Projects per year
Abstract
Multi-resonant thermally activated delayed fluorescence (MR-TADF) materials have attracted considerable attention recently. The molecular design frequently incorporates cycloboration. However, to the best of our knowledge MR-TADF compounds containing nitrogen chelated to boron are still unknown. Reported herein is a new class of tetracoordinate boron-containing MR-TADF emitters bearing C^N^C- and N^N^N-chelating ligands. We demonstrate that the replacement of the B-C covalent bond in the C^N^C-chelating ligand by the B-N covalent bond affords an isomer, which dramatically influences the optoelectronic properties of the molecule. The resulting N^N^N-chelating compounds show bathochromically shifted absorption and emission spectra relative to C^N^C-chelating compounds. The incorporation of a tert-butylcarbazole group at the 4-position of the pyridine significantly enhances both the thermal stability and the reverse intersystem crossing rate, yet has a negligible effect on emission properties. Consequently, high-performance hyperfluorescent organic light-emitting diodes (HF-OLEDs) that utilize these molecules as green and yellow-green emitters show a maximum external quantum efficiency (ηext) of 11.5% and 25.1%, and a suppressed efficiency roll-off with an ηext of 10.2% and 18.7% at a luminance of 1000 cd m-2, respectively.
Original language | English |
---|---|
Pages (from-to) | 1665-1674 |
Number of pages | 10 |
Journal | Chemical Science |
Volume | 13 |
Issue number | 6 |
DOIs | |
Publication status | Published - 14 Feb 2022 |
Fingerprint
Dive into the research topics of 'Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Equipment renewal for the Consortium des Equipements de Calcul Intensif (CECI)
Bontempi, G. (PI), CHAMPAGNE, B. (CoPI), Geuzaine , C. (CoPI), RIGNANESE, G. M. (CoPI) & Lazzaroni, R. (CoPI)
1/01/22 → 31/12/23
Project: Research
Equipment
-
High Performance Computing Technology Platform
Champagne, B. (Manager)
Technological Platform High Performance ComputingFacility/equipment: Technological Platform