Picosecond laser for performance of efficient non linear spectroscopy from 10 to 21 µm

Alaa Addin Mani, Zachary D. Schultz, Andrew A. Gewirth, Jeffrey O. White, Yves Caudano, Christophe Humbert, Laurent Dreesen, Paul Thiry (Editor), André Peremans

Research output: Contribution to journalArticle

Abstract

Laser tunability from 10 to 21 µm is obtained by use of an optical parametric oscillator based on a KTP crystal followed by a difference-frequency stage with a CdSe crystal. An all-solid-state picosecond NdYAG oscillator mode locked by a frequency-doubling nonlinear mirror is used for synchronous pumping.
Original languageEnglish
Pages (from-to)274-276
Number of pages3
JournalOptics Letters
Volume29
Issue number3
Publication statusPublished - 2004

Fingerprint

parametric amplifiers
spectroscopy
crystals
lasers
pumping
oscillators
mirrors
solid state

Cite this

Mani, A. A., Schultz, Z. D., Gewirth, A. A., White, J. O., Caudano, Y., Humbert, C., ... Peremans, A. (2004). Picosecond laser for performance of efficient non linear spectroscopy from 10 to 21 µm. Optics Letters, 29(3), 274-276.
Mani, Alaa Addin ; Schultz, Zachary D. ; Gewirth, Andrew A. ; White, Jeffrey O. ; Caudano, Yves ; Humbert, Christophe ; Dreesen, Laurent ; Thiry, Paul (Editor) ; Peremans, André. / Picosecond laser for performance of efficient non linear spectroscopy from 10 to 21 µm. In: Optics Letters. 2004 ; Vol. 29, No. 3. pp. 274-276.
@article{5dc3af7e13d84e55903dcc3e303aa0de,
title = "Picosecond laser for performance of efficient non linear spectroscopy from 10 to 21 µm",
abstract = "Laser tunability from 10 to 21 µm is obtained by use of an optical parametric oscillator based on a KTP crystal followed by a difference-frequency stage with a CdSe crystal. An all-solid-state picosecond NdYAG oscillator mode locked by a frequency-doubling nonlinear mirror is used for synchronous pumping.",
author = "Mani, {Alaa Addin} and Schultz, {Zachary D.} and Gewirth, {Andrew A.} and White, {Jeffrey O.} and Yves Caudano and Christophe Humbert and Laurent Dreesen and Paul Thiry and Andr{\'e} Peremans",
year = "2004",
language = "English",
volume = "29",
pages = "274--276",
journal = "Optics Letters",
issn = "0146-9592",
publisher = "The Optical Society",
number = "3",

}

Mani, AA, Schultz, ZD, Gewirth, AA, White, JO, Caudano, Y, Humbert, C, Dreesen, L, Thiry, P (ed.) & Peremans, A 2004, 'Picosecond laser for performance of efficient non linear spectroscopy from 10 to 21 µm', Optics Letters, vol. 29, no. 3, pp. 274-276.

Picosecond laser for performance of efficient non linear spectroscopy from 10 to 21 µm. / Mani, Alaa Addin; Schultz, Zachary D.; Gewirth, Andrew A.; White, Jeffrey O.; Caudano, Yves; Humbert, Christophe; Dreesen, Laurent; Thiry, Paul (Editor); Peremans, André.

In: Optics Letters, Vol. 29, No. 3, 2004, p. 274-276.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Picosecond laser for performance of efficient non linear spectroscopy from 10 to 21 µm

AU - Mani, Alaa Addin

AU - Schultz, Zachary D.

AU - Gewirth, Andrew A.

AU - White, Jeffrey O.

AU - Caudano, Yves

AU - Humbert, Christophe

AU - Dreesen, Laurent

AU - Peremans, André

A2 - Thiry, Paul

PY - 2004

Y1 - 2004

N2 - Laser tunability from 10 to 21 µm is obtained by use of an optical parametric oscillator based on a KTP crystal followed by a difference-frequency stage with a CdSe crystal. An all-solid-state picosecond NdYAG oscillator mode locked by a frequency-doubling nonlinear mirror is used for synchronous pumping.

AB - Laser tunability from 10 to 21 µm is obtained by use of an optical parametric oscillator based on a KTP crystal followed by a difference-frequency stage with a CdSe crystal. An all-solid-state picosecond NdYAG oscillator mode locked by a frequency-doubling nonlinear mirror is used for synchronous pumping.

M3 - Article

VL - 29

SP - 274

EP - 276

JO - Optics Letters

JF - Optics Letters

SN - 0146-9592

IS - 3

ER -

Mani AA, Schultz ZD, Gewirth AA, White JO, Caudano Y, Humbert C et al. Picosecond laser for performance of efficient non linear spectroscopy from 10 to 21 µm. Optics Letters. 2004;29(3):274-276.