On the traceably accurate voltage calibration of electrostatic accelerators

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We describe in detail a calibration method for the terminal voltage of small accelerators used for ion beam analysis, with the elastic resonance of 16O(α,α)16O at 3038 keV as the intrinsic measurement standard. The beam energy relative to this resonance is determined with a precision around 300 eV and an evaluated reproducibility of 1.0 keV. We show that this method is both robust and convenient, and demonstrate consistency with calibration relative to three other independent methods: using radioactive sources and using the resonant 27Al(p,γ)28Si and non-resonant 16O(p,γ)17F direct capture reactions. We re-evaluate the literature and show that the peak in the cross-section function is at 3038.1 ± 2.3 keV. By comparing the results obtained with 16O(α,α)16O to the other calibration methods we show that this uncertainty can be reduced to 1.3 keV.

    Original languageEnglish
    Pages (from-to)173-183
    Number of pages11
    JournalNuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
    Volume349
    DOIs
    Publication statusPublished - 15 Apr 2015

    Keywords

    • Accurate calibration
    • Elastic scattering cross section
    • Total-IBA
    • Uncertainty analysis

    Fingerprint

    Dive into the research topics of 'On the traceably accurate voltage calibration of electrostatic accelerators'. Together they form a unique fingerprint.

    Cite this