Projects per year
Abstract
Tuftelin Interacting Protein 11 (TFIP11) was identified as a critical human spliceosome assembly regulator, interacting with multiple proteins and localising in membrane-less organelles. However, a lack of structural information on TFIP11 limits the rationalisation of its biological role. TFIP11 is predicted as an intrinsically disordered protein (IDP), and more specifically concerning its N-terminal (N-TER) region. IDPs lack a defined tertiary structure, existing as a dynamic conformational ensemble, favouring protein-protein and protein-RNA interactions. IDPs are involved in liquid-liquid phase separation (LLPS), driving the formation of subnuclear compartments. Combining disorder prediction, molecular dynamics, and spectroscopy methods, this contribution shows the first evidence TFIP11 N-TER is a polyampholytic IDP, exhibiting a structural duality with the coexistence of ordered and disordered assemblies, depending on the ionic strength. Increasing the salt concentration enhances the protein conformational flexibility, presenting a more globule-like shape, and a fuzzier unstructured arrangement that could favour LLPS and protein-RNA interaction. The most charged and hydrophilic regions are the most impacted, including the G-Patch domain essential to TFIP11 function. This study gives a better understanding of the salt-dependent conformational behaviour of the N-TER TFIP11, supporting the hypothesis of the formation of different types of protein assembly, in line with its multiple biological roles.
Original language | English |
---|---|
Article number | 134291 |
Journal | International journal of biological macromolecules |
Volume | 277 |
Issue number | 3 |
DOIs | |
Publication status | Published - Oct 2024 |
Keywords
- Intrinsically disordered protein
- Molecular dynamics
- Polyampholyte
- Protein assembly
- Spectroscopy
- Spliceosome protein
- Tuftelin interacting protein 11
Fingerprint
Dive into the research topics of 'Intrinsic disorder and salt-dependent conformational changes of the N-terminal region of TFIP11 splicing factor'. Together they form a unique fingerprint.Projects
- 1 Finished
-
CÉCI – Consortium of high performance computing centers
CHAMPAGNE, B. (PI), Lazzaroni, R. (PI), Geuzaine , C. (CoI), Chatelain, P. (CoI) & Knaepen, B. (CoI)
1/01/18 → 31/12/22
Project: Research
Equipment
-
High Performance Computing Technology Platform
Champagne, B. (Manager)
Technological Platform High Performance ComputingFacility/equipment: Technological Platform