Koopman-based lifting techniques for nonlinear systems identification

Alexandre Mauroy, Jorge Goncalves

Research output: Contribution to journalArticlepeer-review

44 Downloads (Pure)

Abstract

We develop a novel lifting technique for nonlinear system identification based on the framework of the Koopman operator. The key idea is to identify the linear (infinite dimensional) Koopman operator in the lifted space of observables, instead of identifying the nonlinear system in the state space, a process which results in a linear method for nonlinear systems identification. The proposed lifting technique is an indirect method that does not require to compute time derivatives and is therefore well-suited to low-sampling rate data sets. Considering different finite-dimensional subspaces to approximate and identify the Koopman operator, we propose two numerical schemes: a main method and a dual method. The main method is a parametric identification technique that can accurately reconstruct the vector field of a broad class of systems. The dual method provides estimates of the vector field at the data points and is well-suited to identify high-dimensional systems with small datasets. This paper describes the two methods, provides theoretical convergence results, and illustrates the lifting techniques with several examples.

Original languageEnglish
Article number8836606
Pages (from-to)2550-2565
Number of pages16
JournalIEEE Transactions on Automatic Control
Volume65
Issue number6
DOIs
Publication statusPublished - Jun 2020

Keywords

  • Aerospace electronics
  • Biological system modeling
  • Convergence
  • Noise measurement
  • Nonlinear dynamical systems
  • Trajectory
  • Dynamic mode decomposition (DMD)
  • koopman operator

Fingerprint Dive into the research topics of 'Koopman-based lifting techniques for nonlinear systems identification'. Together they form a unique fingerprint.

Cite this