Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation

Hemdan S.H. Mohamed, Mohamed Rabia, Xian Gang Zhou, Xu Sen Qin, Gomaa Khabiri, Mohamed Shaban, Hussein A. Younus, S. Taha, Zhi Yi Hu, Jing Liu, Yu Li, Bao Lian Su

Research output: Contribution to journalArticlepeer-review

Abstract

Developing anatase/rutile phase-junction in TiO2 to construct Z-scheme system is quite effective to improve its photoelectrochemical activity. In this work, the anatase/rutile phase-junction Ag/TiO2 nanocomposites are developed as photocathodes for hydrogen production. The optimized Ag/TiO2 nanocomposite achieves a high current density of 1.28 mA cm2, an incident photon-to-current conversion efficiency (IPCE) of 10.8 %, an applied bias photon-to-current efficiency (ABPE) of 0.32 at 390 nm and a charge carriers’ lifetime up to 2000s. Such enhancement on photoelectrochemical activity can be attributed to: (i) the generated Z-scheme system in the anatase/rutile phase-junction Ag/TiO2 photocathode enhances the separation, diffusion and transformation of electron/hole pairs inside the structure, (ii) Ag nanodots modification in the anatase/rutile phases leading to the tuned band gap with enhanced light absorption and (iii) the formed Schottky barrier after Ag nanodots surface modification provides enough electron traps to avoid the recombination of photogenerated electrons and holes. Our results here suggest that developing phase-junction nanocomposite as photocathode will provide a new vision for their enhanced photoelectrochemical generation of hydrogen.

Original languageEnglish
Pages (from-to)179-187
Number of pages9
JournalJournal of Materials Science and Technology
Volume83
Early online date31 Jan 2021
DOIs
Publication statusPublished - 30 Aug 2021

Keywords

  • Ag/TiO nanocomposites
  • Anatase/rutile phase-junction
  • H generation
  • Photocathode
  • Z-scheme

Fingerprint

Dive into the research topics of 'Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation'. Together they form a unique fingerprint.

Cite this