Predicting Keto–Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States: A Case Study on Salicylideneanilines

Freddy Zutterman, Orian Louant, Gabriel Mercier, Tom Leyssens, Benoît Champagne

Research output: Contribution to journalArticlepeer-review

Abstract

Salicylideneanilines are characterized by a tautomer equilibrium, between an enol and a keto form of different colors, at the origin of their remarkable thermochromic, solvatochromic, and photochromic properties. The enol form is usually the most stable but appropriate choice of substituents and conditions (solvent, crystal, host compound) can displace the equilibrium toward the keto form so that there is a need for fast prediction of the keto:enol abundance ratio. Here we demonstrate the reliability of a combined theoretical−experimental method, based on comparing simulated and measured UV/visible absorption spectra, to determine this keto/enol ratio. The calculations of the excitation energies, oscillator strengths, and vibronic structures of both enol and keto forms are performed for all excited states absorbing in the relevant (visible and near-UV) wavelength range at the time-dependent density functional theory level by accounting for solvent effects using the polarizable continuum model. This approach is illustrated for two salicylideneaniline derivatives, which are present, in solution, under the form of keto−enol mixtures. The results are compared to those of chemometric analysis as well as ab initio predictions of the reaction free enthalpies.
Original languageEnglish
Pages (from-to)5370-5374
Number of pages5
JournalJournal of physical chemistry A
Volume122
Issue number24
DOIs
Publication statusPublished - 21 Jun 2018

Fingerprint

Dive into the research topics of 'Predicting Keto–Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States: A Case Study on Salicylideneanilines'. Together they form a unique fingerprint.

Cite this