Molecular insights into Vibrio cholerae's intra-amoebal host-pathogen interactions

Charles Van der Henst, Audrey Sophie Vanhove, Natália Carolina Drebes Dörr, Sandrine Stutzmann, Candice Stoudmann, Stéphanie Clerc, Tiziana Scrignari, Catherine Maclachlan, Graham Knott, Melanie Blokesch

Research output: Contribution to journalArticle

Abstract

Vibrio cholerae, which causes the diarrheal disease cholera, is a species of bacteria commonly found in aquatic habitats. Within such environments, the bacterium must defend itself against predatory protozoan grazers. Amoebae are prominent grazers, with Acanthamoeba castellanii being one of the best-studied aquatic amoebae. We previously showed that V. cholerae resists digestion by A. castellanii and establishes a replication niche within the host's osmoregulatory organelle. In this study, we decipher the molecular mechanisms involved in the maintenance of V. cholerae's intra-amoebal replication niche and its ultimate escape from the succumbed host. We demonstrate that minor virulence features important for disease in mammals, such as extracellular enzymes and flagellum-based motility, have a key role in the replication and transmission of V. cholerae in its aqueous environment. This work, therefore, describes new mechanisms that provide the pathogen with a fitness advantage in its primary habitat, which may have contributed to the emergence of these minor virulence factors in the species V. cholerae.

Original languageEnglish
Article number3460
Pages (from-to)3460
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 1 Dec 2018

    Fingerprint

Cite this

Van der Henst, C., Vanhove, A. S., Drebes Dörr, N. C., Stutzmann, S., Stoudmann, C., Clerc, S., ... Blokesch, M. (2018). Molecular insights into Vibrio cholerae's intra-amoebal host-pathogen interactions. Nature Communications, 9(1), 3460. [3460]. https://doi.org/10.1038/s41467-018-05976-x