Inelastic electron tunneling of C60 on gold surfaces from first-principles calculations

Research output: Contribution to journalArticlepeer-review


The simulation of IET spectra of a single C60 molecule placed between two gold electrodes has evidenced the high sensitivity of IET spectroscopy to the C60 orientation and also to the molecule-electrode distance. When considering a small molecule-electrode distance (d = 2.0 Å) the dominant peaks are associated with longitudinal displacements of the contact moieties. For d = 2.8 Å, depending on the adsorption configuration the dominant signatures are not associated with the same atomic motions, while for larger distances (d = 4.0 Å) the four configurations only exhibit peaks corresponding to C-C stretching modes. The best agreement between experimental measurements and our theoretical calculations has been found when considering a molecular junction characterized by two hexagons of the C60 molecule aligned parallel to the Au(111) surfaces and centered on a hcp site, with a distance between the center of the hexagon aligned parallel to the Au(111) surface and the hcp site of the source (drain) reservoir of 2.8 Å (3.4 Å). Our approach can therefore be of great help in understanding, beside the intrinsic vibrational behavior of one compound, the small structural variations induced by the proximity to the metal electrodes.

Original languageEnglish
Pages (from-to)803-818
Number of pages16
JournalJournal of Physical Chemistry C
Issue number1
Publication statusPublished - Jan 2015


Dive into the research topics of 'Inelastic electron tunneling of C<sub>60</sub> on gold surfaces from first-principles calculations'. Together they form a unique fingerprint.
  • PAI n°P7/05 - FS2: Functional Supramolecular Systems (FS2)

    CHAMPAGNE, B., De Vos, D., Van der Auweraer, M., Jérôme, C., Lazzaroni, R., Marin, G., Jonas, A., Du Prez, F., Vanderzande, D., Van Tendeloo, G., Van Speybroeck, V., NENON, S. & STAELENS, N.


    Project: Research

Cite this