Improving Urban Population Distribution Models with Very-High Resolution Satellite Information

Taïs Grippa, Catherine Linard, Moritz Lennert, Stefanos Georganos, Nicholus Mboga, Sabine Vanhuysse, Assane Gadiaga, Eléonore Wolff

Research output: Contribution to journalArticlepeer-review

6 Downloads (Pure)


Built-up layers derived from medium resolution (MR) satellite information have proven their contribution to dasymetric mapping, but suffer from important limitations when working at the intra-urban level, mainly due to their difficulty in capturing the whole range of variation in terms of built-up densities. In this regard, very-high resolution (VHR) remote sensing is known for its ability to better capture small variations in built-up densities and to derive detailed urban land use, which plead in favor of its use when mapping urban populations. In this paper, we compare the added value of various combinations of VHR data sets, compared to a MR one. A top-down dasymetric mapping strategy is applied to reallocate population counts from administrative units into a regular 100 × 100 m grid, according to different weighting layers. These weighting layers are created from MR and/or VHR input data, using simple built-up proportion or reallocation “weights”, obtained from a set of multiple ancillary data used to train a Random Forest regression model. The results reveal that (1) a built-up mask derived from VHR can improve the accuracy of the reallocation by roughly 13%, compared to MR; (2) using VHR land-use information alone results in lower accuracy than using a MR built-up mask; and (3) there is a clear complementarity between VHR land cover and land use.
Original languageEnglish
Article number13
Issue number1
Publication statusPublished - 1 Mar 2019


  • African city
  • dasymetric mapping
  • population modelling
  • random forest
  • remote sensing
  • top-down approach
  • very-high resolution data
  • Very-high resolution data
  • Random forest
  • Remote sensing
  • Top-down approach
  • Population modelling
  • Dasymetric mapping

Fingerprint Dive into the research topics of 'Improving Urban Population Distribution Models with Very-High Resolution Satellite Information'. Together they form a unique fingerprint.

Cite this