Optical second harmonic generation from nanostructured graphene: A full wave approach

Bruno Majérus, Jérémy Butet, Gabriel D. Bernasconi, Raziman Thottungal Valapu, Michael Lobet, Luc Henrard, Oliver J.F. Martin

Research output: Contribution to journalArticlepeer-review

38 Downloads (Pure)


Optical second harmonic generation (SHG) from nanostructured graphene has been studied in the framework of classical electromagnetism using a surface integral equation method. Single disks and dimers are considered, demonstrating that the nonlinear conversion is enhanced when a localized surface plasmon resonance is excited at either the fundamental or second harmonic frequency. The proposed approach, beyond the electric dipole approximation used in the quantum description, reveals that SHG from graphene nanostructures with centrosymmetric shapes is possible when retardation e ects and the excitation of high plasmonic modes at the second harmonic frequency are taken into account. Several SHG e ects similar to those arising in metallic nanostructures, such as the silencing of the nonlinear emission and the design of double resonant nanostructures, are also reported. Finally, it is shown that the SHG from graphene disk dimers is very sensitive to a relative vertical displacement of the disks, opening new possibilities for the design of nonlinear plasmonic nanorulers.

Original languageEnglish
Pages (from-to)27015-27027
Number of pages13
JournalOptics Express
Issue number22
Publication statusPublished - 30 Oct 2017


Dive into the research topics of 'Optical second harmonic generation from nanostructured graphene: A full wave approach'. Together they form a unique fingerprint.

Cite this