(1+Λ/ϕ), one finds M≳1014  GeV. A sensitivity of a∼10−11  m/s2 would probe the model up to the Planck scale. Finally, a proposal for a second experimental setup, in a vacuum room, is presented. In this case, Planckian values of M could be probed provided that a∼10−10  m/s2, a limit reachable by future experiments. Our method can easily be extended to constrain other models with a screening mechanism, such as symmetron, dilaton and f(R) theories.

AB - Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows one to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to 1 order of magnitude. In the thin-shell regime, results are found to be in good agreement with the analytical estimations, when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncertainties, by doing the experiment at several key positions inside the vacuum chamber. For the chameleon potential V(ϕ)=Λ4+α/ϕα and a coupling function A(ϕ)=exp(ϕ/M), one finds M≳7×1016  GeV, independently of the power-law index. For V(ϕ)=Λ4(1+Λ/ϕ), one finds M≳1014  GeV. A sensitivity of a∼10−11  m/s2 would probe the model up to the Planck scale. Finally, a proposal for a second experimental setup, in a vacuum room, is presented. In this case, Planckian values of M could be probed provided that a∼10−10  m/s2, a limit reachable by future experiments. Our method can easily be extended to constrain other models with a screening mechanism, such as symmetron, dilaton and f(R) theories.

U2 - 10.1103/PhysRevD.93.104036

DO - 10.1103/PhysRevD.93.104036

M3 - Article

VL - 93

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

SN - 1550-7998

IS - 10

M1 - 104036

ER -