Projects per year
Abstract
The μ opioid receptor (μOR), which is part of the G protein-coupled receptors family, is a membrane protein that is modulated by its lipid environment. In the present work, we model μOR in three different membrane systems: POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), and DPPC (1, 2-dipalmitoyl-sn-glycero-3-phosphocholine) through 45 μs molecular dynamics (MD) simulations at the coarse-grained level. Our theoretical studies provide new insights to the lipid-induced modulation of the receptor. Particularly, to characterize how μOR interacts with each lipid, we analyze the tilt of the protein, the number of contacts occurring between the lipids and each amino acid of the receptor, and the μOR-lipid interface described as a network graph. We also analyze the variations in the number and the nature of the protein contacts that are induced by the lipid structure. We show that POPC interacts preferentially
with helix 1 (H1) and helices H5-H6, POPE, with H5-H6 and H6-H7, and DPPC, with H4 and
H6. We demonstrate how each of the three lipids shape the structure of the μOR.
with helix 1 (H1) and helices H5-H6, POPE, with H5-H6 and H6-H7, and DPPC, with H4 and
H6. We demonstrate how each of the three lipids shape the structure of the μOR.
Original language | English |
---|---|
Article number | e0213646 |
Pages (from-to) | e0213646 |
Number of pages | 19 |
Journal | PLoS ONE |
Volume | 14 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2019 |
Fingerprint
Dive into the research topics of 'Interaction of POPC, DPPC, and POPE with the μ Opioid Receptor: A Coarse-Grained Molecular Dynamics Study'. Together they form a unique fingerprint.Projects
- 2 Finished
-
CÉCI – Consortium of high performance computing centers
CHAMPAGNE, B. (PI), Lazzaroni, R. (PI), Geuzaine , C. (CoI), Chatelain, P. (CoI) & Knaepen, B. (CoI)
1/01/18 → 31/12/22
Project: Research
-
Influence of the lipid composition of the plasmic membrane on the dynamical properties of protein Mu using coarse-grained Molecular Dynamics
Angladon, M.-A. (PI), FOSSEPRE, M. (CoI), Leherte, L. (CoI) & Vercauteren, D. (CoI)
1/01/13 → 1/07/18
Project: Research
Equipment
-
High Performance Computing Technology Platform
Champagne, B. (Manager)
Technological Platform High Performance ComputingFacility/equipment: Technological Platform