Abstract
The mechanism guiding the growth of hollow silica nanotubes or nanospheres was unveiled for the first time through in situ liquid-phase transmission electron microscopy, allowing visualization of the morphology of the hydrated species involved in the early stage of material formation. The combined action of a surfactant (F127) and a swelling agent (toluene) was essential for the development of targeted nanostructures, owing to the formation of surfactant-stabilized toluene droplets in the aqueous phase. The quantity of surfactant-stabilized toluene droplets was unambiguously pointed as the key parameter guiding the formation of either tubular or spherical nanostructures. Leveraging on the fundamental understanding of the parameters guiding the formation of hollow silica nanostructures, tubular and spherical carriers were prepared and exploited for the release of an active pharmaceutical ingredient (API). The impregnation of nanotubes and nanospheres with a poorly water-soluble API (curcumin) was investigated, leading to an optimal loading of 20 wt %. The accessibility of nanotubes and nanospheres showed to be highly beneficial to increase the release kinetics of the targeted API in simulated intestinal fluid, opening promising perspectives in the field. Release was more efficient than with other conventional mesoporous silica-based carriers.
Original language | English |
---|---|
Pages (from-to) | 1877-1890 |
Number of pages | 14 |
Journal | Chemistry of Materials |
Volume | 35 |
Issue number | 5 |
DOIs | |
Publication status | Published - 14 Mar 2023 |
Fingerprint
Dive into the research topics of 'Low-Dimensional Hollow Nanostructures: From Morphology Control to the Release of an Active Pharmaceutical Ingredient'. Together they form a unique fingerprint.Equipment
-
Morphology - Imaging
Cecchet, F. (Manager) & Renard, H.-F. (Manager)
Technological Platform Morphology - ImagingFacility/equipment: Technological Platform
-
Physical Chemistry and characterization(PC2)
Wouters, J. (Manager), Aprile, C. (Manager) & Fusaro, L. (Manager)
Technological Platform Physical Chemistry and characterizationFacility/equipment: Technological Platform
Student theses
-
Silica-based nanotubes and hollow nanospheres: a transversal approach to understand their synthesis mechanism followed by applications in catalysis and drug release
Soumoy, L. (Author), Aprile, C. (Supervisor), Debecker, D. P. (Co-Supervisor), Vincent, S. (President), Hermans, S. (Jury), Boissière, C. (Jury) & Dusselier, M. (Jury), 14 Sept 2023Student thesis: Doc types › Doctor of Sciences