Nature of phase transitions in Axelrod-like coupled Potts models in two dimensions

Yerali Carolina Gandica Lopez, Silvia Chiacchiera

Research output: Contribution to journalArticle

Abstract

We study F coupled q-state Potts models in a two-dimensional square lattice. The interaction between the different layers is attractive to favor a simultaneous alignment in all of them, and its strength is fixed. The nature of the phase transition for zero field is numerically determined for F=2,3. Using the Lee-Kosterlitz method, we find that it is continuous for F=2 and q=2, whereas it is abrupt for higher values of q and/or F. When a continuous or a weakly first-order phase transition takes place, we also analyze the properties of the geometrical clusters. This allows us to determine the fractal dimension D of the incipient infinite cluster and to examine the finite-size scaling of the cluster number density via data collapse. A mean-field approximation of the model, from which some general trends can be determined, is presented too. Finally, since this lattice model has been recently considered as a thermodynamic counterpart of the Axelrod model of social dynamics, we discuss our results in connection with this one.
Original languageEnglish
Article number032132
Number of pages11
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume93
Issue number3
DOIs
Publication statusPublished - 17 Mar 2016

Fingerprint Dive into the research topics of 'Nature of phase transitions in Axelrod-like coupled Potts models in two dimensions'. Together they form a unique fingerprint.

  • Cite this